
OPTIMIZATION MODELS AND ALGORITHMS
FOR EVACUATION PLANNING

A THESIS SUBMITTED TO THE
CENTRAL DEPARTMENT OF MATHEMATICS
INSTITUTE OF SCIENCE AND TECHNOLOGY

TRIBHUVAN UNIVERSITY
NEPAL

FOR THE AWARD OF
DOCTOR OF PHILOSOPHY

IN MATHEMATICS

BY
HARI NANDAN NATH

NOVEMBER 2020

DECLARATION

Thesis entitled “Opttimizaion Models and Algorithms for Evacuation Planning"
which is being submitted to the Central Department of Mathematics, Institute of
Science and Technology (IOST), Tribhuvan University, Nepal for the award of the
degree of Doctor of Philosophy (Ph.D.), is a research work carried out by me under the
supervision of Prof. Dr. Tanka Nath Dhamala, Central Department of Mathematics,
Tribhuvan University and co-supervised by Prof. Dr. Stephan Dempe, Fakultät für
Mathematik und Informatik, Technische Universität Bergakademie Freiberg, Germany.

This research is original and has not been submitted earlier in part or full in this or any
other form to any university or institute, here or elsewhere, for the award of any degree.

Hari Nandan Nath

ii

RECOMMENDATION

This is to recommend that Hari Nandan Nath has carried out research entitled
“Optimization Models and Algorithms for Evacuation Planning" for the award of
Doctor of Philosophy (Ph.D.) in Mathematics under our supervision. To our
knowledge, this work has not been submitted for any other degree.

He has fulfilled all the requirements laid down by the Institute of Science and
Technology (IOST), Tribhuvan Unviersity, Kirtipur for the submission of the thesis for
the award of Ph.D. degree.

Dr. Tanka Nath Dhamala
Supervisor
(Professor)
Central Department of Mathematics
Tribhuvan Unviersity
Kirtipur, Kathmandu, Nepal

Dr. Stephan Dempe
Co-Supervisor
(Professor)
Fakultät für Mathematik und Informatik
Technische Universität Bergakademie Freiberg
09596, Freiberg, Germany

November 2020

iii

 Ref. No.:

LETTER OF APPROVAL

On the recommendation of Prof. Dr. Tanka Nath Dhamala and Prof. Dr. Stephan Dempe,

this Ph.D. thesis submitted by Mr. Hari Nandan Nath entitled "Optimization Models and

Algorithms for Evacuation Planning” is forwarded by Central Department Research Committee

(CDRC) to the Dean, IOST, T.U.

..

Prof. Dr. Tanka Nath Dhamala

(Head)

Central Department of Mathematics

Tribhuvan University

Kirtipur, Kathmandu

 Phone No. :00977-14331977

 TRIBHUVAN UNIVERSITY
 CENTRAL DEPARTMENT OF MATHEMATICS
 OFFICE OF THE HEAD OF DEPARTMENT

KIRTIPUR, KATHMANDU
 NEPAL

 Date: 06/12/2020

DAILY CLASS SCHEDULE
Second Year/4th Semester

(To be effective from 2073-08-26)
CLASS SCHEDULE

ACKNOWLEDGEMENTS

I am grateful to my supervisor Prof. Dr. Tanka Nath Dhamala for invoking my interest
in the field of mathematical optimization. This work would not have been possible
without his encouragement, inspiration, and guidance. I am also grateful to Prof. Dr.
Stephan Dempe who showed me new directions, agreed to become a co-supervisor,
and made arrangements for a year-long research stay and study opportunities at
Technische Universität Begakademie Freiberg. I am indebted to Dr. Urmila Pyakurel,
who is a coauthor in most of the publications related to this thesis, for involving me in
her research extensions. I would also like to thank Mrs. Caterina Löschner, secretary at
Institut für Numerische Mathematik und Optimierung, TU Bergakademie Freiberg for
making my research stay easier there.

I thank University Grants Commission, Bhaktapur Nepal for providing me a Ph.D.
Fellowship, Nepal Mathematical Society for NMS fellowship, Bhaktapur Multiple
Campus, and Tribhuvan University for granting me a study leave, and the Central
Department of Mathematics for arranging a friendly study environment.

I would like to acknowledge DAAD funded GraThO (Graph Theory and Optimization
with Applications in Society and Industry) project and its collaborators Prof. Dr. Horst
Hamacher, Prof. Dr. Sven O. Krumke, Prof. Dr. Sergio Canoy Jr., Prof. Dr. Ferdinand
Jamil including my supervisor Prof. Dhamala, for providing fruitful workshops and
research stay supports of three months each, at Mindanao State University-Iligan
Institute of Technology, Philippines and Technische Universität Kaiserslautern,
Germany.

I am also thankful to GraFA at TU Bergakademie Freiberg for providing me a research
stay support via DAAD IPID4all Program, and Alexander von Humboldt Research
Group Linkage Program for research-enhancing workshops and support.

Finally, I thank my friend Mr Parishwar Acharya for his initiation to encourage me
towards this research area and my wife Pratima Bharati for her unconditional support.

Hari Nandan Nath
November 2020

v

ABSTRACT

An important strategy, to save a life from natural or human-created disasters, is to
evacuate the population from the disastrous zones to safe places. Intelligent evacuation
planning requires a carefully designed traffic plan with optimal use of the facilities
available.

Reversing the direction of the traffic flow in the appropriate road segments, known as a
contraflow approach, has been an important strategy in evacuation planning. To avoid
unnecessary arc reversals, we introduce partial contraflow approach and design strongly
polynomial algorithms to solve maximum static, maximum dynamic, and quickest flow
problems with partial arc reversals, and polynomial-time algorithms to solve maximum
static/dynamic abstract partial contraflow problems. Sometimes the travel time on an
arc may change when it is reversed. We propose a network transformation that helps
convert the existing contraflow algorithms to the ones with orientation-dependent transit
times.

To address the dependency of transit times in the flow, we extend the contraflow
approach to inflow-dependent transit times and load-dependent transit times. Realizing
the NP-hardness of such problems, we propose strongly polynomial
(2 + ε)-approximation algorithms to solve the corresponding contraflow/partial
contraflow problems.

If facilities are to be adjusted on arcs to facilitate evacuation, there may be an increase
in the evacuation time. We introduce the quickest FlowLoc model to address such a
problem. We prove that the single facility case of the problem can be solved in strongly
polynomial time. Proving NP-hardness of the multi-facility case, we propose two
heuristics. Taking the case of a Kathmandu road network, the faster heuristic has an
average optimality gap of 3.48% and an average running time of 0.17 seconds. The
corresponding values for the slower heuristic are 0.18% and 1.02 seconds. The
algorithms for quickest FlowLoc problem with arc reversals are also designed.

With an objective to maximize the static/dynamic flows, and minimize quickest flow, the
problem of choosing a single shelter location are modeled as MaxStatic, MaxDynamic,
Quickest sink location problems respectively. We establish that each of such a problem

vi

can be solved in strongly polynomial time with or without arc reversals.

By reversing the direction of the traffic flow towards the sink, a contraflow
configuration may obstruct the paths towards the source. We model the problem of
maximizing the dynamic contraflow saving a path not exceeding a given length as a
mixed binary integer linear programming problem. The analogous problem of
minimizing the evacuation time is modeled as a mixed binary integer programming
problem with a fractional objective. A linearization strategy is suggested so that the
algorithms to solve the mixed integer linear programming problems can be used. The
problem of minimizing the path length and maximizing the dynamic contraflow has
been modeled as a bicriteria optimization problem. A procedure using ε-constrained
method is constructed to obtain efficient solutions. The solutions, using available
software solvers, considering a road network of Kathmandu city can be obtained
within 1 second. We also model the problem of minimizing the path length and
evacuation time as a bicriteria problem and construct a procedure to solve it.

We model a path saving model maximizing the dynamic contraflow to optimize a
general objective, as a bilevel program. To solve the problem, we replace the lower
level problem by Karush-Kuhn-Tucker (KKT) conditions converting it to a single level
non-linear binary integer program. We linearize it using a big M method and also
suggest a procedure to tune M .

vii

LIST OF ABBREVIATIONS

BPMDC : Bicriteria path-saving model maximizing dynamic contraflow
BPQC : Bicriteria path-saving model with quickest contraflow
BPR : Bureau of Public Roads
GCS : Generalized cut set
IFDTT : Inflow-dependent transit times
KKT : Karush-Kuhn-Tucker
LDTT : Load dependent transit times
LMSPCF : Lexicographic maximum static partial contraflow
MDCF : Maximum dynamic contraflow
MDPCF : Maximum dynamic partial contraflow
MSCF : Maximum static contraflow
MSPCF : Maximum static partial contraflow
QCF : Quickest contraflow

viii

LIST OF SYMBOLS

∅ empty set
2E power set of the set E
N set of natural numbers
Z set of integers
R set of real numbers
Rq {(a1, · · · aq) : a1, · · · , aq ∈ R}
R≥0 set of non-negative real numbers
N network
V set of vertices or nodes
E set of edges or arcs
n number of nodes |V |
m number of arcs |E|
N ′ auxiliary network
N abstract network
P set of abstract paths
E−i set arcs with head i
E+
i set arcs with tail i

V −i {j ∈ V : (j, i) ∈ E}
V +
i {j ∈ V : (i, j) ∈ E}
u capacity function
τ transit time function
s source
t sink
S set of sources
T set of sinks
x static flow

excessx(i) excess of the static flow x at a node i
v(x) value of the flow x

Nx residual network of N corresponding to flow x

θ time horizon

ix

X dynamic flow
excessX(i, ξ) excess of the dynamic flow f at a node i and time ξ

vθ(X) value of dynamic flow X with time horizon θ
Nx(∆) delta residual network

Q supply at the source
L set of feasible locations (L ⊆ E)

ν(i, j) number of facilities that can be placed on (i, j) ∈ L
F set of facilities
σ size of facilities σ : F → N
γ allocation function γ : F → L

Γ collection of all possible allocations γ
uγij capacity of arc (i, j) after allocation γ

x

LIST OF TABLES

1 Quickest time and flow comparison of Kathmandu network 27
2 Routes of the quickest flow solution for Kathmandu network 28
3 Comparison of the quickest time before and after allowing arc reversal . 62
4 Number of arcs reversed . 62
5 Partially reversed segments . 64
6 Maximum dynamic FlowLoc decisions (Example 5.2) 70
7 Quickest FlowLoc decisions (Example 5.2) 70
8 Percentage deviation from the MILP objective function values 81
9 Computational results for some instances with Q = 20000 82
10 Quickest time calculations (Example 5.5) 84
11 Quickest sinks (Kathmandu network) 99

xi

LIST OF FIGURES

1 Framework for disaster operations . 2
2 Diagrammatic representaion of N . 9
3 Dynamic s–t flow . 14
4 Time-expanded network of the network in Figure 3 16
5 Auxiliary network construction . 20
6 Quickest time comparison . 25
7 Static flow rates corresponding to the quickest flow 25
8 Percentage of arcs reversed and decrease in quickest Time 26
9 Decrease in quickest time . 27
10 (a) Kathmandu network (b) Quickest contraflow solution 28
11 Evacuation network in Example 3.1 32
12 MSPCF solution . 32
13 A network with source set S = {s1, s2}, sink set T = {t1, t2, t3} 35
14 MSPCF solution . 35
15 MDPCF solution, θ = 6 . 38
16 Different cases of arc reversals . 40
17 Auxiliary abstract network in Example 3.5 42
18 Travel time functions . 45
19 Bow construction of an arc e = (i, j) 48
20 Kathmandu road network. 60
21 Step function representation of transit time functions 61
22 Direction of the approximate quickest flow with arc reversal 63
23 Quickest time in bow graph and its approximation 64
24 Quickest times before and after allowing partial arc reversal 65
25 Comparison of quickest times (IFDTT vs. constant) 65
26 A dummy evacuation network . 67
27 Definition of uγij . 68
28 Quickest FlowLoc case illustration . 81
29 Auxiliary network of the network in Figure 26 83

xii

30 Evacuation network with a source s and possible sinks t1, t2, t3 90
31 Transformation of the network in Figure 30 91
32 Auxiliary network of the network in Figure 30 96
33 MaxDynamic sink with and without contraflow (Kathmandu network) . 98
34 Obstruction of paths towards source because of arc reversals 100
35 Path constraints (39a) may not yield a simple d–s path 106
36 Time-bounded saved path, case illustration 111
37 Path d–s along with a subtour i-j-i . 120

xiii

TABLE OF CONTENTS

Declaration ii

Recommendation iii

Letter of Approval iv

Acknowledgements v

Abstract vi

List of Abbreviations viii

List of Symbols ix

List of Tables xi

List of Figures xii

CHAPTER 1 INTRODUCTION 1
1.1 Introduction . 1

1.1.1 Evacuation planning models 1
1.1.2 Contraflow approach . 2
1.1.3 Facility locations in evacuation models 4

1.2 Rationale of the Study . 5
1.3 Objectives . 6
1.4 Structure of the Thesis . 6

CHAPTER 2 BASIC NOTIONS 8
2.1 Network . 8
2.2 Static Flows . 10
2.3 Dynamic Flows . 13
2.4 Abstract Network and Abstract Flow 16

xiv

CHAPTER 3 REVERSING LANES FOR EVACUATION 19
3.1 Introduction . 19
3.2 Contraflow Models . 19

3.2.1 Maximum static/dynamic contraflow 20
3.2.2 Quickest contraflow . 21
3.2.3 Computational results . 24

3.3 The Partial Contraflow Approach . 29
3.3.1 Static partial contraflow . 29
3.3.2 Dynamic partial contraflow . 34

3.4 Orientation Dependent Transit Times 39
3.5 Contraflow in Abstract Networks . 41

CHAPTER 4 MODELS WITH VARIABLE TRANSIT TIMES 44
4.1 Introduction . 44

4.1.1 Transit time functions . 44
4.1.2 Dynamic flow problems with flow-dependent transit times . . . 45

4.2 Dynamic Flow with IFDTT . 46
4.2.1 The bow network . 46
4.2.2 Approximate quickest flow with IFDTT 49

4.3 Quickest Contraflow with IFDTT . 50
4.4 Dynamic Flow with LDTT . 53

4.4.1 Minimum cost (static) flow with convex costs 54
4.4.2 Cost constrained maximum static flow 56
4.4.3 Quickest flow with LDTT . 56

4.5 Quickest Contraflow with LDTT . 58
4.6 Case Illustration . 59

CHAPTER 5 FLOW LOCATION MODELS 66
5.1 Introduction . 66
5.2 Maximum Static/Dynamic FlowLoc 67

5.2.1 Single facility maximum static/dynamic FlowLoc problem . . . 68
5.2.2 Multi-facility maximum FlowLoc problems 69

5.3 The Quickest FlowLoc Problem . 70
5.3.1 Single facility quickest FlowLoc problem 70
5.3.2 Multi-facility quickest FlowLoc problem 72
5.3.3 Computational experiment . 79

5.4 Quickest FlowLoc with Arc Reversals 83
5.4.1 Single-facility quickest ConraFlowLoc 84
5.4.2 Multi-facility quickest ContraFlowLoc 87

5.5 Identification of the Optimal Sink . 90

xv

5.5.1 Optimal sink maximizing the static flow value 90
5.5.2 Optimal sink maximizing the dynamic flow value 93
5.5.3 Optimal sink minimizing the quickest time 94
5.5.4 Optimal sink with arc reversals 96
5.5.5 Case illustration . 98

CHAPTER 6 SAVING A PATH FOR FACILITIES 100
6.1 Introduction . 100
6.2 Saving a path with a given time bound 101

6.2.1 Saving a path maximizing the dynamic flow 102
6.2.2 Saving a path minimizing the time horizon 107
6.2.3 Case Illustration . 110

6.3 A Bicriteria Optimization Approach 111
6.3.1 Multicriteria optimization . 111
6.3.2 Bicriteria path-saving model maximizing dynamic contraflow . 112
6.3.3 Solution strategy . 113
6.3.4 Case illustration . 115
6.3.5 Bicriteria path-saving model with quickest contraflow 116

6.4 A Bilevel Programming Approach . 118
6.4.1 Bilevel programming . 118
6.4.2 A bilevel path-saving model maximizing dynamic contraflow . 118
6.4.3 Solution strategies . 121
6.4.4 Identification of reversed arcs 125

CHAPTER 7 SUMMARY AND CONCLUSIONS 126
7.1 Summary of the Results . 126
7.2 Conclusions . 128
7.3 Recommendations for Further Work 129

REFERENCES 131

APPENDIX A NETWORK DATA FOR COMPUTATIONS 138
A.1 Virtual Network in Section 3.2.3 . 138
A.2 Kathmandu Road Network (cf. Section 4.6) 139

APPENDIX B SCIENTIFIC PUBLICATIONS & PRESENTATIONS 141
B.1 Publications . 141
B.2 Presentations . 142

xvi

CHAPTER 1

INTRODUCTION

1.1 Introduction

As a living being, one of the basic instincts of a human being is “survival". In spite of
developments in science and technology, a significant portion of the population around
the world is affected by natural disasters (e.g., earthquakes, tsunamis, hurricanes,
tornadoes) and disasters created because of human ignorance, error, intelligence, or
intent (e.g, nuclear accidents, fire, poisonous chemical release, terrorism).

The emergency management activities to mitigate the effects of a disaster can, broadly,
be categorized as pre-disaster operations, and post-disaster operations (Caunhye, Nie,
& Pokharel, 2012). The pre-disaster operations include evacuation from the potential
disaster sites to safe shelters, stock pre-positioning, and locating facilities, e.g. shelters,
medical centers, facility stores. The post-disaster operations include evacuation from
the disaster sites to the shelters, relief distribution from the medical centers or the
stores to the disaster sites, transportation of casualties to the medical centers (Figure 1).
To carry out these operations with the optimal use of the resources available, the
mathematical optimization models available in literature can be broadly categorized
into facility location models, evacuation planning models, relief distribution or
humanitarian logistic models (Dhamala, Adhikari, Nath, & Pyakurel, 2018).

1.1.1 Evacuation planning models

According to DHS (2004), an evacuation of a region is “organized, phased, and
supervised withdrawal, dispersal, or removal of civilians from dangerous, or
potentially dangerous areas, and their reception, and care in safe areas". The
mathematical models related to evacuation planning focus on finding the optimal use
of vehicles and the routes in the complex urban road networks to shift the residents
from the danger zones to safe areas. The majority of models assume some kind of
vehicle to be used for transferring evacuees to the shelters. In bus-based (also known

1

Potential
disaster sites

Disaster sites

Shelters

Medical
Centers

Stores

Stock pre-positining

Evacuation

Facility location

Relief distribution

Casualty transportation

Relief distribution

Evacuation

Facilities
Pre-disaster
operations

Post-disaster
operations

Figure 1: Framework for disaster operations (Caunhye et al., 2012)

as transit-based) models (Bish, 2011; Goerigk, Grün, & Heßler, 2013; Pyakurel,
Goerigk, Dhamala, & Hamacher, 2015; Adhikari, Pyakurel, & Dhamala, 2020;
Adhikari & Dhamala, 2020), a vehicle can move to and fro between disaster sites and
shelters, while in auto-based models, a vehicle does not return to the disaster site.
These models represent the road network as a directed network (or graph) with road
segments taken as arcs and their intersections as nodes. The disaster sites correspond
to sources and the shelters correspond to the sinks.

Among the auto-based models, the maximum flow models focus on rescuing the
maximum number of evacuees within a given time horizon, the quickest flow models
minimize the time of evacuation of a given number of evacuees. The earliest arrival
flow models maximize the number of evacuees at each point of time, while the
lexicographic flow models focus on optimizing the flow with a priority order given to
the disaster sites and shelters. For the comprehensive study of evacuation planning
problems, we refer to Cova and Johnson (2003); Hamacher and Tjandra (2001);
Kotsireas, Nagurney, and Pardalos (2015); Akter and Wamba (2019); Dhamala,
Pyakurel, and Dempe (2018).

1.1.2 Contraflow approach

In emergency situations, people are discouraged to go towards risk areas from safer
places. As a result, the road segments heading towards the safe areas become overly
congested and those heading towards the risk areas become empty. To maximize the
flow and to minimize the evacuation time, in such situations, converting a two-way
road segment to a one-way in an appropriate direction becomes advantageous. This is
known as contraflow configuration, which reverses the direction of the traffic on empty
road segments towards the sinks so that the capacity of the road segments is increased.
Contraflow configuration not only increases flow value but also reduces traffic-jam and

2

makes the vehicle-flow smooth. But to identify appropriate directions of the arcs of a
network to maximize the flow is a difficult optimization problem, known as a contraflow
problem.

Kim, Shekhar, and Min (2008) firstly model the contraflow problem as an integer
programming problem, thereby proving its NP-hardness. As finding exact
mathematical solutions for general contraflow techniques are costly, they present two
greedy and bottleneck heuristics for possible numerical approximate solutions to the
quickest contraflow problem. With computational experiments, it has been shown that
at least 40% evacuation time can be reduced by reverting at most 30% arcs. In cases,
when each node has an associated danger factor, Vogiatzis, Walteros, and Pardalos
(2013) present a heuristic algorithm to solve the problem of sending vehicles from the
nodes with danger factors to the safe nodes, reversing at most a given number of arcs,
with an objective to minimize the number of vehicles that have to spend time on the
most endangered nodes. They use the smart clustering of similar nodes to create
subgraphs so as to solve a large-scale problem efficiently.

Apart from the heuristic techniques, recent research also focuses on analytical
techniques to find exact solutions to the contraflow problems after the introduction of
polynomial-time algorithms to solve single-source-single sink maximum contraflow
and quickest contraflow problems by Rebennack, Arulselvan, Elefteriadou, and
Pardalos (2010). The earliest arrival and the maximum contraflow problems are solved
in Dhamala and Pyakurel (2013); Pyakurel (2016) taking time as a discrete parameter.
The solution procedures for such problems in a continuous-time setting are described
in Pyakurel and Dhamala (2016). Pyakurel and Dhamala (2015) design algorithms to
solve the earliest arrival contraflow on single-source-single-sink networks in a
pseudo-polynomial time. They also introduce the lexicographic maximum dynamic
contraflow problem in which the flow is maximized in a given priority ordering and
construct solution algorithms with a polynomial-time complexity. Algorithms for these
problems in taking time as a continuous parameter can be found in Pyakurel and
Dhamala (2016, 2017a). With the given supplies and demands, the earliest arrival
transshipment contraflow problem is modeled in discrete-time and solved on a
multi-source network with a polynomial-time algorithm in Pyakurel and Dhamala
(2017b). With a zero transit time on each arc, the problem is also solved on a
multi-sink network with a polynomial-time complexity. For the multi-terminal
network, they present approximation algorithms to solve the earliest arrival
transshipment contraflow problem. The discrete-time solutions are extended into the
continuous-time solutions in Pyakurel and Dhamala (2017a), and in Pyakurel,
Dhamala, and Dempe (2017). The maximum dynamic and the earliest arrival
contraflow problems are generalized in Pyakurel, Hamacher, and Dhamala (2014).

3

Dhungana and Dhamala (2020) consider the problem of maximizing the flow within a
given budget considering the cost of arc reversal.

The analytical techniques discussed above use the network flow approach in which a
network is represented as a set of nodes and arcs. Recently a formulation of a similar
problem with the abstract flow on abstract networks (in which a network is taken to
consist of elements and paths (see Section 2.4)) is also gaining attention. Pyakurel et
al. (2017) introduce the contraflow technique in abstract networks, present algorithms
to solve the maximum static and the maximum dynamic contraflow problems with
continuous-time setting and realize that if the minimum dynamic cut capacities on a
two-terminal network are symmetric, then the flow value can be increased up to double
with the partial contraflow reconfiguration. The models and algorithms for the abstract
contraflow problems with discrete-time setting have been investigated in Dhungana,
Pyakurel, and Dhamala (2018).

1.1.3 Facility locations in evacuation models

The choice of locations for the facilities such as hospitals, warehouses, stores, fire-
brigades, security offices, etc. plays an important role in normal as well as in emergency
disastrous situations. As in the normal situations, the mathematical models used to
make location decisions in emergency situations are: (a) covering models which locate
the optimal locations to cover all demand points or the maximal number of demand
points, (b) P -median models to determine P locations to minimize the average (or total)
distance between demand points and facilities, (c) P -center models to minimize the
maximum distance between any demand point and its nearest facility. For example, in
the Large Scale Emergency Medical Service Facility Location Model (LEMS) presented
in Jia, Ordóñez, and Dessouky (2007), there is a use of the aforementioned models.

A recent trend in related research incorporates location decisions along with other
decisions related to evacuation. The following are some examples.

1. Pick-up location models: An, Cui, Li, and Ouyang (2013) formulate a model to
determine the optimal pick-up location, evacuee-to-facility assignment priorities,
evacuation service rates that minimizes the total expected system cost. In an
integrated bus evacuation problem, Goerigk, Grün, and Heßler (2014) choose
pick-up locations to minimize the maximum travel time over all the buses.
Kulshrestha, Lou, and Yin (2014) use robust optimization to locate pick-up
locations when the number of evacuees is uncertain. Nath and Dhamala (2017)
propose a model that minimizes the demand-weighted distance between an
original node and the nearest pick-up location.

2. Rescue Transfer Location Models: An et al. (2013) formulate a model to locate

4

rescue transfer locations, where a rescue team departs from the rescue center,
rides a vehicle towards the rescue transfer center, and walks to each group to be
rescued to provide aid with an objective of minimizing the total expected travel
cost.

3. Shelter Location Models: Sherali, Carter, and Hobeika (1991) formulate a
location-allocation model to minimize the total vehicle hours, and a discrete
median location model to locate shelters for evacuation, while
Kongsomsaksakul, Yang, and Chen (2005) use a bi-level programming approach
to determine shelter locations, in which the upper level determines the shelter
locations to minimize the total evacuation time and the lower level is formulated
as a combined trip distribution and assignment problem.Ng, Park, and Waller
(2010) also use the same approach in which the lower level is a deterministic
user equilibrium model as described by Sheffi (1985). In an integrated bus
evacuation problem, Goerigk, Grün, and Heßler (2014) choose the shelters to
minimize the maximum travel time of all the buses while in a comprehensive
evacuation planning, Goerigk, Deghdak, and Heßler (2014) formulate a
multi-commodity, multi-criteria problem to minimize the total evacuation time,
the risk exposure of evacuees, and the number of shelters that are used.

4. Flow Location (FlowLoc) Models: Rupp (2010); Heller and Hamacher (2011);
Hamacher, Heller, and Rupp (2013) combine the location decisions with the flow
decisions in a network flow problem observing that the placement of a facility
on an arc of a network may result in a reduction of the maximum flow value.
Given a set of facilities and a set of arcs on which facilities are to be placed, their
approach is to find an allocation of the facilities to the arcs so that the reduction
in the maximum flow value is minimum.

1.2 Rationale of the Study

A well-planned evacuation is pertinent when a large population is under the threat of
some kind of disaster. The overview of literature presented in the last section shows that
mathematical modeling for evacuation planning is one of the growing research areas
and there is much more to be done for an optimized plan with desired objectives. The
contraflow approach has been seen as an important strategy to maximize the number
of evacuees and minimize the evacuation duration and the arc reversal strategies in the
available literature either reverse the whole road segment or do not reverse it. The whole
of the reversed capacities may not have been used. So, it is plausible to design strategies
to reverse only the required capacity of the segment. The contraflow models which can
be solved analytically do not consider the dependency of transit time in the flow. To

5

develop more realistic models, one needs to consider the dependency of travel time in
the direction of the flow and on the amount of flow.

FlowLoc models, available in the literature, to adjust facilities on the road segments
focus on maximizing the number of evacuees within a given time horizon. If there
is a known number of evacuees, there is a need to develop models that minimize the
evacuation time horizon of the evacuees.

The direction of traffic is directed towards the safe places during evacuation. If some
facilities are to be moved towards the hazardous areas, especially in the contraflow
approach, there may not be a path available. So, it is reasonable to identify the path for
the movement of the facilities.

1.3 Objectives

The general objective of this study is to construct mathematical models and develop
solution procedures to optimize traffic flow with the adjustment of facilities during an
emergency evacuation. The specific objectives are as follows.

• To develop mathematical models to maximize the number of evacuees or
minimize evacuation time incorporating facility allocation and facility movement
during emergency evacuation

• To design solution algorithms/procedures to solve the formulated models

• To test the computational performance of the algorithms designed

1.4 Structure of the Thesis

The thesis is organized in the following way. Chapter 2 gives the very basic ideas of
flows in a network and in an abstract network.

Based on the existing contraflow approach, we develop the partial contraflow approach
in Chapter 3 to reverse the direction of the traffic flow up to the required capacity in road
segments during an emergency evacuation. The contraflow approach with the transit
time on an arc depending on its orientation is also introduced in the chapter.

Chapter 4 extends the contraflow/partial contraflow approach to the models with
variable transit time on arcs. We focus, particularly, on the models with
inflow-dependent transit time and density dependent-transit time on arcs.

In Chapter 5, we model the problem of optimal allocation of facilities to a set of given
arcs with the objective of minimizing the evacuation time. Exact algorithms for

6

single-facility cases and heuristics for multi-facility cases are presented. The problem
of identifying optimal sink with an objective to maximize the flow or to minimize the
evacuation time is also modeled in the chapter. The corresponding algorithms with arc
reversals have also been discussed.

Realizing the need of a path to transport some facilities towards the disaster site, we
develop path-saving models to optimize the contraflow in Chapter 6. Mixed binary
integer programming models to optimize the contraflow saving a path of a given length
bound towards the source have been presented. A bi-criteria approach to minimize
the path length and optimizing the contraflow is also described. The problem is also
modeled as a bilevel program in which the upper level chooses a path and the lower
level maximizes the contraflow saving the path chosen.

Chapter 7 summarizes the thesis and gives further research directions emanated from
the presented work.

7

CHAPTER 2

BASIC NOTIONS

This chapter, briefly, outlines the basic mathematical notions required for the
development of the models and algorithms discussed in the work. As we adopt the
network flow approach, which is based on mathematical programming (linear
programming in most cases) defined on a network and specialized algorithms. The
majority of literature considers a network as a directed graph with some attributes on
arcs and nodes. An alternative view is an abstract network which consists of a set of
elements along with a set of paths, a path being a set of elements with some order.

2.1 Network

A network N = (V,E) consists of nonempty finite sets V of nodes or vertices and E
of edges or arcs. Each arc e ∈ E is associated with a unique ordered pair of nodes in
V × V . An arc e associated with (i, j) ∈ V × V is said to be directed from i to j with
tail i, and head j. We denote the set of arcs having the node i as the tail by E+

i , i.e.,

E+
i = {e ∈ E : tail of e is i}

and the set of arcs having the node i as the head by E−i , i.e.,

E−i = {e ∈ E : head of e is i}.

If there is exactly one arc e with tail i and head j for each e ∈ E, we write e = (i, j),
and define

V +
i = {j ∈ V : (i, j) ∈ E}

and
V −i = {j ∈ V : (j, i) ∈ E}.

To represent a network diagrammatically, we draw a node as a circle and an arc e

8

directed from i to j as a curve or a straight line between i and j with an arrow pointing
towards j.

Example 2.1. A diagrammatic representation of N = (V,E) with V = {s, a, b, t} and

E = {(s, a), (s, b), (a, b), (b, a), (a, t), (b, t)},

is shown in Figure 2.

s

a

b

t

Figure 2: Diagrammatic representaion of N

Moreover,
E+
a = {(a, b), (a, t)}, E−a = {(s, a), (b, a)}

and
V +
a = {b, t}, V −a = {s, b}

Note also that E+
t = E−s = ∅, V +

t = V −s = ∅.

Chain and cycle. In a network N = (V,E), let v1, · · · , vp ∈ V, e1, · · · , ep−1 ∈ E(p ≥
2) such that vi 6= vj for i 6= j. A path from v1 to vp, or a v1–vp path is a sequence P of
nodes and arcs

v1, e1, v2, · · · , ep−1, vp

such that tail of ei is vi, head of ei is vi+1 or tail of ei is vi+1, head of ei is vi, 1 ≤ i ≤
p − 1. In the path P , if tail of ei is vi, head of ei is vi+1 for an admissible i, then it is
known as a directed v1–vp path or a v1–vp chain. The chain P may be represented as
v1–v2– · · · –vp. A path which is not a chain is also known as a non-standard chain.

Let v1, · · · , vp ∈ V, e1, · · · , ep−1 ∈ E(p ≥ 2) such that v1 = vp and vi 6= vj for
i 6= j, 2 ≤ i ≤ p− 1 . The sequence C of nodes and arcs

v1, e1, v2, · · · , ep−1, vp

9

such that tail of ei is vi, head of ei is vi+1 or tail of ei is vi+1, head of ei is vi, 1 ≤ i ≤
p− 1, is called a cycle. In C, if tail of ei is vi, head of ei is vi+1 for all admissible i, then
it is known as a directed cycle.

Example 2.2. In Figure 2, The sequence {s, (s, a), a, (a, b), b, (b, t), t} is a path which
is also a chain or a directed path from s to t (s–t path). The sequence
{s, (s, a), a, (b, a), b, (b, t), t} is an s–t path but not a chain (i.e. it is a non-standard
chain). {s, (s, a), a, (a, b), b, (s, b), s} is a cycle which is not directed while
{a, (a, b), b, (b, a), a} is a directed cycle.

2.2 Static Flows

With a view that some commodity flows from some nodes of a network to some other
nodes, a capacity (also known as upper capacity) function u : E → R≥0 is defined on
E. The capacity u(e) can be considered as the maximum amount of flow that can arrive
at the head of e from its tail (per unit time).

Consider x : E → R≥0. We define the excess of node i ∈ V by

excessx(i) =
∑

e∈E−i

x(e)−
∑

e∈E+
i

x(e) (1)

Given two sets of nodes S, T ⊂ V (such that S ∩ T = ∅), x is called a static S–T flow
if it satisfies the flow conservation constraints

excessx(i) = 0, ∀i ∈ V \ (S ∪ T) (2)

and the capacity constraints

0 ≤ x(e) ≤ u(e) ∀e ∈ E. (3)

The value v(x) of the flow x is defined as

v(x) =
∑

t∈T
excessx(t) =

∑

s∈S
−excessx(s) (4)

If excessx(i) ≥ 0,∀i ∈ V , then x is known as a pseudoflow. Each node in S is
termed as a source node, that in T , a sink node, and the remaining nodes are termed as
intermediate nodes. If S = {s}, T = {t}, x is called a static s–t flow.

10

Maximum static flow: For a network with given arc capacities, a static flow x∗ is
called a maximum static flow, if v(x∗) ≥ v(x) for any static flow x defined on the
network. In the way the static flow is defined, the maximum static s–t flow problem can
be formulated as the following linear program:

max v

subject to

∑

e∈E+
i

x(e)−
∑

e∈E−i

x(e) =





v if i = s

0 if i ∈ V \ {s, t}
−v if i = t

0 ≤ x(e) ≤ u(e) ∀e ∈ E.

Remark 2.1. If u(e) ∈ Z≥0, for any maximum static flow x, v(x) ∈ Z≥0 and there exists
a maximum static flow x∗ for which x∗(e) ∈ Z≥0 for each e ∈ E.

Remark 2.2. To find the maximum static S–T flow, we can add two extra nodes s∗, t∗

in V and construct arcs (s∗, s), (t, t∗), with infinite capacity, for each s ∈ S, t ∈ T and
find maximum static s∗–t∗ flow.

Static b-flow: Given function b : E → R and a lower capacity function l : E → R≥0,
x is called a b-flow if

excessx(i) = b(i),∀i ∈ V (5)

and
l(e) ≤ x(e) ≤ u(e) (6)

where l(e) denotes the minimum amount of flow (per unit time) that must arrive at the
head e from its tail. If b(i) = 0 ∀i ∈ V , then x is called a circulation.

Remark 2.3. A necessary condition for a b-flow to exist is that
∑

i∈V b(i) = 0.

Remark 2.4. Any static s–t flow x is a b-flow with b(i) = 0 ∀i 6= s, t, b(s) = −v(x)

and b(t) = v(x).

Flow decomposition: Let P be a chain (a directed path) in N with a starting vertex
s(P) and end vertex t(P), a chain flow xP of value δ > 0 on P is a static s(P)– t(P)

flow such that

xP (e) =




δ if e ∈ P
0 otherwise.

(7)

11

If C is a directed cycle in N , a cycle flow xC with value δ > 0 on C is a circulation
such that

xC(e) =




δ if e ∈ C
0 otherwise.

(8)

We can decompose any b-flow into chain and cycle flows. Let P be the set of all chains
and C be the set of all cycles inN . A b-flow x can be decomposed into at most |V |+ |E|
(positive) flows on chains and directed cycles in such that

(i) x(e) =
∑

P∈P:e∈P x
P (e) +

∑
C∈C:e∈C x

C(e).

(ii) Every directed path with a positive flow connects a vertex i with b(i) < 0 to a
vertex j with b(j) > 0.

(iii) There are at most |E| circulations in the decomposition.

Minimum cost flow: Given a cost function c : E → R, the cost of the flow x is given
by ∑

e∈E
c(e)x(e) (9)

where c(e) denotes the cost per unit flow for the arc e.

A b-flow x that minimizes the cost (9) is called the minimum cost flow. Thus the
minimum cost flow problem can be formulated as the following linear program.

min
∑

e∈E
c(e)x(e)

subject to

∑

e∈E+
i

x(e)−
∑

e∈E−i

x(e) = −b(i) ∀i ∈ V

l(e) ≤ x(e) ≤ u(e) ∀e ∈ E

where
∑

i∈V b(i) = 0 for feasibility. In the above formulation b(i) denotes the demand
at each node i. A node i is called a demand node, a supply node, or an intermediate
node according as b(i) > 0, b(i) < 0 or b(i) = 0. The minimum cost flow problem
identifies the b-flow x that sends the given amount of supply from supply nodes to meet
the demand at the demand nodes.

Residual network: Most of the algorithms to find maximum flow or minimum cost
flow make use of a network called residual network, the construction of which depends
on the static flow. Given a static flow x, the residual network Nx = (V,Ex) contains

12

the same node set V . Associated with each e ∈ Ex, is the residual capacity ux(e), and
cost cx(e). For each e ∈ E,

• if x(e) < u(e), there is an arc +e ∈ Ex with head of +e as head of e, tail of +e

as tail of e, ux(+e) = u(e)− x(e), and cx(+e) = c(e),

• if x(e) > 0, there is an arc −e ∈ Ex with head of −e as tail of e, tail of −e as
head of e, ux(−e) = x(e)− l(e), and cx(−e) = −c(e).

2.3 Dynamic Flows

Let τ : E → R≥0 be an arc transit time function. Given a time horizon θ ≥ 0, a
dynamic flow (or a flow over time) X = (Xe)e∈E , where Xe : [0, θ) → R≥0, is a
Lebesgue measurable function such that

Xe(ξ) = 0 for ξ ≥ θ − τ(e) (10)

where Xe(ξ) represents the rate of flow that enters the tail of e at time ξ and reaches its
head at time ξ+ τ(e). So the outflow rate at the head of e at time ξ+ τ(e) is Xe(ξ), and
the outflow rate at any time ξ′ at the head of e is Xe(ξ

′ − τ(e)).

We define the excess of the node i at time ξ as

excessX(i, ξ) =
∑

e∈E−i

∫ ξ−τ(e)

0

Xe(ζ)dζ −
∑

e∈E+
i

∫ ξ

0

Xe(ζ)dζ (11)

which is the net amount of flow that enters the node i up to time ξ.

Given two distinct nodes s, t ∈ V , a flow over time f is called an s-t flow over time if

excessX(i, ξ) ≥ 0,∀i ∈ V \ {s}, ξ ∈ [0, θ) (12)

excessX(i, θ) = 0,∀i ∈ V \ {s, t} (13)

Xe(ξ) ≤ u(e),∀e ∈ E, ξ ∈ [0, θ) (14)

The value of the s–t flow over time is

vθ(X) = excessX(t, θ) (15)

Constraints (12) and (13) allow to store flow at intermediate nodes for some time, as
long as it has left the node again before the time horizon is over.

Example 2.3. Figure 3 shows a network N with V = {s, i, t}, E = {e1 = (s, i), e2 =

(i, t)}with u(e1) = 2, u(e2) = 1 and τ(e1) = 1, τ(e2) = 2. For a time horizon of θ = 5,

13

s t

ξ = 0

i

e1 e2
s t

ξ = 0.5

s t

ξ = 1

s t

ξ = 1.5

s t

ξ = 2

s t

ξ = 2.5

s t

ξ = 3

s t

ξ = 3.5

s t

ξ = 4

s t

ξ = 4.5

Figure 3: Dynamic s–t flow

consider f defined by

Xe1(ξ) =





2, 0 ≤ ξ < 1

0, otherwise

and

Xe2(ξ) =





1, 1 ≤ ξ < 3

0, otherwise.

One can easily verify that f defines a dynamic flow. Note that

excessX(i, ξ) =

∫ ξ−1

0

Xe1(ζ)dζ −
∫ ξ

0

Xe2(ζ)dζ.

For example,

excessX(i, 2.5) =

∫ 1.5

0

Xe1(ζ)dζ −
∫ 2.5

0

Xe2(ζ)dζ

=

∫ 1

0

2dζ −
∫ 2.5

1

1dζ

= 0.5.

This shows the storage of flow at i which, however, is cleared at soon ξ = 3. The value
of the dynamic flow is

v5(X) = excessX(t, 5) =

∫ 3

0

Xe2(ζ)dζ =

∫ 3

1

1dζ = 2.

Temporally repeated flow: Given a feasible static flow x and a time horizon θ, a flow
decomposition of x gives a set of paths P with flow xP for each P ∈ P . If a flow is sent

14

along P at a constant rate xP from the source during the time interval [0, θ− τ(P)), we
can obtain a flow over time with time horizon θ, where τ(P) =

∑
e∈P τ(e) is the travel

time on path P . For a node i in an s–t path P , let Psi, Pit denote the subpaths of P from
s to i and from i to t, and

Pe(ξ) = {P ∈ P : e ∈ P and τ(Psi) ≤ ξ and τ(Pit) < θ − ξ where i is tail of e}.

Then a temporally repeated flow f is obtained as described in the following equation

Xe(ξ) =
∑

P∈Pe(ξ)
xP , ∀e ∈ E, ξ ∈ [0, θ) (16)

The temporally repeated flow described in (16) is a feasible dynamic s–t flow, with
strict equality in the constraints (12), i.e. it does not allow waiting in the intermediate
nodes (Skutella, 2009).

Example 2.4. Consider the network in Example 2.3 once again. Let us take a static flow
x defined by x(e1) = xe2 = 1. The only s–t path P is s–i–t with τ(Pst) = 3, τ(Psi) =

1, τ(Pit) = 2. Taking θ = 5, for the temporally repeated dynamic flow X1 constructed
from x,

X1
e1

(ξ) = 1 for 0 ≤ ξ and 3 < 5− ξ, i.e.

X1
e1

(ξ) =





1 for 0 ≤ ξ < 2

0 otherwise

and X1
e2

(ξ) = 1 for 1 ≤ ξ and 2 < 5− ξ, i.e.

X1
e2

(ξ) =





1 for 1 ≤ ξ < 3

0 otherwise.

It is easy to verify that the value of X1 is 2 which is equal to that of X in Example 2.3.

Discrete dynamic flow: For a positive integer θ, discretizing the time interval [0, θ)

into the time steps 0, 1, · · · , θ − 1, each corresponding to [0, 1) , [1, 2) , · · · [θ − 1, θ), if
Xe(ξ) represents the amount of flow that enters the tail of e at time ξ and reaches its
head at time ξ + τ(e), the excess of the node i at time ξ ∈ {0, 1, · · · , θ − 1} is

excessX(i, ξ) =
∑

e∈E−i

ξ−τ(e)∑

ζ=0

Xe(ζ)−
∑

e∈E+
i

ξ∑

ζ=0

Xe(ζ). (17)

15

s

i

t

[0, 1) [1, 2) [2, 3) [3, 4) [4, 5)

Figure 4: Time-expanded network of the network in Figure 3

Such a flow f is known as discrete dynamic flow. Using the concept of natural
transformations, Fleischer and Tardos (1998) show the equivalence between the two
problems so that the solution procedures of a problem in continuous time version can
be carried to the solution procedure of the corresponding problem in the discrete
version, and vice versa.

Time-expanded network: Given an integral time horizon θ, the time-expanded
network of N , denoted by N θ is constructed as follows. For each
[ζ, ζ + 1), ζ ∈ {0, 1, · · · , θ − 1} and a node i ∈ V , there is a node iζ in N θ. For each
e ∈ E with a tail i and head j, there is an arc, with capacity u(e), directed from iζ to
jζ+τ(e) if ζ + τ(e) < θ. There is an arc in N θ from iζ to iζ+1 with infinite capacity if
the storage of the flow is allowed. See Figure 4 for the time-expanded network of the
network given in Example 2.3.

Maximum dynamic flow: Given a network N , and a time horizon θ ≥ 0, an s–t flow
over time X∗ is called a maximum dynamic flow (or a maximum flow over time) if
vθ(X

∗) ≥ vθ(X) for any dynamic flow X .

Quickest flow: Given a supply Q at the source s, the dynamic flow X of value Q with
minimum time horizon θ is called the quickest flow.

2.4 Abstract Network and Abstract Flow

An abstract network N = (E ,P) consists of a ground set E of elements and a family
of paths P ⊆ 2E . There is an order <P of elements defined in each P ∈ P , and the
following switching property is satisfied:
∀P,Q ∈P, e ∈ P ∩Q,∃P ×e Q ∈P, such that

P ×e Q ⊆ {p ∈ P : p ≤P e} ∪ {q ∈ Q : e ≤P q}.

16

For e1, e2 ∈ P , if e1 <P e2, then we say that e1 is before e2 (or equivalently, e2 is after
e1) in P .

The network considered in the previous sections is often termed as a classical network
to make a distinction with the abstract network. In a classical network, if paths P
and Q intersect a path R, there must be a path starting from the beginning of P and
terminating at the end of Q. This may not be true in abstract networks. The following
example illustrates this fact.

Example 2.5 (Kappmeier, Matuschke, and Peis (2014)). Consider N = (E ,P) with
E = {1, 2, 3, 4, a, b, c, d}, P = {P1 = {1, 2, 3, 4}, P2 = {a, 2, c}, P3 = {b, 3, d}, P4 =

{1, c}, P5 = {1, d}, P6 = {a, 4}, P7 = {b, 4}}. One can verify that N is an abstract
network. Although P2 and P3 intersect the path P1, there is no path that starts with a
and ends with d.

As in the case of (classical) networks, we define a capacity function u : E → R≥0, and
a transit time function τ : E → R≥0. A static abstract flow x : P → R≥0 is a function
that satisfies the capacity constraint

∑

P∈P:e∈P
x(P) ≤ u(e), ∀e ∈ E

In this way, we can formulate the maximum static abstract flow problem as:

max
∑

P∈P

x(P)

subject to

∑

P∈P:e∈P
x(P) ≤ u(e),∀e ∈ E

x(P) ≥ 0,∀P ∈P

For more details, we refer to McCormick (1996).

We denote the set {p ∈ P : p <P e} by (P, e), which can be regarded as the set
of elements of P that are before e. Given an integral time horizon θ, the intervals
[0, 1), · · · , [θ − 1, θ) are identified with the set of their starting times

T = {0, 1, · · · , θ − 1}.

17

For ξ ∈ T , we define a temporal path Pξ by

Pξ =



(e, ζ) ∈ E × T : e ∈ P, ζ = ξ +

∑

p∈(P,e)
τ(p).





The set of all temporal paths is:

PT =

{
Pξ : P ∈P, ξ ∈ T , ξ +

∑

p∈P
τ(p) < θ.

}

A dynamic abstract flow or an abstract flow over time is X : PT → R≥0 such that
the capacity of every element at every point in time is respected. Thus the maximum
dynamic abstract flow problem can be formulated as

max
∑

Pξ∈PT

X(Pξ)

subject to

∑

Pξ∈PT :(e,ξ)∈Pξ

X(Pξ) ≤ u(e),∀e ∈ E, ξ ∈ T

X(Pξ) ≥ 0,∀Pξ ∈PT

Given a static abstract flow x and a time horizon θ, we can construct a dynamic abstract
flow by setting

X(Pξ) = x(P),∀P ∈P and 0 ≤ ξ < θ −
∑

e∈P
τ(e),

known as a temporally repeated abstract flow (Kappmeier, 2015).

18

CHAPTER 3

REVERSING LANES FOR EVACUATION

3.1 Introduction

To model the traffic flow in urban road networks using the network flow approach,
the road segments are taken as arcs and their intersections are taken as nodes of the
network. The direction of the traffic flow in a road segment is taken as the direction
of the corresponding arc. To optimize the flow during emergency evacuation, we take
hazardous areas as sources and the safe areas, where evacuees are to be transported, as
sinks. The corresponding network is often termed as an evacuation network.

Let (V,E) be an evacuation network with source nodes S, and sink nodes T (such that
S ∩ T = ∅). Assuming that there are at most two arcs between any two nodes, we
denote the arc e directed from a node i to a node j by (i, j). If u, τ : E → R≥0, are
the capacity, and the travel time functions respectively, then we also write u(i, j) = uij ,
and τ(i, j) = τij which represent the maximum number of traffic flow units that can
travel per unit time and the time taken by the flow to travel, respectively, from i to j.
Such a network is denoted by N = (V,E, u, τ, S, T). If S = {s}, T = {t}, we denote
the network as N = (V,E, u, τ, s, t). If there is one source and one sink, the network
is termed as a two-terminal network, otherwise, it is termed multi-terminal. Further, we
assume that |V | = n, |E| = m.

To model the problems using an abstract network N , we can take the nodes or arcs of
N as the elements and the path system as the abstract paths (see Section 3.5).

3.2 Contraflow Models

In evacuation situations, if the direction of the usual traffic flow is reversed in
appropriate road segments, then the amount of the traffic flow towards the safe areas
can be increased. As a result, there is a decrease in the evacuation time of a given
number of evacuees.

19

s

a

b

t

4,1
3,1

4,3
3,3

3,4
3,4

3,1

1,1 1,1

(a) Network N

s

a

b

t

7,1
7,1

7,3
7,3

6,4
6,4

3,1
3,1

2,1 2,1

(b) Auxiliary network N ′

Figure 5: Auxiliary network construction

Given an evacuation network N = (V,A, u, τ, s, t), contraflow models seek to identify
a set of arcs R ⊆ E so that each (i, j) ∈ R can be replaced by (j, i) to optimize the
flow. One of the important strategies to solve some of such problems is to solve the
corresponding flow problem in a modified network known as auxiliary network.

Definition 3.1 (Auxiliary network). The auxiliary network ofN = (V,E, u, τ, s, t) with
τij = τji for all (i, j) ∈ E if (j, i) ∈ E, is defined as the networkN ′ = (V,E ′, u′, τ ′, s, t)

where
E ′ = {(i, j) : (i, j) ∈ E or (j, i) ∈ E},

the capacity function u′ : E ′ → R≥0 is given by

u′ij =





uij if (j, i) /∈ E
uji if (i, j) /∈ E
uij + uji otherwise

and the travel time function τ ′ : E → R≥0 is given by

τij =




τij if (i, j) ∈ E
τji otherwise.

This concept is depicted in Figure 5. Each arc label represents the capacity and the
travel time associated with the corresponding arc.

3.2.1 Maximum static/dynamic contraflow

Definition 3.2 (Maximum static contraflow). Given an evacuation network
N = (V,E, u, τ, s, t), the maximum static contraflow (MSCF) is a maximum static
flow reversing the necessary arcs in E.

20

Definition 3.3 (Maximum dynamic contraflow). Given N = (V,E, u, τ, s, t) with a
time horizon θ, the maximum dynamic contraflow (MDCF) is the maximum dynamic
flow reversing the necessary arcs in E at time zero.

Rebennack et al. (2010) developed procedures to find the maximum amount of static
flow in two-, multi-terminal networks, and dynamic flow in two-terminal networks,
if the arcs can be reversed. To solve the MSCF problem, they solve the maximum
static flow problem in the corresponding auxiliary network, find the chain and cycle
decomposition of the flow, remove the positive flow in cycles, and reverse such an arc
of the original network if the flow in the opposite arc of the auxiliary network exceeds
the capacity of the corresponding arc in the original network. To solve the MDCF
problem, a similar procedure is followed by finding the static flow corresponding to the
temporally repeated maximum dynamic flow in the auxiliary network.

3.2.2 Quickest contraflow

Definition 3.4 (Quickest contraflow). Let N = (V,E, u, τ, s, t) be an evacuation
network with a supply Q at the s. A dynamic flow of value Q with the minimum time
horizon, reversing the necessary arcs in E at time zero, is known as the quickest
contraflow (QCF).

To solve the QCF problem in the similar way the MDCF problem is solved, one needs
to find the quickest flow in the temporally repeated form. Some ways to find such a flow
are briefed below.

Searching algorithms: Let f be a maximum dynamic s–t flow with time horizon
θ. Then vθ(f), the value of f increases as θ increases. Using this property, Burkard,
Dlaska, and Klinz (1993) develop various algorithms to find the quickest flow. The main
idea is to start with an interval [θl, θu] such that vθl(f) < Q < vθu(f), and search for
minimum θ∗ such that vθ∗(f) ≥ Q. Their algorithms require multiple calls of solving
a minimum-cost circulation problem. The strongly polynomial algorithm suggested by
them has time-complexity of O(m2 log3 n(m+ n log n)).

Cost scaling algorithm: Using the fact that the temporally repeated maximum
dynamic flow with a time horizon θ can be obtained by finding the static flow that
maximizes θv(x) − ∑(i,j)∈E τijxij (Ford & Fulkerson, 1958; Fleischer & Tardos,
1998), the following result is useful to compute the quickest flow.

Theorem 3.1 (Lin and Jaillet (2015)). Given an evacuation network

N = (V,E, u, τ, s, t) with a supply Q at s, the quickest flow problem can be

formulated as the fractional programming problem

21

min
Q+

∑
(i,j)∈E τijxij

v
(18)

subject to

∑

j∈V +
i

xij −
∑

j∈V −i

xji =





v if i = s

0 if i ∈ V \ {s, t}
−v if i = t

(18a)

0 ≤ xij ≤ uij ∀(i, j) ∈ E (18b)

If v is fixed in the problem stated in (18) becomes a minimum cost flow problem with
supply Q at s and demand Q at t. With this observation, they derive the following
optimality conditions:

i) x is a minimum cost flow,

ii) dst ≥
Q+

∑
(i,j)∈E τijxij
v

≥ −dts,

where dst and dts are the lengths of the shortest s–t path, and t–s path in the residual
network Nx.

Based on these optimality conditions, (Lin & Jaillet, 2015) propose a cost scaling
algorithm, which is summarized below.

Given N = (V,E, u, τ, s, t) with a supply Q at s, let x be a static flow with value v.
Node potentials π are introduced and the reduced cost ce = πj−πi+τe is calculated for
each arc (e ∈ Nx with tail i, and head j, whereNx is the residual network corresponding
to x. When ce > −ε,∀e ∈ Nx, the obtained flow x is called ε-optimal. The following
are the steps of the algorithm, in brief.

1. Initialize: πi = 0,∀i ∈ V, xe = 0,∀e ∈ E, and ε = C = maxe∈A{τe}.

2. Refine: The 2ε-optimal flow is modified to an ε-optimal one by assigning the flow
in the arcs of N with ce < 0 to their capacity, assigning zero flow in the arcs with
ce > 0, then pushing flows from nodes with excess flow through the arcs in the
residual network Nx, relabeling their potentials if required.

3. Reduce Gap: Set extra flow at s and push the admissible flow ultimately to t

with arcs in Nx, and relabel the potential of nodes if required to reduce the gap
between θ = [Q+

∑
e∈E τexe]/v and πs − πt by at least 7nε.

After Step 3, ε is scaled by 1
2
, and Steps 2 and 3 are repeated unless ε < 1

8n
.

4. Saturate: If θ, obtained from the above-mentioned scaling phases, is more than
the time (cost) in a shortest simple path from s to t in the residual networkNx, the

22

flow is saturated by sending maximum flow from s to t in a subnetwork formed
only by those arcs which are on some shortest path from s to t in Nx.

The time complexity of the cost-scaling algorithm is O(n3 log(nC)).

Cancel-and-tighten algorithm: The main idea of the algorithm is to modify the cost
scaling algorithm replacing Step 2 with Cancel and Tighten steps.

• Cancel: Find a cycle inNx with only admissible arcs (an arc e ∈ Nx is admissible
if its reduced cost ce < 0) and push a flow equal to minimum residual capacity of
its arcs. Repeat the process until there remains no such cycle.

• Tighten: For each node i, compute the maximum length h(i) from nodes with no
entering admissible arc. Replace πi by πi + ε

n
h(i) and reduce ε to (1− 1

n
)ε.

The Cancel Steps and the Tighten Steps are repeated iteratively until ε reduces to ε/2.
Then the Reduce Gap step reduces the gap between θ = [Q+

∑
e∈E τexe]/v and πs−πt

by at least (3n+ 1)ε.

The above-mentioned steps are performed until ε becomes smaller than 1/(4n), and
finally the Saturate step is performed as in the cost scaling algorithm. The complexity
of this algorithm is O(nm2 log2 n). For details of the algorithms, we refer to Lin and
Jaillet (2015) and Saho and Shigeno (2017).

Using a quickest flow algorithm as a subroutine, we construct Algorithm 1 to solve the
quickest contraflow problem, and prove its correctness and discuss the complexity. The
results are based on our publication Pyakurel, Nath, and Dhamala (2018).

Algorithm 1: Quickest contraflow algorithm
Input : Evacuation network N = (V,E, u, τ, s, t) with a supply Q at s
Output: Quickest contraflow in N

1 Construct the auxiliary network N ′ = (V,E ′, u′, τ ′, s, t).
2 Find a static flow x and the time horizon θ∗ corresponding to a temporally repeated

quickest flow in N ′ with supply Q at s.
3 Decompose x obtained in Step 2 into chain and cycle flows. Update x by removing

cycle flows.
4 Reverse (i, j) ∈ E iff (j, i) ∈ E and xji > uji or (j, i) /∈ E and xji > 0. Quickest

flow in reconfigured N is the temporally repeated flow corresponding to by x with
the time horizon θ∗.

Theorem 3.2. Algorithm 1 solves the QCF problem optimally.

Proof. First, we will prove that the algorithm guarantees a feasible dynamic flow in the
transformed network after arc reversal. For this we have to prove that the static flow
defined by x in the transformed network is feasible. Since removal of cycle flows in

23

Step 3 assures x to be positive either in (i, j) or in (j, i) but not in both, and x does
not exceed the capacity of the corresponding arc even after the arc reversal (because
after the reversal of (j, i), the capacity of (i, j) becomes uij + uji). Next, we have to
show that the flow is optimal. Since we solve the quickest flow problem in the auxiliary
network N ′, the flow is optimal in N ′. Since the removal of a positive cycle flow retains
the value of the flow and does not increase the total cost of the flow, the updated flow is
still optimal in N ′ and hence it is optimal in N after the arc reversals.

Application of the cost-scaling algorithm or the cancel-and-tighten algorithm,
discussed above, in Step 2, enables the solution of QCF problem, respectively, within a
polynomial and a strongly polynomial time-complexity of a minimum cost flow
problem. The following theorem gives the formal proof of the strongly polynomial
time-complexity.

Theorem 3.3. The QCF problem can be solved in O(nm2 log2 n) time.

Proof. Consider Algorithm 1 to solve the problem. Step 1 of the algorithm can be
performed in O(m) time. With the application of the cancel-and-tighten algorithm of
the quickest flow Step 2 takes O(nm2 log2 n) time. Flow decomposition in Step 3
takes O(mn) time (Ahuja, Magnanti, & Orlin, 1993). Step 4 can also be done in O(m)

time. This shows that the complexity of the algorithm is dominated by the complexity
of Step 2 which is O(nm2 log2 n).

3.2.3 Computational results

To compare the tests before and after contraflow configuration in evacuation planning,
we consider a situation where evacuees are to be evacuated from a single source (e.g.
evacuees at a place of some event or evacuees gathered at a place after earthquake etc.)
to a single sink (e.g. a bus park or a train station, etc.). For computational experiments,
we construct a network of 24 nodes and 76 arcs (38 two way links) and choose the
capacities of arcs between 1 to 3 cars per second with travel time between 5 minutes to
10 minutes (the network topology of the considered network is given in Appendix A.1).
The results are published in Pyakurel et al. (2018).

Taking the number of evacuee-cars from 500 to 50000 (with a gap of 500), we find
that the difference between the quickest time before and after contraflow configuration
increases with the increase in the number of cars (Figure 6).

In the same set-up, the value of the static flow rate, v(x), after contraflow is found
higher than that before contraflow (Figure 7), maintaining a constant difference after
certain level of number of cars (10000 in this case). With only 29% of the link reversals,

24

10000 20000 30000 40000 50000

Given flow value (Q)

25

50

75

100

125

150

175

200
After Contraflow Configuration
Before Contraflow Configuration

Q
ui

ck
es

t t
im

e

Figure 6: Quickest time comparison

+++

+++

++++++++++++

++

**

+ After Contraflow Configuration
Before Contraflow Configuration*

10000 20000 30000 40000 50000

200

300

400

500

600

Given flow value

St
at

ic
 f
lo

w
 v

al
ue

Figure 7: Static flow rates corresponding to the quickest flow

25

10000 20000 30000 40000 50000

Given flow value (Q)

5

10

15

20

25

30

35

40

P
er

ce
nt

ag
e

Decrease in quickest time after contraflow
Arcs reversed after contraflow

Figure 8: Percentage of arcs reversed and decrease in quickest Time

the percentage of decrease in the quickest time is found 42% as the number of cars reach
50000 (Figure 8).

Next we randomly choose the number of evacuee-cars between 1 to 50 (in Thousands),
capacity of an arc between 1 to 3 cars per second and travel time associated with arc
between 1 to 10 minutes, and run 50 such instances (Figure 9a). The quickest time is
found decreased by up to 62% with an average of 39.24 and standard deviation of 11.49.
In this case, the average decrease in quickest time is significantly less than 50% (t stat
= −6.62, P-value(one-tailed) = 0.000)). The flow rate is found increased by as high as
250%. The arc reversals range from 7.89% to 34.21%.

Keeping the number of evacuee-cars fixed to 100000 and randomizing other
parameters as before (Figure 9b), the quickest time is found decreased highest by 69%

with only 13% link reversals. The average of decrease in the percentage of quickest
time is found 48.84 with standard deviation 10.12, and the arc reversals ranging from
13.16% to 31.58%. The average decrease in percentage of quickest time in this case is
not significantly less than 50% (t-stat = −0.572, P-value(one-tailed) = 0.2863).

For a case study, we consider the road network of Kathmandu city inside ring road,
consisting of major-roads (Fig 10 (a)). The evacuation is to be done from Pashupati
Nath region (source), where a large gathering of people takes place in various religious
occasions, to Tribhuvan University region (sink), where there is a sufficient open space.

26

Random instances

D
ec

re
as

e
in

 q
ui

ck
es

t t
im

e
(%

)

0 10 20

30

40

50

20

30 40

50

60

(a) 1000 ≤ Q ≤ 50000

30

D
ec

re
as

e
in

 q
ui

ck
es

t t
im

e
(%

)

0 5 10 2015 25

35

40

45

50

55

60

65

70

Random instances

(b) Q = 100000

Figure 9: Decrease in quickest time

The considered network has 46 nodes and 132 arcs. For the auto-based evacuation
planning, we assume the capacity of each link ranging from 2 cars per second to 4 cars
per second according to the width of the link. The travel time between any two nodes is
as provided by Google Maps data.

Some of the computational results are listed in Table 1.

Table 1: Quickest time and flow comparison of Kathmandu network (before and after
contraflow configuration)

Quickest time (minutes) Quickest flow rate (per minute)
No. of cars Before After Before After

1,000 33.33 29.17 120 240
10,000 57.33 46.56 480 720
20,000 78.17 57.33 480 960
30,000 99.00 67.75 480 960
40,000 119.83 78.17 480 960
50,000 140.67 88.58 480 960

Although the routes of the quickest flow depend on the value of Q, they remain fixed
after Q attains a sufficiently large value. In the above-mentioned case study, the routes
of the quickest flow after contraflow configuration for Q ≥ 12000 are given in Table 2.

27

Figure 10: (a) Kathmandu network (b) Quickest contraflow solution

Table 2: Routes of the quickest flow solution for Kathmandu network (Q ≥ 12000)

S.N. Routes

1 Source – Narayan Gopal Chowk – Lainchour – Sorhakhutte –
– Bishnumati Track – Kalimati – Kalanki – Sink

2 Route 1 up to Kalimati – University Path – Sink
3 Source – Gaushala – Kamal Pokhari – Teendhara Marga – Durbar Marga–

–Bhadrakali – Sahid Gate – Tripureshwar – Kalimati – Kalanki – Sink
4 Route 3 upto Kalimati – University Path – Sink
5 Source – Gaushala – Purano Baneshwar – Putalisadak – Thapathali –

– Kupondol – Jawalakhel – Ekantakuna – Dhobighat – Sink
6 Route 5 upto Thapathali – Tripureshwar – Kalimati – Kalanki – Sink
7 Route 6 upto Kalimati – University Path – Sink
8 Source – Koteshwar – Satdobato – Sink

As expected, because of the contraflow reconfiguration, the evacuation time decreases,
and flow value increases significantly as the number of evacuees, and the network
capacity increases. Some instances show that solutions without contraflow behave
poorly if the lane direction do have a large capacity towards the source. We also notice
that reversing complete arcs towards the sink unknowingly does not improve the
solutions after a certain percentage of their reversals. Meaning that there should be

28

instance dependent bound of the number of arcs to be reversed.

The coding of the above-mentioned computations is done in Python 3.6 and run in 64-
bit Windows 10 operating system with Intel® Core™ i5 processor and 4GB RAM. The
running time taken by our tests varies from few seconds for small-scale problems to a
few minutes for large-scale problems (average running time on the Kathmandu network
considered here is 98.5 seconds). Therefore, they are applicable in response or planning
phases of the evacuation planning.

3.3 The Partial Contraflow Approach

In a transportation network, the reversal of an arc directs the traffic flow on the
road-segment opposite to the pre-assigned direction. Since the capacity of an arc is
proportional to the width of the road segment it represents, the portion of the road
segment corresponding to the remaining capacity of the arc remains unoccupied by the
flow and can be used for other purposes, e.g. to place the facilities to help evacuation.
We denote the remaining capacity or the unused capacity of an arc (i, j) by rij . The
problem of reversing a road segment up to the necessary capacity is termed as the
partial contraflow problem (Pyakurel, Nath, Dempe, & Dhamala, 2019).

3.3.1 Static partial contraflow

In this section, we consider the partial contraflow problems corresponding to the static
flow problems. Corresponding to the maximum static contraflow problem, we
introduce the maximum static partial contraflow (MSPCF) problem (Definition 3.5)
and corresponding the lex-maximum static flow problem, we introduce the
lex-maximum partial contraflow problem (LMSPCF) (Definition 3.7). Thereafter,
polynomial time algorithms are presented to solve these problems.

Definition 3.5 (Maximum static partial contraflow). Given N = (V,E, u, τ, S, T), the
maximum static flow by reversing the necessary arcs inE partially, recording the unused
capacities, is the maximum static partial contraflow (MSPCF).

To solve MSPCF problem, we solve the maximum static flow problem in the auxiliary
network, remove the positive flows in cycles, if any, reverse the road-segments up to
the necessary capacities, and record the capacities of the segments not used by the flow.
The procedure for a single-source-single-sink network is presented in Algorithm 2.

We prove the correctness of the algorithm in Theorem 3.4 and then discuss the
complexity of MSPCF problem.

Theorem 3.4. In a single-source-single-sink network, Algorithm 2 computes the

29

Algorithm 2: MSPCF algorithm
Input : Evacuation network N = (V,E, u, τ, s, t)
Output: Maximum static partial contraflow in N

1 Construct the auxiliary network N ′ = (V,E ′, u′, τ ′, s, t).
2 Find the maximum static flow x in N ′.
3 Decompose x into chain and cycle flows. Update x by removing cycle flows.
4 Reverse (j, i) ∈ E proportional to the capacity xij − uij iff xij > uij , uij replaced

by 0 whenever (i, j) /∈ E. In reconfigured N , maximum static flow = x.
5 For each (i, j) ∈ E, if (i, j) is reversed, then rij = u′ij − xji and rji = 0. If neither

(i, j) nor (j, i) is reversed, rij = uij − xij .

maximum static partial contraflow and records the unused capacities correctly.

Proof. First we show that the flow x computed by the algorithm is feasible in N after
reconfiguration. Then we show that x is optimal and the unused capacities are recorded
correctly. Because of the removal of cycle flows in Step 3, for each (i, j) ∈ E, either
xij = 0 or xji = 0. If xij > uij then (j, i) is reversed proportional to the capacity
xij − uij in Step 4, and hence x becomes feasible in the reconfigured network. It is
clear that x, in Step 2 is optimal in N ′. Because of the conservation of flows at the
intermediate nodes, the removal of cycle flows does not change the value of the flow
updated in Step 3. Hence, x is optimal in N also after reconfiguration.

For the arcs (i, j), (j, i) between nodes i and j, it is evident that either only one of them
is reversed or both the them are not reversed. If (i, j) is reversed, it clearly indicates that
xji > uji there is no capacity of (j, i) unused, i.e. rji = 0, and

rij = uij − (xji − uji)
= uij + uji − xji
= u′ij − xji.

If both are not reversed, then xij ≤ uij meaning rij = uij − xij .

Steps 1, 4 and 5 of Algorithm 2 can be performed in O(m) time. Step 3 takes O(mn)

time.

The time complexity of Step 2 is the time complexity of a maximum static flow
algorithm. Maximum static flow algorithms have a long history but are still under
study. The algorithms can be divided into two groups – augmenting path algorithms,
and pre-flow push algorithms. An augmenting path with respect to a static flow x is a
directed path from the source s to the sink t in the residual network Nx. A static flow x

is maximum if and only if there does not exist an augmenting s–t path. Sending the
flow along a flow augmenting path is referred to as flow augmentation. Following the

30

labeling algorithm which runs in pseudo-polynomial time O(mnU), where
U = max{uij : (i, j) ∈ E}, by Ford and Fulkerson (1962), there exist several
improvements in the augmenting path algorithms. For example, the capacity scaling
algorithm augments flows along paths with sufficiently large residual capacity and runs
in O(mn logU) time; the shortest augmenting path algorithm, which augments the
flows along shortest augmenting paths, runs in O(mn2) time (Ahuja & Orlin, 1991).

Preflow-push algorithms relax the flow conservation constraints at the intermediate
steps, seek out the shortest paths, but send flows on individual arcs from active nodes
(nodes with positive excess flow) rather than on the s–t paths. For each node, it
maintains a distance label which, originally, is the shortest distance of the node from
the sink. The label of the source node is maintained at n. A preflow-push algorithm
selects an active node i with a label l, and either pushes the flow to a node with label
l − 1, or relabels i by l + 1. The first preflow-push algorithm with running time O(n3)

is due to Karzanov (1974). A generic pre-flow push algorithm runs in O(mn2) time
(Goldberg & Tarjan, 1988). Among the several specific implementations of the
algorithm, FIFO (first in first out) preflow-push algorithm Goldberg (1985) examines
the active nodes in the FIFO order runs in O(n3) time, highest-label perflow push
algorithm (Goldberg & Tarjan, 1988), which examines the active nodes with the
highest distance label, runs in O(n2

√
m) time, and the excess scaling algorithm (Ahuja

& Orlin, 1989), with running time O(mn + n2 logU), performs push/relabel
operations at nodes with sufficiently large excesses and, among these nodes, selects
node with the smallest distance label.

Among the various improvements in the algorithms to solve maximum static flow
problem, the algorithm by Orlin (2013), solves the maximum flow problem in O(mn)

time if m < n1.06.

In this way, we see that the running time of Algorithm 2 is dominated by the running
times of Step 2 and Step 3. The maximum static flow in a multi-source-multi-sink
network N = (V,E, u, τ, S, T) can be computed by adding two nodes s∗, t∗ to N such
that us∗s = ∞,∀s ∈ S and utt∗ = ∞,∀t ∈ T and using the single-source-single-
sink algorithm considering s∗ as the source and t∗ as the sink. The complexity of this
computation remains the same in big O notation. Incorporating this idea in the MSPCF
algorithm, we have the following result.

Theorem 3.5. The MSPCF problem can be solved in strongly polynomial time.

Now we present an example to illustrate the working of Algorithm 2.

Example 3.1. Consider an evacuation network N in Figure 11(a) in which s is the
source and t is the sink. The arc labels represent capacity and traversal time. Although

31

s

a b

c

d t

2, 1
1, 1

3, 23, 2

3, 1
2, 1

2, 3
3, 3

1, 0
2, 0

1, 2
2, 2

3, 12, 11, 12, 1

2, 1
2, 1

1, 1

1, 1

(a) Network N

s

a b

c

d t

3, 1
3, 1

6, 26, 2

5, 1
5, 1

5, 3
5, 3

3, 0
3, 0

3, 2
3, 2

5, 15, 13, 13, 1

4, 1
4, 1

2, 1

2, 1

(b) Auxiliary network N ′

Figure 11: Evacuation network in Example 3.1

s

a b

c

d t

2/3
0/3

5/60/6

5/5
0/5

5/5
0/5

3/3
0/3

3/3
0/3

5/50/52/30/3

0/2
0/2

0/2

2/2

(a) Maximum static flow in N ′

s

a b

c

d t

2/2
0/1

5/50/1

5/5

3/3 3/3

5/52/20/1

0/2
0/2

5/5

2/2

(b) Max static flow in N after reconfigration

Figure 12: MSPCF solution

32

arc traversal time is not required for the static flow problems, we consider them to use
the network in examples where the time is required. The maximum static flow value
in this network is 7 (2 via path s–b–t, 3 via s–c–t, 1 via s–a–d–t, and 1 via s–a–c–b–
t). Figure 11(b) represents the auxiliary network N ′ of N . The maximum static flow
computation is shown in Figure 12(a). It can be seen that the value of the maximum
static flow in N ′ is 12 (2 via path s–b–t, 5 via s–c–t, 2 via s–a–d–t, and 3 via s–a–c–
b–t). The network N after partial contraflow configuration is shown in Figure 12(b).
Arcs (a, s), (c, a), (b, c), (t, c), (t, d) are reversed completely. The arc (c, s) is partially
reversed upto the capacity 2, and the arc (d, a) is partially reversed upto the capacity 1.
The unused capacities are: rbs = rcs = rda = 1, rcd = rdc = 2.

In a multi-source-multi-sink network N = (V,E, u, τ, S, T), let S0 ⊆ S, T0 ⊆ T . For
a given static flow x in N , we denote the maximum amount of flow that leaves S0 by
vS0(x) and the maximum amount of flow that enters T0 is denoted by vT0(x).

Definition 3.6 (Lexicographic maximum static flow). Consider an evacuation network
N = (V,E, u, τ, S, T) with multiple sources or multiple sinks, such that S ∩ T = ∅.
Let T1 ⊆ · · · , Tp ⊆ T , then a maximum flow x that delivers a flow of value vTi(x)

into each Ti(i = 1, · · · p) is called a lexicographic maximum flow on the sinks. One
can define a lexicographic maximum flow on the sources in a similar fashion (Minieka,
1973).

Construction of a lexicographic maximum static flow: Minieka (1973) proved the
existence of the lexicographic maximum flows constructing such a flow iteratively in a
network. To construct the flow on sinks, for the requirement of Tk, two extra nodes s∗

and t∗, arcs (i, s∗), (s∗, j) for each i ∈ T \(T1∪· · ·∪Tk), j ∈ S, and arcs (l, t∗) for each
l ∈ T1∪· · ·Tk are added. The newly added arcs are assigned infinite capacity. Initiating
with the flow constructed in the previous iteration, Ford and Fulkerson algorithm is
applied taking s∗ as the source and t∗ as the sink unless the flow is no more improved.
Similar idea can be used to construct such a flow on sources. Details can be found in
Minieka (1973).

Definition 3.7 (Lexicographic maximum static partial contraflow). Given a
multi-source-multi-sink network N = (V,E, u, τ, S, T), a lexicographic maximum
static partial contraflow (LMSPCF) is the lexicographic maximum flow (on the sinks
or on the sources) reversing the necessary arcs in E partially, recording the unused
capacities.

To solve the LMSPCF problem, we present Algorithm 3. The idea is similar to that of
Algorithm 2.

Analogous to Theorem 3.4, we can prove:

33

Algorithm 3: LMSPCF algorithm
Input : Evacuation network N = (V,E, u, τ, S, T), S ∩ T = ∅
Output: Lexicographic maximum static partial contraflow in N

1 Construct the auxiliary network N ′ = (V,E ′, u′, τ ′, S, T).
2 Find the lexicographic maximum static flow x (on sources or sinks) in N ′.
3 Decompose x into chain and cycle flows. Update x by removing cycle flows.
4 Reverse (j, i) ∈ E proportional to the capacity xij − uij iff xij > uij , uij replaced

by 0 whenever (i, j) /∈ E. x = lexicographic maximum static flow in reconfigured
N .

5 For each (i, j) ∈ E, if (i, j) is reversed, then rij = u′ij − xji and rji = 0. If neither
(i, j) nor (j, i) is reversed, rij = uij − xij .

Theorem 3.6. Algorithm 3 solves the LMSPCF correctly.

Theorem 3.7. The LMSPCF problem can be solved in a strongly polynomial time.

Proof. As in Theorem 3.5, Steps 1, 4 and 5 of Algorithm 3 can be performed in O(m)

time, and Step 3 takes O(mn) time. The lexicographic maximum flow in Step 2 can
be performed using the flow construction suggested in Minieka (1973) discussed before
Definition 3.7 in which Ford Fulkerson’s algorithm is called in each iteration. The
number of iterations is bounded by the number of sinks (sources) for the lexicographic
maximal flows on sinks (sources). Using a strongly polynomial time algorithm (see the
discussion before Theorem 3.5) instead of Ford Fulkerson’s algorithm in each iteration,
we can achieve a strongly polynomial time algorithm for LMSPCF.

Example 3.2. Consider an evacuation network, as shown in Figure 13 with a source set
S = {s1, s2}, and a sink set T = {t1, t2, t3}. If we prioritize the sinks as t1, t2, t3, i.e.
T1 = {t1}, T2 = {t1, t2}, T3 = T , then an optimal solution with a partial contraflow
configuration is shown in Figure 14(a). The maximum flow value at t1 is 4, that at t2 is
3, and at t3, 7. Arcs (t1, a), (t2, b), (b, s2) are reversed fully, and each of (b, a), (t3, b) is
reversed upto the capacity 1. The corresponding solution for the prioritization t1, t3, t2,
i.e. T1 = {t1}, T2 = {t1, t3}, T3 = T is shown in Figure 14(b). In this case, the
maximum flow values are 4 at t1, 8 at t3, and 2 at t2, arcs (t1, a), (t3, b), (b, s2) being
reversed fully, and each of (b, a), (t2, b) being reversed partially up to the capacity 1.

3.3.2 Dynamic partial contraflow

If we incorporate partial contraflow approach in the dynamic flow (flow over time)
problems, we refer to the resulting problems as dynamic contraflow problems. We
begin with the maximum dynamic contraflow problem.

Definition 3.8 (Maximum dynamic partial contraflow). Given an evacuation network

34

b

t1 t2

t3s2

a

s1

4
4

6
2

1
2

1 1

3

2

6 2

Figure 13: A network with source set S = {s1, s2}, sink set T = {t1, t2, t3}

b

t1 t2

t3s2

a

s1

7/7
0/1

4/4

0/1

8/8

3/32/26/6 2/2

(a)

b

t1 t2

t3s2

a

s1

4/4

0/1

2/2
0/1

8/88/8

2/26/6 2/2

(b)

Figure 14: LMSPCF solution

35

N = (V,E, u, τ, s, t) with a time horizon θ, the maximum dynamic partial contraflow
(MDPCF) is the maximum dynamic flow reversing the necessary arcs in E partially, at
time zero, recording the capacities of the arcs not used by the flow.

To solve MDPCF, we solve the maximum dynamic flow problem (see problem (37),
page 102) to identify static flow which gives a temporally repeated dynamic flow, and
then reverse the arc whose reverse arc carries more flow than its capacity, as in the case
of static partial contraflow problems. The procedure is given in Algorithm 4.

Algorithm 4: MDPCF algorithm
Input : Evacuation network N = (V,E, u, τ, s, t), with a time horizon θ
Output: Maximum dynamic partial contraflow in N

1 Construct the auxiliary network N ′ = (V,E ′, u′, τ ′, s, t).
2 Find a static flow x in N ′ corresponding to the temporally repeated maximum

dynamic flow with time horizon θ.
3 Decompose x into chain and cycle flows. Update x by removing cycle flows.
4 Reverse (j, i) ∈ E proportional to the capacity xij − uij iff xij > uij , uij replaced

by 0 whenever (i, j) /∈ E. In reconfigured N , maximum dynamic flow =
temporally repeated dynamic flow induced by x with the time horizon θ.

5 For each (i, j) ∈ E, if (i, j) is reversed, then rij = u′ij − xji and rji = 0. If neither
(i, j) nor (j, i) is reversed, rij = uij − xij .

The feasibility of Algorithm 4 can be established by arguments analogous to those given
in the proof of Theorem 3.2. The crucial step of this algorithm is Step 2 which requires
to calculate the static flow, the temporal repetition of which gives a maximum dynamic
flow in the auxiliary network N ′. For a time horizon θ, this can be done by finding the
static flow x that maximizes θv(x)−∑(i,j)∈E τijxij which is equivalent to minimizing
−θv(x) +

∑
(i,j)∈E τijxij (Ford & Fulkerson, 1958). Hence, x in Step 2 can be obtained

by adding an extra arc (t, s) with τ ′ts = −θ, u′ts =∞ to N ′ and solving a minimum cost
circulation problem taking τ ′ as the cost. A minimum cost circulation is a special type
of minimum cost flow.

In a network N with supplies and demands associated with its nodes, for any real
number πi associated with a node i in Nx, a reduced cost associated with each (i, j) in
Nx is defined as

cπij = cij − πi + πj

where cij is the cost associated with the arc (i, j). We write C = max{cij : (i, j) ∈ E}
as mentioned earlier also. A solution x of a minimum cost flow problem, is optimal if
and only if the following equivalent conditions hold.

• Negative cycle optimality conditions: Nx does not contain a negative cost directed
cycle.

36

• Reduced cost optimality conditions: cπij ≥ 0 for all (i, j) ∈ Nx.

• Complementary slackness optimality conditions:

cπij > 0⇒ xij = 0,

0 < xij < uij ⇒ cπij = 0, and

cπij < 0⇒ xij = uij .

The algorithms of solving the minimum cost flow problem are based on these optimality
conditions.

Since a minimum cost flow problem is a linear programming problem, the simplex
method can be used to solve it but a general simplex method may not be practically
efficient. Network simplex algorithm (Dantzig, 1998), a highly efficient algorithm in
practice, exploits the special structure of the problem interpreting the core concepts of
the simplex method as network flow operations.

The primal-dual algorithm (Ford & Fulkerson, 1962) maintains a pseudoflow
satisfying the optimality conditions and attempts to reduce primal infeasibility by the
maximum amount solving a maximum flow problem. The successive shortest path
algorithm (Jewell, 1958) maintains a pseudoflow satisfying the optimality conditions
and augments the flow along the shortest paths from excess nodes to deficit nodes in
the residual network corresponding to the pseudoflow, runs in pseudopolinomial time.
However using capacity scaling (Edmonds & Karp, 1972), one can achieve polynomial
time running time. A version of this algorithm by Orlin (1993) runs in
O(m logU(m + n log n)) time. The enhanced capacity scaling algorithm by Orlin
(1993) runs in O(m log n(m + n log n)) time. Augmenting the flow along negative
length directed cycles in the residual network, the cycle canceling algorithm by Klein
(1967) achieves the optimal flow as soon as there remains no negative cost cycle.
Although, it runs in pseudopolynomial time, among the improved versions of it, the
minimum-mean cycle canceling algorithm by Goldberg and Tarjan (1989) runs in a
strongly polynomial O(n2m3 log n) time, and using the dynamic tree data structure,
their cancel-and-tighten algorithm runs in O(nm log nmin{log(nC),m log n}) time
for integer arc-costs, and in O(nm2 log2 n) time for arbitrary real-valued arc costs. An
adaption of the pre-flow push algorithm of maximum flow, the implementation by
Goldberg and Tarjan (1987) of the cost scaling algorithm originally given by Röck
(1980) uses O(log(nC)) max flow operations.

The algorithms mentioned above are only a few of the minimum cost flow algorithms
available in literature. Although the problem is well known and well solved, research in
the area is still active, the current work by Hu, Zhao, Liu, Liang, and Ma (2020) is an
example.

37

s

a b

c

d t

3/3, 1
0/3, 1

6/6, 2
0/6, 2

5/5, 1
0/5, 1

1/5, 3

0/5, 3

3/3, 0
2/3, 0

0/3, 2
0/3, 2

3/5, 1

0/5, 10/3, 1
0/3, 1

2/2, 1

0/2, 1

0/2, 1

2/2, 1

(a) Optimal static flow in N ′

s

a b

c

d t

1/2, 3

0/3, 3 3/3, 1

6/6, 2

5/5, 1

1/1, 0
0/2, 0

0/1, 2
0/2, 2

3/3, 1

0/2, 10/1, 1
0/2, 1

2/2, 1

0/2, 1

2/2, 1

(b) Optimal static flow in N after reconfigration

Figure 15: MDPCF solution, θ = 6

Use of any of the available strongly polynomial time algorithm in Step 2 makes the
running time of Algorithm 4 strongly polynomial and we can safely say that:

Theorem 3.8. The MDPCF problem can be solved in strongly polynomial time.

Example 3.3. Consider the network in Figure 11(a) again. For θ = 6, the value of the
maximum dynamic flow is 18, described as follows.

Path (P) τ(P) xP θ − τ(P) Dynamic flow value

s–b–t 2 2 4 8
s–c–t 3 3 3 9

s–a–c–d–t 5 1 1 1

To find the solution to the MDPCF problem, first we add the arc (t, s) with uts =

∞, τts = −θ to N ′ and find the minimum cost circulation on it. In this way, we get a
static flow in N ′ corresponding to the temporally repeated dynamic flow as shown in
Figure 15(a). We remove the cycle flow in the cycle a–c–a, and the resulting flow in
N after reconfiguration is shown in Figure 15(b). The value of the maximum dynamic
flow after reconfiguration is 30 as described in the following table.

Path (P) τ(P) xP θ − τ(P) Dynamic flow value

s–b–t 2 3 4 12
s–c–t 3 5 3 15

s–c–d–t 4 1 2 2
s–a–c–d–t 5 1 1 1

38

The arcs (b, s), (c, s), (t, c), (t, d) are to be reversed to the full capacity.

Definition 3.9 (Quickest partial contraflow). Given N = (V,E, u, τ, s, t) and a supply
Q at s, the quickest partial contraflow (QPCF) is the quickest flow allowing the arcs to
be reversed partially, at time zero, and recording unused arc capacities.

We can use the procedure in Algorithm 1 to solve QPCF replacing Step 4 by that of
Algorithm 4 and adding Step 5 of Algorithm 4 at last. The correctness of the algorithm
can be justified similarly. As in the proof of Theorem 3.3, we can show that the QPCF
problem can be solved in O(nm2 log2 n) time. Hence, we have:

Theorem 3.9. There exists a strongly polynomial time algorithm to solve the QPCF.

3.4 Orientation Dependent Transit Times

So far we have considered situations in which the time of travel on an arc remains same
after its reversal. There are situations when the time of travel varies when the direction
of the traffic flow is reversed in road networks depending on the topography, etc. To
capture such a situation, we consider travel time functions τ,←−τ : E → R≥0 For each
e ∈ E, with tail i and head j, τ(e) denotes the arc transit time from i to j and ←−τ (e)

denotes transit time from j to i.

Without loss of generality, we make the following conventions.

1. Whenever (i, j) ∈ E, there is (j, i) ∈ E. This can be done, for our purpose, by
assigning uji = 0 if such an arc does not exist.

2. Defining τ(j, i) = ←−τ (i, j), we assume the existence of only one travel time
function τ depending on the orientation of arcs.

Remark 3.1. In case the above-mentioned conventions are not satisfied, we can use
suitable network transformations to meet the requirements.

Example 3.4. Consider a network in Figure 16 (i). The arc labels represent the capacity
of the arc and transit time on the direction of the arc. For a time horizon of 7 units, a
maximum of 8 units of flow (1 along s–a–d twice, 1 along s–b–d thrice, 1 along s–a–b–d
thrice) can be sent from s to d without allowing arc reversals.

If (b, a) is reversed and the transit time is kept intact (Figure 16 (ii)), the maximum of 10

units of flow (1 along s–a–d twice, 1 along s–b–d thrice, 1 along s–a–b–d (that contains
original (a, b) thrice), and 2 along s–a–b–d (that contains (b, a) reversed) once).

If the transit time depends on the orientation, when (b, a) is reversed its transit time
becomes that of original (a, b) (Figure 16 (iii)). In this case the maximum of 14 units of
flow (1 along s–a–d twice, 1 along s–b–d thrice, 3 along s–a–b–d thrice). In this case,

39

s

a

b

t

4, 1 1, 4

1, 2 4, 2

2, 3 1, 1

(i)

s

a

b

t

4, 1 1, 4

1, 2 4, 2

1, 12, 3

(ii)

s

a

b

t

4, 1 1, 4

1, 2 4, 2

3, 1

(iii)

s

a

b

t

4, 1 1, 4

1, 2 4, 2

3, 3

(iv)

Figure 16: Different cases of arc reversals

we can add the capacities of (a, b), (b, a) and replace the two arcs by a single arc (a, b).
If (a, b) is reversed, however, the maximum flow value reduces to 5 (Figure 16(iv)).

To solve the problems of optimizing the flow with arc reversals in a network with
orientation dependent transit times, we construct the auxiliary network, as described in
the following definition.

Definition 3.10. Given N = (V,E, u, τ, s, t), with orientation dependent transit times,
we define the auxiliary network as N ′ = (V ′, E ′, u′, τ ′, s, t) in which

1. V ′ = V,E ′ = E

2. ∀(i, j) ∈ A′, u′(i, j) = u(i, j) + u(j, i)

3. ∀(i, j) ∈ A′, τ ′(i, j) = τ(i, j)

Constructing the auxiliary network as given in Definition 3.10, the contraflow
algorithms discussed above work well to solve the corresponding problems with
orientation dependent transit times (Nath, Pyakurel, & Dhamala, 2021), and we have

Theorem 3.10. The maximum dynamic contraflow problem and the quickest

contraflow problem, with orientation dependent transit times, and the corresponding

partial contraflow problems can be solved in strongly polynomial times.

40

3.5 Contraflow in Abstract Networks

In Section 2.4, we have seen that flows in abstract networks generalize the flows in
(classical) networks. The concept of contraflow in abstract networks has been
introduced by Pyakurel et al. (2017). In this Section, we adapt the idea to design partial
contraflow algorithms in abstract networks. The results are based on our publication
Pyakurel, Nath, and Dhamala (2019).

To model an evacuation problem using abstract network, we represent a portion of the
road between two intersections by an element pair (−→e ,←−e) representing road segments
with opposite directions of traffic flow. Let S, T be the set of terminals (sources and
sinks) respectively. For s ∈ S, t ∈ T , we denote the collections of s–t paths by

−→
P and

that of t–s paths by
←−
P . We assume that for each

−→
P = {s, e1, e2, . . . en, t} ∈

−→
P , there

is
←−
P = {t, e′n, e′n−1, . . . e′1, s} ∈

←−
P , and vice versa, where if ei = −→e , then e′i =←−e and

if ei =←−e , then e′i = −→e . We write
←→
P =

−→
P ∪←−P and represent the evacuation network

by N = (E ,←→P , u, τ, S, T) where u, τ are capacity, and travel time functions. We also
assume that τ(←−e) = τ(−→e), τ(s) = τ(t) = 0 ∀s ∈ S, t ∈ T , and that (E ,−→P) is an
abstract network. In a single-source-single-sink network with S = {s}, T = {t}, we
write the network as N = (E ,←→P , u, τ, s, t).

To design the algorithms for contraflow, with a point of view that all t–s paths can be
reversed, we make use of the auxiliary network N = (E ,P, u, τ , S, T) of the
evacuation network N = (E ,←→P , u, τ, S, T) as follows. The element set E consists of
all the elements of S, T and each pair of elements (−→e ,←−e) from E replaced by an
element e. We replace −→e and←−e in each path in

−→
P by e to get a collection of s–t paths

P . The travel time and capacity of e in the transformed network are, respectively,

τ(e) = τ(−→e) = τ(←−e) and u(e) = u(−→e) + u(←−e)

It is easy to check that (E ,P) is an abstract network if (E ,←−P) is an abstract network.

Example 3.5. Let us consider an evacuation network as shown in Figure 11(a). Take
the element set as

E = {s, t, sa, as, sb, bs, sc, cs, ac, ca, ad, da, bc, cb, bt, tb, cd, dc, ct, tc, dt, td}

where the elements ij, ji represent the two-way road segment between i and j, s is
the source element and t is the sink element. We consider the collection of s–t paths,
explicitly, as

−→
P = {−→P1,

−→
P2,
−→
P3, · · ·

−→
P 14},

where

41

s

a b

c

d t

3, 1

6, 2

5, 1

5, 3

3, 0 3, 2

5, 13, 1

4, 1

2, 1

Figure 17: Auxiliary abstract network in Example 3.5

−→
P 1 = (s, sb, bt, t),

−→
P 2 = (s, sc, ct, t),

−→
P 3 = (s, sb, bc, ct, t),

−→
P 4 = (s, sa, ac, ct, t),

−→
P 5 = (s, sc, cb, bt, t),

−→
P 6 = (s, sa, ad, dt, t),

−→
P 7 = (s, sc, cd, dt, t),

−→
P 8 = (s, sb, bc, cd, dt, t),

−→
P 9 = (s, sa, ac, cb, bt, t),

−→
P 10 = (s, sa, ad, dc, ct, t),

−→
P 11 = (s, sc, ca, ad, dt, t),

−→
P 12 = (s, sa, ac, cd, dt, t),

−→
P 13 = (s, sb, bc, ca, ad, dt, t),

−→
P 14 = (s, sa, ad, dc, cb, bt, t).

In the auxiliary abstract network as shown in Fig. 17, the element set becomes

E = {s, t, sa, sb, sc, ac, ad, bc, bt, cd, ct, dt}

and the set of paths P = {P 1, · · · , P 14} where ij ∈ P k is obtained by replacing ij and
ji in

−→
P k. For example, P 11 = {s, sc, ac, ad, dt, t}, P 12 = {s, sa, ac, cd, dt, t}. We see

that the paths in P satisfy the switching property, e.g., P 11 and P 12 intersect at ac and
P 7 ⊆ P 11 ×ac P 12, P 6 ⊆ P 12 ×ac P 11.

If x : P → R≥0 is a static flow in the abstract network N = (E ,P , u, τ, S, T), then we
define χ : E → R≥0 by

χ(e) =
∑

P∈P:e∈P
x(P),∀e ∈ E (19)

which is the amount of flow that is assigned to e. Now, we present Algorithm 5 to solve
maximum static partial contraflow problem in abstract networks.

Applying the algorithm of Kappmeier (2015) to find the lexicographic maximum static
flow in Step 2, we can easily convert Algorithm 5 to solve the lexicographic abstract
maximum static contraflow problem if the terminals have orders with the restrictions
mentioned in Kappmeier et al. (2014).

According to Kappmeier et al. (2014), in an abstract network (E ,P), the maximum

42

Algorithm 5: Abstract maximum static partial contraflow algorithm

Input : Evacuation network N = (E ,←→P , u, τ, S, T) such that (E ,←−P) is an
abstract network

Output: Abstract maximum static partial contraflow
1 Construct the auxiliary network N = (E ,P, u, τ , S, T).
2 Find abstract maximum static flow x in N using the algorithm of McCormick

(1996).
3 For each e ∈ E , calculate the unused capacity r(e) = u− χ(e).

dynamic abstract flow problem with time horizon θ (in the temporally repeated form)
can be solved by solving the following weighted abstract maximum flow problem

max
∑

P∈P

[
θ −

∑

e∈P
τ(e)

]
x(P) (20)

subject to

∑

P∈P:e∈P
x(P) ≤ u(e),∀e ∈ E (20a)

x(P) ≥ 0, ∀P ∈P (20b)

Problem (20) can be solved by using the algorithm given in Martens and McCormick
(2008). Using their algorithm as a subroutine, we construct Algorithm 6.

Algorithm 6: Abstract maximum dynamic partial contraflow algorithm

Input : Evacuation network N = (E ,←→P , u, τ, S, T) such that (E ,←−P) is an
abstract network, and a time horizon θ

Output: Abstract maximum dynamic partial contraflow
1 Construct the auxiliary network N = (E ,P, u, τ , S, T).
2 Solve the problem (20) in N using the algorithm of Martens and McCormick

(2008) to find the abstract static flow x.
3 For each e ∈ E , calculate the unused capacity r(e) = u− χ(e).
4 The abstract dynamic partial contraflow f can be constructed using

f(P ξ) = x(P), 0 ≤ ξ < θ −
∑

e∈P
τ(e)

Since the running times of Step 2 of Algorithm 5 and Algorithm 6 is polynomial, we
conclude the following:

Theorem 3.11. Abstract maximum static partial contraflow algorithm and abstract

maximum dynamic partial contraflow algorithm run in polynomial times.

43

CHAPTER 4

MODELS WITH VARIABLE TRANSIT TIMES

4.1 Introduction

In the models considered in the previous chapters, we have assumed that the transit time
on an arc is constant. However, it is a common experience that the transit time on a road
segment increases with the increase of congestion of the traffic in it. The constant time
models do not take into account the current flow situation on the arc.

Attempts to capture the dependency of the travel time on the flow leads to
flow-dependent models. A fully realistic model of flow-dependent transit times on arcs
has to consider density, speed, and flow rate evolving along an arc to determine the
transit time. According to Langkau (2003), the literature is devoid of algorithmic
techniques to obtain optimal solutions, taking all the parameters into consideration,
even for networks of modest size.

In this chapter, we study models in which the transit time depends either on inflow rate
or the density of the flow and develop algorithms for partial contraflow configuration.

4.1.1 Transit time functions

The commonly used transit time functions, also known as link performance functions,
showing the dependency of transit time on the arc-flow are BPR function developed by
US Bureau of Public Roads, and Davidson’s function (Sheffi, 1985).

In BPR function, the transit time for an arc (i, j) is given by

τij = τ 0ij

[
1 + α

(
xij
upr
ij

)β]
(21)

where τ 0ij is the free-flow transit time, upr
ij is the practical capacity of the arc. The

parameter α is the ratio of the transit time per unit distance at practical capacity to that
at free flow, and β is the parameter which is the measurement of how fast the estimated

44

xij

τij

τ 0 ij

uij
pr

(a)

uij

τij

xij

J = 0.1

J = 0.25

J = 0.5

J = 0.05

J = 1.0

τ 0 ij

(b)

Figure 18: (a) BPR function (b) Davidson’s function

average speed decreases from free flow to congested conditions. Generally, α, β are
taken to be 0.15, 4.0 respectively.

A BPR function is not asymptotic to the line τij = uij (Figure 18(a)) which does not
go with an assumption, considered in traffic flow theory, that the flow-dependent transit
time increases infinitely when the flow rate reaches towards the capacity. Based on
queueing theory, the Davidson’s function defined as

τij = τ 0ij

[
1 + J

xij
uij − xij

]
(22)

is asymptotic to the line τij = uij (Figure 18(b)). The parameter J , called a delay
parameter, depends on the quality of the road (Mtoi & Moses, 2014). It determines the
shape of the curve and can be calculated with the field measurements.

4.1.2 Dynamic flow problems with flow-dependent transit times

In the model described in Section 2.3, if the transit time τ , instead of being constant,
depends in the flow, then such a model is referred to as a dynamic flow model or a flow
over time model with flow-dependent transit time. The temporally repeated flow defined
in case of constant transit times can be generalized to the flow-dependent cases.

Flow-dependent temporally repeated flow: Given a network N = (V,E, u, τ, s, t),
let x be a feasible static flow, and τ depend on the flow. Suppose that P is the set of
s–t paths such that the transit time on the path P , τP (x) ≤ θ, ∀P ∈ P . The temporally
repeated dynamic flow X with flow-dependent transit times within the time horizon θ
is defined as follows.

45

i) The transit time of each (i, j) ∈ E is fixed to τij(xij) so that flow entering (i, j) at
time ξ reaches j at time τij(xij) + ξ, ∀ξ ∈ [0, θ).

ii) The flow X enters P ∈ P at a constant rate xP starting at time zero and ending at
time θ − τP (x).

The value of the temporally repeated flow defined above is

∑

P∈P
(θ − τP (x))xP = θv(x)−

∑

(i,j)∈E
τij(xij)xij (23)

which means that, as in the case of fixed transit time case, the value of the temporally
repeated flow with flow-dependent transit times is independent of the path
decomposition.

In what follows, we discuss dynamic flow models with two types of flow-dependent
transit times:

• Inflow-dependent transit times (IFDTT)

• Load-dependent transit times (LDTT)

4.2 Dynamic Flow with IFDTT

In the dynamic flow models with inflow-dependent transit times (IFDTT), the transit
time of flow on an arc is determined when the flow enters the arc and depends on the
inflow rate at that time. It is assumed that each arc (i, j) ∈ E has an associated non-
negative, non-decreasing, piece-wise constant, left-continuous transit time function τij :

[0, uij] → R≥0 which denotes the time taken by the flow to traverse arc (i, j). Any
general transit time function can be approximated, within an arbitrary precision, by a
function meeting aforementioned requirements.

4.2.1 The bow network

To solve some dynamic flow problems with inflow-dependent transit times, Langkau
(2003) expand the given network to construct a bow network with the intuition that if
a road segment has multiple lanes, a driver prefers to choose the fastest lane available.
That means, the slower lane is chosen only after the immediate faster lane is full. Once
a lane is chosen, the speed of the in vehicle is fixed to the upper capacity of the lane.

We denote the bow network of N = (V,E, u, τ) as N b = (V b, Eb, ub, τ b). For each

46

e = (i, j) ∈ E, 0 = u0 < u1 < · · · < uk = uij , let the transit time function be given as

τij(x) =





τ 1, u0 < x ≤ u1

τ 2, u1 < x ≤ u2

· · ·
τ k, uk−1 < x ≤ uk.

Corresponding to each e = (i, j), the node set V b contains the nodes
i = e0, e1, · · · , ek, j, and the arc set Eb contains arcs

(e0, e1), · · · , (ek−1, ek), (ek, j)

called regulating arcs with

ube0e1 = uk, ube1e2 = uk−1, · · · , ubek−1ek
= u1,

τ be0e1 = τ be1e2 = · · · = τ bek−1ek
= 0

and
(e1, j), (e2, j), · · · , (ek, j)

called bow arcs with
ube1j = · · ·ubekj =∞,

τ bekj = τ 1, τ bek−1j
= τ 2, · · · , τ be1j = τ k.

In N b, the nodes i, j are called the original nodes and e1, · · · , ek are called the artificial
nodes. The set of arcs in Eb corresponding to (i, j) is denoted by Eb

ij .

Example 4.1. Consider an arc (i, j) with capacity uij and inflow-dependent transit time
τij(xij) as shown in 19(a). Let τij be a step function consisting of 3 pieces as shown in
Figure 19(b). Corresponding to (i, j), the bow network contains the bow construction
as shown in Figure 19(c).

For e = (i, j) ∈ E, let P e
l be a directed path from i = e0 to el consisting of regulating

arcs. Any dynamic flow f with time horizon θ in N , can be interpreted as the dynamic
flow f b in the bow network N b as follows. For 0 ≤ ξ < θ, uk−l < fij(ξ) ≤ uk−l+1,

f beb(ξ) =




fij(ξ) if eb ∈ P e

l or eb = (el, j)

0 otherwise

Example 4.2. In Figure 19, if fij(ξ) ∈ (u1, u2], then k− l = 1, i.e. l = 2 (since k = 3).

47

i juij , τij(xij)

x

τij(x)

0 u1 u2 u3 = uij

τ 1

τ 2

τ 3

(a) (b)

i e1 e2 e3 ju1, 0u2, 0u3, 0

∞, τ3

∞, τ2

∞, τ1

(c)

Figure 19: Bow construction of an arc e = (i, j)

So,
f bie1(ξ) = f be1e2(ξ) = f be2j(ξ) = fij(ξ)

and
f be2e3(ξ) = f be3j(ξ) = f be1j(ξ) = 0

Inflow preserving flow: A dynamic flow in f b in N b is called inflow preserving if

i) flow in f b is stored in the original nodes only,

ii) corresponding to each (i, j) ∈ E, f b sends flow into at most one bow arc of Eb
ij .

In this way, given a flow f with piece-wise constant, non-decreasing and left-continuous
inflow-dependent transit time functions on arcs in N which sends Q units of flow from
s to t within time θ, there exists a flow f b with constant transit times in N b which
also sends Q units of flow from s to t. In other words, every dynamic flow in N can
be regarded as a dynamic flow in N b. However, since flow is allowed to split over
the bow arcs with different transit times in a bow network, flow units entering (i, j)

simultaneously reach the node j at different times in the bow expansion. This is against
the assumption of the flow with inflow-dependent transit time. Thus, every flow over
time in N b is not equivalent to a flow over time in N . The conclusion is that dynamic

48

flow in N b is a relaxation of dynamic flow in N .

4.2.2 Approximate quickest flow with IFDTT

Consider an evacuation network N = (V,E, u, τ, s, t) with inflow dependent transit
time τ . Consider a supply Q at the source s. The dynamic flow (flow over time)
corresponding to the minimum time horizon θ that sends Q to the sink t, in such a case,
is the quickest flow with inflow-dependent transit time. Köhler, Langkau, and Skutella
(2002) have shown that the problem of finding the quickest flow with inflow-dependent
transit times is NP -hard (see also Langkau (2003)). Solving the problem in a bow
network, they design a 2-approximation algorithm to find an approximate solution.
When τ is given as a non-decreasing piece-wise constant left continuous function, the
idea of approximation is as follows.

1. Construct a bow graph N b.

2. Find the static flow xb corresponding to the temporally repeated quickest flow in
N b. Any of the algorithms discussed in Section 3.2.2 can be used to find such a
flow because, the transit time is constant in N b.

3. For each e = (i, j) ∈ E, find p such that xbepj > 0 and xbeqj = 0 for all q < p, and
set

xij = xbie1 , τij(xij) = τ b(epj)

This is done to make the flow inflow-preserving by pushing xb to the slowest bow
arc having the non-zero flow to obtain x̃b defined, precisely, as follows:

x̃bepj =




xbie1 if xbepj > 0 and xbeqj = 0 for all q < p

0 otherwise
,

x̃bep−1ep
=




xbie1 if xbeqj = 0 for q < p

0 otherwise

for all e = (i, j) ∈ E, 1 ≤ p ≤ k where k is the number of break-points of τe.

4. Find the time horizon θ that satisfies θv(x)−∑(i,j)∈E xijτij(xij) = Q and obtain
f by temporally repeating x.

If a general inflow-dependent (non-decreasing) transit time function is given, it is
approximated by a non-decreasing piece-wise left continuous function first and then
the above procedure is used.

49

4.3 Quickest Contraflow with IFDTT

In this section, we discuss the quickest flow with inflow-dependent transit times with a
possibility of arc reversals. Given two arcs (i, j) and (j, i) between two nodes i and j, if
we reverse (j, i), the capacity of the arc (i, j) is increased by the capacity of the arc (j, i).
The flow-dependent transit time functions, generally, depend on the capacity of the arc
as well (e.g. BPR function (21), Davidson’s function (22)). If the capacity of an arc is
increased, more flow can be sent along the arc and the units of flow take less time to
travel the same arc. In a contraflow configuration, the auxiliary network is constructed
by adding the capacities of the opposite arcs. Therefore the same amount of flow may
take less time to reach from one end of the arc to the other end in comparison to the
one without contraflow configuration. So, we assume that the transit time τij on an arc
(i, j) is a function of the inflow rate xij , the free flow transit time τ 0ij , and the capacity
uij , along with other parameters, e.g. α, β in BPR equation, J in Davidson’s equation,
which are supposed to be fixed for arcs between i, j. For the contraflow configuration,
we assume that the free flow transit time in the two opposite arcs and the arc with which
they are replaced with, in the contraflow configuration, are equal. The value of the
transit time function on the arc in the auxiliary network is the result of the free flow
transit time and the enhanced capacity. Our approach is to find the quickest flow in the
form of a temporally repeated static flow x. Let

τij(xij) = g(xij, τ
0
ij, uij).

Then, for some xij = ζ , assuming that the free flow transit times on the opposite arcs
(i, j) and (j, i) are equal, we have,

τij(ζ) = g(ζ, τ 0ij, uij),

τji(ζ) = g(ζ, τ 0ij, uji),

and on the auxiliary network

τ ′ij(ζ) = g(ζ, τ 0ij, uij + uji).

We present Algorithm 7 to find the quickest contraflow with inflow dependent transit
times in which the transit time is given as a non-negative, non-decreasing,
left-continuous, and piece-wise constant function.

Theorem 4.1. Given a network N = (V,E, u, τ, s, t) with non-decreasing,

left-continuous, piece-wise constant inflow-dependent transit time function. If θ∗ is the

50

Algorithm 7: Quickest contraflow algorithm with inflow dependent transit times
Input : Evacuation network N = (V,E, u, τ, s, t), with inflow-dependent

non-negative, non-decreasing, left continuous, and piece-wise constant
transit time τ , and supply Q at s

Output: Approximate quickest contraflow
1 Construct the auxiliary network N ′ = (V,E ′, u′, τ ′, s, t) (τ ′ is defined as per the

idea given in the beginning of Section 4.3).
2 Construct the bow network N ′b corresponding to the auxiliary network N ′(See

Section 4.2.1).
3 Find the static flow xb corresponding to the temporally repeated quickest flow in

N ′b.
4 Pushing xb to the slowest bow arcs in N ′b, find the corresponding static flow x in

N ′ and the time horizon θ∗ (See Step 3 of the procedure given in Section 4.2.2).
5 Decompose x obtained in Step 4 into chain and cycle flows. Update x by removing

cycle flows.
6 Reverse (i, j) ∈ E iff (j, i) ∈ E and xji > uji or (j, i) /∈ E and xji > 0.

Approximate quickest flow in reconfigured N = temporally repeated flow induced
by x with the time horizon θ∗.

quickest time to transship Q units of flow from s to t allowing arc reversals, then a

temporally repeated flow with inflow-dependent transit times, allowing arc reversals in

N , can be computed in strongly polynomial time, that sends Q units of flow from s to t

within a time horizon of at most 2θ∗.

Proof. Using Algorithm 7, one can construct such a flow by computing a quickest flow
in the bow network N ′b of the auxiliary network N ′ and then pushing the flow to the
slowest arcs. Since the transit time of each arc in N ′b is constant, one can apply any
strongly polynomial time algorithm to calculate the quickest flow. The best-known
strongly polynomial time algorithm, so far, is the cancel-and-tighten algorithm by Saho
and Shigeno (2017) which computes the static flow xb in N ′b such that

θ∗b =
Q+

∑
(i,j)∈E′b τijx

b
ij

v(xb)

where θ∗b is the quickest time to send Q units of flow from s to t in N ′b. If θ∗ is the
quickest time in the original network, θ∗ ≥ θ∗b, since N ′b is a relaxation of N ′.

Let x̃b be the static flow obtained by pushing xb to the slowest bow arc as described in
Step 3 of the procedure given in Section 4.3. So,

θ∗b ≤
Q+

∑
(i,j)∈E′b τijx̃

b
ij

v(x̃b)
.

But the length of any path P ∈ P̃ , where P̃ is the collection of paths in the path

51

decomposition of x̃b, cannot exceed θ∗b. So, from the path decomposition of x̃b, we can
obtain a temporally repeated flow of f̃ b in N ′b with any time horizon θ ≥ θ∗b. Choose θ
so that

vθ(f̃
b) = θv(x̃b)−

∑

(i,j)∈Eb
τijx̃

b
ij = Q

Now,

v2θ∗b(f̃
b) = 2θ∗bv(x̃b)−

∑

(i,j)∈Eb
τijx̃

b
ij

= 2θ∗bv(x̃b)−
∑

P∈P̃

τP x̃
b
P

= θ∗bv(x̃b) +
∑

P∈P̃

(θ∗b − τP)x̃bP

≥ θ∗bv(x̃b)

= θ∗bv(xb) (∵ v(x̃b) = v(xb))

≥ Q.

Since vθ is an increasing function, θ ≤ 2θ∗b. As mentioned in the beginning of the proof
θ∗b ≤ θ∗. Hence, θ ≤ 2θ∗.

The removal of the cycle flows in Step 5 of Algorithm 7 can be performed in O(mn)

time and does not change the value of the dynamic flow and Step 6 can be performed in
O(m) time. This leads to the assertion of the theorem.

So far, we have considered step functions as the inflow-dependent travel time
functions. However, inflow-dependent travel time functions are, generally, continuous,
non-negative, and increasing functions. To solve the problems involving them using
bow networks, one has to approximate them by step functions first. We can find the
approximate step functions to any desired accuracy by using the following idea given
in Langkau (2003).

Approximating a general transit time function by a step function: For δ, η > 0

and a non-negative, non-decreasing and left continuous function τij : [0, uij] → R≥0
with τij(0) = 0, a step function τ st

ij can be constructed as follows.

1. Choose α = dlog1+η(τij(uij)/δ)e.

2. For k ∈ {1, · · · , α}, define ukij = max{x : τij(x) ≤ (1 + η)k−1δ}.

3. Define τ st
ij(x) = 0 for x ∈ (0, u1ij], and τ st

ij(x) = τ(ukij) for x ∈ (ukij, u
k+1
ij], k ∈

{1, · · · , α}.

If τij(0) 6= 0, one can construct the step function τ̄ st
ij corresponding to a function τ̄ij =

52

τij(x) − τij(0), x ∈ [0, uij], and then τ st
ij = τ̄ st

ij + τij(0) is the required step function
approximation of τij .

Clearly, the number of breakpoints of τ st
ij is bounded by dlog1+η(τij(uij)/δ)e+ 1.

Replacing a general inflow-dependent travel time function by the step functions as
mentioned above, one can construct a bow network and solve the quickest flow
problem in it. Using this idea, Langkau (2003) construct a (2 + ε)-approximation
algorithm to solve the quickest flow problem with inflow-dependent travel times given
as general (nonnegative, nondecreasing) functions. Applying the idea in the auxiliary
network constructed as described in the beginning of this section leads to:

Theorem 4.2. There exists a (2 + ε)-approximation algorithm with strongly polynomial

running time for the quickest contraflow problem with inflow-dependent (nonnegative,

nondecreasing, left continuous) transit times.

Moreover, the idea of solving the quickest partial contraflow problem with
inflow-dependent transit times is also similar, except that the arcs are reversed
proportional to the necessary capacity (See Algorithm 2 steps 4, 5). Hence, we have:

Corollary 4.3. There exists a strongly polynomial (2+ε)-algorithm to solve the quickest

partial contraflow problem with inflow-dependent transit times (given as nonnegative,

nondecreasing, left continuous functions).

4.4 Dynamic Flow with LDTT

The total amount of flow on the arc at any time is known as the load of the arc. In this
section, we discuss the dynamic flow model with load-dependent transit times (LDTT)
. The underlying assumptions of this model are:

i) At each point of time, the entire flow on an arc travels with uniform speed.

ii) The speed depends only on the current load of the arc.

Suppose that the travel time function τij depends on the static flow rate xij , then the
load yij of the arc (i, j) is given by

yij = xijτij(xij). (24)

Köhler and Skutella (2005) show that if τij is monotonically increasing and convex,
then xij is strictly increasing and concave function of the load yij and express τij as a
function of load yij as:

τij(xij) = τ̂ij(yij) (25)

53

and present 2-approximation algorithms to solve the quickest flow problem with load
dependent transit times realizing its NP-hardness. One of their algorithms solve
minimum cost flow problem with convex costs iteratively, and the other solves cost
constrained maximum static flow problem, to construct the corresponding dynamic
flow. Before presenting the idea of the algorithm, we describe the underlying problems.

4.4.1 Minimum cost (static) flow with convex costs

Given a directed network N = (V,E) the minimum cost flow problem with convex cost
is:

min
∑

(i,j)∈E
cij(xij)xij (26)

subject to

∑

j∈V +
i

xij −
∑

j∈V −i

xji = bi ∀i ∈ V (26a)

0 ≤ xij ≤ uij ∀(i, j) ∈ E (26b)

xij ∈ Z ∀(i, j) ∈ E (26c)

where bi denotes the supply associated with i ∈ V , uij , the (upper) capacity of
(i, j) ∈ E, xij the static flow associated with (i, j) ∈ E, and cij(xij) is the convex cost
depending on the flow xij . Without loss of generality, the following assumptions are
also made:

i) bi ∈ Z ∀i ∈ V .

ii)
∑

i∈V bi = 0.

iii) cij(xij) = 0 whenever xij = 0.

If cij(xij) is piecewise linear convex, one can replace arc (i, j) by parallel arcs
corresponding to each piece and cost by the slope of the corresponding piece, to
express the minimum cost flow problem with convex costs as an ordinary minimum
cost flow problem with linear costs. Allowing each integer point to be a break-point of
the function and linearizing the function between these breakpoints, under the
integrality assumption, the problem related to any general convex cost function can be
dealt with.

Taking an arc corresponding to each piece of the piece-wise linear convex cost
function makes the network significantly large. This can be overcome by constructing
the residual network Nx corresponding to the static flow x in the following way. If
there is an arc (i, j) with xij > uij , there is an arc in Nx from i to j with cost
cij(xij + 1) − cij(xij), and if there is an arc (i, j) with xij > 0, there is an arc in Nx

54

from j to i with cost cij(xij − 1) − cij(xij). The residual capacity of each (i, j) in Nx

is set to the maximum flow change for which the unit flow cost remains equal to
cij(xij + 1)− cij(xij).

In this way, one can apply cycle-canceling algorithm or successive shortest path
algorithm both of which run in pseudo-polynomial time.

As in the case of linear costs, one can obtain a polynomial time algorithm by applying
capacity scaling approach in the successive shortest path algorithm. A drawback of
the successive shortest path algorithm is that it might augment just 1 unit of flow in
each flow augmentation so that the number of augmentations is significantly large. The
capacity scaling algorithm overcomes this by sending sufficiently large flow in each
augmentation to make the number of augmentations is sufficiently small. To apply the
algorithm, one needs to construct a ∆-residual network Nx(∆) as follows:

i) For each (i, j) ∈ E with xij + ∆ ≤ uij , Nx(∆) contains an arc from i to j with a
residual capacity ∆ and cost [cij(xij + ∆)− cij(xij)]/∆.

ii) For each (i, j) ∈ E with xij ≥ ∆, Nx(∆)contains an arc from j to i with a residual
capacity ∆ and cost [cij(xij −∆)− cij(xij)]/∆.

The capacity scaling algorithm for minimum cost flow with convex costs is summarized
in the following steps (Ahuja et al., 1993).

1. Initialize ∆ = 2blogUc, x = 0, π = 0 where U = max{uij : (i, j) ∈ E}.

2. If any of (i, j) or (j, i) ∈ Nx(∆) violates the reduced cost optimality condition
(see Section 3.3.2), increase or decrease the flow xij by ∆ units so that both the
arcs satisfy their optimality conditions.

3. S(∆) = set of nodes with excesses of at least ∆, T (∆) = set of nodes with
deficits of at least ∆

4. Unless S(∆) = ∅ or T (∆) = ∅:

(a) Choose k ∈ S(∆), replace πi by πi − di for each i ∈ V , where di is the
length of a shortest k–i path with respect to the reduced costs.

(b) Identify a shortest k–l (directed) path in Nx(∆) with k ∈ S(∆), l ∈ T (∆)

and send ∆ units of flow from k to l

(c) Update x, S(∆), T (∆), Nx(∆).

5. Replace ∆ by ∆/2 .

6. Repeat 2 – 5 unless ∆ < 1.

55

4.4.2 Cost constrained maximum static flow

The linear cost constrained maximum static flow with a budgetD (Ahuja & Orlin, 1995)
is:

max v (27)

subject to

∑

j∈V +
i

xij −
∑

j∈V −i

xji =





v if i = s

0 if i ∈ V \ {s, t}
−v if i = t

(27a)

0 ≤ xij ≤ uij ∀(i, j) ∈ E (27b)
∑

(i,j)∈E
xijcij ≤ D (27c)

If cij depends on xij , then the constraint (27c) looks like

∑

(i,j)∈E
xijcij(xij) ≤ D (27d)

If cij is convex, the corresponding problem is the convex cost constrained maximum
static flow problem. Presenting a successive shortest path algorithm (which is a
modified version of the successive shortest path algorithm for the minimum cost flow
problem with linear costs, Ahuja and Orlin (1995) construct the corresponding
capacity scaling algorithm, which can be applied to the convex cost case using the
∆-residual network described in Section 4.4.1. The algorithm runs in a polynomial
time.

4.4.3 Quickest flow with LDTT

Given a network N = (V,E, u, τ, s, t) with load dependent transit times τ and a supply
Q at s, the dynamic flow of valueQwith minimum time horizon θ is known as a quickest
flow with load-dependent transit times.

The first algorithm to solve the problem is based on the fact that a temporally repeated
dynamic flowX with load-dependent transit times within time horizon θ can be obtained
by solving:

min −vθ(X) (28)

56

subject to

vθ(X) = θ


∑

j∈V −t

xjt −
∑

j∈V +
t

xtj


−

∑

(i,j)∈E
xijτij(xij) (28a)

∑

j∈V +
i

xij −
∑

j∈V −i

xji = 0 ∀i ∈ V \ {s, t} (28b)

0 ≤ xij ≤ uij ∀(i, j) ∈ E. (28c)

As per our assumption each τij is increasing and convex. So, problem (28) is a minimum
cost flow problem with convex costs and can be solved in polynomial time by using the
capacity scaling algorithm discussed in Section 4.4.1. The value of such X is vθ(X).
However, such a temporally repeated solution may not be a maximum dynamic flow
with load-dependent transit times. But for a supplyQ at s, if θ∗ is the quickest time with
load-dependent transit times, then if θ = 2θ∗, vθ(X) ≥ Q (Köhler & Skutella, 2005).
Embedding this approach into a binary search framework for θ, one gets a (2 + ε)-
approximation for the quickest flow with load-dependent transit times.

The second (2 + ε)-algorithm solves a cost constrained maximum static flow problem
and temporally repeats the flow thus obtained. The procedure is summarized in the
following steps.

1. Solve the problem

max v

subject to

∑

j∈V +
i

xij −
∑

j∈V −i

xji =





v if i = s

0 if i ∈ V \ {s, t}
−v if i = t

0 ≤ xij ≤ uij ∀(i, j) ∈ E∑

(i,j)∈E
xijτij(xij) ≤ Q

to find the static flow x.

2. Fix the travel time of each (i, j) ∈ E as τij(xij), using xij obtained in Step 1.

3. Decompose the flow into directed s–t paths P and set τP =
∑

(i,j)∈P τij(xij).

57

4. Find minimum time horizon θ such that

∑

P∈P:τP≤θ
xP (θ − τP) = Q.

4.5 Quickest Contraflow with LDTT

The problem of finding a quickest flow with load-dependent transit times allowing arc
reversals at time zero is known as the quickest contraflow with load-dependent transit
times. Using the idea of the auxiliary network construction used to solve the quickest
contraflow problem with inflow-dependent transit times, and implementing the
algorithms to solve quickest flow problems with load-dependent transit times discussed
above in the resulting network, we can find an approximate solution to the quickest
contraflow problem with load-dependent transit times. The procedure is given in
Algorithm 8.

Algorithm 8: Approximate solution to the quickest contraflow problem with LDTT
Input : N = (V,E, u, τ, s, t) with a supply Q at s and τ as a convex function of

the static flow rate x

Output: Approximate quickest contraflow with load-dependent transit times

1 Construct the auxiliary network N ′ = (V,E ′, u′, τ ′, s, t) (τ ′ is defined as per the

idea given in the beginning of Section 4.3).

2 Find the static flow x and time horizon θ∗ corresponding to the approximate

quickest flow using any of the algorithm described in Section 4.4.3.

3 Decompose x obtained in Step 2 into chain and cycle flows. Update x by removing

the cycle flows.

4 Reverse (i, j) ∈ E iff (j, i) ∈ E and xji > uji or (j, i) /∈ E and xji > 0.

Approximate quickest flow in reconfigured N = temporally repeated flow induced

by x with the time horizon θ∗.

Lemma 4.4. Algorithm 8 runs in polynomial time.

Proof. The running time of the algorithm is bounded by the running time of Step 2, in
which either a minimum cost flow problem with convex costs (Ahuja et al., 1993) or a
convex constrained maximum flow problem (Ahuja & Orlin, 1995) is solved. Both the
algorithms run in O((m logU)S) time, where U = max{uij : (i, j) ∈ E} and S is the
running time a shortest path problem with non-negative costs. Hence Algorithm 8 runs
in polynomial time.

58

Each of the algorithm presented in Section 4.4.3 is a (2+ε)-algorithm. Hence the bound
obtained by Algorithm 8 is not worse than that.

Theorem 4.5. Given transit time on each arc as a convex function of the static flow

rate, there exists a (2+ε)-algorithm to solve the quickest contraflow problem with load-

dependent transit times.

Proof. It suffices to prove that Algorithm 8 finds a (2 + ε)-approximate solution to the
problem. If θ is the quickest time to send Q units of from s to t in the auxiliary network,
then θ∗ is obtained by a (2 + ε)-algorithm in Step 2. So,

θ∗ ≤ (2 + ε)θ, ε > 0

Since the removal of cyle flows in Step 3 does not change the value of quickest time, θ∗

does not change in this step. Now the quickest flow in the auxiliary network is equivalent
to the quickest flow with arc reversals in the original network. Hence the result.

The modification of the algorithm 8 to the partial contraflow case does not deteriorate
the value of the quickest time and the worst-case running time. Hence,

Corollary 4.6. Given transit time on each arc as a convex function of the static flow

rate, there exists a (2 + ε)-algorithm to solve the quickest partial contraflow problem

with load-dependent transit times.

4.6 Case Illustration

To illustrate some computational results, we consider Kathmandu road network
containing major road sections (Figure 20) as an evacuation network N with n = 44

and m = 124. The transit time (which we consider as the free flow transit time) in each
road segment is as provided by Google Maps, and the integer capacity is assumed to be
between 1 to 4 flow units per second according to the width of the segment. Related
data are given in Appendix A.2

For the purpose of calculating inflow-dependent transit time on each arc (i, j), we
consider the BPR function (with α = 0.15, β = 4) and Davidson’s function (with
J = 0.1) as flow-dependent transit time functions and present analysis corresponding
to each of them in parallel.

Given the number of flow units Q to be evacuated, to find the quickest flow allowing
(partial) arc reversal, we construct the auxiliary network of the evacuation network.
To solve the problem with the transit time depending on the inflow on each arc, we
construct the bow graph of the auxiliary network as described in Section 4.2.1.

59

Figure 20: Kathmandu road network.

60

0 1 2 3 4 5
xij

110

120

130

140

150

160

170

180

190

200

ij
(x
ij
)

(a) BPR function

0 1 2 3 4 5
xij

110

120

130

140

150

160

170

180

190

200

ij
(x
ij
)

(b) Davidson’s function

Figure 21: Flow-dependent transit time functions and corresponding step functions
with τ 0ij = 120 seconds and uij = 5 units per second.

To construct the bow graph, measuring xij, uij in flow units per second and t0ij in
seconds, we consider the transit time function as the step function

τ st
ij(xij) = bτij(dxije − 1)e , 0 < xij ≤ uij (29)

where dxije represents the least integer greater than or equal to xij and bτij(xij)e is
the value of τij(xij) rounded to the nearest integer. As an example, the step function
representation of a function on an arc with the free flow transit time 120 seconds and
capacity 5 units of flow per second is given in Figure 21.

We find the static flow corresponding to the quickest flow in the bow graph, and we
push the flow to the slowest arc (see Section 4.2.2) to find the approximate dynamic
flow corresponding to the quickest flow. To compare the quickest time θ∗ in the bow
graph and its approximate value θapprox, after pushing the flow to the slowest blow-arcs,
we consider Q between 1 to 10000 with a gap of 500. The results are shown in Figure
23. We find the maximum value of θapprox

θ∗ to be 1.045 in case of BPR function and 1.098

in case of Davidson’s function.

We compare the quickest times before and after allowing partial arc reversal in Figure
24. For Q as small as 500, the quickest time before allowing (partial) arc reversals using
the BPR function is approximately 29.5 minutes; whereas, after allowing arc reversals,
it is 27.6 minutes (i.e., approximately 93.5% of the time before allowing arc reversal).
With the increase in the value of Q, the gap increases. For Q as large as 100000, the
value after allowing arc reversal is 141.7 minutes, 57.6% of the value before allowing
arc reversals which is 246.1 minutes. The quickest times for some values of Q before
and after allowing arc reversal are listed in Table 3.

61

Table 3: Comparison of the quickest time before and after allowing arc reversal

BPR function Davidson’s function
Quickest time Quickest time

Q0 Before reversal After reversal Before reversal After reversal
500 29.5 27.6 30.8 28.6

1000 33.6 29.7 35 30.8
10000 58.6 47.4 60.9 49
20000 79.5 58.4 81.8 60.5
50000 142 89.6 144.3 91.7

100000 246.1 141.7 248.4 143.8

Table 4: Number of arcs reversed

Number of arcs reversed
Q0 BPR function Davidson’s function
500 8 5

1000 8 10
10,000 20 21
20,000 29 29
50,000 29 29

100,000 29 29

The number of arcs reversed (partially) for some values of Q are given in Table 4. The
observations show that increasing Q beyond a sufficiently large value does not increase
the number of arcs reversed beyond some fixed value (e.g., 29 in this case).

The links (arcs) used for the quickest flow corresponding to Q = 100000 allowing
partial arc reversal (using BPR function and Davidson’s function) are depicted in Figure
22, with appropriate direction of the flow. The road segments which need to be reversed
fully are (1, Source), (12, Source), (18, Source), (27, Source), (2, 1), (13, 12), (14, 13).
(15, 14). (5, 4), (7, 6), (Sink, 8), (17, 16), (16, 15), (Sink, 7), (Sink, 40). The segments
which are to be reversed partially are listed in Table 5.

We also compare the quickest times with inflow-dependent transit time on arcs against
the quickest times with constant transit time on arcs. For the purpose, we consider three
types of constant transit time τij for each (i, j) ∈ E:

i) τij = τ st
ij(uij), the upper bound on the step function represent of τij(xij).

ii) τij = τ̄ st
ij(xij) =

∑uij
k=1 τ

st
ij(k)

uij
, the average of the step function values.

iii) τij = τ 0ij the free flow transit time.

It is observed, in the network considered, that the quickest times corresponding to the
constant time on each arc as the average of the corresponding step function are very
close to the quickest time with inflow-dependent transit time (Figure 25).

62

Figure 22: Direction of the approximate quickest flow with arc reversal, Q = 100000

63

Table 5: Partially reversed segments

Segment Reversed capacity Capacity

(3, 27) 1 2
(38, 2) 1 3

(39, 38) 1 3
(40, 39) 1 3
(6, 5) 1 3
(4, 32) 1 2

(32, 31) 1 2
(8, 7) 1 3

(23, 24) 2 4
(24, 25) 2 4
(26, 21) 2 4
(25, 26) 2 4
(31, 30) 1 2

(19, 18) a 1 2
(7, 17) b 1 2

a for Davidson’s function only. b for BPR function only.

0 2000 4000 6000 8000 10000
Given units of flow Q

25

30

35

40

45

50

Q
ui

ck
es

t
ti
m

e
(m

in
ut

es
)

Approximate inflow dependent
Inflow dependent

(a) Using BPR function

0 2000 4000 6000 8000 10000
Given units of flow Q

25

30

35

40

45

50

Q
ui

ck
es

t
ti
m

e
(m

in
ut

es
)

Approximate inflow dependent
Inflow dependent

(b) Using Davidson’s function

Figure 23: Quickest time in bow graph and its approximation

64

0 2000 4000 6000 8000 10000
Given units of flow Q

25

30

35

40

45

50

55

60

Q
ui

ck
es

t
ti
m

e
(m

in
ut

es
)

Without allowing arc reversal
Allowing arc reversal

(a) Using BPR function

0 2000 4000 6000 8000 10000
Given units of flow Q

25

30

35

40

45

50

55

60

Q
ui

ck
es

t
ti
m

e
(m

in
ut

es
)

Without allowing arc reversal
Allowing arc reversal

(b) Using Davidson’s function

Figure 24: Quickest times before and after allowing partial arc reversal

0 2000 4000 6000 8000 10000
Given units of flow Q

25

30

35

40

45

Q
ui

ck
es

t
ti
m

e
(m

in
ut

es
)

ij= st
ij (uij)

ij= st
ij (xij)

ij= st
ij (xij)

ij= 0
ij

(a) Using BPR function

0 2000 4000 6000 8000 10000
Given units of flow Q

25

30

35

40

45

50

Q
ui

ck
es

t
ti
m

e
(m

in
ut

es
)

ij= st
ij (uij)

ij= st
ij (xij)

ij= st
ij (xij)

ij= 0
ij

(b) Using Davidson’s function

Figure 25: Comparison of quickest times (inflow-dependent transit time vs. constant
transit time on arcs).

65

CHAPTER 5

FLOW LOCATION MODELS

5.1 Introduction

If a facility is placed on an arc of a network, it reduces the capacity of the corresponding
arc affecting the decisions related to flow. Reduction of the capacity of an arc may result
in a reduction in the flow value and an increase in the quickest time for a given amount
of flow at a source to reach a sink. Combining location decision problems with network
flow problems, Hamacher et al. (2013) model such problems so that there is the least
reduction in the maximum flow value (in static, and dynamic cases) because of the
placement of the facility. They introduce such problems as network FlowLoc problems,
and present efficient algorithms to solve single-facility maximum FlowLoc problems
efficiently. Proving that the multi-facility case is NP-hard, they propose polynomial-
time heuristics which work quite well in practice.

In this chapter, we extend the ideas to the quickest flow problem to formulate quickest
FlowLoc problems (Nath, Pyakurel, & Dhamala, 2018). Mentioning the solution
procedures, we realize that the single-facility cases can be solved in strongly
polynomial time. We show that the multi-facility case is NP-hard (as in the case of
maximum FlowLoc problems) and present efficient heuristics and test their
performance taking Kathmandu road network as the evacuation network (Nath,
Pyakurel, Dhamala, & Dempe, 2021).

Similarly, We formulate the problem of choosing a sink out of a given set of possible
sinks, so as to maximize the flow or minimize the time horizon of the dynamic flow
to the sink chosen. We prove that such problems can be solved in strongly polynomial
time using a simple search technique.

66

s

a

b

t

4,1
3,1

4,3
3,3

3,4
3,4

3,1
1,1

1,1 1,1

Figure 26: A dummy evacuation network

5.2 Maximum Static/Dynamic FlowLoc

Assigning a facility on any arc of the evacuation network reduces its capacity, and hence
there may be a decrease in the maximum static/dynamic flow. Our objective is to find
an assignment that minimizes the difference between the maximum static or dynamic
flow before and after the assignment.

Definition 5.1 (Maximum static/dynamic FlowLoc). Given a network
N = (V,E, u, τ, s, t), let

(i) L ⊆ E be the set of all feasible locations,

(ii) ν : L→ N, the number of facilities that can be placed on the possible locations

(iii) F be the set of facilities such that |F | ≤∑(i,j)∈L ν(i, j),

(iv) σ : F → N such that σ(f) ≤ min{uij : (i, j) ∈ L},∀f ∈ F , where σ(f) is the
size of the facility f ∈ F , and

(v) Γ be the collection of allocations γ : F → L of facilities in F to arcs in L such
that|γ−1(i, j)| ≤ ν(i, j) ∀(i, j) ∈ L.

Suppose that vγ is the value of the maximum static/dynamic s–t flow corresponding to
the allocation γ with redefined capacity

uγij =

{
uij −max{σ(f) : f ∈ F and γ(f) = (i, j)} if (i, j) ∈ γ(F)

uij otherwise
(30)

for each (i, j) ∈ E (see Figure 27). The maximum static/dynamic FlowLoc problem
asks for an allocation γ∗ ∈ Γ, such that vγ∗ ≥ vγ, ∀γ ∈ Γ.

Example 5.1. Consider the network depicted in Figure 26. Let there be two facilities
f1, f2 of sizes 3, and 1 respectively. If they are to be placed in one or both of the arcs
(s, a), and (b, s) such that 2 facilities can be placed in (s, a) and only one facility can

67

4
f1 f2

3 2

uγij = 1

i j

Figure 27: Definition of uγij

be placed in (b, s). Here, L = {(s, a), (b, s)}, ν(s, a) = 2, ν(b, s) = 1, F = {f1, f2},
σ(f1) = 3, σ(f2) = 1. The collection of all possible allocations is Γ = {γ1, γ2, γ3}:

γ1(f1) = (s, a), γ1(f2) = (s, a),

γ2(f1) = (s, a), γ2(f2) = (b, s),

γ3(f1) = (b, s), γ3(f2) = (s, a).

For the allocation γ1, the reduced capacity of (s, a), uγ1sa = 4 − max{3, 1} = 1, the
capacities of the remaining arcs remain unaltered. The maximum static flow value in
this case is vγ1 = 4. Similarly, vγ2 = 4 and vγ3 = 6. Hence γ∗ = γ3. That is, the facility
f1 of size 3 is to be placed in (b, s) and f2 of size 1 in (s, a).

5.2.1 Single facility maximum static/dynamic FlowLoc problem

The FlowLoc Problem corresponding to |F | = 1 is referred to as a single facility
FlowLoc problem. Such a problem can be solved by choosing an arc (i, j) ∈ L,
reducing its capacity by the size of the facility and solving the corresponding
static/dynamic maximum flow problem. The arc which gives the highest value of the
maximum flow is the optimal location. We summarize the procedure (Hamacher et al.,
2013) in Algorithm 9.

Some modifications can be made to improve the running time of such an algorithm.
One idea is to perform the flow calculation at the beginning. Then, either record the
remaining capacity r(i, j) for each (i, j) ∈ L and if there exists (i∗, j∗) ∈ L such that
σ(f) ≤ r(i∗, j∗), then γ(f) = (i∗, j∗), or iterate over elements in L and reroute the
flow if possible to calculate the new flow value. It is easy to see that the single-facility
maximum FlowLoc problem can be solved in O(|L|M) where M is the complexity of
the maximum static or dynamic flow problem. A maximum static flow problem can be
solved in strongly polynomial time (see the description before Theorem 3.5). A
maximum dynamic flow problem can also be solved in strongly polynomial time by
converting it to a minimum-cost circulation problem (see the description before
Theorem 3.8). So, the maximum static FlowLoc problem and the maximum dynamic
FlowLoc problem can be solved in strongly polynomial time because |L| ≤ n.

68

Algorithm 9: Single-facility maximum FlowLoc (Hamacher et al., 2013)
Input : Directed network N = (V,E, u, τ, s, t) with F = {f}, L ⊆ E

Output: Optimal allocation γ∗ of f
1 curr_max = −1

2 for (i, j) ∈ L do
3 uij = uij − σ(f)

4 max = value of the maximum static/dynamic flow
5 if max > curr_max then
6 curr_max = max
7 γ∗(f) = (i, j)

8 end
9 uij = uij + σ(f)

10 end
11 return γ∗

Theorem 5.1. The single-facility maximum (static/dynamic) FlowLoc problem can be

solved in strongly polynomial time.

5.2.2 Multi-facility maximum FlowLoc problems

A FlowLoc problem corresponding to |F | > 1 is referred to as a multi-facility FlowLoc
problem. The idea of Algorithm 9 can be carried over to this case also. However,
such an algorithm iterates over

(|L|
|F |
)

arcs, even for ν(i, j) = 1,∀(i, j) ∈ L. It is a
polynomial time algorithm if |F | is fixed, which works good only for small values of
|F | or |L| − |F |. However, if |F | is the part of the input, the problem is NP -hard.
Showing that the decision problem “Does there exist an allocation function γ : F → L

such that the maximum static flow value in the network with modified arc capacity uγij
is greater than or equal to k ∈ Z?” is NP -complete, Hamacher et al. (2013) establish
the following.

Theorem 5.2 (Hamacher et al. (2013)). There is no polynomial time α-approximation

algorithm to solve a multi-facility maximum static FlowLoc problem with a finite

constant α, unless P = NP .

However, if each of the arcs in L is capable of hosting all the facilities, such a problem
can be solved with the complexity of a single-facility FlowLoc problem. Since the
facilities in F can be allocated to a single arc in L, we have the following remark.

Remark 5.1. If |F | ≤ ν(i, j),∀(i, j) ∈ L, and f ∗ = arg max{σ(f) : f ∈ F}, then
γ(f) = γ(f ∗),∀f ∈ F . Such a problem can be solved by solving the single facility
FlowLoc problem with F = {f ∗}.

69

Table 6: Maximum dynamic FlowLoc decisions (Example 5.2)

θ vγ1 vγ2 γ∗

4 0 1 γ2
5 4 5 γ2
6 11 11 γ1 or γ2
7 18 17 γ1

Table 7: Quickest FlowLoc decisions (Example 5.2)

q θγ1 θγ2 γ∗

1 4.25 4.00 γ2
5 5.14 5.00 γ2

11 6.00 6.00 γ2 or γ1
21 7.43 7.67 γ1

5.3 The Quickest FlowLoc Problem

Definition 5.2 (Quickest FlowLoc). Given a network N = (V,E, u, τ, s, t), and a
supply of Q flow units at the source s, with other considerations as in Definition 5.1,
suppose that θγ is the quickest time to transship the supply the Q units from s to t,
corresponding to the allocation γ with redefined capacity uγe as in (30). The quickest
FlowLoc problem asks for an allocation γ∗ ∈ Γ, such that θγ∗ ≤ θγ, ∀γ ∈ Γ.

Example 5.2. Consider the evacuation network depicted in Figure 26 again. Let F =

{f}, σ(f) = 1, and L = {(a, b), (a, t)}. There are two possible allocations, say, γ1 and
γ2 such that γ1(f) = (a, b), γ2(f) = (a, t). Table 6 shows that the maximum dynamic
FlowLoc decisions depend on the time horizon θ. In the continuous time setting, when
θ = 4, if no facility is placed, a flow of value 1 can reach the sink using only the path
s–a–b–t. If the facility is placed on the arc (a, b), this path gets obstructed and no flow
can reach the sink, so (a, t) is the optimal location in this case. When θ = 5, if the
facility is placed on (a, b), the flow of value 4 can reach the sink via path s–a–t, while
the flow of value 5 can reach the sink if we place the facility on (a, t) using the path
s–a–b–t with flow value 1 twice and path s–a–t with flow value 3 once. Table 7 shows
that the quickest FlowLoc decisions depend on the flow valueQ to be transferred from s

to t. As expected, the maximum dynamic FlowLoc and the quickest FlowLoc decisions
are related with each other.

5.3.1 Single facility quickest FlowLoc problem

As in the case of the single-facility maximum FlowLoc problems, the solution of a
single facility quickest FlowLoc problem can be obtained efficiently. We present two
algorithms (Algorithm 10 and Algorithm 11) to solve the problem.

70

Algorithm 10 iterates over all possible arcs (i, j) ∈ L, determines the quickest time if
(i, j) hosts the facility and finds the optimal location for the single facility by comparing
all those quickest times. It also outputs the quickest flow, and the quickest time after the
optimal allocation.

Algorithm 10: Single facility quickest FlowLoc I
Input : Directed network N = (V,E, u, τ, s, t), a set of feasible locations

L ⊆ E,F = {f}, supply Q at the source s, size σ(f) of the facility f
Output: Optimal allocation γ∗ of f , corresponding static flow x∗, the

corresponding quickest time θ∗

1 θ∗ =∞
2 for (i, j) ∈ L do
3 uij = uij − σ(f)

4 quickest = the quickest time in the modified network
5 if quickest < θ∗ then
6 θ∗ = quickest
7 γ∗(f) = (i, j)

8 x∗ = static flow corresponding to the quickest flow

9 end
10 uij = uij + σ(f)

11 end
12 return γ∗, x∗, θ∗

Algorithm 10 performs the quickest flow computations |L| times. If we perform a single
quickest flow computation before going through Algorithm 10, and find that an arc in L
has residual capacity enough to accommodate the given facility, we can get rid of |L|−1

quickest flow computations in Algorithm 10. Algorithm 11 addresses this issue.

Theorem 5.3. The single facility quickest FlowLoc problem can be solved in strongly

polynomial time.

Proof. In the worst case, Algorithm 10 or Algorithm 11 iterates the quickest flow
computations |L| times. The cancel-and-tighten algorithm by Saho and Shigeno
(2017), the quickest flow problem can be solved in O(nm2 log2 n) time. Hence, the
single facility quickest FlowLoc problem can be solved in O(|L|nm2 log2 n) time. As
|L| < m, the result follows.

Example 5.3. To illustrate the working of Algorithm 10 and Algorithm 11, we consider
the network depicted in Figure 26 with L = {(s, a), (s, b), (a, b)}, σ(f) = 1, Q = 11.
In Algorithm 10, we take θ∗ =∞ initially.

71

Algorithm 11: Single facility quickest FlowLoc II
Input : Directed network N = (V,E, u, τ, s, t), a set of feasible locations

L ⊆ E,F = {f}, supply Q at the source s, size σ(f) of the facility f
Output: Optimal allocation γ∗ of f , corresponding static flow x∗, the

corresponding quickest time θ∗

1 θ = the corresponding quickest time (i∗, j∗) = arg max{uij − xij : (i, j) ∈ L}
2 if ui∗j∗ − xi∗j∗ ≥ σ(f) then
3 γ∗(f) = (i∗, j∗)

4 x∗ = x, θ∗ = θ

5 return γ∗, x∗, θ∗

6 else
7 Algorithm 10
8 end

First Iteration:

(i, j) = (s, a), usa = 4− 1 = 3,
quickest = 6.33 <∞, θ∗ = 6.33, γ∗(f) = (s, a),
x∗sa = x∗ad = x∗sb = x∗bd = 3, for the remaining arcs x∗ = 0 usa = 3 + 1 = 4.

Second Iteration:

(i, j) = (s, b), usb = 3− 1 = 2, quickest = 6 < 6.33, θ∗ = 6, γ∗(f) = (s, b),
x∗sa = 4, x∗ad = 3, x∗sb = 2, x∗bd = 3, x∗ab = 1,
usb = 2 + 1 = 3.

Third Iteration:

(i, j) = (a, b), uab = 1− 1 = 0, quickest = 6 ≮ θ∗,
usb = 2 + 1 = 3.

Hence the solution is the one obtained in the second iteration. However, in Algorithm
11, we calculate the static flow x associated with the quickest flow at the beginning. The
flow x assigned to the arcs in L is

xsa = 4, xsb = 2, xab = 1.

We see that usb − xsb = 1 ≥ σ(f) implying γ∗(f) = (s, b).

5.3.2 Multi-facility quickest FlowLoc problem

As we have seen that the multi-facility static maximum FlowLoc problem is NP-hard,
we realize the hardness of the multi-facility quickest FlowLoc problem in the following
lemma.

72

Lemma 5.4. Consider a network N = (V,E, u, τ, s, t) with a supply Q > 0 at s. If

τij = 0 ∀(i, j) ∈ E, a solution of the quickest flow problem also satisfies the maximum

static flow problem, and vice versa.

Proof. According to Lin and Jaillet (2015), the quickest flow problem can be stated as:

min
Q+

∑
(i,j)∈A xijτij

v
(31)

subject to

∑

j∈V +
i

xij −
∑

j∈V −i

xji =





v if i = s

−v if i = t

0 if i /∈ {s, t}
(31a)

0 ≤ xij ≤ uij, ∀(i, j) ∈ E (31b)

If τij = 0 ∀(i, j) ∈ E, the objective (31) minimizes Q/v and the solution set of the
problem becomes equivalent to

max v

subject to

∑

j∈V +
i

xij −
∑

j∈V −i

xji =





v if i = s

−v if i = t

0 if i /∈ {s, t}
0 ≤ xij ≤ uij, ∀(i, j) ∈ E

which is the maximum static flow problem.

Theorem 5.5. There is no polynomial-time α-approximation algorithm to solve the

multi-facility quickest FlowLoc problem unless P = NP .

Proof. Suppose that there is a polynomial-time α-approximation algorithm to solve the
multi-facility quickest FlowLoc problem for α < ∞. According to Lemma 5.4, the
maximum static flow problem is a special case of the quickest flow problem. This
implies that there exists such an algorithm for multi-facility static FlowLoc problem
which contradicts Theorem 5.2.

Because of Theorem 5.5, it is plausible to design a polynomial time heuristic to solve
the multi-facility quickest FlowLoc problem. To evaluate the quality of the solution of

73

such a heuristic, first, we present the mixed integer programming formulation of the
problem. Using Definition 5.2, and Theorem 3.1, the problem can be formulated as:

min
Q+

∑
(i,j)∈E τijxij

v
(32)

subject to

∑

j∈V +
i

xij −
∑

j∈V −i

xji =





v if i = s

−v if i = t

0 if i ∈ V \ {s, t}
(32a)

xij + σfyijf ≤ uij, ∀(i, j) ∈ L, f ∈ F (32b)

0 ≤ xij ≤ uij, ∀(i, j) ∈ E (32c)
∑

(i,j)∈L
yijf = 1, ∀f ∈ F (32d)

∑

f∈F
yijf ≤ νij, ∀(i, j) ∈ L (32e)

yijf ∈ {0, 1}, ∀(i, j) ∈ L, f ∈ F. (32f)

The variables and parameters used in the model are described as follows.

Variables
xij = static flow corresponding to the quickest flow in (i, j) ∈ E

yijf =

{
1 if the facility f is placed on (i, j) ∈ L
0 if the facility f is not placed on (i, j) ∈ L

Parameters
Q = given supply at s
σf = size of the facility f
uij = capacity of (i, j) ∈ E
νij = number of facilities that can be placed on (i, j) ∈ L

Constraints (32a) and (32c) are conditions for a static flow. Constraints (32b) reduce
the capacity of (i, j) by σf if the facility f is placed on (i, j) ∈ L. Constraints (32d)
state that each facility has to be placed in exactly one arc, and constraints (32e) bound
the number of facilities on an arc by the admissible number of facilities on it.

The objective function (32) of the above problem is not linear. To make it linear, we put
1/v = ω, and xijω = ξij . As a result the problem becomes

min Qω +
∑

(i,j)∈E
τijξij (33)

74

subject to

∑

j∈V +
i

ξij −
∑

j∈V −i

ξji =





1 if i = s

−1 if i = t

0 if i ∈ V \ {s, t}
(33a)

ξij + σ(f)ωyijf ≤ uijω, ∀(i, j) ∈ L, f ∈ F (33b)

0 ≤ ξij ≤ uijω, ∀(i, j) ∈ E (33c)
∑

(i,j)∈L
yijf = 1, ∀f ∈ F (33d)

∑

f∈F
yijf ≤ ν(i, j), ∀(i, j) ∈ L (33e)

yijf ∈ {0, 1}, ∀(i, j) ∈ L, f ∈ F (33f)

However, the set of constraints (33b) are not linear. If one wants to use a linear mixed
integer programming solver to solve the model, one can linearize them using the idea
given in Torres (1990), replacing (33b) with the following constraints.
∀(i, j) ∈ L, f ∈ F ,

ξij + σfζijf ≤ uijω (33g)

ζijf ≤ Myijf (33h)

ζijf ≤ ω (33i)

ζijf ≥ ω − (1− yijf)M (33j)

ζijf ≥ 0 (33k)

where M is an upper bound on the value of ω which can be taken 1 if there is at least
one path from the source to sink with positive integral capacities andQ is also a positive
integer, because v is at least 1 in such cases. So, without loss of generality, putting the
objective and the modified constraints together, the problem can be stated as:

min Qω +
∑

(i,j)∈E
τijξij (34)

subject to

∑

j∈V +
i

ξij −
∑

j∈V −i

ξji =





1 if i = s

−1 if i = t

0 if i ∈ V \ {s, t}
(34a)

ξij + σfζijf ≤ uijω (34b)

75

ω + yijf − 1 ≤ ζijf ≤ yijf (34c)

0 ≤ ζijf ≤ ω (34d)

0 ≤ ξij ≤ uijω, ∀(i, j) ∈ E (34e)
∑

(i,j)∈L
yijf = 1, ∀f ∈ F (34f)

∑

f∈F
yijf ≤ ν(i, j), ∀(i, j) ∈ L (34g)

yijf ∈ {0, 1}, ∀(i, j) ∈ L, f ∈ F (34h)

Now, we present two polynomial time heuristics, in Algorithm 12 and Algorithm 13, to
solve the problem. In Algorithm 12, first of all, the facilities are sorted in decreasing
order of their sizes. Then the quickest flow calculation is done (polynomial time
algorithms for such calculations exist) and the residual capacities of the arcs in L are
calculated. Then, first νi∗j∗ facilities are placed on the arc (i∗, j∗) with the largest
residual capacity, and (i∗, j∗) is removed from L. The process is repeated until all the
facilities are allocated to some or all arcs in L. If the residual capacity of (i∗, j∗) is less
than the size of the largest facility hosted by it, the quickest flow is recalculated in
Line 15.

Example 5.4. To illustrate Algorithm 12, we consider the network given in Figure 26.
Let L = {(a, s), (a, d), (s, b), (b, t)} with ν(a, s) = 1, ν(a, t) = 2, ν(s, b) = 1, ν(b, t) =

3 and F = {f ′1, f ′2, f ′3, f ′4} with σ(f ′1) = 1, σ(f ′2) = 3, σ(f ′3) = 2, σ(f ′4) = 1.

First of all, we order the facilities in the decreasing order of their size, i.e. f1 = f ′2, f2 =

f ′3, f3 = f ′1, f4 = f ′4 so that σ(f1) = 3, σ(f2) = 2, σ(f3) = 1, σ(f4) = 1.

The static flow corresponding to the quickest flow is given in the following table. We
have denoted uij − xij as rij .

ij sa sb as at ab bs ba bt ta tb

uij 4 3 3 4 1 3 1 3 3 1

xij 4 2 0 3 1 0 0 3 0 0

rij : (i, j) ∈ L 1 3 1 0

θ = 6, |F | = 4, k = 1 < |F |.

First iteration:
(i∗, j∗) = max{uij − xij : (i, j) ∈ L} = (a, s), l = 1, k + l − 1 = 1,
γ(f1) = (a, s), L = {(a, t), (s, b), (b, t)}, uas = 3− 3 = 0,
ui∗j∗ − xi∗j∗ + σ(fk) = 0− 0 + 3 ≮ σ(f1),
k = 1 + 1 = 2 < |F |.

76

Algorithm 12: Multi-facility quickest FlowLoc heuristic I
Input : Directed network N = (V,E, u, τ, s, t), supply Q at the source s, the set

of possible locations L with number of facilities ν : L→ N, set of

facilities F with size r : F → N
Output: Optimal allocation γ∗ : F → L, the quickest time θ∗ after the optimal

allocation

1 Sort the facilities in F , according to the size, as f1, f2, · · · , fq such that

σ(f1) ≥ σ(f2) ≥ · · · ≥ σ(fq).

2 x = static flow corresponding to the quickest flow in N

3 θ = the corresponding quickest time

4 k = 1

5 while k ≤ q do

6 (i∗, j∗) = arg max{uij − xij : (i, j) ∈ L}
7 for l = 1 to l = ν(i∗, j∗) do

8 if k + l − 1 ≤ q then

9 γ(fk+l−1) = (i∗, j∗)

10 end

11 end

12 L = L \ {(i∗, j∗)}
13 ui∗j∗ = ui∗j∗ − σ(fk)

14 if ui∗j∗ − xi∗j∗ + σ(fk) < σ(fk) then

15 x = static flow corresponding to the quickest flow with modified u

16 θ = the corresponding quickest time

17 end

18 k = k + ν(i∗, j∗)

19 end

20 γ∗ = γ, x∗ = x, θ∗ = θ.

21 return γ∗, x∗, θ∗

77

Second iteration:
(i∗, j∗) = max{uij − xij : (i, j) ∈ L} = (a, t) (We may take (i∗, j∗) = (s, b) also.)
l = 1, 2,
k + l − 1 = 2 + 1− 1, 2 + 2− 1 = 2, 3,
γ(f2) = (a, t), γ(f3) = (a, t),
L = {(s, b), (b, t)},
ui∗j∗ = 4− 2 = 2,
ui∗j∗ − xi∗j∗ + σ(fk) = 2− 3 + 2 = 1 < σ(fk) = 2.
We recalculate x. The recalculated x is in the following table.

ij sa sb as at ab bs ba bt ta tb

uij 4 3 0 2 1 3 1 3 3 1

xij 3 2 0 2 1 0 0 3 0 0

rij : (i, j) ∈ L 1 0

θ = 6.4,
k = 2 + 2 = 4 = |F |.

Third iteration:
(i∗, j∗) = max{uij − xij : (i, j) ∈ L} = (s, b),
l = 1,
k + l − 1 = 4 + 1− 1 = 4,
γ(f4) = (s, b),
L = {(b, t)},
ui∗j∗ = 3− 1 = 2,
ui∗j∗ − xi∗j∗ + σ(fk) = 2− 2 + 1 = 1 ≮ σ(fi) = σ(f4) = 1,
k = 4 + 1 = 5 > |F |.
Since k > |F |, the algorithm terminates and the solution is:
γ∗(f ′1) = γ(f3) = (a, t),

γ∗(f ′2) = γ(f1) = (a, s),

γ∗(f ′3) = γ(f2) = (a, t),

γ∗(f ′4) = γ(f4) = (s, b).

For the optimal assignment, the static flow x∗ corresponding to the quickest flow is
given in the following table with the quickest time θ∗ = 6.4.

ij sa sb as at ab bs ba bt ta tb

uij 4 2 0 2 1 3 1 3 3 1

x∗ 3 2 0 2 1 0 0 3 0 0

78

The quickest time θ∗ calculated by MILP solver for this example is 6.2 which is very
close to result obtained by the heuristic. Worth noting, in this example, is that if
(i∗, j∗) = (s, b) is chosen in the second iteration, the result of the heuristic coincides
with that of the MILP solver.

In the above example, if we solve the single-facility quickest FlowLoc problem each
time when we require to place a facility in a new arc, the objective function value
matches with that of the MILP solution. We present such a procedure to solve a
multi-facility quickest FlowLoc problem in Algorithm 13. Although the running time
of the algorithm is higher because of more quickest flow calculations, the objective
function values are closer to the optimal values in most of the cases in the
computational experiment done in Section 5.3.3.

5.3.3 Computational experiment

To test the performance of the proposed heuristics, we take a transportation network of
Kathmandu city, consisting of major road segments within the Ring Road (Figure 28(a)).
We take Dasharath Stadium and the neighboring area as the source. The stadium is the
largest in Nepal and the neighboring area consists of some of the major shopping malls.
We consider a scenario of evacuating people in case of an emergency, e.g. the threat of
a possible bomb attack, from the source to outside the Ring Road.

The directed graph representing the network consists of 69 nodes and 221 arcs. The
travel time on each arc is considered to be the time of travel on the corresponding road
segment at the speed of 40 km/h. The length of each road segment is based on the
OpenStreetMap data. Depending on the width of the road segment, the capacity of
the corresponding arc is taken from 1 to 4 units of flow (an average sized vehicle) per
second.

Given a flow value Q, we calculate the quickest flow and identify the arcs with nonzero
flow (see Figure 28(b) for Q = 20000) and consider a random set of feasible locations
L to contain at least 25% such arcs, because if L consists entirely of zero-flow arcs, the
solution is trivial. The set of feasible facilities F is also taken randomly with
admissible sizes. For each (i, j) ∈ L, the number of facilities it can host is chosen
randomly between 1 to a maximum of 2 facilities per kilometer. We focus, mainly, on
the solutions with objective function values differing from the quickest time without
allocating facilities.

For Q = 20000, outcomes of some typical instances are presented in Table 9. The
corresponding quickest time without facility allocation is 2570 seconds. The running
time (R. time), and the objective function values (θ∗) are expressed in seconds. The
MILP solutions with running time more than 15 minutes are not recorded.

79

Algorithm 13: Multi facility quickest FlowLoc heuristic II
Input : Directed network N = (V,E, u, τ, s, t), supply Q at the source s, the set

of possible locations L with number of facilities ν : L→ N, set of

facilities F with size σ : F → N
Output: Optimal allocation γ∗ : F → L, the quickest time θ∗ after the optimal

allocation

1 Sort the facilities in F , according to the size, as f1, f2, · · · , fq such that

σ(f1) ≥ σ(f2) ≥ · · · ≥ σ(fq).

2 k = 1

3 while k ≤ q do

4 (i∗, j∗) = optimal location obtained by solving the single facility quickest

FlowLoc problem for F = {fk}
5 for l = 1 to l = ν(i∗, j∗) do

6 if k + l − 1 ≤ q then

7 γ(fk+l−1) = (i∗, j∗)

8 end

9 end

10 L = L \ {(i∗, j∗)}
11 ui∗j∗ = ui∗j∗ − σ(fk)

12 k = k + ν(i∗, j∗)

13 end

14 γ∗ = γ

15 x∗ = static flow corresponding to the quickest flow with modified u

16 θ∗ = the corresponding quickest time

17 return γ∗, x∗, θ∗

80

(a) Kathmandu network (b) Quickest flow arc occupancy (Q = 20000)

Figure 28: Quickest FlowLoc case illustration

For Q = 5000, 20000 and 50000, with at least 30 instances each (for which the MILP
solutions are recorded), the maximum and average percentage deviations from the MILP
objective function value are shown in Table 8.

Table 8: Percentage deviation from the MILP objective function values

Algorithm 12 Algorithm 13
Maximum deviation 21.55% 5.31 %
Average deviation 3.48 % 0.18%

Out of 178 instances (including the above-mentioned instances), only 16 instances of
Algorithm 12 have an objective value better than that of Algorithm 13. However, the
running time of Algorithm 13 is higher than that of Algorithm 12. Among the tested
instances, the maximum running time of Algorithm 12 is 0.59 second with an average
of 0.17 second, the corresponding values for Algorithm 13 are 2.31 second and 1.02

second.

The implementation of the algorithms and the mixed integer programming are done
using the programming language Python 3.7 on a computer with Mac operating system
having 1.8 GHz dual-core Intel Core i5 processor, and 8 GB RAM. The solver used to
solve the mixed integer program is CBC (Coin-OR branch and cut).

81

Table 9: Computational results for some instances with Q = 20000

|L| |P | Algorithm 12 Algorithm 13 MILP
R. time θ∗ R. time θ∗ R. time θ∗

5 5 0.14 3209.3 0.53 2717.6 0.87 2713.5
5 7 0.16 2831.9 0.49 2707.6 1.39 2707.1
6 7 0.13 3222.1 0.65 2881.2 1.93 2878.1
8 10 0.15 2580.0 0.58 2575.0 2.92 2575.0
8 8 0.14 3189.3 0.47 3189.3 2.01 3189.3
9 10 0.15 2725.9 0.66 2593.3 3.46 2593.3
10 10 0.17 2587.8 0.73 2585.6 8.01 2585.6
11 10 0.11 2847.5 0.81 2573.9 5.69 2573.9
11 11 0.17 2586.7 0.83 2580.6 15.16 2580.6
11 15 0.20 2721.8 0.72 2710.6 52.52 2707.6
12 11 0.15 2708.2 0.73 2585.0 6.7 2585.0
12 15 0.17 2877.5 0.69 2881.2 114.77 2877.5
13 15 0.12 2588.3 0.51 2576.1 2.82 2576.1
14 15 0.24 2578.3 0.72 2579.4 645.67 2576.1
14 21 0.11 2861.9 0.69 2712.4 134.76 2595.0
15 17 0.16 3005.3 0.98 2843.1 224.36 2843.1
15 20 0.16 3036.7 1.10 2733.5 47.37 2733.5
16 17 0.16 2736.5 1.06 2722.4 221.88 2722.4
17 19 0.19 2851.9 1.29 2717.1 379.54 2716.5
18 19 0.20 2581.7 0.97 2583.3 214.78 2581.1
18 19 0.16 2589.4 1.18 2585.6 822.64 2585.6
19 20 0.24 2595.0 1.93 2607.2 - -
19 24 0.59 3032.7 1.76 2868.8 - -
20 25 0.18 2707.6 1.25 2707.6 - -
21 25 0.15 2577.8 1.21 2577.8 - -
23 25 0.14 2692.9 1.47 2575.0 - -
23 26 0.14 2705.3 1.05 2705.3 - -
24 26 0.20 3026.0 1.87 2863.1 - -
26 29 0.14 2704.7 1.42 2704.7 - -
28 40 0.20 2585.0 1.14 2585.0 - -
28 39 0.17 2586.7 1.20 2586.7 - -
29 34 0.16 2851.2 1.42 2851.2 - -
30 40 0.24 2588.3 1.55 2588.3 - -
31 38 0.17 2851.2 1.75 2851.2 - -
31 37 0.22 2600.0 1.57 2600.0 - -
32 40 0.17 2706.5 1.54 2706.5 - -
37 43 0.22 2701.8 1.77 2701.8 - -
38 41 0.21 2597.2 1.44 2598.9 - -
39 50 0.25 2710.0 1.95 2710.0 - -
40 50 0.09 2573.3 1.76 2571.7 - -
41 48 0.20 2710.6 2.19 2710.6 - -

82

s

a

b

t

7,1
7,1

7,3
7,3

6,4
6,4

4,1
4,1

2,1 2,1

Figure 29: Auxiliary network of the network in Figure 26

5.4 Quickest FlowLoc with Arc Reversals

In this section, we merge the FlowLoc modeling with contraflow. As noted in Chapter 3,
if the direction of arcs in a directed network can be reversed (i.e. the direction of the
traffic flow on a road segment can be reversed), there is a significant reduction in the
quickest time for the flow to move from the source to the sink. Arc reversal increases the
capacity of the flow in the direction of the arc reversed, and this change in the capacity
of arcs, in such cases, has also effects on location decisions.

Analogous to the maximum FlowLoc, we have the following definition.

Definition 5.3 (Maximum static/dynamic ContraFlowLoc). Consider an evacuation
network N = (V,E, u, τ, s, t) with a set of all feasible locations L ⊆ E, a set of all
facilities F , the size of the facilities σ : F → N and the number of facilities that can be
placed on the possible locations ν : L → N. The maximum static / dynamic
ContraFlowLoc problem asks for an allocation γ : F → L, that maximizes static /
dynamic flow value, allowing arc reversals.

Corresponding to the quickest FlowLoc problem, we define the quickest ContraFlowLoc
problem in the following.

Definition 5.4 (Quickest ContraFlowLoc). Given a network N = (V,E, u, τ, s, t), a
supply Q at s, a set of feasible locations L ⊆ E, a set of all facilities F , the size of
the facilities σ : F → N, the number of facilities that can be placed on the possible
locations and ν : L → N, the quickest ContraFlowLoc problem asks for an allocation
γ : F → L of the facilities to the arcs, such that the quickest time to transport Q flow
units from s to t is minimized, allowing arc reversals.

Example 5.5. Consider the network given in Figure 26. Its auxiliary network is given
in Figure 29. The labels on arcs denote capacity and travel time respectively. Let
the set of feasible locations L = {(a, s), (s, b)} and the size of a single facility f be

83

σ(f) = 2. If the facility is placed on (a, s), the value of the maximum static flow
before arc reversals is 7 (4 along s–a–t and 3 along s–b–t) and after arc reversals is
11 (5 along s–a–t, 4 along s–b–t, 2 along s–b–a–t). If the facility is placed on (s, b),
the corresponding values are 5 (4 along s–a–t, 1 along s–b–t) without arc reversals
and 11 (7 along s–a–t, 4 along s–b–t) with arc reversals. Thus the static FlowLoc
decision before contraflow configuration is assigning f to (a, s) and after contraflow
configuration assigning f to (a, s) or (s, b). The decisions with the quickest time before
and after contraflow configuration with Q = 109 are listed in Table 10. The optimal
location without allowing arc reversals is (a, s), and that allowing arc reversals is (s, b).

Table 10: Quickest time calculations (Example 5.5)

Quickest time, Q = 109

Facility placed on Before contraflow After contraflow

(a, s) 20 15

(s, b) 25.8 14.27

Optimal location (a, s) (s, b)

5.4.1 Single-facility quickest ConraFlowLoc

To solve the single-facility maximum static(dynamic) ContraFlowLoc problem, we can
iteratively choose an arc from L, place the facility, reduce its capacity by the size of the
facility, calculate the maximum static (dynamic) contraflow value, and choose the arc
in which the difference of the maximum contraflow value after placing the facility and
without placing the facility on any arc is the least (see also Dhungana and Dhamala
(2019)). Here, we present Algorithm 14 to solve the single facility quickest
ContraFlowLoc problem, which iteratively chooses an arc from L, reduces its capacity
by the size σ(f) of the facility f , finds the quickest contraflow and retains its capacity
before choosing the next arc. The arc which gives the minimum quickest time after
placing the facility on it is chosen as the optimal location.

We can improve the running time of Algorithm 14 by adapting Algorithm 11 to the
contraflow case, in the cases when there is enough capacity in a feasible arc to hold
the given facility. After contraflow calculation, if arc (i, j) ∈ L and its opposite arc
(j, i) ∈ E together have the capacity enough to host the facility, then (i, j) is chosen
to locate the facility and we can get rid of the remaining |L| − 1 quickest contraflow
calculations of Algorithm 14. The procedure is elucidated in Algorithm 15.

In the straight forward procedures mentioned in these algorithms, we basically solve
the quickest flow problem iteratively in auxiliary networks and remove cycle flows
which requires decomposition of the static flow corresponding to the quickest flow into

84

Algorithm 14: Single facility quickest ContraFlowLoc I
Input : Directed network N = (V,E, u, τ, s, t), a set of possible locations L, a

supply Q at s, F = {f} size σ(f) of the facility f
Output: Optimal allocation γ∗ of the facility allowing arc reversals, static

contraflow x∗ corresponding to the quickest contraflow, corresponding
quickest time θ∗, set of arcs to be reversed R

1 θ =∞
2 for (i, j) ∈ L do
3 uij = uij − σ(f)

4 new_quickest_time = quickest time in the corresponding auxiliary network
5 if new_quickest_time < θ then
6 θ = new_quickest_time
7 γ(f) = (i, j)

8 x = the corresponding static flow without cycle flows

9 end
10 uij = uij + σ(f)

11 end
12 γ∗ = γ, x∗ = x, θ∗ = θ

13 R = {(j, i) ∈ E : x∗ij > uij if (i, j) ∈ E or x∗ij > 0 if (i, j) /∈ E}
14 return γ∗, x∗, θ∗, R

85

Algorithm 15: Single facility quickest ContraFlowLoc II
Input : Directed network N = (V,E, u, τ, s, t), a set of possible locations L, a

supply Q at s, F = {f} size σ(f) of the facility f
Output: Allocation γ∗ of the facility allowing arc reversals, static contraflow x∗

corresponding to the quickest contraflow, corresponding quickest time θ∗,
set of arcs to be reversed R

1 x = static flow, without flows in cycles, corresponding to the quickest flow in the
auxiliary network

2 θ = the corresponding quickest time
3 (i∗, j∗) = arg max{uij + uji − xij − xji : (i, j) ∈ L}
4 if ui∗j∗ + uj∗i∗ − xi∗j∗ − xj∗i∗ ≥ σ(f) then
5 γ(f) = (i∗, j∗)

6 ui∗j∗ = ui∗j∗ − σ(f)

7 else
8 Algorithm 14
9 end

10 γ∗ = γ, x∗ = x, θ∗ = θ

R = {(j, i) ∈ E : x∗ij > uij if (i, j) ∈ E or x∗ij > 0 if (i, j) /∈ E}
11 return γ∗, x∗, θ∗, R

directed paths and cycles. Because the size of the facility does not exceed the capacity
of an arc in L (Definition 5.1), and placing the facility on an arc (i, j) ∈ L reduces the
capacity of (i, j) and (j, i) both in the auxiliary network, Algorithm 14 and Algorithm
15 find the location γ with the minimum quickest time. Moreover, the removal of cycle
flows in a contraflow computation leads either x(i, j) or x(j, i) to vanish so that the set
x∗ is feasible in the reconfigured network obtained by reversing the arcs as defined by
R. This discussion leads to the following lemma:

Lemma 5.6. Algorithm 14 or Algorithm 15 solves the single facility quickest

ContraFlowLoc problem optimally.

Theorem 5.7. The single facility quickest ContraFlowLoc problem can be solved in

strongly polynomial time.

Proof. The complexity of the for loop in Algorithm 14 is dominated by the complexity
of the quickest flow calculation which can be done in strongly polynomial time
O(nm2 log2 n). Since the auxiliary network can be formed in O(m) time, the flow
decomposition to remove cycle flows can be done in O(nm) time (Ahuja et al., 1993),
the overall complexity of Algorithm 14 is O(|L|nm2 log2 n). Since |L| ≤ m, the result
follows.

86

5.4.2 Multi-facility quickest ContraFlowLoc

Replacing quickest flow calculations by maximum static(dynamic) contraflow
calculations and adjusting capacities accordingly, Algorithm 12, can also be adapted to
construct a polynomial time heuristic to solve the corresponding multi-facility case. To
solve the multi-facility quickest ContraFlowLoc problem, we present such an
adaptation in Algorithm 16.

Further, solving the single-facility quickest ContraFlowLoc problem each time when
we require to place a facility in a new arc, we can easily adapt Algorithm 13 to the
cotraflow case also.

Example 5.6. To illustrate Algorithm 16, we reconsider the problem illustrated in
Example 5.4 with the possibility of arc reversals. The static contra flow corresponding
to the quickest contra flow is tabulated in the following table. For simplicity, we write
uij + uji − xij − xji as δij .

ij sa sb as at ab bs ba bt ta tb

uij 4 3 3 4 1 3 1 3 3 1

xij 7 2 0 5 2 0 0 4 0 0

δij : (i, j) ∈ L 1 3 1 0

θ = 5.22, q = 4, k = 1 < q.

First iteration: (i∗, j∗) = max{δij : (i, j) ∈ L} = (s, b)

l = 1, k + l − 1 = 1 + 1− 1 = 1, γ(f1) = (s, b),

L = {(a, s), (a, t), (b, t)},

ui∗j∗ = 3− 3 = 0,

δi∗j∗ + σ(fk) = 0 + 3− 2− 0 + 3 = 4 ≮ σ(f1) = 3,

k = 1 + 1 = 2 < q.

Second iteration: (i∗, j∗) = max{δij : (i, j) ∈ L} = (a, t),

l = 1, 2, k + l − 1 = 2 + 1− 1, 2 + 2− 1 = 2, 3,

γ(f2) = (a, t),

γ(f3) = (a, t),

L = {(a, s), (b, t)},

87

Algorithm 16: Multi facility quickest ContraFlowLoc heuristic
Input : Directed network N = (V,E, u, τ, s, t), a set of possible locations L,

supply Q at the source s, set of facilities F with size σ : F → N
Output: Allocation γ∗ : F → L allowing arc reversals, the quickest time θ∗ after

allocation, set of arcs to be reversed R

1 Sort the facilities in F , according to their size, as f1, f2, · · · , fq such that

σ(f1) ≥ σ(f2) ≥ · · · ≥ σ(fq)

2 x = static flow, without cycle flows, corresponding to the quickest flow in the

auxiliary network

3 θ = the corresponding quickest time

4 k = 1

5 while k ≤ q do

6 (i∗, j∗) = arg max{uij + uji − xij − xji : (i, j) ∈ L}
7 for l = 1 to l = ν(i∗, j∗) do

8 if k + l − 1 ≤ q then

9 γ(fk+l−1) = (i∗, j∗)

10 end

11 end

12 L = L \ {(i∗, j∗)}
13 ui∗j∗ = ui∗j∗ − σ(fi)

14 if ui∗j∗ + uj∗i∗ − xi∗j∗ − xj∗i∗ + σ(fi) < σ(fi) then

15 x = static flow, without cycle flows, corresponding to the quickest flow in

the auxiliary network with modified u

16 θ = the corresponding quickest time

17 end

18 k = k + ν(i∗, j∗)

19 end

20 γ∗ = γ, x∗ = x, θ∗ = θ

21 R = {(j, i) ∈ E : x∗ij > uij if (i, j) ∈ E or x∗ij > 0 if (i, j) /∈ E}
22 return γ∗, x∗, θ∗, R

88

ui∗j∗ = 4− 2 = 2,

δi∗j∗ + σ(fk) = 2 + 3− 5− 0 + 2 = 2 ≮ r(p2) = 2,

k = 2 + 2 = 4 = q

Third iteration: (i∗, j∗) = max{δij : (i, j) ∈ L} = (a, s)

l = 1, k + l − 1 = 4 + 1− 1 = 4,

γ(f4) = (a, s),

L = {(b, t)},

ui∗j∗ = 3− 1 = 2,

δi∗j∗ + σ(fk) = 2 + 4− 7− 0 + 1 = 0 < σ(f4) = 1

Recalculation of x:

ij sa sb as at ab bs ba bt ta tb

uij 4 0 2 2 1 3 1 3 3 1

xij 6 2 0 4 2 0 0 4 0 0

k = 4 + 1 = 5 > q.

The solution is: γ(f ′1) = γ(f3) = (a, t), γ(f ′2) = γ(f1) = (s, b), γ(f ′3) = γ(f2) =

(a, t), γ(f ′4) = γ(f4) = (a, s). The static flow x∗ corresponding to the quickest flow
with arc reversals after this allocation is x as given in the third iteration. The set of arcs
reversed before facility allocation is {(a, s), (b, a), (t, a), (t, b)} while after allocation
it becomes {(a, s), (b, a), (t, a), (t, b), (b, s)}. The quickest time is 5.375 which is less
than the quickest time 6.2 of the same problem without arc reversals.

The significance of the contraflow approach is that the difference between the quickest
times before and after arc reversals increase with the growing value of Q. Some
observations of this problem, after facility-allocation are listed in the following table.

Quickest time
Q Before contraflow After contraflow

100 24.2 15.33

1000 204.2 115.33

10000 2004.2 1115.33

89

s

t1

t2

t3

4,4
3,4

4,1
1,1

3,1
3,1

3,4

1,11,1

Figure 30: Evacuation network with a source s and possible sinks t1, t2, t3

5.5 Identification of the Optimal Sink

In this section, we extend the idea of FlowLoc developed in the previous sections to
identify the sink, from a given set of possible sinks, in a network with a single source.
The idea is to choose the sink to optimize the flow (viz. maximize the static/dynamic
flow, minimize the time horizon of a given amount of flow). The results of this section
are published in Nath and Dhamala (2018).

5.5.1 Optimal sink maximizing the static flow value

Definition 5.5 (MaxStatic sink). Let N = (V,E, u, τ, s) be a network with a set of
possible sinks T ⊆ V \ {s} and let v(t) denote the value of maximum static s–t flow.
We call the node arg maxt∈T{v(t)}, the MaxStatic sink.

Example 5.7. We consider an evacuation network in Figure 30. Let the source node
be s and the set of feasible sinks T = {t1, t2, t3}. If node t1 is taken as the sink, the
maximum static flow value v(t1) is 6 (4 via path s–t1, 1 each via s– t2–t1, and s–t2–t3–
t1). Similarly, v(t2) = 4, v(t3) = 7. By definition, MaxStatic sink is t3.

Now, we present a mathematical programming formulation to identify the MaxStatic
sink. Consider a network N = (V,E, u, τ, s) with a set of feasible sinks T . For the
modeling purpose, we consider that there is only one arc incoming to each t ∈ T . This
does not restrict the general case because we can always add a node t′ to V , and (t, t′)

to E such that u(t, t′) = ∞, τ(t, t′) = 0 and replace t ∈ T by t′ so that t is identified
with t′. Practically, infinite capacity of (t, t′) can be replaced by

∑
i∈V −t uit. Figure 31

shows such a network transformation in which T becomes {t′1, t′2, t′3}.

90

s

t1

t2

t3

4,4
3,4

4,1
1,1

3,1
3,1

3,4

1,11,1

t′1

t′2 t′3

6, 0

4, 0

7, 0

Figure 31: Transformation of the network in Figure 30

Let ET = {(i, t) ∈ E : t ∈ T}. We present the problem of finding MaxStatic sink as a
mixed binary integer formulation:

max
∑

(i,j)∈ET
xij (35)

subject to

∑

j∈V +
i

xij −
∑

j∈V −i

xji = 0, ∀i ∈ V \ ({s} ∪ T) (35a)

xij ≤ uij, ∀(i, j) ∈ E \ ET (35b)

xij ≤ uijyij, ∀(i, j) ∈ ET (35c)
∑

(i,j)∈ET
yij = 1 (35d)

yij ∈ {0, 1} ∀(i, j) ∈ ET (35e)

xij ≥ 0 ∀(i, j) ∈ E (35f)

The objective (35) maximizes the flow entering to the sinks. Because of (35c)–(35e),
the flow will be directed towards only one sink. Constraints (35a) are mass balance
constraints at the intermediate nodes. (35b), (35c) are capacity constraints. The
constraint (35d) chooses only one sink out of possible sinks.

In the constraints (35c), since uij may not be in {−1, 0,+1}, the matrix associated with
the constraints is not totally unimodular. Thus the linear programming relaxation of the
above integer programming may not give the integral solution. However, if yij, (i, j) ∈
ET is bound to be binary, we have the following observation.

Theorem 5.8. If uij ∈ Z ∀(i, j) ∈ E, the mixed integer programming (35) has all

integral solutions.

91

Proof. Let I |T | denote the set of the column vectors of the |T | × |T | identity matrix.
Because of our assumption, in-degree of each t ∈ T is 1, and hence the solution set
of the constraints (35d) and (35e) is I |T |. If y =

[
yij : (i, j) ∈ ET

]
, then the column

vector y has exactly |T | components. If a fix y ∈ I |T | is chosen, the mixed integer
programming problem (35) becomes a linear programming problem. Since |I |T || = |T |,
MIP (35) can be solved by solving linear program (35)–(35d), (35f) at most |T | times.

Further, let the matrix equation Mx = 0 represent the constraints (35a). If (i, j) has
both of its ends in V \({s}∪T), then the column ofM corresponding to the variable xij
will have exactly two entries +1,−1. Each of the other columns of M corresponding to
xij with an end of (i, j) in {s}∪T will have exactly one entry either 1 or−1. This shows
that M is totally unimodular. Since the polyhedron {x ∈ Rn : Mx = b, 0 ≤ x ≤ u}
with totally unimodularM and integer u is an integral polyhedron, we can get all integer
solutions of the mixed integer programming (35) if uij ∈ Z, ∀(i, j) ∈ E.

The integrality of solutions is particularly important, because most of the network flow
algorithms use integrality of flow to develop efficient algorithms.

Although integer programming problems are NP-hard, in general, a straight-forward
procedure shows that the problem of finding MaxStatic sink can be solved in strongly
polynomial time.

Theorem 5.9. There exists a strongly polynomial time algorithm to solve the problem

of identifying the MaxStatic sink.

Proof. We present a straight-forward procedure to identify MaxStatic sink in
Algorithm 17, which iteratively chooses an element t ∈ T , finds the maximum static
s–t flow value, and selects t as the MaxStaic sink if the flow-value is improved. When
the iteration ends, the algorithm returns the MaxStatic sink and the corresponding
static flow.

Let M be the complexity of a maximum static flow calculation. Since Algorithm 17
terminates after |T | iterations and Line 3 calculates a maximum static flow value in
each iteration, the complexity of the algorithm is O(|T |M). The maximum static flow
calculation can be done in strongly polynomial time (See the discussion before
Theorem 3.5). Hence, Algorithm 17 solves the problem in strongly polynomial time.
This proves the assertion.

Remark 5.2. The practical running time of Algorithm 17 can be improved by finding
v(t) in Line 3 only if

∑
j∈V −t uij > curr_max_v in the network without the

transformation mentioned in Figure 31, and exiting the for loop and returning t as t∗ if
v(t) =

∑
j∈V +

s
bsj .

92

Algorithm 17: Locating the MaxStatic sink
Input : Network N = (V,E, u, τ, s), the set of possible sinks T

Output: MaxStatic sink t∗

1 curr_max_v = −1

2 for t ∈ T do

3 new_max_v = v(t)

4 if new_max_v > curr_max_v then

5 t∗ = t

6 curr_max_v = new_max_v

7 end

8 end

9 return t∗

5.5.2 Optimal sink maximizing the dynamic flow value

Definition 5.6 (MaxDynamic sink). Let N = (V,E, u, τ, s) be a network with a set of
possible sinks T ⊆ V \ {s} , and a time horizon θ. Let vθ(t), t ∈ T denote the value of
the maximum dynamic s–t flow. We call the node arg maxt∈T{vθ(t)}, the MaxDynamic
sink.

Example 5.8. We consider an evacuation network in Figure 30. Let the source node
be s and the set of feasible sinks T = {t1, t2, t3}. If node t1 is taken as the sink, the
maximum static flow value is 6 (4 via path s–t1, 1 each via s– t2–t1, and s–t2–t3–t1).
The dynamic flow value with t1 as the sink and time horizon θ = 4 is 2 (1 via s–
t2–t1 twice). The values corresponding to other sinks and time horizons are listed in
the following table. So, one can easily conclude that the MaxStatic sink is t3 and the
MaxDynamic sink for θ = 4 is t2, that for θ = 9 is t1, and for θ = 13 is t3.

t v4(t) v9(t) v13(t)

t1 2 30 54

t2 9 28 44

t3 1 28 56

Since the value of the temporally repeated dynamic s–t flow with a time horizon θ

corresponding to a static s–t flow x is θv(x)−∑(i,j)∈E τijxij where v(x) is the value of
x, we can formulate the problem of identification of the MaxDynamic sink for the time

93

horizon θ can be formulated as:

max θ
∑

(i,j)∈ET
xij −

∑

(i,j)∈E
τijxij (36)

subject to

(35a) – (35f)

Because the constraints set of thie problem is the same as that of the problem 35 The
result analogous to that in Theorem 5.8 is valid in this case also. Moreover, such a
problem can also be solved in strongly polynomial time.

Theorem 5.10. The problem of identifying MaxDynamic sink can be solved in strongly

polynomial time.

Proof. Given a time horizon θ, we can easily adapt the procedure in Algorithm 17 to
identify the MaxDynamic sink by replacing v(t) by vθ(t) in Line 3. For a given sink
t ∈ T , let N t be the network obtained by adding an arc (t, s) to N with u(t, s) =

∞, τ(t, s) = −θ (We assume that there is no directed path from t to s in N .) Let xt be
the the min-cost circulation in N t. Let x be the restriction of xt in N , then

vθ(t) = θv(x)−
∑

(i,j)∈E
τijxij

where v(x) is the value of x.

We can calculate vθ(t) in a strongly polynomial time because it has been obtained by
solving a min-cost circulation problem (e.g. the enhanced capacity scaling algorithm by
Orlin (1993) solves it in O((m log n)(m+ n log n)) time). As the mentioned procedure
solves such a problem |T | < n times, the MaxDynamic sink can be solved in a strongly
polynomial time.

5.5.3 Optimal sink minimizing the quickest time

Given supply Q at s, recall that the quickest flow problem is to find the dynamic flow
which has the value Q within the minimum time horizon. We call such a time horizon
as the quickest time. Given a network N , for a fixed Q and a set of possible sinks T ,
the quickest time depends on t ∈ T . We take a point of view to choose the sink which
minimizes the quickest time.

Definition 5.7 (Quickest sink). Let N = (V,E, u, τ, s) be a network with a set of
possible sinks T ⊆ V \ {s} and let θQ(t) denote the quickest time to transport the flow
value of Q from s to t ∈ T . We call the node arg mint∈T{θQ(t)}, the Quickest sink.

94

We can adapt the mathematical formulation (35), replacing its objective by

Q+
∑

(i,j)∈E τijxij

v

where v =
∑

(i,j)∈ET xij .

The problem of identifying the quickest sink can also be solved in strongly polynomial
time.

Theorem 5.11. There exists a strongly polynomial time algorithm to identify the

Quickest sink.

Proof. A simple procedure mentioned in Algorithm 18 can be used to identify the
Quickest sink. The procedure iteratively chooses an element t ∈ T , finds the quickest
time to send Q flow units from s to t, and selects t as the Quickest sink if the quickest
time decreases. When the iteration ends, the algorithm returns the Quickest sink.

Algorithm 18: Locating the Quickest sink
Input : Network N = (V,E, u, τ, s), a supply Q at s, a set of possible sink

locations T

Output: Quickest sink t∗

1 curr_quickest_time =∞
2 for t ∈ T do

3 new_quickest_time = θQ(t)

4 if new_quickest_time < curr_quickst_time then

5 t∗ = t

6 curr_quickest_time = new_quickest_time

7 end

8 end

9 return t∗

There are |T | iterations in the procedure. In each iteration, we calculate the quickest
flow to identify the quickest time. The quickest flow can be calculated by using the
algorithm by Saho and Shigeno (2017). Their algorithm uses the idea of cancel-and
-tighten algorithm of solving the minimum cost flow problem to compute the quickest
flow and runs in O(nm2 log2 n) time. Hence, Quickest sink can be identified in
O(|T |nm2 log2 n) time. As |T | < n, the result follows.

95

s

t1

t2

t3

7,4
7,4

5,1
5,1

6,1
6,1

3,4
3,4

2,12,1

Figure 32: Auxiliary network of the network in Figure 30

5.5.4 Optimal sink with arc reversals

If we allow arc reversals, because of the change in the capacities of the arcs, the
decisions related to optimal sink also change. In this section, we develop solution
procedures which, not only identify the optimal sink, but also specify which arcs to
reverse if the reversal of the arcs is allowed. The idea of the arc reversals developed in
the previous chapters is used to identify whether an arc is to be reversed or not.

Example 5.9. Consider the network considered in Example 5.7. To allow arc reversals,
we construct the auxiliary network as depicted in Figure 32. Taking s as source, if
t = t1, the maximum static flow value is 12 (7 via s–t1, 3 via s–t2–t3–t1, 2 via s–
t2–t1). The corresponding values with t = t2, t3 are 11 and 8, respectively. Thus the
MaxStatic sink allowing lane reversals is the node t1 while it is node t3 without allowing
arc reversals with maximum static flow value 7 (see Example 5.7). Considering t1 as the
sink, the maximum static flow x allowing arc reversals is given in the following table.

ij st1 st2 t1s t1t3 t1t2 t2s t2t1 t2t3 t3t1 t3t2

xij 7 5 0 0 0 0 2 3 3 0

Since
xst1 > ust1 , xst2 > ust2 , xt2t1 > ut2t1 , xt3t1 > ut3t1 ,

the arcs to be reversed are: (t1, s), (t2, s), (t1, t2) and (t1, t3).

Given a network N = (V,E, u, τ, s) and set of possible sinks T , to identify the
MaxStatic sink, MaxDynamic sink, Quickest sink allowing arc reversals, we solve the
corresponding problem in the auxiliary network N ′. We present Algorithm 19 in which
the input is N = (V,E, u, τ, s) and a set of feasible sinks T . For the calculation of the
MaxDynamic sink the time horizon θ, and for the calculation of the Quickest sink, the
supply Q at the source s are also given. In Line 1, the the auxiliary network

96

N ′ = (V,E ′, u′, τ ′, s) is constructed. In Line 2, depending on the objective, MaxStatic
sink, MaxDynamic sink, or Quickest sink is identified. The procedures described in
Section 5.5.1–5.5.3 can be applied for the purpose. The corresponding static flow x is
also calculated. In Line 3, x is decomposed into paths and cycles and cycle flows are
removed so that the resulting flow is feasible in the reconfigured network after the arc
reversals, and the set of arcs to be reversed in Line 4 is well-defined. After the removal
of cycle flows, as mentioned previous chapters also, if an arc in E has flow value more
than its original capacity, its opposite arc will be reversed. If the solution shows any
positive flow in any arc not in E, then the corresponding opposite arc is also reversed.
In this way, Line 4 gives the set of arcs to be reversed.

Algorithm 19: Locating sink with contraflow
Input : Network N = (V,E, u, τ, s), the set of possible sink locations T (the time

horizon θ in case of the MaxStatic sink, and supply Q at s in case of the

Quickest sink) with arc reversal capability

Output: Maxstatic/MaxDynamic/Quickest sink t∗, and the set R of arcs to be

reversed

1 Construct the auxiliary network N ′.

2 Solve the corresponding problem in N ′ to find the optimal sink t∗, and the

corresponding static flow x.

3 Decompose x into paths and cycles and remove the flow in cycles.

4 R = {(j, i) ∈ e : xij > uij if (i, j) ∈ E or xij > 0 if (i, j) /∈ E}
5 return t∗, R.

Theorem 5.12. The problems of identification of MaxStatic sink, MaxDynamic sink,

and Quickest sink allowing arc reversals can be solved in strongly polynomial time with

the complexity of the corresponding problems without allowing arc reversals.

Proof. In Algorithm 19, the auxiliary network, in Line 1, can be constructed in O(m)

time. Line 2 finds MaxStatic sink, MaxDynammic sink, or Quickest sink in the auxiliary
network depending on the problem. So, the complexity of Line 2 is O(M |T |) where M
is

(i) the complexity of the maximum static flow calculation, in case of the MaxStatic
sink, which can be attained in strongly polynomial time, e.g. the highest label
preflow-push algorithm by Goldberg and Tarjan (1988) runs in O(n2

√
m) time,

and the algorithm by Orlin (2013) in O(mn) time if m < n1.06,

(ii) the complexity of the minimum cost flow calculation, in case of the MaxDynamic
sink. The minimum cost flow problem can be solved in strongly polynomial time,

97

23

25

24

26

35

15
16 17

10

13

14

33

20

30

31

32

4
6

7

3

27

2

1

36
34

21

22

29

19
18

28

40

42

5

41

37

9

11

12

45

44

38

39

43

8

(a) MaxDynamic sink
(Node 11)

23

25

24

26

35

15
16 17

10

13

14

33

20

30

31

32

4
6

7

3

27

2

1

36
34

21

22

29

19
18

28

40

42

5

41

37

9

11

12

45

44

38

39

43

8

(b) MaxDynamic sink with contraflow
(Node 45)

Figure 33: MaxDynamic sink with and without contraflow (Kathmandu network)

e.g. the enhanced capacity scaling algorithm of Orlin (1993) runs in
O((m log n)(m+ n log n)) time.

(iii) the complexity of quickest flow calculation, which can also be done in strongly
polynomial O(nm2 log2 n) time (Saho & Shigeno, 2017), in case of the Quickest
sink.

The decomposition of a static flow into paths and cycles can be done in O(nm) time
(Ahuja et al., 1993). So the time complexity of Line 3 in Algorithm 19 is O(mn). The
construction of R in line 4 requires O(m) comparisons. Hence, the overall complexity
of the algorithm is dominated by the complexity of Line 2, which is O(M |T |). This
proves the assertion.

5.5.5 Case illustration

As an illustration, we consider Kathmandu road network within Ring Road consisting
of the major road segments (Figure 33). We take the node adjoining Tundikhel area
(denoted in the figure by 24) as the source and Kalanki (8), Balaju (9), Gongabu (11),
Narayan Gopal Chowk (12), Gaushala (45), Koteshwar Jadibuti (44), Satdobato (38),
Ekantakuna (39), and Balkhu (43) as possible sinks. To implement auto-based
evacuation planning, we take the capacities of arcs between 2 cars per second to 4 cars
per second depending on the width of the segment. The direction of the usual traffic

98

Table 11: Quickest sinks (Kathmandu network)

Without contraflow With contraflow
Q Quickest sink Quickest time (sec) Quickest sink Quickest time (sec)

1000 Balaju (9) 1160 Balaju (9) 910
10000 Gongabu (11) 3247 Gaushala (45) 2150
20000 Gongabu (11) 4913 Gaushala (45) 2987

flow is taken as the direction of the arc. The time related to an arc is taken using
Google Maps.

Considering a time horizon θ = 1 hour, we find the Maxdynamic sink as Gongabu
(11) with the dynamic flow value of 12120 cars. However, if we allow arc reversal, the
Maxdynamic sink is Gaushala(45) with the corresponding flow value 27360 cars. If we
take a time horizon of θ = 2 hours, the sink locations with and without arc reversal are
respectively the same as those of θ = 1 hour with flow values 33720 and 70560.

The Quickest sink locations with different values of Q are listed in Table 11.

99

CHAPTER 6

SAVING A PATH FOR FACILITIES

6.1 Introduction

Using the arc reversal strategy, maximum flow reaching the safe places may be enhanced
and the time of evacuation may be reduced. But it may block the paths from a particular
node to the source node representing the hazardous area. This obstructs the movement
of facilities, if necessary, towards the source. Example 6.1 illustrates this fact.

Example 6.1. Let us consider a network as shown in Figure 34(a) with each arc labeled
with its capacity and transit time. Given a time horizon of θ = 10, the maximum
dynamic flow from s to t without arc reversals is 29 (1 via the path s–a–b–t repeated 7
times, 2 via s–a–t repeated 6 times, and 2 via s–b–t repeated 5 times). If we allow arc
reversals, the value is 57 (1 via the path s–a–b–t repeated 7 times, 5 via s–a–t repeated
6 times, and 4 via s–b–t repeated 5 times). Static flow with arc reversals is shown
in Figure 34(b). With the reversal of arcs, there remains no directed path towards the
source from any of the remaining vertices.

Movement of facilities, e.g. ambulance, fire-brigade, etc. towards the source may be

s

a b

d t

3,13,1 2,4
2,4

3,1
2,1

2,2
1,2

2,3
3,3

2,3
1,3

1,1

(a) Network N

s

a b

d t

3
2

300
2

0

0

1

3
2

2
3

(b) Arc occupancy after arc reversals

Figure 34: Obstruction of paths towards source because of arc reversals

100

necessary to save life during the evacuation. The direction of the movement of such
facilities may be opposite to the direction of the flow of the evacuees in some of the
arcs. Given a depot of facilities, reserving a dedicated path from the depot to the source
may have an adverse effect on the flow of the evacuees depending on the choice of the
path.

Example 6.2. Let us consider a network in Example 6.1 again. Suppose that s is the
source node, t is the sink node and the node d is a depot where the supplies which are to
be moved from d to s are located. Consider a time horizon of θ = 10. If the path d–a–s
which is of length 3 is to be saved, the value of the maximum dynamic flow with arc
reversals is 39, and likewise, if d–t–b–s (length = 8) is saved, the corresponding value
is 47. The other values are listed in the following table.

Saved path (P) τ(P) v10(f)

P1: d–a–s 3 39

P2: d–t–a–s 7 39

P3: d–a–b–s 7 44

P4: d–t–b–s 8 47

P5: d–a–t–b–s 10 43

P6: d–t–a–b–s 11 26

If the objective is to save a path to maximize the dynamic flow regardless of the length
of the path chosen, P4 is optimal. If the length of the path is also to be considered,
we may get a different solution. In this chapter, we will look at various possibilities of
saving a path.

6.2 Saving a path with a given time bound

When saving a path, there may be situations when the facility from a specified node has
to reach the targeted node within a specified time. In those cases, the transit time of the
optimal path must not exceed a specified value. In this section, we will consider two
problems – one with the objective to maximize the dynamic flow, allowing arc reversals,
given a time horizon θ saving a path with transit time bounded by θ0, and the other with
the objective to minimize the time horizon of the given flow value Q in the similar
settings. Some of the results in this Section are published in Nath, Pyakurel, Dempe,
and Dhamala (2019b).

101

6.2.1 Saving a path maximizing the dynamic flow

In Example 6.2, if the transit time of the path is to be within 7 units, the optimal saved
path to maximize the dynamic flow will be P3 because the maximum dynamic flow
value saving other paths of length less than or equal to 7 units (viz. P1, P2) is less than
44.

Let x be a static s–t flow in network N = (V,E, u, τ, s, t). Given a time horizon θ, the
value of the temporally repeated dynamic flow corresponding to x is

θv(x)−
∑

(i,j)∈E
τijxij

In the discrete time settings, θ is replaced by θ + 1 (Ford & Fulkerson, 1958; Fleischer
& Tardos, 1998; Skutella, 2009).

Hence, the maximum dynamic flow problem, in terms of the static flow to be temporally
repeated, can be stated as:

min −θv +
∑

(i,j)∈E
τijxij (37)

subject to

∑

j∈V +
i

xij −
∑

j∈V −i

xji =





v if i = s

0 if i ∈ V \ {s, t}
−v if i = t

(37a)

0 ≤ xij ≤ uij,∀(i, j) ∈ E (37b)

As described in Chapter 3, the maximum dynamic flow problem, with a possibility of
arc reversals in N = (V,E, u, τ, s, t), is set to find the maximum amount of flow that
can be sent from the source s to the sink t if the direction of arcs can be reversed at time
0. The approach finds the static flow x in the auxiliary network N ′ = (V,E ′, u′, τ ′).
To ensure the feasibility of such a flow after arc reversals in N , the flows in cycles are
removed by decomposing x into directed paths and cycles. An arc in E is reversed if the
flow is more than its capacity in the reverse arc of N ′. After arc reversals, the temporal
repetition of the static flow within the specified time horizon gives the dynamic flow.
So, solving the maximum dynamic flow problem (37) in N ′ may not yield a solution
that is feasible in N even after arc reversals. However, if there is no positive flow in
the cycles of N ′, the step of removing flows in cycles can be avoided. In such a case,
solving the problem (37) in the auxiliary network will give a feasible optimal solution
in N after arc reversals.

102

If every cycle in the network has the positive time (i.e. the sum of the times on the arcs
constituting the cycle is positive), it can be guaranteed that there is no positive cycle
flow in a solution of the maximum dynamic flow problem (37).

Theorem 6.1. If every cycle in N has a positive transit time, an optimal flow in the

solution of the maximum dynamic flow problem (37) does not have a positive flow in a

cycle.

Proof. Suppose that D(x) = −θv +
∑

e∈A τexe. Let x∗ be the optimal solution of the
problem (37) with v = v(x∗) = v∗ and the flow decomposition of x∗ have a positive
flow in cycles. Assume C to be the set of arcs which form a cycle with flow value δ > 0.
Define x1, x2 : E → R by

x1ij =




x∗ij for (i, j) ∈ E \ C
x∗ij − δ for (i, j) ∈ C

and x2 be a flow defined by

x2ij =





0 for (i, j) ∈ E \ C
δ for (i, j) ∈ C.

Then x1 and x2 are feasible static flows in N such that x1ij + x2ij = x∗ij,∀(i, j) ∈ E.
Moreover, since a static flow in a cycle does not contribute to the value of the static
flow, v(x1) = v∗. Now,

D(x∗) = −θv∗ +
∑

(i,j)∈E
τijx

∗
ij

= −θv∗ +
∑

(i,j)∈E
τijx

1
ij +

∑

(i,j)∈E
τijx

2
ij

= −θv∗ +
∑

(i,j)∈E
τijx

1
ij + δ

∑

(i,j)∈E
τij

> −θv∗ +
∑

(i,j)∈E
τijx

1
ij

= D(x1).

Since x1 is a also a feasible static flow with the value v(x1) = v∗, this contradicts the
optimality of x∗.

If τij > 0,∀(i, j) ∈ E, obviously, every cycle in the network N will have positive time.
So an immediate corollary is:

Corollary 6.2. Given τij > 0,∀(i, j) ∈ E, an optimal flow in the solution of the problem

103

(37) does not have a positive flow in a cycle.

If in a network N = (V,E, u, τ, s, t), τij > 0 ∀(i, j) ∈ E, then τ ′ij > 0 in the auxiliary
network N ′ = (V,E ′, u′, τ ′, s, t). Using Corollary 6.2, the static flow in the solution of
the problem (37) in N ′ will have no positive flow in cycles in its decomposition. As the
capacity of each arc (i, j) ∈ E ′ in the auxiliary network N ′ is the sum of the capacities
of (i, j), (j, i) ∈ N , we have the following:

Theorem 6.3. In a network N = (V,E, u, τ, s, t) with a given time horizon θ, let

i) for each (i, j) ∈ E, there is (j, i) ∈ E with τij = τji,

ii) for each (i, j) ∈ E, τij > 0.

Then a solution of the linear program

min −θv +
∑

(i,j)∈E
τijxij (38)

subject to

∑

j∈V +
i

xij −
∑

j∈V −i

xji =





v if i = s

−v if i = t

0 if i ∈ V \ {s, t}
(38a)

0 ≤ xij ≤ uij + uji,∀(i, j) ∈ E (38b)

corresponds to a solution of the maximum dynamic contraflow problem with (i, j)

reversed if xji > uji.

Remark 6.1. In (38), we may replace v by

∑

j∈V +
s

xsj −
∑

j∈V −s

xjs

or by ∑

j∈V −t

xjt −
∑

j∈V +
t

xtj.

In any case, the constraints (38a) will be replaced by

∑

j∈V +
i

xij −
∑

j∈V −i

xji = 0 ∀i ∈ V \ {s, t}.

A time-bounded path saving model maximizing dynamic flow: In the light of the
above results, we formulate the problem as follows. Consider an evacuation network

104

N = (V,E, u, τ, s, t) with the following assumptions:

1. For each (i, j) ∈ E, τij > 0.

2. For each (i, j) ∈ E, there exists (j, i) ∈ E such that τij = τji.

If for an arc (i, j), there is no arc (j, i) in the network, we can assume the existence of
(j, i) with uij = 0 without loss of generality.

Given a special node d called the depot and a time horizon θ, we consider a situation in
which we have to identify a d–s path P of transit time not exceeding θ0 (i.e. τ(P) ≤ θ0)
such that the dynamic flow is maximized allowing arc reversals except the arcs in P .

The problem is modeled as:

min −θ


∑

j∈V +
s

xsj −
∑

j∈V −s

xjs


+

∑

(i,j)∈E
τijxij (39)

subject to:

∑

j∈V +
i

yij −
∑

j∈V −i

yji =





−1 if i = s

0 if i ∈ V \ {s, d}
1 if i = d

(39a)

yij ≤ uij,∀(i, j) ∈ E (39b)
∑

j∈V +
i

xij −
∑

j∈V −i

xji = 0,∀i ∈ V \ {s, t} (39c)

0 ≤ xij ≤ (1− yij)uij + (1− yji)uji,∀(i, j) ∈ E (39d)
∑

(i,j)∈E
τijyij ≤ θ0 (39e)

yij ∈ {0, 1},∀(i, j) ∈ E (39f)

The objective (39) maximizes the dynamic flow with the time horizon θ. Constraints
(39a) specify a d–s path. The binary variable yij = 1 if (i, j) is selected for the path.
Constraints (39b) allow only the arcs with positive capacity to be on the path chosen.
Constraints (39c) enforce flow conservation at the intermediate nodes. Constraints (39d)
limit the flow on (i, j) by (i) its capacity uij if (j, i) is chosen by the path, (ii) the
capacity uji if (i, j) itself is chosen for the path, and (iii) uij + uji if neither (i, j) nor
(j, i) is chosen for the path. The constraint (39e) bound the transit time on the path
by θ0.

Remark 6.2. Some important notes on the above model are:

i) The path constraints (39a) may not always give a simple d–s path (as shown in

105

s

a b

d t

0
0

0

000
0

0

0

1

1

1

1

(a)

s

a b

d t

0

0
0

0

0

0

1
1

1

111

1

(b)

Figure 35: Path constraints (39a) may not yield a simple d–s path

Figure 35. We will accept such a path also in the solution because it always contains
a simple path to be used for practical purpose. Moreover, removal of cycles in such
a path does not deteriorate the objective function value.

ii) For feasibility, there must be at least one d–s path with transit time θ0.

iii) The model is valid even if s in the constraints (39a) is replaced by any other node
in d′ ∈ V to save a d–d′ path.

iv) Each arc of the path saved by the above model will have capacity at least one.
However, if one needs a path with a capacity at least b ∈ Z>0, one can define

Uij =





1, b ≤ uij

0, b > uij

and replace the constraint (39b) by

yij ≤ Uij,∀(i, j) ∈ E (40)

This will force yij = 0 when b > uij . Consequently, the arcs with capacity less
than b will not be chosen for the saved path.

Theorem 6.4. Given τij, uij, θ ∈ Z≥0, there exists a solution of the problem (39), in

which xij ∈ Z≥0 ∀(i, j) ∈ E.

Proof. Choosing y to satisfy (39a), (39b), and (39f), the problem is converted to a
maximum dynamic flow problem in the auxiliary network of the network obtained by
removing a path from d to s. Since, the maximum dynamic flow problem satisfying the
hypothesis has an integral solution, the result follows.

106

6.2.2 Saving a path minimizing the time horizon

Example 6.3. In Example 6.1, the minimum time of sending a flow of 57 units from s

to t allowing arc reversals is 10. If we save the path d–a–s, the minimum time increases
to 12.57. The corresponding times saving the available paths are given in the following
table.

Saved path (P) τ(P) Quickest time

P1: d–a–s 3 12.57

P2: d–t–a–s 7 12.57

P3: d–a–b–s 7 11.63

P4: d–t–b–s 8 11.25

P5: d–a–t–b–s 10 11.75

P6: d–t–a–b–s 11 16.20

The minimum time can be computed by removing the path considered and solving a
quickest flow problem allowing arc reversals in the resulting network. For the purpose
of solving the quickest flow problem with arc reversals, we need to solve the quickest
flow problem in the auxiliary network and decompose the static flow thus obtained in
the chains and cycles and remove the cycle-flows. Analogous to Theorem 6.1, we have,

Theorem 6.5. If every cycle in N has a positive transit time, an optimal flow in the

solution of the quickest flow problem (18) does not have a positive flow in a cycle.

Proof. Let x be a static flow s–t flow N . Suppose that

θ(x) =
Q+

∑
(i,j)∈E τijxij

v(x)

Let x∗ be the optimal solution of (18), on page 22, with v = v(x∗) = v∗ and the flow
decomposition of x∗ have a positive flow in a cycle. Assume C to be the set of arcs
which form a cycle with value δ > 0. Define x1, x2 as in the proof of Theorem 6.1.
Then

θ(x∗) =
Q+

∑
(i,j)∈E τijx

∗
ij

v(x∗)

=
Q+

∑
(i,j)∈E τijx

1
ij + δ

∑
(i,j)∈E τij

v(x1)

>
Q+

∑
(i,j)∈E τijx

1
ij

v(x1)

107

contradicting the optimality of x∗.

An immediate corrollary is:

Corollary 6.6. Given τij > 0,∀(i, j) ∈ E, an optimal flow in the solution of the problem

(18) does not have a positive flow in a cycle.

Because of Theorem 3.1 and the Algorithm 1, analogus to Theorem 6.3, we have:

Theorem 6.7. In a network N = (V,E, u, τ, s, t) with a supply Q at s, let

i) for each (i, j) ∈ E, there is (j, i) ∈ E with τij = τji,

ii) for each (i, j) ∈ E, τij > 0.

Then a solution of the linear program

min
Q+

∑
(i,j)∈E τijxij

v
(41)

subject to

∑

j∈V +
i

xij −
∑

j∈V −i

xji =





v if i = s

−v if i = t

0 if i ∈ V \ {s, t}
(41a)

0 ≤ xij ≤ uij + uji,∀(i, j) ∈ E (41b)

corresponds to a solution of the quickest contraflow problem in which (i, j) reversed if

xji > uji.

A time-bounded path saving model minimizing the time horizon: With the
assumptions made in the path saving model (39), except that in stead of the time
horizon θ, a supply of Q flow units is given at the source, and the objective is to
minimize the time-horizon of the dynamic flow with value Q. We model the problem
as:

min
Q+

∑
(i,j)∈E τijxij

v
(42)

subject to:

∑

j∈V +
i

yij −
∑

j∈V −i

yji =





−1 if i = s

0 if i ∈ V \ {s, d}
1 if i = d

(42a)

108

yij ≤ uij, ∀(i, j) ∈ E (42b)

∑

j∈V +
i

xij −
∑

j∈V −i

xji =





v if i = s

0 if i ∈ V \ {s, t}
−v if i = t

(42c)

0 ≤ xij ≤ (1− yij)uij + (1− yji)uji,∀(i, j) ∈ E (42d)
∑

(i,j)∈E
τijyij ≤ θ0 (42e)

yij ∈ {0, 1}, ,∀(i, j) ∈ E (42f)

With an assumption that there is at least one directed s–t path of a finite transit time, we
can linearize the objective by putting

1

v
= ω,

xij
v

= ξij

so that (42) becomes Qω +
∑

(i,j)∈E τijξij , and the constraints (42c), (42d) become

∑

j∈V +
i

ξij −
∑

j∈V −i

ξji =





1 if i = s

0 if i ∈ V \ {s, t}
−1 if i = t

(42g)

0 ≤ ξij ≤ (1− yij)ωuij + (1− yji)ωuji,∀(i, j) ∈ E. (42h)

Further, using the idea given in Torres (1990), we put (1 − yij)ω = ζij in (42h) so that
we get the following linear constraints, ∀(i, j) ∈ E.

ζij ≥ ω − Uyij (42i)

ζij ≥ L(1− yij) (42j)

ζij ≤ ω − Lyij (42k)

ζij ≤ U(1− yij) (42l)

where U and L are, respectively, an upper bound and a lower bound of ω. Assuming Q
to be a positive integer, and there is at least one s–t path with a finite transit time, the
value of v is at least 1, and hence 0 < ω ≤ 1. With this assumptions, we replace L by
0, U by 1, and the problem can be stated as:

min Qω +
∑

(i,j)∈E
τijξij (43)

109

subject to:

∑

j∈V +
i

yij −
∑

j∈V −i

yji =





−1 if i = s

0 if i ∈ V \ {s, d}
1 if i = d

(43a)

yij ≤ uij, ∀(i, j) ∈ E (43b)

∑

j∈V +
i

ξij −
∑

j∈V −i

ξji =





1 if i = s

0 if i ∈ V \ {s, t}
−1 if i = t

(43c)

0 ≤ ξij ≤ ζijuij + ζjiuji,∀(i, j) ∈ E (43d)

0 ≤ ζij ≤ ω,∀(i, j) ∈ E (43e)

ω − yij ≤ ζij ≤ 1− yij,∀(i, j) ∈ E (43f)
∑

(i,j)∈E
τijyij ≤ θ0 (43g)

yij ∈ {0, 1},∀(i, j) ∈ E (43h)

According to Lin and Jaillet (2015), the quickest flow problem has an integer optimal
solution if the inputs are integral. Hence, analogous to Theorem 6.4, we have

Theorem 6.8. Given τij, uij, Q ∈ Z≥0, there exists a solution of the problem (42), in

which xij ∈ Z≥0 ∀(i, j) ∈ E.

The problems (39), and (43) are mixed integer linear programs. Various methods, e.g.
branch-and-bound, branch-and-cut, branch-and-price algorithms are available for
solving such problems. Various commercial and non-commercial software solvers are
available to implement the algorithms. One such implementation is presented in the
following section.

6.2.3 Case Illustration

We consider a road network of Kathmandu inside Ring Road considering only the major
road-segments (shown in Figure 36). The network consists of 44 nodes, and 132 arcs.
We take Pashupati Nath region as a source, where a large gathering of people takes
place in various religious occasions, and Tribhuvan University region as a sink, where
there is a sufficient open space. For a car-based evacuation planning, we assume the
capacity of each segment from 2 cars per second to 4 cars per second according to the
width of the segment. The travel time to traverse the segment is taken as provided by
Google Maps data. We consider node 24 as the depot node d which adjoins Tundikhel
region from where medical facilities, support from army, etc. can be sent towards the

110

Figure 36: Time-bounded saved path, case illustration

source. Considering a time horizon θ = 1 hour and θ0 = 30 minutes, we find that 21000

cars can be evacuated without saving the path 24–25–26–21–20–33–13–12–source. If
we consider θ = 2 hours and θ0 = 1 hour, the corresponding results are are 71400 and
24–25–26–35–15–16–37–11–12–source respectively.

With Q = 100000 and θ0 = 30 minutes, the quickest time is found to be 154 minutes
with the saved path 24–25–26–35–15–14–13–12–source. With Q = 50000, θ0 = 30

minutes, the corresponding results are 94.52 minutes and 24–25–26–21–34–33–14–13–
12–source.

Using CPLEX 12.6.3 solver, the solutions has been obtained within 0.1 seconds in a
computer with Intel Core i5, 2.30 GH processor, 4GB RAM, and 64-bit Windows
operating system.

6.3 A Bicriteria Optimization Approach

6.3.1 Multicriteria optimization

Let ψi : X → R, i = 1, · · · , p, then a problem of the form

min (ψ1(x), · · · , ψp(x))

subject to x ∈ X
(44)

111

where X is called the feasible set. The minimization (min) has not be considered in the
ordinary sense because elements of Rp are not ordered in the sense the elements in R
are ordered. We define some special orders in Rp as follows.

Componentwise order in Rp: For a = (a1, · · · , ap), b = (b1, · · · , bp) ∈ Rp, the
following orders in Rp are defined.

i) a 5 b⇔ a1 ≤ b1, · · · , ap ≤ bp (weak componentwise order)

ii) a ≤ b⇔ a1 ≤ b1, · · · , ap ≤ bp, a 6= b (componentwise order)

iii) a < b⇔ a1 < b1, · · · , ap < bp (strict componentwise order)

Pareto optimality, efficiency, weak efficiency: Let ψ = (ψ1, · · · , ψp). For a, b ∈ X ,
if ψ(a) ≤ ψ(b), we say that a dominates b, and ψ(a) dominates ψ(b). A feasible solution
a∗ ∈ X is called Pareto optimal or efficient if there is no a ∈ X that dominates a∗. In
other words, a∗ is Pareto optimal if there is no a ∈ X satisfying ψ(a) ≤ ψ(a∗). A
feasible solution aw ∈ X is called weakly Pareto optimal (weakly efficient) if there is
no a ∈ X satisfying ψ(a) < ψ(aw).

It is obvious that an efficient solution is also a weakly efficient solution, but the converse
is not true. The following result is important to find the solutions of the bi-criteria model
developed in this work.

Theorem 6.9 (Ehrgott (2005)). An optimal solution of the problem

min
x∈X

ψj(x)

subject to ψk(x) ≤ εk, k = 1, · · · , p k 6= j
(45)

where ε ∈ Rp, is a weakly efficient solution of the problem (44).

6.3.2 Bicriteria path-saving model maximizing dynamic contraflow

Example 6.4. In Example 6.1, if we consider only the maximum flow value, the path
P4 is the optimal path with a maximum flow of value 47. But sometimes, the length of
the path also matters, e.g. to move the facility the fastest. The possible candidate for
this option is the path P1. Considering the objectives of minimizing the path length and
maximizing flow value, the non-dominated paths are P1, P3, and P4.

Motivated by above example, we consider a bicriteria problem that minimizes the
length of the saved path and maximizes the dynamic flow allowing arc reversals in the
remaining network (Nath, Dempe, & Dhamala, 2021).

Consider a network N = (V,E, u, τ, s, t) with a depot node d, in which (j, i) ∈ A

112

whenever (i, j) ∈ A, and τij = τji. We formulate the problem of identification of the
shortest path maximizing the dynamic flow with arc reversals as a bicriteria optimization
problem on the basis of the famous shortest path problem formulation and Theorem 6.3.

Assuming that
ψ1 =

∑

(i,j)∈E
τijyij

and

ψ2 = −θ


∑

j∈V +
s

xsj −
∑

j∈V −s

xjs


+

∑

(i,j)∈E
τijxij,

the problem is formulated as:
min (ψ1, ψ2) (46)

subject to:

∑

j∈V +
i

yij −
∑

j∈V −i

yji =





−1 if i = s

0 if i ∈ V \ {s, d}
1 if i = d

(46a)

yij ≤ uij,∀(i, j) ∈ E (46b)
∑

j∈V +
i

xij −
∑

j∈V −i

xji = 0,∀i ∈ V \ {s, t} (46c)

0 ≤ xij ≤ (1− yij)uij + (1− yji)uji, ∀(i, j) ∈ E (46d)

yij ∈ {0, 1}, ∀(i, j) ∈ E (46e)

The objective (46) minimizes the path length and the negative of the value of the
dynamic flow with path reversal. Equations (46a) are the constraints to save a path.
Constraints (46b) ensure that the path chosen contains only the arcs with positive
capacity. Constraints (46c) are flow-conservation constraints, and constraints (46d)
limit the static flow rate on an arc (i, j) by uij if (j, i) is in the saved path, by uji if
(i, j) is in the saved path, and by uij + uji otherwise. For brevity, we refer to the model
as BPMDC.

6.3.3 Solution strategy

To solve the problem, we apply the idea given in Theorem 6.9 to convert the problem
into an ε-constrained mixed binary integer linear program which gives a weakly Pareto
optimal (weakly efficient) solution for each ε ∈ R and then develop a procedure that
gives Pareto optimal solutions whenever the transit time function is positive integer-
valued. We formulate the ε-constrained problem (ε ∈ R) as:

113

min −θ


∑

j∈V +
s

xsj −
∑

j∈V −s

xjs


+

∑

(i,j)∈E
τijxij (47)

subject to:

∑

j∈V +
i

yij −
∑

j∈V −i

yji =





−1 if i = s

0 if i ∈ V \ {s, d}
1 if i = d

(47a)

yij ≤ uij,∀(i, j) ∈ E (47b)
∑

j∈V +
i

xij −
∑

j∈V −i

xji = 0,∀i ∈ V \ {s, t} (47c)

0 ≤ xij ≤ (1− yij)uij + (1− yji)uji,∀(i, j) ∈ E (47d)

yij ∈ {0, 1}, ,∀(i, j) ∈ E (47e)
∑

(i,j)∈E
τijyij ≤ ε. (47f)

In Algorithm 20, we propose a procedure which not only lists out the paths
corresponding to the non-dominated values of (ψ1, ψ2) but also gives the
corresponding static flow that can be temporally repeated to get the corresponding
maximum dynamic flow.

Algorithm 20: Non-dominated solutions of BPMDC
Input : N = (V,E, u, τ, s, t) with a depot d such that uij ∈ Z≥0, τij ∈ Z>0

Output: Set of non-dominated saved paths with the maximum dynamic contraflow
1 εmin = length of a shortest d–s path, εmax =

∑
(i,j)∈E τij

2 LIST = {}
3 ψ0

2 = −∞
4 ε1 = εmax + 1
5 k = 1
6 while εk > εmin do
7 Zk = solution of problem (47) for ε = εk − 1
8 add Zk to LIST
9 ψk1 = ψ1(Zk), ψk2 = ψ2(Zk)

10 if ψk2 = ψk−12 then
11 remove Zk−1 from LIST
12 end
13 εk+1 = ψk1
14 k = k + 1

15 end
16 For each Z = {(xij)(i,j)∈E, (yij)(i,j)∈E} ∈ LIST , construct the path using (i, j)

with yij = 1 and the dynamic flow by temporal repetion of x.

114

Theorem 6.10. Given τij ∈ Z>0, let X be the feasible set of BPMDC (46). Let YD be

the set of all non-dominated points in ψ(X), and S = {(ψ1(Z), ψ2(Z)) : Z ∈ LIST},
then S = YD.

Proof. Because of Theorem 6.9, (ψ1(Zk), ψ2(Zk)) is weakly non-dominated in ψ(X)

for each Zk given in Line 7 of Algorithm 20. Because ε decreases by at least 1 in each
iteration, the sequence {ψ1(Zk)} is a strictly decreasing sequence. So because of Lines
10 and 11, (ψ1(Zk), ψ2(Zk)) ∈ YD.

Conversely, let Z∗ ∈ X such that (ψ1(Z
∗), ψ2(Z

∗)) ∈ YD and (ψ1(Z
∗), ψ2(Z

∗)) /∈ S.
Clearly, the value of ψ1 (a d–s path length) is bounded above by

∑
(i,j)∈E τij and below

by the length of the shortest path. Thus, if LIST = {Z1, · · · , Zp}, there exists l such
that ψ1(Zl) > ψ1(Z

∗) > ψ1(Zl+1) and ψ2(Zl) < ψ2(Z
∗) < ψ2(Zl+1) where 1 ≤ l < p.

This implies that there eixsts a d–s path of length ψ1(Z
∗) in N saving which gives a

maximum dynamic contraflow value −ψ2(Z
∗). So, putting ε = ψ1(Z

∗) in problem (47)
gives the minimum value of ψ2 as ψ2(Z

∗). This is a contradiction, because for such an
ε the minimum value of ψ2 is ψ2(Zl+1) according to Algorithm 20

Although integrality restrictions are not put for the variable x in problem (46), if u, τ
are integral, one can guarantee the existence of solutions in which x is integral.

Theorem 6.11. Given uij ∈ Z≥0, τij ∈ Z>0, there exist solutions to problem (46) with

x integral.

Proof. Fixing yij to satisfy constraints (46a), (46e), the problem is equivalent to a
maximum dynamic flow problem in the auxiliary network resulting from the removal
of a d–s path. Since a maximum dynamic flow problem with integer inputs always has
an integral solution, the result follows.

The constraints (46a), (46e) are satisfied by a d–s path which may include cycles
(subtours). However, the paths in the solutions generated by Algorithm 20 do not
contain such cycles. Let us consider a path with a cycle. Removing the cycle decreases
the value of ψ1. However, it does not decrease the corresponding maximum dynamic
contraflow value because removal of the cycle frees capacities which can be used by
the flow. This leads to:

Theorem 6.12. The saved paths in the solution of problem (46) are simple.

6.3.4 Case illustration

For a case illustration, we consider Kathmandu road network inside the Ring Road
considering only the major road-segments (no. of nodes n = 44, no. of arcs m = 132).

115

It is the same network that we have considered in Section 6.2.3 where we have taken
node 24 as d.

Considering the time horizon of θ = 120 minutes, the non-dominated saved paths, their
lengths, and the corresponding maximum dynamic contraflow value are shown in the
following table.

Non-dominated path Path length (mins.) Flow value

24–25–26–35–15–14–13–12–0 27 71400
24–25–26–21–20–19–18–28–27–1–0 26 70320
24–25–26–21–20–19–18–28–27–0 19 70200
24–25–26–21–20–19–18–0 13 69960

Using the programming language Python 3.7 on a computer with Mac operating system
having 1.8 GHz dual-core Intel Core i5 processor and 8 GB RAM, the solutions are
obtained in less than a second. The solver used to solve the mixed integer program is
CBC (Coin-OR branch and cut).

6.3.5 Bicriteria path-saving model with quickest contraflow

Assuming that
ψ1 =

∑

(i,j)∈E
τijyij

and

ψ2 =
Q+

∑
(i,j)∈E τijxij

v
,

the problem of minimizing the path length and the quickest time of the the flow of value
Q can be formulated as:

min (ψ1, ψ2) (48)

subject to:

∑

j∈V +
i

yij −
∑

j∈V −i

yji =





−1 if i = s

0 if i ∈ V \ {s, d}
1 if i = d

(48a)

yij ≤ uij,∀(i, j) ∈ E (48b)

∑

j∈V +
i

xij −
∑

j∈V −i

xji =





v if i = s

0 if i ∈ V \ {s, t}
−v if i = t

(48c)

116

0 ≤ xij ≤ (1− yij)uij + (1− yji)uji,∀(i, j) ∈ E (48d)

yij ∈ {0, 1},∀(i, j) ∈ E. (48e)

The objective (48), minimizes the path length and the time horizon. Constraints (48a)
are the constraints for the saved path. Constraints (48b) ensure that the path chosen
contains only the arcs with positive capacity. Constraints (48c) are mass-balance
constraints, and constraints (48d) limit the static flow rate on an arc (i, j) by uij if (j, i)

is in the saved path, by uji if (i, j) is in the saved path, and by uij + uji otherwise. For
brevity, we refer to the model as BPQC.

Using the idea described to formulate problem (43), we can write the ε-constrained
problem associated with (48) as follows.

min ψ2 = Qω +
∑

(i,j)∈E
τijξij (49)

subject to:

∑

j∈V +
i

yij −
∑

j∈V −i

yji =





−1 if i = s

0 if i ∈ V \ {s, d}
1 if i = d

(49a)

yij ≤ uij, ∀(i, j) ∈ E (49b)

∑

j∈V +
i

ξij −
∑

j∈V −i

ξji =





1 if i = s

0 if i ∈ V \ {s, t}
−1 if i = t

(49c)

0 ≤ ξij ≤ ζijuij + ζjiuji,∀(i, j) ∈ E (49d)

0 ≤ ζij ≤ ω,∀(i, j) ∈ E (49e)

ω − yij ≤ ζij ≤ 1− yij,∀(i, j) ∈ E (49f)
∑

(i,j)∈E
τijyij ≤ ε (49g)

yij ∈ {0, 1}, ∀(i, j) ∈ E (49h)

We can use the procedure used in Algorithm 20, replacing −∞ in Line 3 by ∞, and
problem (47) in Line 7 by problem (49), to find the non-dominated solutions of BPQC
problem (48).

117

6.4 A Bilevel Programming Approach

6.4.1 Bilevel programming

A bilevel programming problem is an optimization problem in which one optimization
problem (called the lower level problem) is among the constraints of the other (called
the upper level problem). Partitioning the decision variables into two vectors x and y,
let the lower level problem be:

min
x
{f(x, y) : g(x, y) ≤ 0, h(x, y) = 0} (50)

where
f : Rm1×m2 → R, g : Rm1×m2 → Rp, h : Rm1×m2 → Rq,

g(x, y) = (g1(x, y), · · · gp(x, y))ᵀ , h(x, y) = (h1(x, y), · · · , hq(x, y))ᵀ .

Let Ψ : Rm2 → 2R
m1 be a set-valued mapping such that Ψ(y) denotes the solution set

of problem (50) for a fixed y ∈ Rm2 , then the upper level problem is:

min
x,y
{F (x, y) : G(x, y) ≤ 0, H(x, y) = 0, x ∈ Ψ(y)} (50a)

where
F : Rm1×m2 → R, G : Rm1×m2 → Rk, H : Rm1×m2 → Rl,

G(x, y) = (G1(x, y), · · ·Gk(x, y))ᵀ , H(x, y) = (H1(x, y), · · · , Hl(x, y))ᵀ .

For details, we refer to Dempe (2002).

In game theoretic terms, a bilevel programming problem may be considered as a
Stackelberg leader-follower game, where the leader (representing upper level) makes
the first move by choosing y, and the follower (representing the lower level) reacts by
choosing x optimally. The leader selects, finally, such a y that together with x returned
by the follower, the upper level objective F (x, y) is optimized.

6.4.2 A bilevel path-saving model maximizing dynamic contraflow

Now, we formulate the problem of saving a path from a given node d to the source node
s maximizing the dynamic flow allowing arc reversals to fulfill a given objective based
on the path selection and resulting flow, as a bilevel programming problem. The upper
level selects a d–s path to be saved and lower level maximizes the dynamic flow value
on the resulting network allowing arc reversal (Nath, Pyakurel, Dempe, & Dhamala,
2019a).

118

The upper level problem is:
min F (x, y) (51)

subject to:

∑

j∈V +
i

yij −
∑

j∈V −i

yji =





−1 if i = s

0 if i ∈ V \ {s, d}
1 if i = d

(51a)

yij ≤ uij,∀(i, j) ∈ E (51b)

yij ∈ {0, 1},∀(i, j) ∈ E (51c)

where x = (xij)(i,j)∈E, y = (yij)(i,j)∈E , and x is obtained by solving the lower level
problem:

min −θ


∑

j∈V +
s

xsj −
∑

j∈V −s

xjs


+

∑

(i,j)∈E
τijxij (51d)

subject to:

∑

j∈V +
i

xij −
∑

j∈V −i

xji = 0,∀i ∈ V \ {s, t} (51e)

0 ≤ xij ≤ (1− yij)uij + (1− yji)uji,∀(i, j) ∈ E (51f)

The constraints (51a)–(51c) construct a d–s path with yij = 1 if (i, j) lies on the path.
The Constraints (51b) ensure that arcs with positive capacity can only be a part of the
path. The lower level problem is a maximum dynamic contraflow problem. The
Constraints (51f) bound the flow on an arc (i, j) by uij + uji if neither (i, j) nor (i, i) is
chosen for the path construction by the upper level. If (i, j) is chosen and (j, i) is not
chosen for path construction, flow on (i, j) is bounded by uji.

The constraints (51a)-(51c) construct a d–s path which may also contain subtours.
Unlike in the case of the shortest path problem with non-negative arc costs (lengths),
where a solution without subtours is always better than the corresponding solution with
subtours, a solution with a subtour may be better than than the one without a subtour in
our consideration of the problem. Example 6.5 illustrates this fact.

Example 6.5. Suppose that the upper level objective function is

F (x, y) =
∑

(i,j)∈E:uij 6=0

wij(yij − xij/uij) (52)

119

s

i

j

td

4,1,1

4,1,1

1,3,5

4,1,1
1,1,1

1,1,2

Figure 37: Path d–s along with a subtour i-j-i (the arc labels represent capacity, time,
weight)

where the weight wij ≥ 0 is the utility assigned to (i, j), as realized by the upper level,
so as to motivate flow along the arc.

Consider a network shown in Figure 37. The only path from d to s is d–s. Given a
time horizon θ = 5, without taking any subtour, the static flow which generates the
temporally repeated maximum dynamic s–t flow (allowing arc reversal) is given by:
xsi = xij = xjt = 4, xit = xji = xds = 0 and the variables related to the path are
yds = 1, ysi = yij = yjt = yit = yij = 0. The value of the objective (52) in this case is:

F1 =
∑

ij∈E:uij 6=0

wijyij −
∑

(i,j)∈E:uij 6=0

wijxij
uij

= 2− 3 = −1

If the subtour i–j–i is considered along with the path, xsi = xit = 1 and yds = yij =

yji = 1 with the objective function value

F2 =
∑

(i,j)∈E:uij 6=0

wijyij −
∑

(i,j)∈E:uij 6=0

wijxij
uij

= 4− (5 + 1/4) = −5/4 < F1.

However, there may be some objectives which can be improved by subtour elimination,
e.g. if the second part of the sum in the objective (52) involves the objective of the
lower level problem, the subtours may be removed automatically because elimination
of a subtour from the path chosen by the upper level, increases the capacity of the arcs
for the flow on the lower level.

If subtour elimination is necessary, we can ensure the elementarity of the path (avoid
subtours) including the following constraints in the upper level (Drexl & Irnich, 2014;

120

Bui, Deville, & Pham, 2016; Taccari, 2016).

∑

(i,j)∈E(S)

yij ≤
∑

i∈S\{k}

∑

j∈V +
i

yij ∀k ∈ S,∀S ⊆ V \ {s, d}, |S| ≥ 2 (53a)

yid = 0,∀i ∈ V −d (53b)

ysj = 0,∀j ∈ V +
s (53c)

where E(S) denotes the set of arcs with both the ends in S. Known as generalized
cut-set (GCS) inequalities, these inequalities increase the number of constraints by
O(n2n). Other techniques with polynomial number of additional variables and
additional constraints can also be found in Taccari (2016). For example, adding (53b),
(53c) and the following constraints

πi − πj + nyij ≤ n− 1, ∀(i, j) ∈ E (54)

in the upper level (see also Bui et al. (2016)), the number of additional variables πi(i =

1, · · · , n) is O(n), and that of additional constraints is O(m). However, it is shown
in the literature that the computational performance of GCS inequalities is better than
other formulations in solving the shortest elementary path problem.

6.4.3 Solution strategies

We present two approaches to solve the problem. One uses the idea of Stackelberg game
along with the maximum dynamic contraflow algorithm, particularly useful when one
can get all the paths form d to s in a desired time, and the other converts the bilevel
program to a single-level mixed binary integer linear program so that one can use the
algorithms to solve mixed-integer programming problems.

A Naïve Algorithm: A straight-forward procedure to solve the problem is presented
in Algorithm 21. The algorithm iteratively chooses a d–s path and uses maximum
dynamic contraflow algorithm (see Section 3.2.1) in the network formed by excluding
the path and calculates the objective function value. The output is the path which gives
the best objective function value, along with the related flow.

KKT approach: A common approach to solve a bilevel programming problem is to
transform it into a single level optimization problem replacing the lower level problem
by its Karush-Kuhn-Tucker (KKT) conditions. This results into what is known as a
mathematical program with equilibrium or complementarity constraints (MPEC or
MPCC) (see Luo, Pang, and Ralph (1996)).

121

Algorithm 21: Naïve algorithm
Input : Directed network N = (V,E, u, τ, s, t) with a depot node d, and a time

horizon θ

1 V alOBJ =∞
2 LIST = list of simple paths from d to s without zero capacity arcs

3 for P in LIST do

4 Construct the auxiliary network N ′ excluding the arcs in P

5 Calculate the static flow x corresponding to the maximum dynamic flow on N ′

6 ValnewOBJ = value of the objective function with y-values corresponding to P and

x from Line 5

7 If ValnewOBJ < ValOBJ , then P ∗ = P, x∗ = x

8 Retain the network

9 end

10 Return P ∗, x∗

Consider the Lagrangian

Lg(x, y, λ, µ) = −θ


∑

j∈V +
s

xsj −
∑

j∈V −s

xjs


+

∑

(i,j)∈E
τijxij

+
∑

i∈V \{s,d}
λi


∑

j∈V +
i

xij −
∑

j∈V −i

xji




+
∑

(i,j)∈E
µij [xij − (1− yij)uij − (1− yji)uji]

The KKT conditions for the lower label problem are (51e), (51f) along with

λi − λj + µij ≥ −τij, ∀(i, j) ∈ E (55a)

µij [xij − (1− yij)uij − (1− yji)uji)] = 0, ∀(i, j) ∈ E (55b)

µij ≥ 0, ∀(i, j) ∈ E (55c)

λi ∈ R, ∀i ∈ V \ {s, t} (55d)

Although there is no λ associated with s and t, the inequalities (55a) are valid if we put
λs = −θ and λt = 0.

In what follows, we write the upper level constraints as ULC. Thus the single-level
problem corresponding to the bilevel problem is the problem (51) subject to ULC,
(51e), (51f), (55a)–(55d), which is a mixed integer non-linear optimization problem.

122

The nonlinearity is because of the constraints (55b), and solution of this problem
would give local optimal solutions. However, since the Mangasarian-Fromovitz
constraint qualifications are violated at every feasible point of this problem, the
nonlinear optimization solvers may fail to obtain a local optimal solution. This can be
overcome by solving the following relaxation of the problem for ε ↓ 0 (Dempe, 2019).

min F (x, y) (56)

subject to

ULC (56a)
∑

j∈A+
i

xij −
∑

j∈A−i

xji = 0,∀i ∈ V \ {s, t} (56b)

0 ≤ xij ≤ (1− yij)uij + (1− yji)uji,∀(i, j) ∈ E (56c)

λi − λj + µij ≥ −τij, ∀(i, j) ∈ E, i 6= s, j 6= t (56d)

−λj + µsj ≥ θ − τsj, ∀j ∈ V +
s (56e)

λi + µij ≥ −τij, ∀i ∈ V −t , (56f)

µij ≥ 0, ∀(i, j) ∈ E (56g)

ε ≥ µij [xij − (1− yij)uij − (1− yji)uji)] , ∀(i, j) ∈ E(56h)

Solving problem (56), we get the local optimal solutions. But in our consideration of the
problem, a global solution is desirable. To get a global optimal solution, we can employ,
what is popularly known as, a bigM method. Choosing large enoughM (Fortuny-Amat
& McCarl, 1981; Pineda, Bylling, & Morales, 2018), we can replace (55b) by

−xij + (1− yij)uij + (1− yji)uji ≤ M ′zij,∀(i, j) ∈ E (57a)

µij ≤ (1− zij)M ′′,∀(i, j) ∈ E (57b)

Let U = max{uij : (i, j) ∈ E}. Then the maximum possible value of (1 − yij)uij +

(1− yji)uji is 2U . Since the minimum possible value of xij is zero, we can safely take
M ′ as 2U . In this way, we can get the global optimal solution of the problem by solving
the following formulation (58), with large enough M .

min F (x, y) (58)

subject to

ULC (58a)

123

∑

j∈V +
i

xij −
∑

j∈V −i

xji = 0,∀i ∈ V \ {s, t} (58b)

0 ≤ xij ≤ (1− yij)uij + (1− yji)uji,∀(i, j) ∈ E (58c)

λi − λj + µij ≥ −τij, ∀(i, j) ∈ E, i 6= s, j 6= t (58d)

−λj + µsj ≥ θ − τsj, ∀j ∈ V +
s (58e)

λi + µid ≥ −τid, ∀i ∈ V −t , (58f)

2Uzij ≥ −xij + (1− yij)uij + (1− yji)uji,∀(i, j) ∈ E (58g)

µij ≤ (1− zij)M,∀(i, j) ∈ E (58h)

µij ≥ 0, ∀(i, j) ∈ E (58i)

zij ∈ {0, 1}, ∀(i, j) ∈ E (58j)

But caution has to be taken choosing a big M when we use a solver software to solve
the problem, because very low or very high values of M lead to infeasible, suboptimal,
and numerically unstable solutions.

A method described in Pineda et al. (2018), to solve linear bilevel optimization
problems, may be adapted to tune the values of big M . The idea is to use the local
optimal solutions of the relaxed problem (56) to adjust the value of M . The procedure
is presented in Algorithm 22.

Algorithm 22: Tuning big M
1 Initialize ε > 0, δ > 1, H > 1, and the number of iterations K ∈ N.
2 Set initial number of iterations k = 0.
3 Solve problem (56) without (56h). Let the value of the upper level variable

y = (ye)e∈A be y0 and the value of the dual variable µ = (µe)e∈A be µ0.
4 Find the optimal flow x = x0 using the solution y = y0 of the upper level.
5 while k < K do
6 Increase k by 1. Solve problem (56) by taking x = xk−1, y = yk−1, µ = µk−1 as

an initial solution. Repace ε by ε/δ.
7 end
8 M = H ×max{(µk)ij : (i, j) ∈ E}.
9 Return M .

The big M in (58h) is replaced by the value returned by Algorithm 22, and a mixed
integer programming solver is used to solve problem (58). We may take zij = 0 if
−xij + (1− yij)uij + (1− yji) > 0 and zij = 1 if µij > 0 to initialize the variable z.

124

6.4.4 Identification of reversed arcs

From the solution of the aforementioned problem, we can also determine the arcs which
are to be reversed. This can be done with the help of the optimal flow x∗. As we
know that x∗ may violate feasibility with respect to the capacities of the network N , i.e.
x∗ij may exceed uij for some (i, j). This implies that the opposite arc (j, i) has to be
reversed to increase the capacity in the direction of (i, j). The procedure is mentioned
in Algorithm 23.

Algorithm 23: Identifying reversed arcs

1 Identify the optimal path P ∗ and the static flow x∗ corresponding to the dynamic

flow

2 R = {(j, i) ∈ E \ P : x∗ij > uij}
3 return R

Because of our assumption that τij > 0 for each (i, j) ∈ E, there will be no positive
flow in cycles in the flow decomposition of x∗ according to Corollary 6.2 . So, we do
not require to decompose x∗ into paths and cycles in Algorithm 23.

125

CHAPTER 7

SUMMARY AND CONCLUSIONS

In this chapter, we summarize the results, mention the limitations of the study, and
conclude the work with suggesting some further research directions.

7.1 Summary of the Results

Because of the large size of the network to be dealt with in evacuation optimization,
faster algorithms are always desirable. Improving the existing algorithm (requiring
several calls of a minimum cost flow algorithm) to solve the quickest flow problem, we
propose an algorithm that runs within a strongly polynomial time complexity of a
minimum cost flow problem (Section 3.2.2). Computational results in Section 3.2.3
show that the decrease in the quickest time increases with the increase in the number of
evacuee-cars. When the number of cars reaches 50000, the evacuation time is found to
decrease by 42% because of contraflow configuration.

Realizing the need of reversing the direction of the traffic flow in the road segments up
to the necessary capacity only, we introduce the partial contraflow approach
(Section 3.3) and propose algorithms to solve the maximum static partial contraflow
problem, maximum dynamic partial contraflow problem, quickest partial contraflow
problem. All the algorithms run in strongly polynomial time.

When the direction of the traffic flow in a road segment is reversed, the travel time of
the corresponding arc may be different than that of the original orientation, we propose
a method of constructing an auxiliary network in Section 3.4 so that the procedures in
the corresponding algorithms can be adapted to solve the problems in this new setting.

In contrast to the networks defined to be consisting of nodes and arcs with some
attributes, abstract networks (which generalize the concept of networks) are defined to
consist of elements (arcs or nodes) and paths (an ordered set of elements). We extend
the concept of the partial contraflow approach in the abstract networks in Section 3.5 to
construct polynomial-time algorithms to solve abstract maximum partial static partial

126

contraflow and abstract maximum dynamic partial contraflow problems.

Using the bow network construction, available in the literature, to solve the quickest
flow problem with inflow-dependent transit times approximately, we design a strongly
polynomial (2 + ε)-approximation algorithm to solve the corresponding contraflow/
partial contraflow problem in Section 4.3. Using BPR function and Davidson’s function
as inflow-dependent transit time functions, we test the performance of the algorithm in
a Kathmandu road network. The ratio of the approximate quickest time to the optimal
quickest time is found to be at most 1.098. It is also observed that if the average of the
inflow-dependent transit time on an arc is considered to be the constant transit time, the
quickest time with inflow-dependent transit times is almost equal to the quickest time
with constant transit times. In Section 4.5, we construct corresponding algorithm for
the case of density-dependent transit times.

In cases when a given set of facilities are to be assigned to a given set of arcs so that
the capacities of the corresponding arcs are reduced resulting in an increase in the
quickest time, we introduce the quickest FlowLoc problem in Section 5.3. We show
that the single facility case of the problem can be solved in strongly polynomial time
with the help of an algorithm that iterates over all the arcs in the set of arcs to which
the facilities can be assigned. Proving that the multi-facility case is NP-hard, we
propose two heuristics whose performance is tested in Section 5.3.3 considering a case
of the Kathmandu road network. The faster heuristic has an average optimality gap of
3.48% and an average running time of 0.17 seconds. The corresponding values for the
slower heuristic are 0.18% and 1.02 seconds. Algorithms to solve the quickest
FlowLoc problem with a possibility of arc reversals are designed in Section 5.4.

To choose a single shelter location, when multiple choices for the shelters are
available, we introduce the sink location problem as MaxStatic, MaxDynamic,
Quickest sink location problems depending on the objective of maximizing the static
flow, dynamic flow or minimizing the evacuation time in Section 5.5. We prove that
such a problem can be solved in strongly polynomial time and suggest algorithms for
the corresponding type of shelter location with arc reversals also.

By reversing the direction of the traffic flow towards the sink, a contraflow
configuration may obstruct the paths towards the source. This hampers the movement
of facilities, if required, towards the source. In Chapter 6, we introduce a path-saving
approach. Saving a path not exceeding a given time of travel, we model the problem of
maximizing the dynamic contraflow as a mixed binary integer linear programming
problem. The analogous problem of minimizing the evacuation time is a mixed binary
integer programming problem with a fractional objective. We suggest a linearization
strategy so that the algorithms to solve the mixed-integer linear programming problems

127

can be used. The solution, using available software solvers, considering a road network
of Kathmandu city (consisting of 44 nodes and 132 arcs) can be obtained within 0.1
seconds.

The problem of minimizing the path length and maximizing the dynamic contraflow
has been modeled as a bicriteria optimization problem (Section 6.3). A procedure
using ε-constrained method is constructed to obtain efficient solutions. The
computation considering the above-mentioned Kathmandu road network takes less
than a second to obtain efficient solutions. We also model the problem of minimizing
the path length and evacuation time as a bicriteria problem and construct a procedure
to solve it.

To choose a path to optimize a general objective, maximizing the dynamic contraflow
is modeled as a bilevel optimization problem (Section 6.4), in which the upper level
chooses a path and the lower level maximizes the dynamic contraflow depending on
the path-choice of the upper level. We use KKT approach to solve convert the problem
into a single level problem which is a mixed binary integer non-linear programming
problem. We describe linearizing strategy using a big M method with a procedure to
tune the big M to an appropriate value.

7.2 Conclusions

In this work, we have developed some models and algorithms to maximize the flow
(number of evacuees) or to minimize the time horizon of the flow (evacuation time
horizon). We have tested the computational performance of the designed algorithms
in most of the cases. Except for the path-saving models, the presented algorithms are
theoretically and practically efficient. The solution procedures in the path saving models
are also practically efficient in the network considered. The performance of the solution
procedure for the proposed bilevel path-saving model is yet to be tested.

The overall contribution of the thesis can be listed as follows.

1. To record unused capacities, the partial contraflow approach has been introduced
to reverse the direction of the traffic up to the necessary capacity.

2. Extension of contraflow/partial contraflow approach to networks with
orientation-dependent, inflow-dependent, and density-dependent transit times on
arcs has been done.

3. To find the optimal allocation of facilities to the arcs to find the minimum time
horizon of the evacuation of a given number of evacuees, the quickest FlowLoc
model has been introduced in a single-source-single-sink network. The solution

128

procedures with and without the contraflow approach have been designed.

4. Modeling of the problems to find the sink location from among a given set of
possible sink locations with an objective of maximizing the flow or minimizing
the time has been done. The complexity analysis of such problems with and
without contraflow has been done.

5. Since, the reversals of arcs towards the shelter in the contraflow approach may
obstruct paths towards the source, models to save a path to move facilities towards
the source have been introduced. A bicriteria approach and a bilevel approach
have also been used in the modeling.

6. The performance of most of the algorithms proposed has been tested by computer
programming implementations considering a part of the Kathmandu road network
as input.

However, the models have to be used keeping in mind the following limitations.

1. Except for the static flow cases, the dynamic flow cases are considered to be with
a single source and single sink.

2. In all the models considered, the units of flow have identical attributes.

3. The cost of management of traffic and the other management issues during an
evacuation are not incorporated in the models.

4. When applying contraflow approach, the lane reversal is done at the beginning of
evacuation and the direction of the traffic flow remains intact until the evacuation
is over.

5. The time required to reverse a lane is not considered.

7.3 Recommendations for Further Work

We have considered problems with arc reversals with the objective of maximizing the
flow value or minimizing the evacuation time. These problems can have multiple
solutions with the same objective value. This leads to the problem of finding the
maximum flow or minimum evacuation time by reversing the minimum number of arcs
or saving the maximum capacity.

To solve the single facility quickest FlowLoc problems or the sink location problems,
we have proposed algorithms that, at least in worst cases, iterate over all the feasible
locations. This proves that the corresponding problems can be solved in strongly
polynomial times. Moreover, the iterative algorithms can also be used to solve the
problems efficiently. However, it is still desirable to find algorithms with better running

129

time. Since our heuristic to solve the multi-facility quickest FlowLoc problem with a
better optimality gap solves the single facility case iteratively, the improvement of the
running time of the single facility case naturally improves the running time of the
heuristic. Moreover, the heuristics use some kind of greedy approach, there is room for
a better heuristic in terms of optimality gap. Further, for quickest FlowLoc we assume
in Section 5.2 that the number of available facilities does not exceed the total number
of facilities that have to be placed on the set L and the size of the facility does not
exceed the capacity of each arc in L, the corresponding problem lifting these
restrictions is a natural generalization of the problem.

For the solutions of path-saving models described in Chapter 6, we rely on the
algorithms of solving mixed-integer programming problems. The modifications of
these algorithms using the special structure of the underlying graph can also be a
direction of further research.

130

REFERENCES

Adhikari, I. M., & Dhamala, T. N. (2020). Minimum clearance time on the prioritized
integrated evacuation network. American Journal of Applied Mathematics, 8(4),
207–215.

Adhikari, I. M., Pyakurel, U., & Dhamala, T. N. (2020). An integrated solution
approach for the time minimization evacuation planning problem. International

Journal of Operation Research, 17(1), 27–39.
Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: theory, algorithms,

and applications. Prentice hall.
Ahuja, R. K., & Orlin, J. B. (1989). A fast and simple algorithm for the maximum flow

problem. Operations Research, 37(5), 748–759.
Ahuja, R. K., & Orlin, J. B. (1991). Distance-directed augmenting path algorithms

for maximum flow and parametric maximum flow problems. Naval Research

Logistics (NRL), 38(3), 413–430.
Ahuja, R. K., & Orlin, J. B. (1995). A capacity scaling algorithm for the constrained

maximum flow problem. Networks, 25(2), 89–98.
Akter, S., & Wamba, S. F. (2019). Big data and disaster management: a systematic

review and agenda for future research. Annals of Operations Research, 283(1-2),
939–959.

An, S., Cui, N., Li, X., & Ouyang, Y. (2013). Location planning for transit-based
evacuation under the risk of service disruptions. Transportation Research Part B:

Methodological, 54, 1–16.
Bish, D. R. (2011). Planning for a bus-based evacuation. OR spectrum, 33(3), 629–654.
Bui, Q. T., Deville, Y., & Pham, Q. D. (2016). Exact methods for solving the elementary

shortest and longest path problems. Annals of Operations Research, 244(2), 313–
348.

Burkard, R. E., Dlaska, K., & Klinz, B. (1993). The quickest flow problem. Zeitschrift

für Operations Research, 37(1), 31–58.
Caunhye, A. M., Nie, X., & Pokharel, S. (2012). Optimization models in emergency

logistics: A literature review. Socio-economic planning sciences, 46(1), 4–13.
Cova, T. J., & Johnson, J. P. (2003). A network flow model for lane-based evacuation

routing. Transportation research part A: Policy and Practice, 37(7), 579–604.

131

Dantzig, G. B. (1998). Linear programming and extensions (Vol. 48). Princeton
university press.

Dempe, S. (2002). Foundations of bilevel programming. Springer Science & Business
Media.

Dempe, S. (2019). Computing locally optimal solutions of the bilevel optimization
problem using the KKT approach. In International conference on mathematical

optimization theory and operations research (pp. 147–157).
Dhamala, T. N., Adhikari, I. M., Nath, H. N., & Pyakurel, U. (2018). Meaningfulness

of OR models and solution strategies for emergency planning. In Living under

the threat of earthquakes (pp. 175–194). Springer.
Dhamala, T. N., & Pyakurel, U. (2013). Earliest arrival contraflow problem on series-

parallel graphs. International Journal of Operations Research, 10(1), 1–13.
Dhamala, T. N., Pyakurel, U., & Dempe, S. (2018). A critical survey on the network

optimization algorithms for evacuation planning problems. International Journal

of Operations Research, 15(3), 101–133.
DHS. (2004). National response plan. U.S. Department of Homeland Security.
Dhungana, R. C., & Dhamala, T. N. (2019). Maximum FlowLoc problems with network

reconfiguration. International Journal of Operations Research, 16(1), 13–26.
Dhungana, R. C., & Dhamala, T. N. (2020). Flow improvement in evacuation planning

with budget constrained switching costs. International Journal of Mathematics

and Mathematical Sciences, 2020.
Dhungana, R. C., Pyakurel, U., & Dhamala, T. N. (2018). Abstract contraflow

models and solution procedures for evacuation planning. Journal of Mathematics

Research, 10(4), 89–100.
Drexl, M., & Irnich, S. (2014). Solving elementary shortest-path problems as mixed-

integer programs. OR spectrum, 36(2), 281–296.
Edmonds, J., & Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency

for network flow problems. Journal of the ACM (JACM), 19(2), 248–264.
Ehrgott, M. (2005). Multicriteria optimization (Vol. 491). Springer Science & Business

Media.
Fleischer, L., & Tardos, É. (1998). Efficient continuous-time dynamic network flow

algorithms. Operations Research Letters, 23(3), 71–80.
Ford, L. R., & Fulkerson, D. R. (1958). Constructing maximal dynamic flows from

static flows. Operations Research, 6, 419–433.
Ford, L. R., & Fulkerson, D. R. (1962). Flows in networks. New Jersey: Princeton

University Press.
Fortuny-Amat, J., & McCarl, B. (1981). A representation and economic interpretation

of a two-level programming problem. Journal of the Operational Research

Society, 32(9), 783–792.

132

Goerigk, M., Deghdak, K., & Heßler, P. (2014). A comprehensive evacuation planning
model and genetic soution algorithm. Transportation Research, Part E, 71, 82–
97.

Goerigk, M., Grün, B., & Heßler, P. (2013). Branch and bound algorithms for the bus
evacuation problem. Computers & Operations Research, 40(12), 3010–3020.

Goerigk, M., Grün, B., & Heßler, P. (2014). Combining bus evacuation with location
decisions: A branch-and-price approach. Transportation Research Procedia, 2,
783–791.

Goldberg, A. V. (1985). A new max-flow algorithm. Laboratory for Computer Science,
Massachusetts Institute of Technology.

Goldberg, A. V., & Tarjan, R. (1987). Solving minimum-cost flow problems
by successive approximation. In Proceedings of the nineteenth annual ACM

symposium on theory of computing (pp. 7–18).
Goldberg, A. V., & Tarjan, R. E. (1988). A new approach to the maximum-flow

problem. Journal of the ACM (JACM), 35(4), 921–940.
Goldberg, A. V., & Tarjan, R. E. (1989). Finding minimum-cost circulations by

canceling negative cycles. Journal of the ACM (JACM), 36(4), 873–886.
Hamacher, H. W., Heller, S., & Rupp, B. (2013). Flow location (FlowLoc) problems:

dynamic network flow and location models for evacuation planning. Annals of

Operations Research, 207(1), 161–180.
Hamacher, H. W., & Tjandra, S. A. (2001). Mathematical modelling of

evacuation problems: A state of art. Fraunhofer-Institut für Techno-und
Wirtschaftsmathematik, Fraunhofer (ITWM).

Heller, S., & Hamacher, H. W. (2011). The multi terminal q-FlowLoc problem: A
heuristic. In International conference on network optimization (pp. 523–528).

Hu, Y., Zhao, X., Liu, J., Liang, B., & Ma, C. (2020). An efficient
algorithm for solving minimum cost flow problem with complementarity
slack conditions. Mathematical Problems in Engineering. doi:
https://doi.org/10.1155/2020/2439265

Jewell, W. (1958). Optimal flow through networks interim technical report 8.
Massachusetts Institute of Technology, Cambridge, MA.

Jia, H., Ordóñez, F., & Dessouky, M. (2007). A modeling framework for facility
location of medical services for large-scale emergencies. IIE Transactions, 39(1),
41–55.

Kappmeier, J.-P. W. (2015). Generalizations of flows over time with applications in

evacuation optimization (PhD thesis). TU Berlin.
Kappmeier, J.-P. W., Matuschke, J., & Peis, B. (2014). Abstract flows over time: A first

step towards solving dynamic packing problems. Theoretical Computer Science,
544, 74–83.

133

Karzanov, A. V. (1974). Determining the maximal flow in a network by the method of
preflows. In Soviet math. doklady (Vol. 15, pp. 434–437).

Kim, S., Shekhar, S., & Min, M. (2008). Contraflow transportation network
reconfiguration for evacuation route planning. IEEE Transactions on Knowledge

and Data Engineering, 20(8), 1115–1129.
Klein, M. (1967). A primal method for minimal cost flows with applications to the

assignment and transportation problems. Management Science, 14(3), 205–220.
Köhler, E., Langkau, K., & Skutella, M. (2002). Time-expanded graphs for flow-

dependent transit times. In European symposium on algorithms (pp. 599–611).
Köhler, E., & Skutella, M. (2005). Flows over time with load-dependent transit times.

SIAM Journal on Optimization, 15(4), 1185–1202.
Kongsomsaksakul, S., Yang, C., & Chen, A. (2005). Shelter location-allocation

model for flood evacuation planning. Journal of the Eastern Asia Society for

Transportation Studies, 6, 4237–4252.
Kotsireas, I. S., Nagurney, A., & Pardalos, P. M. (2015). Dynamics of disasters-key

concepts, models, algorithms, and insights. Springer Proceedings in Mathematics

and Statistics.
Kulshrestha, A., Lou, Y., & Yin, Y. (2014). Pick-up locations and bus allocation for

transit-based evacuation planning with demand uncertainty. Journal of Advanced

Transportation, 48(7), 721–733.
Langkau, K. (2003). Flows over time with flow-dependent transit times (PhD thesis).

TU Berlin.
Lin, M., & Jaillet, P. (2015). On the quickest flow problem in dynamic networks: a

parametric min-cost flow approach. In Proceedings of the twenty-sixth annual

ACM-SIAM symposium on discrete algorithms (pp. 1343–1356).
Luo, Z.-Q., Pang, J.-S., & Ralph, D. (1996). Mathematical programs with equilibrium

constraints. Cambridge University Press.
Martens, M., & McCormick, S. T. (2008). A polynomial algorithm for weighted abstract

flow. In International conference on integer programming and combinatorial

optimization (pp. 97–111).
McCormick, S. T. (1996). A polynomial algorithm for abstract maximum flow. In

Proceedings of the 7th annual ACM-SIAM symposium on discrete algorithms (pp.
490–497).

Minieka, E. (1973). Maximal, lexicographic, and dynamic network flows. Operations

Research, 21(2), 517–527.
Mtoi, E. T., & Moses, R. (2014). Calibration and evaluation of link congestion

functions. Journal of Transportation Technologies, 4(2), 141–149.
Nath, H. N., Dempe, S., & Dhamala, T. N. (2021). A bicriteria approach for saving path

maximizing dynamic contraflow. Asia-Pacific Journal of Operational Research.

134

doi: https://doi.org/10.1142/S0217595921500275
Nath, H. N., & Dhamala, T. N. (2017). Identification of optimal pick-up locations

with their demands in evacuation planning of transit-dependent population. In
Proceeding of national conference on mathematics and its applications (NCMA–

21017) (pp. 48–53).
Nath, H. N., & Dhamala, T. N. (2018). Network flow approach for locating optimal

sink in evacuation planning. International Journal of Operations Research, 15(4),
175–185.

Nath, H. N., Pyakurel, U., Dempe, S., & Dhamala, T. N. (2019a). A bilevel
programming approach to save a path maximizing the dynamic flow with lane
reversals for evacuation planning. Preprint, TU Bergakademie, Freiberg.

Nath, H. N., Pyakurel, U., Dempe, S., & Dhamala, T. N. (2019b). A path saving strategy
with arc reversals for evacuation planning. International Journal of Innovative

Knowledge Concepts, 7(1), 160–165.
Nath, H. N., Pyakurel, U., & Dhamala, T. N. (2018). Facility location on arcs for

quickest evacuation planning. In The 11th triennial conference of association of

Asia Pacific operational research societies, APORS–2018, abstract and program

book (pp. 115–117).
Nath, H. N., Pyakurel, U., & Dhamala, T. N. (2021). Network reconfiguration with

orientation-dependent transit times. International Journal of Mathematics and

Mathematical Sciences, 2021. doi: 10.1155/2021/6613622
Nath, H. N., Pyakurel, U., Dhamala, T. N., & Dempe, S. (2021). Dynamic network

flow location models and algorithms for quickest evacuation planning. Journal of

Industrial and Management Optimization, 17(5), 2925–2941.
Ng, M., Park, J., & Waller, S. T. (2010). A hybrid bilevel model for the optimal shelter

assignment in emergency evacuations. Computer-Aided Civil and Infrastructure

Engineering, 25(8), 547–556.
Orlin, J. B. (1993). A faster strongly polynomial minimum cost flow algorithm.

Operations Research, 41(2), 338–350.
Orlin, J. B. (2013). Max flows inO(nm) time, or better. In Proceedings of the forty-fifth

annual acm symposium on theory of computing (pp. 765–774).
Pineda, S., Bylling, H., & Morales, J. (2018). Efficiently solving linear bilevel

programming problems using off-the-shelf optimization software. Optimization

and Engineering, 19(1), 187–211.
Pyakurel, U. (2016). Evacuation planning problem with contraflow approach (PhD

thesis). IOST, Tribhuvan Univeristy, Kathmandu, Nepal.
Pyakurel, U., & Dhamala, T. N. (2015). Models and algorithms on contraflow

evacuation planning network problems. International Journal of Operations

Research, 12(2), 36–46.

135

Pyakurel, U., & Dhamala, T. N. (2016). Continuous time dynamic contraflow
models and algorithms. Advances in Operations Research, 2016. doi:
http://dx.doi.org/10.1155/2016/7902460

Pyakurel, U., & Dhamala, T. N. (2017a). Continuous dynamic contraflow approach for
evacuation planning. Annals of Operations Research, 253(1), 573–598.

Pyakurel, U., & Dhamala, T. N. (2017b). Evacuation planning by earliest arrival
contraflow. Journal of Industrial & Management Optimization, 13(1), 489–503.

Pyakurel, U., Dhamala, T. N., & Dempe, S. (2017). Efficient continuous contraflow
algorithms for evacuation planning problems. Annals of Operations Research,
254(1-2), 335–364.

Pyakurel, U., Goerigk, M., Dhamala, T. N., & Hamacher, H. W. (2015). Transit
dependent evacuation planning for Kathmandu valley: a case study. International

Journal of Operations Research Nepal, 5, 49–73.
Pyakurel, U., Hamacher, H. W., & Dhamala, T. N. (2014). Generalized maximum

dynamic contraflow on lossy network. International Journal of Operations

Research Nepal, 3(1), 27–44.
Pyakurel, U., Nath, H. N., Dempe, S., & Dhamala, T. N. (2019). Efficient dynamic

flow algorithms for evacuation planning problems with partial lane reversal.
Mathematics, 7(10). doi: https://doi.org/10.3390/math7100993

Pyakurel, U., Nath, H. N., & Dhamala, T. N. (2018). Efficient contraflow algorithms for
quickest evacuation planning. Science China Mathematics, 61(11), 2079–2100.

Pyakurel, U., Nath, H. N., & Dhamala, T. N. (2019). Partial contraflow with path
reversals for evacuation planning. Annals of Operations Research, 283(1-2), 591–
612.

Rebennack, S., Arulselvan, A., Elefteriadou, L., & Pardalos, P. M. (2010). Complexity
analysis for maximum flow problems with arc reversals. Journal of Combinatorial

Optimization, 19(2), 200–216.
Röck, H. (1980). Scaling techniques for minimal cost network flows. Discrete

Structures and Algorithms, 181–191.
Rupp, B. (2010). Flowloc: Discrete facility locations in flow networks (Diploma thesis).

TU Kaiserslautern.
Saho, M., & Shigeno, M. (2017). Cancel-and-tighten algorithm for quickest flow

problems. Networks, 69(2), 179–188.
Sheffi, Y. (1985). Urban transportation networks: Equilibrium analysis with

mathematical programming methods. Prentice-Hall, Englewood Cliffs, NJ.
Sherali, H. D., Carter, T. B., & Hobeika, A. G. (1991). A location-allocation

model and algorithm for evacuation planning under hurricane/flood conditions.
Transportation Research Part B: Methodological, 25(6), 439–452.

Skutella, M. (2009). An introduction to network flows over time. In Research trends in

136

combinatorial optimization (pp. 451–482). Springer.
Taccari, L. (2016). Integer programming formulations for the elementary shortest path

problem. European Journal of Operational Research, 252(1), 122–130.
Torres, F. E. (1990). Linearization of mixed-integer products. Mathematical

programming, 49(1), 427–428.
Vogiatzis, C., Walteros, J. L., & Pardalos, P. M. (2013). Evacuation through clustering

techniques. In Models, algorithms, and technologies for network analysis (pp.
185–198). Springer.

137

APPENDIX A

NETWORK DATA FOR COMPUTATIONS

A.1 Virtual Network in Section 3.2.3

Node (i) Nodes adjacent to i (capacity(per second), travel time (minutes))

1(s) 2(2, 9), 5(3, 6)

2 1(3, 9), 15(1, 10), 3(1, 5), 6(2, 8)

3 2(1, 5), 4(1, 9), 7(1, 8)

4 3(2, 9), 8(3, 9)

5 1(2, 6), 6(3, 8), 9(1, 9)

6 10(2, 7), 2(2, 8), 5(1, 8), 7(3, 5)

7 11(3, 9), 13(1, 5), 18(3, 5), 3(2, 8) , 6(1, 5) , 8(2, 8)

8 4(2, 9), 7(2, 8), 12(2, 9)

9 5(2, 9) , 13(1, 6)

10 11(3, 7), 14(3, 7), 6(2, 7)

11 10(2, 7), 12(2, 9), 15(1, 5), 17(2, 6), 21(1, 10), 7(3, 9)

12 11(3, 9), 16(2, 5), 23(2, 8), 8(1, 9)

13 14(2, 6), 17(2, 6), 7(2, 5), 9(2, 6)

14 10(3, 7) , 13(3, 6), 15(1, 9), 18(2, 10), 22(1, 10)

15 11(3, 5), 14(1, 9), 16(2, 10), 19(3, 5), 2(2, 10), 24(1, 10)

16 12(2, 5), 15(2, 10), 20(3, 7)

17 11(3, 6), 13(3, 6), 18(2, 9)

18 14(3, 10), 17(1, 9), 20(2, 8), 7(2, 5)

19 15(3, 5), 20(2, 8)

20(t) 16(3, 7), 18(3, 8), 19(2, 8)

21 11(3, 10)

22 14(2, 10)

23 12(3, 8)

24 15(2, 10)

138

A.2 Kathmandu Road Network (cf. Section 4.6)

(i, j) uij (per second) uji (per second) τ 0ij (minutes)

(0, 1) 2 2 6
(0, 12) 2 2 10
(0, 18) 2 2 3
(0, 27) 2 2 4
(1, 2) 2 2 3

(1, 27) 2 2 5
(2, 3) 3 3 5

(2, 38) 3 3 12
(3, 4) 3 3 5

(3, 27) 2 2 6
(4, 5) 3 3 1

(4, 32) 2 2 1
(5, 6) 3 3 1
(5, 42) 2 2 7
(6, 7) 3 3 5

(6, 23) 2 2 2
(7, 8) 3 3 8

(7, 17) 2 2 10
(7, 99) 2 2 5
(8, 9) 2 2 16

(8, 99) 3 3 7
(9, 10) 2 2 3
(9, 17) 2 2 3

(10, 11) 2 2 5
(11, 12) 2 2 17
(11, 37) 2 2 7
(12, 13) 2 2 4
(13, 14) 2 2 6
(13, 33) 2 2 9
(14, 15) 2 2 1
(14, 33) 2 2 3
(15, 16) 2 2 1
(15, 35) 2 2 1
(16, 17) 2 2 1
(16, 36) 2 2 3
(16, 37) 4 0 1

139

(18, 19) 2 2 2
(18, 28) 2 2 2
(19, 20) 2 2 2
(19, 29) 2 2 2
(20, 21) 2 2 2
(20, 30) 2 2 2
(20, 33) 2 2 1
(21, 26) 0 4 1
(21, 34) 2 2 1
(22, 23) 4 0 1
(22, 32) 2 2 1
(23, 24) 4 0 1
(24, 25) 4 0 2
(25, 26) 4 0 1
(26, 35) 2 2 2
(27, 28) 2 2 3
(28, 29) 4 0 2
(29, 30) 4 0 1
(30, 31) 2 2 2
(31, 32) 2 2 2
(33, 34) 2 2 2
(34, 35) 2 2 1
(35, 36) 2 2 2
(38, 39) 3 3 7
(38, 42) 2 2 8
(39, 40) 3 3 1
(39, 41) 2 2 1
(40, 41) 2 2 2
(40, 99) 3 3 8
(41, 42) 2 2 2

Source: 0, Sink: 99

140

APPENDIX B

SCIENTIFIC PUBLICATIONS & PRESENTATIONS

B.1 Publications

1. Nath, H. N., Pyakurel, U., Dhamala, T. N., & Dempe, S. (2021). Dynamic
network flow location models and algorithms for quickest evacuation planning.
Journal of Industrial and Management Optimization, 17(5), 2925–2941. doi:
10.3934/jimo.2020102.

2. Nath, H. N., Dempe, S., & Dhamala, T. N. (2021). A bicriteria approach for
saving path maximizing dynamic contraflow. Asia-Pacific Journal of Operational

Research. doi: https://doi.org/10.1142/S0217595921500275.

3. Nath, H. N., Pyakurel, U., & Dhamala, T. N. (2021). Network reconfiguration
with orientation-dependent transit times. International Journal of Mathematics
and Mathematical Sciences, 2021. doi: 10.1155/2021/6613622.

4. Nath, H. N., & Dhamala, T. N. (2018). Network flow approach for locating
optimal sink in evacuation planning. International Journal of Operations

Research, 15(4), 175–185.

5. Dhamala, T. N., Adhikari, I. M., Nath, H. N., & Pyakurel, U. (2018).
Meaningfulness of OR models and solution strategies for emergency planning.
In Living under the threat of earthquakes (pp. 175–194). Springer.

6. Nath, H. N., Pyakurel, U., Dempe, S., & Dhamala, T. N. (2019a). A bilevel
programming approach to save a path maximizing the dynamic flow with lane
reversals for evacuation planning. Preprint, TU Bergakademie, Freiberg.

7. Nath, H. N., Pyakurel, U., Dempe, S., & Dhamala, T. N. (2019b). A path saving
strategy with arc reversals for evacuation planning. International Journal of

Innovative Knowledge Concepts, 7(1), 160–165.

8. Nath, H. N., & Dhamala, T. N. (2017). Identification of optimal pick-up

141

locations with their demands in evacuation planning of transit-dependent
population. In Proceeding of national conference on mathematics and its

applications (NCMA–21017) (pp. 48–53).

9. Nath, H. N., Pyakurel, U., & Dhamala, T. N. (2018). Facility location on arcs for
quickest evacuation planning. In The 11th triennial conference of association of

Asia Pacific operational research societies, APORS–2018, abstract and program

book (pp. 115–117).

B.2 Presentations

1. Optimization Models and Algorithms for Evacuation Planning: The Bus

Evacuation Problem. International Conference on Applications of Mathematics
to Nonlinear Sciences (AMNS- 2016), May 26–29, 2016. (Poster)

2. Meaningfulness of OR Models and Solution Strategies for Emergency Planning.
Mathematics and Statistics Research Colloquium, organized by Mindanao State
University, Iligan Institute of Technology, Philippines, 17 August, 2016.

3. Identification of Optimal Pick-Up Locations with Their Demands in Evacuation

Planning of Transit-Dependent Population. National Conference on Mathematics
and Its Applications (NCMA-2017), Chitwan, Nepal, January 11–13, 2017.

4. Bi-level optimization in Emergency Evacuation Planning. National Conference
on History and Recent Trends of Mathematics (NCHRTM-2017), Kathmandu,
Nepal, June 2–4, 2017.

5. Network Flow Approach for Computing Optimal Sink Location in Evacuation

Planning. 2nd International Conference on Advances in Computational
Mathematics, Tribhuvan University, Kathmandu, Nepal, December 23–24, 2018.

6. A Path Saving Strategy with Arc Reversals for Evacuation Planning. International
Conference on Recent Advances in Informatics, Communication, Management,
Health & Applied Sciences (RAICMHAS-2019), Brainware University, Kokata,
India, February 2–4, 2019.

7. A Bilevel Programming Approach to Save a Path Maximizing the Dynamic Flow

with Lane Reversals for Evacuation Planning. 4th International Conference on
Dynamics of Disasters (DOD 2019), Kalamata, Greece, July 1–5, 2019.

8. The Quickest FlowLoc Problem. International Conference on Computational
Sciences - Modeling, Computing and Soft Computing (CSMCS 2020),
Department of Mathematics, National Institute of Technology Calicut, Kerala,
India.

142

JOURNAL OF INDUSTRIAL AND doi:10.3934/jimo.2020102
MANAGEMENT OPTIMIZATION

DYNAMIC NETWORK FLOW LOCATION MODELS AND

ALGORITHMS FOR QUICKEST EVACUATION PLANNING

Hari Nandan Nath

Tribhuvan University, Bhaktapur Multiple Campus
Bhaktapur, Nepal

Urmila Pyakurel∗ and Tanka Nath Dhamala

Central Department of Mathematics, Tribhuvan University

P.O. Box 13143, Kathmandu, Nepal

Stephan Dempe

TU Bergakademie, Fakultät für Mathematik und Informatik

09596 Freiberg, Germany

(Communicated by Alexander Kononov)

Abstract. Dynamic network flow problems have wide applications in evacua-

tion planning. From a given subset of arcs in a directed network, choosing the
suitable arcs for facility location with a given objective is very important in the

optimization of flow in emergency cases. Because of the decrease in capacity
of an arc by placing a facility in it, there may be a reduction in the maximum

flow or increase in the quickest time. In this work, we consider a problem of

identifying the optimal facility locations so that the increase in the quickest
time is minimum. Introducing the quickest FlowLoc problem, we give strongly

polynomial time algorithms to solve the single facility case. Realizing NP-

hardness of the multi-facility case, we develop a mixed integer programming
formulation of it and propose two polynomial time heuristics for its solution.

Because of the growing concerns of arc reversals in evacuation planning, we in-

troduce the quickest ContraFlowLoc problem and present exact algorithms to
solve the single-facility case and heuristics to solve the multi-facility case, with

polynomial time complexity. The solutions thus obtained here are practically

important, particularly in evacuation planning, to systematize traffic flow with
facility allocation minimizing evacuation time.

1. Introduction. The choice of locations for the facilities such as hospitals, ware-
houses, stores, fire-brigades, security offices, etc. plays an important role in normal
as well as in emergency disastrous situations. As in the normal situations, the math-
ematical models used to make location decisions in emergency situations are: (a)
covering models which locate the optimal locations to cover all demand points or
maximal number of demand points, (b) P -median models to determine P locations
to minimize the average (or total) distance between demand points and facilities,
(c) P -center models to minimize the maximum distance between any demand point

2020 Mathematics Subject Classification. Primary: 90B10, 90C27, 68Q25; Secondary: 90B06,
90B20.

Key words and phrases. Network flow, facility location, evacuation planning, quickest flow,

contraflow.
∗ Corresponding author: Urmila Pyakurel.

1

2 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

and its nearest facility. For example, in Large Scale Emergency Medical Service
Facility Location Model (LEMS) presented in Jia et al. [13], there is a use of the
aforementioned models.

Evacuation planning is an integral part of disaster management. Recently, there
is a growing trend of incorporating location decisions in evacuation planning. The
following are some examples.

(i) Pick-up location models: An et al. [2] formulate a model to determine the
optimal pick-up location, evacuee-to-facility assignment priorities, evacuation
service rates that minimizes the total expected system cost. In an integrated
bus evacuation problem, Goerigk et al. [10] choose pick-up locations to min-
imize the maximum travel time over all buses. Kulshrestha et al. [17] use
robust optimization to locate pick-up locations when number of evacuees is
uncertain.

(ii) Rescue Transfer Location Models: An et al. [2] formulate a model to locate
rescue transfer locations, where a rescue team departs from the rescue center,
rides a vehicle towards the rescue transfer center, and walks to each rescuee
group to provide an aid with an objective to minimize the total expected travel
cost.

(iii) Shelter Location Models: Sherali et al. [36] formulate a location allocation
model to minimize the total vehicle hours, and a discrete median location
model to locate shelters for evacuation, while Kongsomsaksakul et al. [15] use
a bi-level programming approach to determine shelter locations, in which the
upper level determines the shelter locations to minimize the total evacuation
time and the lower level is formulated as a combined trip distribution and
assignment problem. Ng et al. [19] also use the same approach in which the
lower level is a deterministic user equilibrium model as described by Sheffi
[35]. In an integrated bus evacuation problem, Goerigk et al. [10] choose the
shelters to minimize the maximum travel time over all the buses while in a
comprehensive evacuation planning, Goerigk et al. [9] formulate a multiple
commodity, multi-criteria problem to minimize the total evacuation time, the
risk exposure of evacuees, and the number of shelters that are used.

(iv) Flow Location (FlowLoc) Models: Optimizing traffic flow is a very important
aspect of evacuation planning. The common methods to optimize the traffic
flow are traffic simulation, models based on fluid dynamics, control theory,
variational inequalities, and network flow. Since simulation does not explic-
itly allow for optimization, and models based on differential equations are not
capable of handling large networks, network flow approach has been the most
appropriate way of modeling traffic flow (Köhler and Skutella [16]). For de-
tails on network flow approach for evacuation planning problems, we refer to
Dhamala et al. [5]. Rupp [32], Hamacher et al. [11], Heller and Hamacher
[12] combine the location decisions with the flow decisions in a network flow
problem observing that the placement of a facility on an arc of a network may
result in a reduction of the maximum flow value. Given a set of facilities and
a set of arcs on which facilities are to be placed, their approach is to find an
allocation of the facilities to the arcs so that the reduction in the maximum
flow value is minimum.

The main aim of optimizing the traffic flow in an emergency evacuation process
is to maximize the flow and/or to minimize the evacuation time using the road
network. The minimum time to transfer a given number of evacuees from disaster

NETWORK FLOW LOCATION MODELS AND ALGORITHMS 3

areas to safe places, is termed as the quickest time. Placement of facilities in the
road segments hampers the traffic flow, resulting in the increase of the quickest
time of evacuation. In this paper, our objective is to identify the optimal allocation
of facilities to the road-segments so that the evacuation time of a given number of
evacuees, to reach the safe places, is minimized. So, our attempt is to contribute
to above-mentioned FlowLoc Models by considering the quickest time as a deciding
factor of facility location decisions. We also aim at combining such decisions with
the reversal of the direction of the traffic flow in some road segments, if necessary.

In emergency situations, people are discouraged to go towards risk areas from
safer places. As a result the road segments heading towards the safe areas become
overly congested and those heading towards the risk areas become empty. To max-
imize the flow and to minimize the evacuation time, in such situations, converting
a two-way road segment to one-way in an appropriate direction becomes advanta-
geous. This is known as contraflow configuration, which reverses the direction of
the traffic on empty road segments towards the sinks so that the capacity of the
road segments is increased. Contraflow configuration not only increases flow value
but also reduces the traffic jam and makes the traffic smooth [21]. But to identify
appropriate directions of the arcs of a network to maximize the flow is a difficult op-
timization problem, known as a contraflow problem. Different heuristic techniques
to solve the contraflow problem in which evacuation time can be reduced by 40%
by reversing at most 30% arcs can be found in Kim et al. [14]. In cases, when each
node has an associated danger factor, Vogiatzis et al. [39] present a heuristic algo-
rithm to solve the problem of sending vehicles from the nodes with danger factors
to the safe nodes, reversing at most a given number of arcs, with an objective to
minimize the number of vehicles that have to spend time on the most endangered
nodes. They use the smart clustering of similar nodes to create subgraphs so as to
solve a large-scale problem efficiently.

Apart from the heuristic techniques, recent research also focuses on analytical
techniques to find exact solutions of the contraflow problems after Rebennack et
al. [31] introduced algorithms to solve the single-source single-sink maximum con-
traflow and quickest contraflow problems optimally in a polynomial time. The
earliest arrival and the maximum contraflow problems are solved with the tempo-
rally repeated flow solutions in Dhamala and Pyakurel [4] with discrete time setting.
The solution procedures for such problems in continuous time setting are described
in Pyakurel and Dhamala [23]. In Pyakurel and Dhamala [22], authors design algo-
rithms to solve the earliest arrival contraflow on single-source-single-sink networks
in a pseudo-polynomial time. They also introduce the lex-maximum dynamic con-
traflow problem in which the flow is maximized in a given priority ordering and
construct solution algorithms with a polynomial time complexity. Algorithms for
these problems in continuous time by using the nice property of a natural transfor-
mation can be found in Pyakurel and Dhamala [23, 24]. With the given supplies
and demands, the earliest arrival transshipment contraflow problem is modeled in
discrete time and solved on a multi-source network with a polynomial time algo-
rithm in Pyakurel and Dhamala [25]. With a zero transit time on each arc, the
problem is also solved on a multi-sink network with a polynomial time complexity.
For the multi-terminal network, they present approximation algorithms to solve the
earliest arrival transshipment contraflow problem. The discrete time solutions are
extended into the continuous time solutions in Pyakurel and Dhamala [24], and in

4 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

Pyakurel et al. [26]. The maximum dynamic and the earliest arrival contraflow
problems are generalized in Pyakurel et al. [27].

Moreover, the first temporally repeated flow algorithm to solve the quickest con-
traflow problem, within a complexity of solving a min-cost flow problem, has been
presented by Pyakurel et al. [29]. Considering a case of the Kathmandu road
network, their comparison of the quickest time, before and after the contraflow con-
figuration, shows that a significant decrease in the quickest time can be attributed
to the contraflow configuration and the decrease in the quickest time increases with
the number of evacuee-vehicles. They also present an approximate algorithm to
solve the quickest contraflow problem with a load-dependent transit time on each
arc.

The analytical techniques discussed above use arc-based formulation of network
flow problems. Recently a path-based formulation of the similar problem with the
abstract flow on abstract networks is also gaining attention. Pyakurel et al. [26]
introduce the contraflow technique in abstract networks, present algorithms to solve
the maximum static and the maximum dynamic contraflow problems with contin-
uous time setting and realize that if the minimum dynamic cut capacities on a
two-terminal network are symmetric, then the flow value can be increased up to
double with the partial contraflow reconfiguration. The models and algorithms for
the abstract contraflow problems with discrete time setting have been investigated
in Dhungana et al. [7]. With a view to save unused capacities of the arcs dur-
ing evacuation process, Pyakurel et al. [28, 30] investigate the partial contraflow
problem and present algorithms to solve some related problems.

Motivated by the work of Hamacher et al. [11], our main focus in this paper is to
introduce the flow location models and develop efficient solution procedures to iden-
tify the allocation of facilities on arcs, with and without contraflow configuration,
so that the increase in the quickest time is minimum. To facilitate the evacuation
process, placing facilities on the road segments obstructs traffic flow resulting in the
increase of the evacuation time. From a given set of road segments for the facili-
ties to be placed, our approach is to choose those which have minimum impact on
the increase in the transportation time. This is important in evacuation planning,
particularly, when the given number of evacuees are to be transferred to the safe
destinations as quickly as possible.

The paper is organized as follows. The basic terminology, notations and flow
models necessary to the paper are considered in Section 2. Section 3 investigates
the quickest FlowLoc problem and presents strongly polynomial algorithms to solve
the single facility cases and polynomial heuristics to solve the multiple facility cases.
In Section 4, we combine the contraflow decsions with the location decisions on arcs
and Section 5 concludes the paper suggesting the further research directions.

2. Basic concepts. In this section, we give some basic ideas used in this paper
in an attempt to make it self-contained. We represent a transportation network
by a directed graph in which the intersections of roads (or some other points on a
road, if needed) denote the nodes and the road segments between any two nodes
represent arcs. The direction of the traffic flow in a road segment is the direction of
the corresponding arc. Something that moves from one node to the other via arcs
is known as a flow.

We represent a directed network (also known as evacuation network in this paper)
with the set of nodes V , set of arcs A, capacity b : A → R≥0, travel time τ : A →

NETWORK FLOW LOCATION MODELS AND ALGORITHMS 5

R≥0, the source node s ∈ V and the sink node d ∈ V by N = (V,A, b, τ, s, d). The
capacity of an arc limits the flow on the arc and travel time represents the time
the flow takes to travel on the arc. We denote the number of nodes |V | by n, the
number of arcs |A| by m, the set of incoming arcs to the node i by Ain

i and the set
of arcs going out of it by Aout

i i.e.

Ain
i = {e ∈ A : e = (j, i) for some j ∈ V }

Aout
i = {e ∈ A : e = (i, j) for some j ∈ V }

2.1. Static flows. Let x : A → R≥0 be a function of non-negative values, where
x(e) or xe is considered as the flow rate on e ∈ A. For each i ∈ V , we denote the
excess of x at i ∈ V by

excx(i) =
∑

e∈Ain
i

x(e)−
∑

e∈Aout
i

x(e) (1)

which is the difference of the flow value entering i and that going out from i.

Definition 2.1. For two distinct nodes s, d ∈ V , x is called a static s-d flow if

excx(i) = 0, ∀i ∈ V \ {s, d}. (2)

The static flow x is called feasible if

0 ≤ x(e) ≤ b(e), ∀e ∈ A. (3)

The value of x is defined as:

val(x) = excx(d). (4)

If excx(i) = 0 for all i ∈ V , then x is called a circulation.

The famous maximum (static) flow problem aims at finding a feasible static flow
x that maximizes val(x). For details, we refer to Ahuja et al. [1] and Dhamala et
al. [5].

The above-discussed formulation is the arc-flow formulation of a static flow. An
alternative to this approach is the path and cycle flow formulation. Let Γ be the
collection of all the s-d paths and C be the collection of cycles of the network. Let
f(γ) and f(C) be the flows in γ ∈ Γ and C ∈ C, then the arc flow is

x(e) =
∑

γ∈Γ

δe(γ)f(γ) +
∑

C∈C
δe(C)f(C) (5)

where δe(γ) = 1 if e ∈ γ, and zero otherwise. Similarly, δe(C) = 1 if e ∈ C, and zero
otherwise. The relation (5) determines x uniquely if path and cycle flows are given.
Conversely, given an arc flow x, we can find path (s-d path) and cycle flow f (not
necessarily unique) such that (5) is satisfied. This is called the flow decomposition
of x into path and cycle flows. For more details, we refer to Ahuja et al. [1].

A very important concept in flow optimizations is the residual network. We
denote the residual network of N = (V,A, b, τ, s, d) with respect to the flow x by
N(x). N(x) has the same vertex set V and an arc set A(x) = AF (x) ∪ AB(x)
where AF (x) = {(i, j) | x(i, j) < b(i, j)} and AB(x) = {(j, i) | x(i, j) > 0}. For
(j, i) ∈ AB(x), τ(j, i) = −τ(i, j). In the residual network N(x), we define the
residual capacity bx : A(x)→ R by

bx(i, j) =

{
b(i, j)− x(i, j) if (i, j) ∈ AF (x)

x(j, i) if (i, j) ∈ AB(x)
.

6 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

The relation of the static flow with the residual network is that whenever there
exists a path from the source s to the sink d in the residual network, the value of
the flow can be increased.

2.2. Dynamic flows. A dynamic flow Φ with time horizon T consists of Lebesgue-
integrable functions Φe : [0, T) → R≥0 for each arc e ∈ A such that Φe(θ) = 0 for
θ ≥ T − τ(e). Φe(θ) can be realized as the rate of flow entering e at time θ. The
flow entering the tail i of the arc e = (i, j) at time θ reach the head j of e at time
θ + τe. For each i ∈ V , we define the excess of node i induced by Φ at time θ as:

excΦ(i, θ) =
∑

e∈Ain
i

∫ θ−τ(e)

0

Φe(σ)dσ −
∑

e∈Aout
i

∫ θ

0

Φe(σ)dσ (6)

which is the net amount of flow that enters node i up to time θ.

Definition 2.2. A feasible dynamic s-d flow (s, d ∈ V and s 6= d) satisfies:

excΦ(i, θ) ≥ 0 ∀θ ∈ [0, T), ∀i ∈ V \ {s} (7)

excΦ(i, T) = 0, ∀i ∈ V \ {s, d} (8)

and

0 ≤ Φe(θ) ≤ b(e), ∀e ∈ A, θ ∈ [0, T). (9)

The value of the dynamic flow Φ at time θ is

valθ(Φ) = excΦ(d, θ)

and the total value of the dynamic flow Φ is:

val(Φ) = valT (Φ) = excΦ(d, T)

For more details, we refer to Skutella [37].
In the course of designing efficient algorithms related to a dynamic flow, a dy-

namic flow is represented as what is known as temporally repeated flow. Given a
feasible static flow x and a time horizon T , a flow decomposition on x gives a set
of paths Γ with flow f(γ) for each γ ∈ Γ. Flow is sent along γ at a constant rate
f(γ) from time 0 to max{T − τ(γ), 0}, where τ(γ) =

∑
e∈γ τ(e) is the travel time

on path γ. In this way, the dynamic flow is obtained as described in the following
equation

Φe(θ) =
∑

γ∈Γe(θ)

f(γ), ∀e = (i, j) ∈ A, θ ∈ [0, T), (10)

where if γs,i denotes the portion of γ from s to i, and γj,d denotes that from j to
d, then Γe(θ) = {γ ∈ Γ|e ∈ P and τ(γs,i) ≤ θ and τ(γj,d) < T − θ}.

Given a time horizon T , the maximum dynamic problem seeks to find a dynamic
flow Φ which maximizes valT (Φ). Using temporally repeated flows, Ford and Fulk-
erson [8] showed that finding a maximum dynamic flow is equivalent to finding a
minimum circulation x that minimizes

∑

e∈A
τ(e)x(e)− T · val(x)

adding an arc (d, s), to the network, with infinite capacity and −T cost(time).
From the flow decomposition of x, one can find the dynamic maximum flow in the
temporally repeated form using equation (10).

NETWORK FLOW LOCATION MODELS AND ALGORITHMS 7

Given a time horizon T , we say that a dynamic flow has the earliest arrival
property if as much flow as possible arrives at the sink at each time θ < T and the
corresponding flow is called earliest arrival flow. Every earliest arrival flow is also a
maximum dynamic flow but the converse is not true in general (Ruzika et al. [33]).

A problem closely related with the maximum dynamic flow problem is the quick-
est flow problem which seeks to find a dynamic flow with minimum time horizon
T ∗ needed to send a given amount of flow F from the source s to the sink d.

Using the idea of finding a dynamic flow with the temporal repetition of the
static flow, the following mathematical programming formulation of the problem is
useful in designing algorithms to find a quickest flow.

Theorem 2.3 (Lin and Jaillet [18]). The quickest flow problem can be formulated
as the following fractional programming problem:

min
F +

∑
e∈A τ(e)x(e)

v
(11)

s.t.
∑

e∈Aout
i

x(e)−
∑

e∈Ain
i

x(e) =





v if i = s

−v if i = d

0 otherwise

(12)

0 ≤ x(e) ≤ b(e), ∀e ∈ A. (13)

Observing that if v is fixed in the above formulation, it becomes a min-cost flow
problem with supply at s and demand at d both equal to v, they realize that the
quickest flow problem is a parametric min-cost flow problem with respect to v.
Deriving optimality conditions on this basis, they design a cost-scaling algorithm
to solve the quickest flow problem with polynomial time complexity O(n3 log(nC))
of a min-cost flow problem, where C is the maximum arc cost. Stepping on their
approach Saho and Sigeno [34] design a cancel-and-tighten algorithm which runs in
strongly polynomial time, O(nm2 log2 n), to solve the quickest flow problem.

3. Combining location decisions with the quickest flow. If a facility is placed
on an arc of a network, it reduces the capacity of the corresponding arc affecting
the decisions related to flow. Hamacher et al. [11] model such problems so that
there is the least reduction in the maximum flow value because of the placement of
the facility.

Definition 3.1 (Maximum static and dynamic FlowLoc). Let N = (V,A, b, τ, s, d)
be a network with set of all feasible locations L ⊆ A, set of all facilities P , the size
of the facilities r : P → N and the number of facilities that can be placed on the
possible locations ν : L → N. The maximum static FlowLoc problem asks for an
allocation π : P → L, such that the difference of the maximum static s-d flow value
in the network Nπ = (V,A, τ, bπ, s, d) and that in N is mimized where the capacity
function bπ is defined as bπ(e) = b(e) − max{r(p) : p ∈ P and π(p) = e}. In the
above setting, if the difference of the dynamic s-d flow values is to be minimized,
it is called a maximum dynamic FlowLoc problem. If |P | = 1, the corresponding
problem is called a single facility maximum static (dynamic) FlowLoc problem and
if |P | = q > 1, then it is referred to as a static (dynamic) multi facility FlowLoc or
a q-FlowLoc problem.

Because of the reduction in the arc capacity, placing a facility on an arc of a
network may result in the increase in the time to transfer a given amount of flow

8 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

from the source the sink. In the following definition, we consider the problem of
locating the facilities so that the increase in the quickest time is minimum.

Definition 3.2 (Quickest FlowLoc). Given a network N = (V,A, b, τ, s, d), a supply
F at s, set of feasible locations L ⊆ A, the set of all facilities P , the size of the
facilities r : P → N, the number of facilities that can be placed on the possible
locations ν : L→ N, the quickest FlowLoc problem seeks for an allocation π : P → L
of the facilities to the arcs, such that the difference of the quickest time to transport
F from s to d on the network Nπ = (V,A, bπ, τ, s, d) and that in N is minimized,
where bπ(e) = b(e)−max{r(p) : p ∈ P and π(p) = e}.
Remark 1. In our considerations, the set of feasible locations L and the set of
facilities P are to be given in such a way that

(i) |P | ≤∑e∈L ν(e) and
(ii) r(p) ≤ min{b(e) : e ∈ L}, ∀p ∈ P

The following example gives the comparison of location decisions on arcs under
different flow decisions.

1

2

3

4

4,1
3,1

4,3
3,3

3,4
3,4

3,1
1,1

1,1 1,1

Figure 1. Evacuation network N with arc labels (capacity, travel time)

Example 1. Consider the evacuation network depicted in Figure 1. The pair of
numbers on each arc represents capacity and travel time related to the arc. Let
P = {p}, r(p) = 1, L = {(2, 3), (2, 4)}, i.e. a facility p of size r(p) = 1 is to be placed
on one of the arcs in L. If the facility is placed on (2, 3), the maximum static flow
value is 7 (4 along the path 1 − 2 − 4 and 3 along the path 1 − 3 − 4), while if it
is placed on (2,4), the maximum static flow value is 6 (3 along the path 1 − 2 − 4
and 1− 3− 4 each). Hence, π(p) = (2, 3) is the maximum static FlowLoc decision,
which does not consider the time factor associated with arcs.

Table 1 shows that maximum dynamic FlowLoc decisions depend on the time
horizon T . In the continuous time setting, when T = 4, if no facility is placed, a
flow of value 1 can reach the sink using only the path 1−2−3−4. So if the facility
is placed on the arc (2, 3), this path gets obstructed and no flow can reach the sink,
so (2, 4) is the optimal location in this case. When T = 5, if the facility is placed
on (2, 3), the flow of value 4 can reach the sink via path 1− 2− 4, while the flow of
value 5 can reach the sink if we place the facility on (2, 4) using the path 1−2−3−4
with flow value 1 twice and path 1− 2− 4 with flow value 3 once.

NETWORK FLOW LOCATION MODELS AND ALGORITHMS 9

Table 1. Maximum dynamic FlowLoc decisions (cf. Figure 1)

T
maximum dynamic flow value

Location decisionwhen facility is placed on
(2,3) (2,4)

4 0 1 (2,4)
5 4 5 (2,4)
6 11 11 (2,4) or (2,3)
7 18 17 (2,3)

Table 2. Quickest FlowLoc decisions (cf. Figure 1)

F
quickest time

Location decisionwhen facility is placed on
(2,3) (2,4)

1 4.25 4 (2,4)
5 5.14 5 (2,4)
11 6 6 (2,4) or (2,3)
21 7.43 7.67 (2,3)

Table 2 shows that the quickest FlowLoc decisions depend on the flow value F
to be transferred from s to d. The calculation of the quickest time is done using the
cost scaling algorithm by Lin and Jaillet [18]. As expected, the maximum dynamic
FlowLoc and quickest FlowLoc decisions are related with each other in some sense.

Before proceeding further, we summarize two algorithms to solve the quickest
flow problem, which are central in designing algorithms to solve quickest FlowLoc
problems.

Cost scaling algorithm. Given N = (V,A, b, τ, s, d) as an evacuation network
with a supply F at s, let x be a static flow with value v. Node potentials ρ are
introduced and the reduced cost ce = ρ(j) − ρ(i) + τ(e) is calculated for each arc
e = (i, j) ∈ N(x), the residual network corresponding to x. When ce > −ε, ∀e ∈
N(x), the obtained flow x is called ε-optimal. The algorithm is briefly described in
the following steps.

1. Initialize: ρ(u) = 0, ∀ u ∈ V , x(e) = 0,∀e ∈ A, and ε = C = maxe∈A{τ(e)}.
2. Refine: The 2ε-optimal flow is modified to an ε-optimal one by assigning the

flow in the arcs of N with ce < 0 to their capacity, assigning zero flow in the
arcs with ce > 0, then pushing flows from nodes with excess flow through the
arcs in the residual network N(x), relabeling their potential if required.

3. Reduce Gap: Set extra flow at s and push the admissible flow ultimately to
d with arcs in N(x), and relabel the potential of nodes if required to reduce
the gap between T = [F +

∑
e∈A τ(e)x(e)]/v and ρ(s)− ρ(d) by at least 7nε.

After Step 3, ε is scaled by 1/2, and Steps 2 and 3 are repeated unless it becomes
less than 1/8n.

4. Saturate: If T , obtained from the above-mentioned scaling phases, is more
than the time (cost) in a shortest simple path from s to d in the residual
network N(x), the flow is saturated by sending maximum flow from s to d in

10 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

a subnetwork N ′, formed by only those arcs which are on some shortest path
from s to d in N(x).

The time complexity of the cost-scaling algorithm is O(n3 log(nC)). For details, we
refer to Lin and Jaillet [18].

Cancel-and-tighten algorithm. The main idea of the algorithm is to modify
the cost scaling algorithm replacing Step 2 with Cancel and Tighten steps.

• Cancel: Find a cycle in N(x) with only admissible arcs (an arc e ∈ N(x)
is admissible if its reduced cost ce < 0) and push a flow equal to minimum
residual capacity of its arcs. Repeat the process until there remains no such
cycle.

• Tighten: For each node i, compute the maximum length h(i) from nodes
with no entering admissible arc. Replace ρ(i) by ρ(i) + ε

nh(i) and reduce ε to

(1− 1
n)ε.

The Cancel Steps and the Tighten Steps are repeated iteratively until ε reduces to
ε/2. Then the Reduce Gap step reduces the gap between T = [F+

∑
e∈A τ(e)x(e)]/v

and ρ(s)− ρ(d) by at least (3n+ 1)ε.
The above-mentioned steps are performed until ε becomes smaller than 1/4n,

and finally the Saturate step is performed as in the cost scaling algorithm. The
complexity of this algorithm is O(nm2 log2 n). For details, we refer to Saho and
Shigeno, [34].

3.1. Single facility quickest FlowLoc. In this section, we design efficient algo-
rithms to solve a single facility (|P | = 1) quickest FlowLoc problem. To set up a
background, we discuss the single facility static and dynamic FlowLoc problems.

To solve the single facility static FlowLoc problem, Hamacher et al. [11] give
three algorithms. The main idea is to iterate over the arcs in L, place the facility,
calculate the maximum flow value and finally choose the arc which gives the greatest
maximum flow value to place the facility. With a preflow push algorithm to perform
maximum flow calculations, the time complexity of such an algorithm, as realized
in [11], is O(|L|n3).

Observation 1. Using the algorithm given by Orlin [20] to find the maximum flow,
the time complexity of the single facility static FlowLoc problem can be reduced to
O(|L|mn).

In case of the single facility dynamic FlowLoc, a similar idea can be used cal-
culating a maximum dynamic flow with the help of a temporally repeated static
flow. Given a time horizon T , to calculate the temporally repeated static flow cor-
responding to the maximum dynamic flow, one can take τ as the cost, add an arc
(d, s) in the network with infinite capacity and −T cost, and calculate the mini-
mum cost circulation in the modified network. We present Algorithm 1 to solve
the single facility dynamic FlowLoc, following the suggestions in [11] to develop the
procedure.

Observation 2. Using the dual network simplex algorithm presented in Armstrong
and Jin [3] for solving the minimum cost flow problem, Algorithm 1 solves the
single facility dynamic FlowLoc problem in O(|L|mn(m+ n log n) log n) time. In a
series parallel graph (Ruzika et al. [31]), the maximum dynamic flow problem with
time horizon T can be solved in O(mn + m logm) time, using a greedy approach,
by sending the flow iteratively through the s-d path with the minimum time and
removing the saturated arc, considering only the paths with time not exceeding

NETWORK FLOW LOCATION MODELS AND ALGORITHMS 11

Algorithm 1: Single facility maximum dynamic FlowLoc

Input : Directed network N = (V,A, b, τ, s, d), the set of possible locations
L, time horizon T , size r of the facility

Output: Location loc of the facility, the static flow x corresponding to the
maximum dynamic flow

1 Add an arc (d, s) with infinite capacity and cost −T to N and consider τ as
cost to obtain a network N c

2 curr max flow = −1

3 for e ∈ L do
4 b(e) = b(e)− r
5 x′ = min-cost circulation in N c

6 new max flow = −cost of x′

7 if new max flow > curr max flow then
8 curr max flow = new max flow

9 loc = e

10 x = restriction of x′ to N

11 end

12 b(e) = b(e) + r

13 end

14 return loc, x

T . Thus, in a series parallel graph, the single facility maximum dynamic FlowLoc
problem can be solved in O(|L|(mn + m logm)) time. Moreover, in such a graph,
a maximum flow has also the earliest arrival property which requires the flow to
be maximized at each period of time. Thus, maximum dynamic FlowLoc decisions
under earliest arrival flow in a series parallel graph can also be solved with the
same time complexity, although finding earliest arrival flow in a general graph has
a pseudopolynomial time complexity.

Now, we construct two algorithms for the single facility quickest FlowLoc prob-
lem. Algorithm 2 iterates over all possible locations e ∈ L, determines the quickest
time if location e hosts the facility and finds the optimal location for the single
facility by comparing all those quickest times. It also records the quickest flow, and
the quickest time after placing the facility.

Algorithm 2 performs the quickest flow computations |L| times. If we perform a
single quickest flow computation before going through Algorithm 2, and find that
an arc in L has residual capacity enough to accommodate the given facility, we can
get rid of |L|−1 quickest flow computations in Algorithm 2. Algorithm 3 addresses
this issue.

Theorem 3.3. The single facility quickest FlowLoc problem can be solved in strongly
polynomial time.

Proof. Algorithm 2 performs the quickest flow computation L times and Algo-
rithm 3, in worst case, performs it |L| + 1 times. Using the cancel-and-tighten
algorithm by Saho and Shigeno [34], the quickest flow problem can be solved in
O(nm2 log2 n) time. Hence, the single facility quickest FlowLoc problem can be
solved in O(|L|nm2 log2 n) time.

12 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

Algorithm 2: Single facility quickest FlowLoc I

Input : Directed network N = (V,A, b, τ, s, d), the set of possible locations
L, size r of the single facility, supply F at s

Output: Location loc of the facility, the corresponding static flow x, the
corresponding quickest time T

1 T =∞
2 for e ∈ L do
3 b(e) = b(e)− r
4 new quickest time = the quickest time in the modified network

5 if new quickest time < T then
6 T = new quickest time

7 loc = e

8 x = static flow corresponding to the quickest flow

9 end

10 b(e) = b(e) + r

11 end

12 return loc, x, T

Algorithm 3: Single facility quickest FlowLoc II

Input : Directed network N = (V,A, b, τ, s, d), the set of possible locations
L, size r of the single facility, supply F at s

Output: Location loc of the facility, the corresponding static flow x, the
corresponding quickest time T

1 x = static flow corresponding to the quickest flow in the network N

2 T = the corresponding quickest time

3 e∗ = arg max{b(e)− x(e) : e ∈ L}
4 if b(e∗)− x(e∗) ≥ r then
5 loc = e∗

6 b(e∗) = b(e∗)− r
7 else
8 Algorithm 2

9 end

10 return location loc, x, T

Example 2. To illustrate the working of Algorithm 2 and Algorithm 3, we consider
the network depicted in Figure 1 with L = {(1, 2), (1, 3), (2, 3)}, r = 1, F = 11. In
Algorithm 2, we take T = ∞. In the first iteration, we take l = (1, 2), reduce its
capacity 4 by 1 and calculate the quickest time which is 6.33 < ∞. So loc = (1, 2)
and the capacity of (1, 2) is retained at 4. In this way, in the third iteration, we
get loc = (1, 3) after three quickest flow calculations. However, in Algorithm 3, we
calculate the static flow x associated with the quickest flow in the beginning (see the
first table in Example 3) and see that b(1, 3)− x(1, 3) = 1 ≥ r so that loc = (1, 3).

Observation 3. Let |P | > 1 and ν(e) ≥ |P | ∀e ∈ L, p∗ = arg max{r(p) : p ∈ P}.
If e∗ ∈ L is the single facility location, taken p∗ as the single facility, then π(p) =
e∗, ∀p ∈ P .

NETWORK FLOW LOCATION MODELS AND ALGORITHMS 13

3.2. Multi-facility quickest FlowLoc. Now we consider the quickest FlowLoc
problem for |P | > 1. The idea of the single facility case (i.e. iterating over all
the possibilities to locate facilities) can be carried over to the multiple facility case
also. As described in Hamacher et. al. [11], this does not lead to a polynomial
algorithm even in case of static FlowLoc, the exception being the case mentioned
in Observation 3. The following result is crucial in this regard.

Theorem 3.4 (Hamacher et al.,[11]). There is no polynomial time α-approximation
algorithm for the multi-facility maximum static FlowLoc problem with a finite con-
stant α unless P = NP .

As we have seen that the multi-facility static maximum FlowLoc problem is NP -
hard, we realize the hardness of the multi-facility quickest FlowLoc problem in the
following lemma.

Lemma 3.5. For F > 0, if τe = 0 ∀e ∈ A, the quickest flow problem is equivalent
to the maximum static flow problem.

Proof. The maximum static flow problem can be stated as:

max v (14)

∑

e∈Aout
i

xe −
∑

e∈Ain
i

xe =





v if i = s

−v if i = d

0 if i /∈ {s, d}
(15)

0 ≤ xe ≤ be ∀e ∈ A (16)

The objective function (14) replaced by
F+

∑
e∈A xeτe
v with the same constraints gives

the quickest flow problem because of Theorem 2.3. If τe = 0 ∀e ∈ A, the quickest
flow problem reduces to minimize F/v subject to the constraints (15) and (16). But
for a fixed F > 0, minimizers of F/v will maximize v.

Theorem 3.6. There is no polynomial time α-approximation algorithm to solve
the multifacility quickest FlowLoc problem unless P = NP .

Proof. Suppose that there is a polynomial time α-approximation algorithm to solve
the multifacility quickest FlowLoc problem for α < ∞. According to Lemma 3.5,
the maximum static flow problem is a special case of the quickest flow problem.
This implies that there exists such an algorithm for multi-facility static FlowLoc
problem which contradicts Theorem 3.4.

Because of Theorem 3.6, a polynomial time exact algorithm or an approximate
algorithm is not possible. However, in large-scale evacuation situations, a fast sub-
optimal solution is preferred to the slow optimal solution (Vogiatzis et al. [40]). So,
we design polynomial time heuristics to solve the multi-facility quickest FlowLoc
problem presenting its mixed integer programming formulation.

14 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

The mathematical programming formulation of the multi-facility quickest FlowLoc
problem, based on Theorem 2.3, is as follows.

min
F +

∑
e∈A τexe
v

(17)

∑

e∈Aout
i

xe −
∑

e∈Ain
i

xe =





v if i = s

−v if i = d

0 if i ∈ V \ {s, d}
(18)

xe + yeprp ≤ be, ∀e ∈ L, p ∈ P (19)

0 ≤ xe ≤ be, ∀e ∈ A (20)∑

e∈L
yep = 1, ∀p ∈ P (21)

∑

p∈P
yep ≤ νe, ∀e ∈ L (22)

yep ∈ {0, 1}, ∀e ∈ L, p ∈ P (23)

The variables and constants used in the model are described as follows.
Variables
xe = static flow rate corresponding to the quickest flow in e ∈ A

yep =

{
1 if the facility p is placed on e ∈ L
0 if the facility p is not placed on e ∈ L

Constants
rp = r(p), the size of the facility p
be = b(e), the capacity of e ∈ A
νe = ν(e) = the number of facilities that can be placed on e ∈ L
Constraints (18) and (20) are conditions for a static flow. Constraints (19) reduce

the capacity of e by rp if the facility p is placed on e. Constraints (21) state that
each facility has to be placed in exactly one arc, and constraints (22) bound the
number of facilities on an arc by the admissible number of facilities on it.

The objective function of the above problem is not linear. We can make it linear
by putting 1/v = θ, and xeθ = ξe. As a result the problem becomes

min Fθ +
∑

e∈A
τeξe (24)

∑

e∈Aout
i

ξe −
∑

e∈Ain
i

ξe =





1 if i = s

−1 if i = d

0 if i ∈ V \ {s, d}
(25)

ξe + θyeprp ≤ beθ, ∀e ∈ L, p ∈ P (26)

0 ≤ ξe ≤ beθ, ∀e ∈ A (27)∑

e∈L
yep = 1, ∀p ∈ P (28)

∑

p∈P
yep ≤ νe, ∀e ∈ L (29)

yep ∈ {0, 1}, ∀e ∈ L, p ∈ P (30)

However, the set of constraints (26) are not linear. If one wants to use a linear mixed
integer programming solver to solve the model, one can linearize them using the

NETWORK FLOW LOCATION MODELS AND ALGORITHMS 15

idea given in Torres [38], replacing (26) with the following constraints ∀e ∈ L, p ∈ P
ξe + ζeprp ≤ beθ (31)

ζep ≤ Myep (32)

ζep ≤ θ (33)

ζep ≥ θ − (1− yep)M (34)

ζep ≥ 0 (35)

where M is an upper bound on the values of θ which can be taken 1 if there is at
least one path from the source to sink with positive integral capacities and F is also
a positive integer, because v is at least 1 in such cases.

Now, we present two polynomial time heuristics, in Algorithm 4 and 5, to solve
the problem. In Algorithm 4, first of all, the facilities are sorted in decreasing
order of their sizes. Then the quickest flow calculation is done (polynomial time
algorithms for such calculations exist) and the residual capacities of the arcs in L
are calculated. Then, first ν(e∗) facilities are placed on the arc e∗ with the largest
residual capacity, and e∗ is removed from L. The process is repeated until all the
facilities are allocated to some or all arcs in L. If the residual capacity of e∗ is less
than the size of the largest facility hosted by it, the quickest flow is recalculated in
Line 15.

Algorithm 4: Multi facility quickest FlowLoc heuristic I

Input : Directed network N = (V,A, b, τ, s, d), supply F at the source s,
the set of possible locations L with number of facilities ν : L→ N,
set of facilities P with size r : P → N

Output: Allocation π : P → L, the quickest time T after allocation
1 sort the facilities in P , according to the size, as p1, p2, · · · , pq such that

r(p1) ≥ r(p2) ≥ · · · ≥ r(pq)
2 x = static flow corresponding to the quickest flow

3 T = the corresponding quickest time

4 k = 1

5 while k ≤ q do
6 e∗ = arg max{b(e)− x(e) : e ∈ L}
7 for l = 1 to l = ν(e∗) do
8 if k + l − 1 ≤ q then
9 π(pk+l−1) = e∗

10 end

11 end

12 L = L \ {e∗}
13 b(e∗) = b(e∗)− r(pk)

14 if b(e∗)− x(e∗) + r(pk) < r(pk) then
15 x = static flow corresponding to the quickest flow with modified b

16 T = the corresponding quickest time

17 end

18 k = k + ν(e∗)
19 end

20 return π, x, T

16 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

Example 3. To illustrate Algorithm 4, we consider the network given in Figure 1.
Let F = 11, L = {(2, 1), (2, 4), (1, 3), (3, 4)} with ν(2, 1) = 1, ν(2, 4) = 2, ν(1, 3) =
1, ν(3, 4) = 3 and P = {f1, f2, f3, f4} with r(f1) = 1, r(f2) = 3, r(f3) = 2, r(f4) = 1.

First of all, we order the facilities in the decreasing order of their size, i.e. p1 =
f2, p2 = f3, p3 = f1, p4 = f4 so that r(p1) = 3, r(p2) = 2, r(p3) = 1, r(p4) = 1.

The static flow corresponding to the quickest flow is given in the following table.

Arc (1, 2) (1, 3) (2, 1) (2, 4) (2, 3) (3, 1) (3, 2) (3, 4) (4, 2) (4, 3)

b 4 3 3 4 1 3 1 3 3 1

x 4 2 0 3 1 0 0 3 0 0

b(e)− x(e) : e ∈ L 1 3 1 0

T = 6
q = 4
k = 1 < q

First iteration:
e∗ = arg max{b(e)− x(e) : e ∈ L} = (2, 1)
l = 1
k + l − 1 = 1 + 1− 1 = 1
π(p1) = (2, 1)
L = {(2, 4), (1, 3), (3, 4)}
b(e∗) = 3− 3 = 0
b(e∗)− x(e∗) + r(pk) = 0− 0 + 3 ≮ r(p1)
k = 1 + 1 = 2 < q

Second iteration:
e∗ = arg max{b(e)− x(e) : e ∈ L} = (2, 4) (We may take e∗ = (1, 3) also.)
l = 1, 2
k + l − 1 = 2 + 1− 1, 2 + 2− 1 = 2, 3
π(p2) = (2, 4)
π(p3) = (2, 4)
L = {(1, 3), (3, 4)}
b(e∗) = 4− 2 = 2
b(e∗)− x(e∗) + r(pk) = 2− 3 + 2 = 1 < r(pk) = 2
We recalculate x.

Arc (1, 2) (1, 3) (2, 1) (2, 4) (2, 3) (3, 1) (3, 2) (3, 4) (4, 2) (4, 3)

b 4 3 0 2 1 3 1 3 3 1

x 3 2 0 2 1 0 0 3 0 0

b(e)− x(e) : e ∈ L 1 0

T = 6.4
k = 2 + 2 = 4 = q

Third iteration:
e∗ = arg max{b(e)− x(e) : e ∈ L} = (1, 3)
l = 1
k + l − 1 = 4 + 1− 1 = 4
π(p4) = (1, 3)
L = {(3, 4)}
b(e∗) = 3− 1 = 2

NETWORK FLOW LOCATION MODELS AND ALGORITHMS 17

b(e∗)− x(e∗) + r(pk) = 2− 2 + 1 = 1 ≮ r(pk) = r(p4) = 1
k = 4 + 1 = 5 > q
Since k > q, the algorithm terminates and the solution is: π(f1) = π(p3) =

(2, 4), π(f2) = π(p1) = (2, 1), π(f3) = π(p2) = (2, 4), π(f4) = π(p4) = (1, 3). The
static flow corresponding to the quickest flow x is given in the following table with
the quickest time T = 6.4.

Arc (1, 2) (1, 3) (2, 1) (2, 4) (2, 3) (3, 1) (3,2) (3, 4) (4, 2) (4, 3)
b 4 2 0 2 1 3 1 3 3 1
x 3 2 0 2 1 0 0 3 0 0

The quickest time T calculated by MILP solver for this example is 6.2 which is
very close to the result obtained by the heuristic. Worth noting, in this example,
is that if e∗ = (1, 3) is chosen in the second iteration, the result of the heuristic
coincides with that of the MILP solver.

In the above example, if we solve the single-facility quickest FlowLoc problem
each time when we require to place a facility in a new arc, the objective function
value matches with that of the MILP solution. We present such a procedure to solve
a multi-facility quickest FlowLoc problem in Algorithm 5. Although the running
time of the algorithm is higher, because of more quickest flow calculations, the
objective function values are closer to the optimal values in most of the cases in the
computational experiment done in Section 3.3.

Algorithm 5: Multi facility quickest FlowLoc heuristic II

Input : Directed network N = (V,A, b, τ, s, d), supply F at the source s,
the set of possible locations L with number of facilities ν : L→ N,
set of facilities P with size r : P → N

Output: Allocation π : P → L, the quickest time T after allocation
1 sort the facilities in P , according to the size, as p1, p2, · · · , pq such that

r(p1) ≥ r(p2) ≥ · · · ≥ r(pq)
2 k = 1

3 while k ≤ q do
4 e∗ = optimal location obtained by solving the single facility quickest

FlowLoc problem for pk
5 for l = 1 to l = ν(e∗) do
6 if k + l − 1 ≤ q then
7 π(pk+l−1) = e∗

8 end

9 end

10 L = L \ {e∗}
11 b(e∗) = b(e∗)− r(pk)

12 k = k + ν(e∗)
13 end

14 x = static flow corresponding to the quickest flow with modified b

15 T = the corresponding quickest time

16 return π, x, T

18 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

3.3. Computational experiment. To test the performance of the proposed heuris-
tics, we take a transportation network of Kathmandu city, consisting of major road
segments within the Ring Road (Figure 2a). We take Dasharath Stadium and neigh-
boring area as the source. The stadium is the largest in Nepal and the neighboring
area consists of some of the major shopping malls. We consider a scenario of evac-
uating people in case of an emergency, e.g. the threat of a possible bomb attack,
from the source to the outside of the Ring Road.

The directed graph representing the network consists of 69 nodes and 221 arcs.
The travel time on each arc is considered to be the time of travel on the corre-
sponding road segment at the speed of 40 km/h. The length of each road segment
is based on the OpenStreetMap data. Depending on the width of the road segment,
the capacity of the corresponding arc is taken from 1 to 4 units of flow (an average
sized vehicle) per second.

Given a flow value F , we calculate the quickest flow and identify the arcs with
nonzero flow (see Figure 2b for F = 20000) and consider a random set of feasible
locations L to contain at least 25% such arcs, because if L consists entirely of
zero-flow arcs, the solution is trivial. The set of feasible facilities P is also taken
randomly with admissible sizes. For each e ∈ L, the number of facilities it can host
is chosen randomly between 1 to a maximum of 2 facilities per kilometer. We focus,
mainly, on the solutions with objective function values differing from the quickest
time without allocating facilities.

For F = 20000, outcomes of some typical instances are presented in Table 4.
The corresponding quickest time without facility allocation is 2570 seconds. The
running time (R. time), and the objective function values (T ∗) are expressed in
seconds. The MILP solutions with running time more than 15 minutes are not
recorded.

For F = 5000, 20000 and 50000, with at least 30 instances each (for which the
MILP solutions are recorded), the maximum and average percentage deviations
from the MILP objective function value are shown in Table 3.

Table 3. Percentage Deviation from the MILP objective function values

Algorithm 4 Algorithm 5
Maximum deviation 21.55% 5.31 %
Average deviation 3.48 % 0.18%

Out of 178 instances (including the above-mentioned instances), only 16 instances
of Algorithm 4 have an objective value better than that of Algorithm 5. However,
the running time of Algorithm 5 is higher than that of Algorithm 4. Among the
tested instances, the maximum running time of Algorithm 4 is 0.59 seconds with an
average of 0.17 seconds, the corresponding values for Algorithm 5 are 2.31 seconds
and 1.02 seconds.

The implementation of the algorithms and the mixed integer programming are
done using the programming language Python 3.7 on a computer with Mac operat-
ing system having 1.8 GHz dual-core Intel Core i5 processor, and 8 GB RAM. The
solver used to solve the mixed integer program is CBC (Coin-OR branch and cut).

4. Quickest FlowLoc problem with contraflow. Assuming that the direction
of arcs in a directed network can be reversed (i.e. the direction of the traffic flow

NETWORK FLOW LOCATION MODELS AND ALGORITHMS 19

Table 4. Computational results for some instances with F = 20000

|L| |P | Algorithm 4 Algorithm 5 MILP
R. time T ∗ R. time T ∗ R. time T ∗

5 5 0.14 3209.3 0.53 2717.6 0.87 2713.5
5 7 0.16 2831.9 0.49 2707.6 1.39 2707.1
6 7 0.13 3222.1 0.65 2881.2 1.93 2878.1
8 10 0.15 2580.0 0.58 2575.0 2.92 2575.0
8 8 0.14 3189.3 0.47 3189.3 2.01 3189.3
9 10 0.15 2725.9 0.66 2593.3 3.46 2593.3
10 10 0.17 2587.8 0.73 2585.6 8.01 2585.6
11 10 0.11 2847.5 0.81 2573.9 5.69 2573.9
11 11 0.17 2586.7 0.83 2580.6 15.16 2580.6
11 15 0.20 2721.8 0.72 2710.6 52.52 2707.6
12 11 0.15 2708.2 0.73 2585.0 6.7 2585.0
12 15 0.17 2877.5 0.69 2881.2 114.77 2877.5
13 15 0.12 2588.3 0.51 2576.1 2.82 2576.1
14 15 0.24 2578.3 0.72 2579.4 645.67 2576.1
14 21 0.11 2861.9 0.69 2712.4 134.76 2595.0
15 17 0.16 3005.3 0.98 2843.1 224.36 2843.1
15 20 0.16 3036.7 1.10 2733.5 47.37 2733.5
16 17 0.16 2736.5 1.06 2722.4 221.88 2722.4
17 19 0.19 2851.9 1.29 2717.1 379.54 2716.5
18 19 0.20 2581.7 0.97 2583.3 214.78 2581.1
18 19 0.16 2589.4 1.18 2585.6 822.64 2585.6
19 20 0.24 2595.0 1.93 2607.2 - -
19 24 0.59 3032.7 1.76 2868.8 - -
20 25 0.18 2707.6 1.25 2707.6 - -
21 25 0.15 2577.8 1.21 2577.8 - -
23 25 0.14 2692.9 1.47 2575.0 - -
23 26 0.14 2705.3 1.05 2705.3 - -
24 26 0.20 3026.0 1.87 2863.1 - -
26 29 0.14 2704.7 1.42 2704.7 - -
28 40 0.20 2585.0 1.14 2585.0 - -
28 39 0.17 2586.7 1.20 2586.7 - -
29 34 0.16 2851.2 1.42 2851.2 - -
30 40 0.24 2588.3 1.55 2588.3 - -
31 38 0.17 2851.2 1.75 2851.2 - -
31 37 0.22 2600.0 1.57 2600.0 - -
32 40 0.17 2706.5 1.54 2706.5 - -
37 43 0.22 2701.8 1.77 2701.8 - -
38 41 0.21 2597.2 1.44 2598.9 - -
39 50 0.25 2710.0 1.95 2710.0 - -
40 50 0.09 2573.3 1.76 2571.7 - -
41 48 0.20 2710.6 2.19 2710.6 - -

20 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

(a) Kathmandu network (b) Quickest flow arc occupancy (F=20000)

Figure 2

on a road segment can be reversed), a contraflow problem seeks to choose the ideal
direction of arcs to optimize network flows. To solve a dynamic contraflow problem
on a network N = (V,A, b, τ, s, d), an undirected network N̄ = (V, Ā, b̄, τ̄ , s, d),
known as auxiliary network of N , is constructed such that

Ā = {(i, j) : (i, j) ∈ A or (j, i) ∈ A}

For each (i, j) ∈ Ā,

b̄(i, j) = b(i, j) + b(j, i)

τ̄(i, j) =

{
τ(i, j) if (i, j) ∈ A
τ(j, i) otherwise

in which we consider b(i, j) = 0 whenever (i, j) /∈ A, and vice versa.
Implementation of algorithms to solve various dynamic flow problems on auxiliary

network helps to solve the corresponding contraflow problems [23, 31]. For example,
to solve the maximum contraflow problem which seeks to maximize the flow allowing
arc reversals in a given network, we solve the maximum flow problem in its auxiliary
network. Then, the flow is decomposed into paths and cycles and cycle flows are
removed. The analogous procedure to solve the quickest contraflow problem can be
found in Pyakurel et al. [29]. The algorithms to solve the contraflow problems not
only give optimal flow decisions but also declare which arcs to reverse and which
arcs not to reverse. In what follows, the flow in the auxiliary network N̄ of N
without cycle flows will be referred to as contraflow in N .

NETWORK FLOW LOCATION MODELS AND ALGORITHMS 21

1

2

3

4

7,1
7,1

7,3
7,3

6,4
6,4

4,1
4,1

2,12,1

Figure 3. Auxiliary network N̄ of network N in Figure 1 with
arc labels (capacity, travel time)

If we allow reversal of the direction of the usual traffic flow, especially in case of
emergency evacuation planning, there may be a significant reduction in the quickest
time. The change in the capacity of arcs, in such cases, has also effects on location
decisions.

Definition 4.1 (Maximum static (dynamic) ContraFlowLoc). Let an evacuation
network N = (V,A, b, τ, s, d) be a network with the set of all feasible locations
L ⊆ A, set of all facilities P , the size of the facilities r : P → N and the number
of facilities that can be placed on the possible locations ν : L → N. The maxi-
mum static (dynamic) ContraFlowLoc problem asks for an allocation π : P → L,
such that the static (dynamic) maximum flow value is maximized after the facility-
allocation, allowing arc reversals.

Definition 4.2 (Quickest ContraFlowLoc). Given an evacuation network N =
(V,A, b, τ, s, d), supply F at s, set of feasible locations L ⊆ A, the set of all facilities
P , the size of the facilities r : P → N, the number of facilities that can be placed on
the possible locations and ν : L → N, the quickest ContraFlowLoc problem seeks
for an allocation π : P → L of the facilities to the edges, such that the quickest
time to transport F from s to d is minimized, allowing arc reversals.

Example 4. Consider the network given in Figure 1. The labels on arcs de-
note capacity and travel time respectively. Let the set of feasible locations L =
{(2, 1), (1, 3)} and the size of a single facility r = 2. If the facility is placed on (2, 1),
the values of the static maximum flow before and after contraflow configuration are
7 (4 along 1 − 2 − 4 and 3 along 1 − 3 − 4) and 11 (5 along 1 − 2 − 4, 4 along
1− 3− 4, 2 along 1− 3− 2− 4) respectively. If the facility is placed on (1, 3), the
corresponding values are 5 (4 along 1 − 2 − 4, 1 along 1 − 3 − 4) and 11 (7 along
1− 2− 4, 4 along 1− 3− 4) respectively. Thus the static FlowLoc decision before
contraflow configuration is (2, 1) and after contraflow configuration is (2, 1) or (1, 3).
The decisions with the quickest time before and after contraflow configuration with
F = 109 are listed in Table 5.

To solve the single-facility maximum static(dynamic) ContraFlowLoc problem,
we can iteratively choose an arc from L, place the facility, reduce its capacity by the
size of the facility, calculate the maximum static (dynamic) contraflow value, and

22 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

Table 5. Quickest time calculations (cf. Example 4)

Quickest time, F = 109
Facility placed on Before contraflow After contraflow

(2, 1) 20 15
(1, 3) 25.8 14.27

Location Decision (2, 1) (1, 3)

choose the arc in which the difference of the maximum contraflow value after placing
the facility and without placing the facility on any arc is the least (see also [6]).
Here, we present Algorithm 6 to solve the single facility quickest ContraFlowLoc
problem, which iteratively chooses an arc from L, reduces its capacity by the size of
the facility r, finds the quickest contraflow and retains its capacity before choosing
the next arc. The arc which gives the minimum quickest time after placing the
facility on it is chosen as the optimal location.

Algorithm 6: Single facility quickest ContraFlowLoc I

Input : Directed network N = (V,A, b, τ, s, d), the set of possible locations
L, supply at s = F , size r of the facility

Output: Location loc of the facility, static contraflow x corresponding to
the quickest contraflow, corresponding quickest time T , set of arcs
to be reversed R

1 T =∞
2 for (i, j) ∈ L do
3 b(i, j) = b(i, j)− r
4 new quickest time = quickest contraflow time in the modified network

if new quickest time < T then
5 T = new quickest time

6 loc = (i, j)

7 x = the corresponding static contraflow

8 end

9 b(i, j) = b(i, j) + r

10 end

11 R = {(j, i) ∈ A : x(i, j) > b(i, j) if (i, j) ∈ A or x(i, j) > 0 if (i, j) /∈ A}
12 return loc, x, T,R

We can improve the running time of Algorithm 6 by adapting Algorithm 3 to the
contraflow case, in the cases when there is enough capacity in a feasible arc to hold
the given facility. After contraflow calculation, if arc (i, j) ∈ L and its opposite arc
(j, i) ∈ A together have capacity enough to host the facility, then (i, j) is chosen to
locate the facility and we can get rid of the remaining |L| − 1 quickest contraflow
calculations of Algorithm 6. The procedure is elucidated in Algorithm 7.

For finding the static contraflow corresponding to the quickest contraflow, we
solve the quickest flow problem in the auxiliary network and remove cycle flows (if
any) (Pyakurel et al. [29]). Because the size of the facility does not exceed the
capacity of an arc in L (Remark 1), and placing the facility on an arc (i, j) ∈ L
reduces the capacity of (i, j) and (j, i) both in the auxiliary network, Algorithm 6

NETWORK FLOW LOCATION MODELS AND ALGORITHMS 23

Algorithm 7: Single facility quickest ContraFlowLoc II

Input : Directed network N = (V,A, b, τ, s, d), the set of possible locations
L, supply at s = F , size r of the facility

Output: Location loc of the facility, static contraflow x corresponding to
the quickest contraflow, corresponding quickest time T , set of arcs
to be reversed R

1 x = static contraflow corresponding to the quickest contraflow in N

2 T = the corresponding quickest time

3 (i∗, j∗) = arg max{b(i, j) + b(j, i)− x(i, j)− x(j, i) : (i, j) ∈ L}
4 if b(i∗, j∗) + b(j∗, i∗)− x(i∗, j∗)− x(j∗, i∗) ≥ r then
5 loc = (i∗, j∗)
6 b(i∗, j∗) = b(i∗, j∗)− r
7 else
8 Algorithm 6

9 end

10 R = {(j, i) ∈ A : x(i, j) > b(i, j) if (i, j) ∈ A or x(i, j) > 0 if (i, j) /∈ A}
11 return loc, x, T,R

and Algorithm 7 find the location loc with the minimum quickest time. Moreover,
the removal of cycle flows in a contraflow computation leads either x(i, j) or x(j, i)
to vanish so that the set R of arcs to be reversed is well defined. This discussion
leads to the following lemma:

Lemma 4.3. Algorithm 6 or Algorithm 7 solves the single facility quickest Con-
traFlowLoc problem optimally.

Theorem 4.4. The single facility quickest ContraFlowLoc problem can be solved in
strongly polynomial time.

Proof. The complexity of the for loop in Algorithm 6 is dominated by the complexity
of the quickest flow calculation which can be done in strongly polynomial time
O(nm2 log2 n). Since the auxiliary network can be formed in linear time, flow
decomposition can be done in O(nm) time (Ahuja et al. [1]), the overall complexity
of Algorithm 6 is O(|L|nm2 log2 n).

Since the multi-facility FlowLoc problems are NP -hard, the corresponding Con-
traFlowLoc problems are also NP -hard, beause solving the problem in the auxiliary
network is not easier than solving the corresponding problem in the original net-
work. Replacing quickest flow calculations by maximum static(dynamic) contraflow
calculations and adjusting capacities accordingly, Algorithm 4, can also be adapted
to construct a polynomial time heuristic to solve the corresponding multi-facility
case. To solve the multi-facility quickest ContraFlowLoc problem, we present such
an adaptation in Algorithm 8.

Further, solving the single-facility quickest ContraFlowLoc problem each time
when we require to place a facility in a new arc, we can easily adapt Algorithm 5
to the cotraflow case also.

Example 5. To illustrate Algorithm 8, we reconsider the problem illustrated in
Example 3 with the possibility of arc reversals. The static contra flow corresponding

24 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

Algorithm 8: Multi facility quickest ContraFlowLoc heuristic

Input : Directed network N = (V,A, b, τ, s, d), the set of possible locations
L, supply F at the source s, set of facilities P with size r : P → N

Output: Allocation π : P → L, the quickest time T after allocation, set of
arcs to be reversed R

1 sort the facilities in P , according to their size, as p1, p2, · · · pq such that
r(p1) ≥ r(p2) ≥ · · · ≥ r(pq)

2 x = static contra flow corresponding to the quickest contra flow

3 T = the corresponding quickest time

4 k = 1

5 while k ≤ q do
6 (i∗, j∗) = arg max{b(i, j) + b(j, i)− x(i, j)− x(j, i) : (i, j) ∈ L}
7 for l = 1 to l = ν(i∗, j∗) do
8 if k + l − 1 ≤ q then
9 π(pk+l−1) = (i∗, j∗)

10 end

11 end

12 L = L \ {(i∗, j∗)}
13 b(i∗, j∗) = b(i∗, j∗)− r(pi)
14 if b(i∗, j∗) + b(j∗, i∗)− x(i∗, j∗)− x(j∗, i∗) + r(pi) < r(pi) then
15 x = static contra flow corresponding to the quickest contra flow with

modified b
16 T = the corresponding quickest time

17 end

18 k = k + ν(i∗, j∗)
19 end

20 R = {(j, i) ∈ A : x(i, j) > b(i, j) if (i, j) ∈ A or x(i, j) > 0 if (i, j) /∈ A}
21 return π, loc, T,R

to the quickest contra flow is tabulated in the following table. For simplicity, we
write b(i, j) + b(j, i)− x(i, j)− x(j, i) as δ(i, j).

Arc (1, 2) (1, 3) (2, 1) (2, 4) (2, 3) (3, 1) (3, 2) (3, 4) (4, 2) (4, 3)

b 4 3 3 4 1 3 1 3 3 1

x 7 2 0 5 2 0 0 4 0 0

δ(i, j) : (i, j) ∈ L 1 3 1 0

T = 5.22
q = 4
k = 1 < q

First iteration:
(i∗, j∗) = max{δ(i, j) : (i, j) ∈ L} = (1, 3)
l = 1
k + l − 1 = 1 + 1− 1 = 1
π(p1) = (1, 3)
L = {(2, 1), (2, 4), (3, 4)}
b(i∗, j∗) = 3− 3 = 0

NETWORK FLOW LOCATION MODELS AND ALGORITHMS 25

δ(i∗, j∗) + r(pk) = 0 + 3− 2− 0 + 3 = 4 ≮ r(p1) = 3
k = 1 + 1 = 2 < q

Second iteration: (i∗, j∗) = max{δ(i, j)|(i, j) ∈ L} = (2, 4)
l = 1, 2
k + l − 1 = 2 + 1− 1, 2 + 2− 1 = 2, 3
π(p2) = (2, 4)
π(p3) = (2, 4)
L = {(2, 1), (3, 4)}
b(i∗, j∗) = 4− 2 = 2
d(i∗, j∗) + r(pk) = 2 + 3− 5− 0 + 2 = 2 ≮ r(p2) = 2
k = 2 + 2 = 4 = q

Third iteration:
(i∗, j∗) = max{δ(i, j) : (i, j) ∈ L} = (2, 1)
l = 1
k + l − 1 = 4 + 1− 1 = 4
π(p4) = (2, 1)
L = {(3, 4)}
b(i∗, j∗) = 3− 1 = 2
d(i∗, j∗) + r(pk) = 2 + 4− 7− 0 + 1 = 0 < r(p4) = 1
Recalculation of x:

Arc (1, 2) (1, 3) (2, 1) (2, 4) (2, 3) (3, 1) (3, 2) (3, 4) (4, 2) (4, 3)
b 4 0 2 2 1 3 1 3 3 1
x 6 2 0 4 2 0 0 4 0 0

k = 4 + 1 = 5 > q

The solution is: π(f1) = π(p3) = (2, 4), π(f2) = π(p1) = (1, 3), π(f3) = π(p2) =
(2, 4), π(f4) = π(p4) = (2, 1). The static contraflow x corresponding to the quickest
contraflow after this allocation is as given in the third iteration. The set of arcs
reversed before facility allocation is {(2, 1), (3, 2), (4, 2), (4, 3)} while after allocation
it becomes {(2, 1), (3, 2), (4, 2), (4, 3), (1, 3)}. The quickest time is 5.375 which is
less than the quickest time 6.2 of the same problem without arc reversals. The
significance of the contraflow approach is that the difference between the quickest
times before and after arc reversals increase with the growing value of F . Some
observations of this problem, after facility-allocation are listed in the following table.

Quickest time
F Before contraflow After contraflow

100 24.2 15.33
1000 204.2 115.33
10000 2004.2 1115.33

5. Conclusion. In an effort to combine location decisions with network flow mod-
els, some models to combine quickest flow with location analysis are introduced.
With a view to be applied in traffic flow management in emergency evacuation
planning, the facility-arc assignments are done so as to affect the quickest time of

26 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

evacuation the least. Exact polynomial algorithms to assign a single facility and
polynomial time heuristic algorithms to place multiple facilities on multiple arcs are
designed. The related algorithms in literature, so far, either find the quickest flow
in the network without facility assignment or assign facilities to the arcs without
quickest flow considerations. Our proposed algorithms combine quickest flow with
facility assignment and find the optimal (or near optimal) assignment so that the
increase in the quickest time is the least after facility allocation to the arcs. To the
best of our knowledge, the problems and the corresponding algorithms to solve the
quickest FlowLoc problems are considered for the first time in this paper.

The performance of heuristic algorithms are tested taking the Kathmandu road
network as an evacuation network. In randomly generated instances of the set of
feasible locations and set of facilities, the faster heuristic shows an average deviation
of approximately 3.5%, and the slower 0.2% from the actual optimal solution. The
corresponding algorithms allowing arc reversals are also presented. As in the ab-
sence of facility allocations, a significant improvement in the quickest time because
of necessary arc reversals is observed in the FlowLoc case also. The algorithms are
particularly important when a known volume of evacuees from a danger zone has
to be transferred to a safe zone with the least possible interruption in the evacua-
tion time because of facility allocation in some road segments of the transportation
network.

However, in the problems considered, the location decisions are made on the
basis of quickest flow with a background of maximum flow in a single-source-single-
sink network with constant capacity and transit time. Also the number of available
facilities does not exceed the number of available locations, and the size of each
facility fits in any of the available locations. Hence, the similar problems with other
aspects of network flow in more generalized settings can be natural extensions of
the problem.

Acknowledgments. The first author acknowledges UGC Nepal for the PhD fel-
lowship support, and TU Bergakademie Freiberg for the research stay support
(April-September 2019). The second author acknowledges the support of Alexan-
der von Humboldt (AvH) Foundation for her post doctoral research stay (November
2017-October 2019) at TU Bergakademie, Freiberg, Germany and her return fellow-
ship (November 2019-October 2020) at Central Department of Mathematics, TU,
Nepal. The authors thank AvH for the support of the AvH Research Group Linkage
Program between TU Bergakademie Freiberg, Germany and Central Department
of Mathematics, TU Kathmandu, Nepal. The authors would also like to thank the
anonymous reviewers for their constructive suggestions.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, New Jersey, 1993.

[2] S. An, N. Cui, X. Li and Y. Ouyang, Location planning for transit-based evacuation under

the risk of service disruptions, Transportation Research Part B: Methodological , 54 (2013),
1–16.

[3] R. D. Armstrong and Z. Jin, A new strongly polynomial dual network simplex algorithm,

Mathematical Programming, 78 (1997), 131–148.
[4] T. N. Dhamala and U. Pyakurel, Earliest arrival contraflow problem on series-parallel graphs,

International Journal of Operations Research, 10 (2013), 1–13.

NETWORK FLOW LOCATION MODELS AND ALGORITHMS 27

[5] T. N. Dhamala, U. Pyakurel and S. Dempe, A critical survey on the network optimization
algorithms for evacuation planning problems, International Journal of Operations Research,

15 (2018), 101–133.

[6] R. C. Dhungana and T. N. Dhamala, Maximum FlowLoc Problems with Network Reconfig-
uration, International Journal of Operations Research, 16 (2019), 13–26.

[7] R. C. Dhungana, U. Pyakurel and T. N. Dhamala, Abstract contraflow models and solution
procedures for evacuation planning, Journal of Mathematics Research, 10 (2018), 89–100.

[8] L. R. Ford Jr. and D. R. Fulkerson, Constructing maximal dynamic flows from static flows,

Operations Research, 6 (1958), 419–433.
[9] M. Goerigk, K. Deghdak and P. Heßler, A comprehensive evacuation planning model and

genetic soution algorithm, Transportation Research, Part E, 71 (2014), 82–97.

[10] M. Goerigk, B. Grün and P. Heßler, Combining bus evacuation with location decisions: A
branch-and-price approach, Transportation Research Procedia, 2 (2014), 783–791.

[11] H. W. Hamacher, S. Heller and B. Rupp , Flow location (FlowLoc) problems: Dynamic

network flows and location models for evacuation planning, Annals of Operations Research,
207 (2013), 161–180.

[12] S. Heller and H. W. Hamacher, The multi-terminal q-FlowLoc problem: A heuristic, in Lec-

ture Notes in Computer Science, Proceedings of the International Network Optimization
Conference, Springer, 6701 (2011), 523–528.

[13] H. Jia, F. Ordóñez and M. Dessouky, A modeling framework for facility location of medical
services for large-scale emergencies, IIE Transactions, 39 (2007), 41–55.

[14] S. Kim, S. Shekhar and M. Min, Contraflow transportation network reconfiguration for evac-

uation route planning, IEEE Transactions on Knowledge and Data Engineering, 20 (2008),
1–15.

[15] S. Kongsomsaksakul, C. Yang and A. Chen, Shelter location-allocation model for flood evac-

uation planning, Journal of the Eastern Asia Society for Transportation Studies, 6 (2005),
4237–4252.

[16] E. Köhler, K. Langkau and M. Skutella, Time expanded graphs for flow-dependent transit

times, in European Symposium on Algorithms (eds. R. Möhring and R. Raman), Springer,
2461 (2002), 599–611.

[17] A. Kulshrestha, Y. Lou and Y. Yin, Pick-up locations and bus allocation for transit-based

evacuation planning with demand uncertainty, Journal of Advanced Transportation, 48
(2014), 721–733.

[18] M. Lin and P. Jaillet, On the quickest flow problem in dynamic networks–a parametric min-
cost flow approach, in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on

Discrete Algorithms, (2015), 1343–1356.

[19] M. Ng, J. Park and S. T. Waller, A hybrid bilevel model for the optimal shelter assignment
in emergency evacuations, Computer-Aided Civil and Infrastructure Engineering, 25 (2010),

547–556.

[20] J. B. Orlin, Max flows in O(nm) time, or better, in Proceedings of the Forty-fifth Annual
ACM Symposium on Theory of Computing, (2013), 765–774.

[21] U. Pyakurel, Evacuation Planning Problem with Contraflow Approach, PhD thesis, IOST,

Tribhuvan University, Nepal, 2016.
[22] U. Pyakurel and T. N. Dhamala, Models and algorithms on contraflow evacuation planning

network problems, International Journal of Operations Research, 12 (2015), 36–46.

[23] U. Pyakurel and T. N. Dhamala, Continuous time dynamic contraflow models and algorithms,
Advances in Operations Research - Hindawi , 2016 (2016), Art. ID 7902460, 7 pp.

[24] U. Pyakurel and T. N. Dhamala, Continuous dynamic contraflow approach for evacuation

planning, Annals of Operations Research, 253 (2017), 573–598.
[25] U. Pyakurel and T. N. Dhamala, Evacuation planning by earliest arrival contraflow, Journal

of Industrial and Management Optimization, 13 (2017), 487–501.
[26] U. Pyakurel, T. N. Dhamala and S. Dempe, Efficient continuous contraflow algorithms for

evacuation planning problems, Annals of Operations Research, 254 (2017), 335–364.

[27] U. Pyakurel, H. W. Hamacher and T. N. Dhamala, Generalized maximum dynamic contraflow
on lossy network, International Journal of Operations Research Nepal, 3 (2014), 27–44.

[28] U. Pyakurel, H. N. Nath, S. Dempe and T. N. Dhamala, Efficient dynamic flow algorithms

for evacuation planning problems with partial lane reversal, Mathematics, 7 (2019), 993.
[29] U. Pyakurel, H. N. Nath and T. N. Dhamala, Efficient contraflow algorithms for quickest

evacuation planning, Science China Mathematics, 61 (2018), 2079–2100.

28 H. N. NATH, U. PYAKUREL, T. N. DHAMALA AND S. DEMPE

[30] U. Pyakurel, H. N. Nath and T. N. Dhamala, Partial contraflow with path reversals for
evacuation planning, Annals of Operations Research, 283 (2019), 591–612.

[31] S. Rebennack, A. Arulselvan, L. Elefteriadou and P. M. Pardalos, Complexity analysis for

maximum flow problems with arc reversals, Journal of Combinatorial Optimization, 19
(2010), 200–216.

[32] B. Rupp, FlowLoc: Discrete Facility Locations in Flow Networks, Diploma thesis, University
of Kaiserslautern, Germany, 2010.

[33] S. Ruzika, H. Sperber and M. Steiner, Earliest arrival flows on series-parallel graphs, Networks,

57 (2011), 169–173.
[34] M. Saho and M. Shigeno, Cancel-and-tighten algorithm for quickest flow problems, Network ,

69 (2017), 179–188.

[35] Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis with Mathematical Program-
ming Methods, Prentice-Hall, Englewood Cliffs, 1985.

[36] H. D. Sherali, T. B. Carter and A. G. Hobeika, A location-allocation model and algorithm

for evacuation planning under hurricane/flood conditions, Transportation Research Part B:
Methodological , 25 (1991), 439–452.

[37] M. Skutella, An introduction to network flows over time, in Research Trends in Combinatorial

Optimization, (2009), 451–482.
[38] E. Torres, Linearization of mixed-integer products, Mathematical Programming, 49 (1990),

427–428.
[39] C. Vogiatzis, J. L. Walteros and P. M. Pardalos, Evacuation through clustering techniques, in

Models, Algorithms, and Technologies for Network Analysis, Springer New York, 32 (2013),

185–198.
[40] C. Vogiatzis, R. Yoshida, I. Aviles-Spadoni, S. Imamoto and P. M. Pardalos, Livestock evacu-

ation planning for natural and man-made emergencies, International Journal of Mass Emer-

gencies and Disasters, 31 (2013), 25–37.

Received January 2019; revised January 2020.

E-mail address: hari672@gmail.com

E-mail address: urmilapyakurel@gmail.com

E-mail address: amb.dhamala@daadindia.org

E-mail address: dempe@math.tu-freiberg.de

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

Asia-Pacific Journal of Operational Research
(2021) 2150027 (24 pages)
c© World Scientific Publishing Co. & Operational Research Society of Singapore
DOI: 10.1142/S0217595921500275

A Bicriteria Approach for Saving a Path

Maximizing Dynamic Contraflow

Hari Nandan Nath

Central Department of Mathematics, Tribhuvan University
P.O. Box 13143, Kathmandu, Nepal

hari672@gmail.com

Stephan Dempe

Fakultät für Mathematik und Informatik
TU Bergakademie Freiberg, 09596 Freiberg, Germany

dempe@math.tu-freiberg.de

Tanka Nath Dhamala∗

Central Department of Mathematics
Tribhuvan University, P.O. Box 13143

Kathmandu, Nepal
amb.dhamala@daadindia.org

Received 9 September 2020
Revised 16 April 2021
Accepted 8 May 2021

Published

The maximum dynamic contraflow problem in transportation networks seeks to maxi-
mize the flow from a source to a sink within a given time horizon with a possibility of
arc reversals. This may result into blockage of paths of desired length from some node of
the network towards the source. In some cases such as the evacuation planning, we may
require a path towards the source to move some facilities, for example, emergency vehi-
cles. In this work, we model the problem of saving such a path as a bicriteria optimization
problem which minimizes the length of the path and maximizes the dynamic flow with
arc reversals. We use the ε-constraint approach to solve the problem and propose a pro-
cedure that gives the set of all Pareto optimal solutions in a single-source-single-sink
network with integer inputs. We also present computational performance of the algo-
rithm on a road network of Kathmandu city, and on randomly generated networks. The
results are of both theoretical and practical importance.

Keywords: Network flow; contraflow; multicriteria optimization; bicriteria optimization;
dynamic flow.

∗Corresponding author.

2150027-1

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

H. N. Nath, S. Dempe & T. N. Dhamala

1. Introduction

“Network flows” is a topic studied in various fields including applied mathematics,

engineering, computer science, management, and operations research, with wide

applications (Ahuja et al., 1993). One of the important applications is in evacuation

planning to optimize the traffic flow in a complex traffic network to save life in

various disasters. We refer to the survey by Dhamala et al. (2018) and citations

therein for various optimization problems making use of network flow theory to

develop algorithms related to evacuation planning. In such problems, road segments

are taken as arcs, their intersections (including hazardous areas, and safe areas) are

taken as nodes of a network (graph). The nodes corresponding to the hazardous

areas are called sources, and those corresponding to the safe areas are called sinks.

Most of the problems deal with minimizing the travel time, minimizing the cost or

maximizing the value of the flow from the sources to the sinks.

One of the important strategies in evacuation planning problems is flow opti-

mization with arc reversals — known as contraflow approach in literature. The idea

is to reverse the usual direction of the traffic flow in necessary road segments to

optimize the flow. In a multi-source-multi-sink network, Kim et al. (2008) model the

problem of minimizing the evacuation time of a given number of evacuees, as an inte-

ger programming formulation. Showing that the problem is NP-hard, they propose

two heuristics to solve the problem. In a single-source-single-sink network, how-

ever, Rebennack et al. (2010) show that the problem of maximizing the flow value

within a given time horizon, and minimizing the evacuation time of a given number

of evacuees at the source can be solved in strongly polynomial times, and present

exact algorithms to solve the problems. Pyakurel and Dhamala (2015) solve the

earliest arrival contraflow problem on a two-terminal network in pseudo-polynomial

time. They solve it in strongly polynomial time if the network is series parallel. The

continuous time solution is given in Pyakurel and Dhamala (2016) and the solutions

with similar objectives, are solved in Pyakurel et al. (2017, 2019).

The contraflow approach, undoubtedly, increases the flow value towards the sink

and decreases the evacuation time. However, it may obstruct the paths towards the

source. To facilitate evacuation, it may be imperative to use the arcs to place the

facilities (Hamacher et al., 2013; Nath et al., 2021). A path saving strategy, in such

cases, to save a path not exceeding a given length (travel time) to maximize the

flow is modeled in Nath et al. (2019b). A related problem with bilevel modeling is

presented in Nath et al. (2019a).

In the evacuation process of affected people in emergencies, evacuees move away

from emergency location and the emergency facilities have to be moved in the

opposite direction, from their location towards the emergency. Our motivation of

this work comes from the work of Hamacher et al. (2013) in which they mention the

death and injuries of a significant number of people which can be attributed to the

lack of proper planning of these opposite movement scenarios (e.g., more than 500

people were injured and 21 people died in a LoveParade (Germany) disaster in the

2150027-2

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

Saving a Path Maximizing Dynamic Contraflow : Bicriteria Approach

summer of 2010). Given a set of road segments, and a set of facilities, Hamacher

et al. (2013) introduce static and dynamic FlowLoc models to allocate facilities to

hamper the maximum flow the least. A similar problem to find the quickest time is

introduced in Nath et al. (2021). However, these models do not identify a path to

move the facilities towards the disastrous locations. Reserving a path towards the

disastrous locations may hamper the flow of the evacuees towards the safe areas.

So, one has to choose the path so as to minimize the loss of the flow. However, such

a path may be too long to reach the source within the desired time. Hence, there

arises a problem of maximizing the flow of evacuees and minimizing the length of the

path to move the facilities, hand in hand. To address the issue, in the present work,

we model the problem of saving a path towards the source (disastrous location) as a

bicriteria optimization model, in which one objective minimizes the path length from

a given node towards the source, and the other objective maximizes the flow value

(allowing arc reversals) towards the sink without using the arcs in the path chosen.

We present a solution procedure based on ε-constrained approach (expressing the

objective of minimizing the path length as a constraint bounded by ε) and test

the computational performance of the procedure in different randomly generated

networks and in a portion of Kathmandu (Nepal) city road network.

The paper is organized as follows. Basic ideas required for the work are presented

in Sec. 2. The modeling of the problem is presented in Sec. 3. A solution strategy

is described in Sec. 4, followed by computational experiments in Sec. 5. Section 6

concludes the paper.

2. Basic Ideas

A network N = (V,A,Φ) is a directed graph where V is a finite set of nodes with

|V | = n, A is a set of arcs or edges with |A| = m, and Φ is a set of attributes

associated with V,A. Without loss of generality, we assume that there are at most

two arcs between each pair of nodes i, j ∈ V . The arc e directed from i to j is

denoted by (i, j) and that from j to i by (j, i). The node i is called the tail of e and

j, the head of e. For each i ∈ V , we define the set of nodes immediately succeeded

by i as

V +
i = {j ∈ V : (i, j) ∈ A}

and the set of nodes immediately preceded by i as

V −
i = {j ∈ V : (j, i) ∈ A}.

With a view that some commodity flows from some nodes of a network to some

other nodes, a travel time function

τ :A→ R≥0

and a capacity function

u : A→ R≥0

2150027-3

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

H. N. Nath, S. Dempe & T. N. Dhamala

are defined on A. The travel time τ(i, j) = τij can be considered as the time the

flow takes to reach from i to j, and the capacity u(i, j) = uij , as the maximum

amount of flow that can arrive at j from i per unit time. We will denote a network

N with the set of nodes V , the set of arcs A, the capacity function u, and the travel

time function τ by N = (V,A, u, τ).

2.1. Static flow

Given two distinct nodes s, t ∈ V , a static s − t flow is defined as a function

x : A→ R≥0 that satisfies the flow conservation

∑

j∈V +
i

xij −
∑

j∈V −
i

xji = 0, ∀ i ∈ V \{s, t} (1)

and the capacity constraints

0 ≤ xij ≤ uij , ∀ (i, j) ∈ A (2)

where x(i, j) = xij . The value v(x) of the flow x is defined as

v(x) =
∑

j∈V +
s

xsj −
∑

j∈V −
s

xjs =
∑

j∈V −
t

xjt −
∑

j∈V +
t

xtj (3)

which is the total amount of the flow that leaves s to reach t in a single wave without

consideration of travel time on arcs. The node s is termed as the source node, t as

the sink node, and the nodes other than s, t as the intermediate nodes. If there is

no ambiguity, a static s− t flow is termed simply as a static flow.

Chain flow

Let P be an s − t chain (a directed path) in N , a chain flow xP of value δ > 0 on

P is a static flow such that

xPij =

⎧
⎨
⎩
δ if (i, j) ∈ P,

0 otherwise.
(4)

Cycle flow

If C is a directed cycle in N , a cycle flow xC with value δ > 0 on C is a circulation

such that

xCij =

⎧
⎨
⎩
δ if (i, j) ∈ C,

0 otherwise.
(5)

2150027-4

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

Saving a Path Maximizing Dynamic Contraflow : Bicriteria Approach

Flow decomposition

We can decompose any static flow into chain and cycle flows. Although the number

of chains and cycles in a network is not polynomial in the number of nodes and

arcs, there are at most m+n chain and cycle flows in such a decomposition (Ahuja

et al., 1993).

Theorem 2.1 (Ahuja et al., 1993). Let P be the set of s − t chains and C be

the set of all cycles in N . A static flow x can be decomposed into at most m + n

(positive) flows on s− t chains and directed cycles such that

xij =
∑

P∈P : (i,j)∈P

xPij +
∑

C∈C:(i,j)∈C

xCij

with at most m non-zero cycle flows.

2.2. Dynamic flow

Given a time horizon T ≥ 0, a dynamic flow f = (fij)(i,j)∈A where fij : [0, T) →
R≥0 is a Lebesgue measurable function such that

fij(θ) = 0 for θ ≥ T − τij . (6)

The quantity fij(θ) represents the rate of flow that enters i at time θ and reaches j

at time θ+ τij . So the outflow rate at j at time θ+ τij is fij(θ). Hence, the outflow

rate at any time θ′ at j is fij(θ
′ − τij). We define the excess of the node i at time

θ as

exf (i, θ) =
∑

j∈V −(i)

∫ θ−τji

0

fji(ξ)dξ −
∑

j∈V +(i)

∫ θ

0

fij(ξ)dξ (7)

which is the net amount of flow that enters the node i up to time θ. Given two

distinct nodes s, t ∈ V , a dynamic flow f is called a dynamic s− t flow if

exf (i, θ) ≥ 0, ∀ i ∈ V \{s}, θ ∈ [0, T), (8)

exf (i, T) = 0, ∀ i ∈ V \{s, t}, (9)

0 ≤ fij(θ) ≤ uij , ∀ (i, j) ∈ A, θ ∈ [0, T). (10)

The value of the s− t flow over time is

vT (f) = exf (t, T). (11)

Constraints (8) and (9) allow to store flow at intermediate nodes for some time as

long as it has left the node again before the time horizon is over.

2150027-5

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

H. N. Nath, S. Dempe & T. N. Dhamala

2.2.1. Temporally repeated flow

Given a feasible static flow x and a time horizon T , a flow decomposition on x gives

a set of paths P with flow xP for each P ∈ P . If a flow is sent along P at a constant

rate xP from the source during the time interval [0, T − τ(P)), we can obtain a flow

over time with time horizon T , where τ(P) =
∑

(i,j)∈P τij is the travel time on path

P . For a node i in an s− t path P , let Psi, Pit denote the subpaths of P from s to

i and from i to t, where

Pij(θ) = {P ∈ P : (i, j) ∈ P with τ(Psi) ≤ θ and τ(Pit) < T − θ}.
Then a temporally repeated flow f is obtained as described in the following equation:

fij(θ) =
∑

P∈Pij(θ)

xP , ∀ (i, j) ∈ A, θ ∈ [0, T). (12)

The temporally repeated flow described in (12) is a dynamic s − t flow over time,

with strict equality in the constraints (8), i.e., it does not allow flow to store at the

intermediate nodes (Skutella, 2009).

2.2.2. Maximum dynamic flow

For a given network N with source s, sink t �= s, and a time horizon T ≥ 0, a

dynamic flow f∗ is called a maximum dynamic flow if vT (f∗) ≥ vT (f) for any

dynamic s− t flow f defined in N . So, the maximum dynamic flow problem can be

stated as

max vT (f)

subject to (8)–(10).

The construction of maximum dynamic flow from static flows by Ford and Fulkerson

(1958) gives a rather simplified version of the problem as a linear program (see also

Fleischer and Tardos (1998))

min −Tv +
∑

(i,j)∈A

τijxij , (13a)

∑

j∈V +
i

xij −
∑

j∈V −
i

xji =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

v if i = s,

−v if i = t,

0 if i ∈ V \{s, t},

(13b)

0 ≤ xij ≤ uij , ∀ (i, j) ∈ A, (13c)

which gives static flow x, of value v, temporal repetition of which yields the maxi-

mum dynamic flow f with the value

vT (f) = Tv −
∑

(i,j)∈A

τijxij .

2150027-6

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

Saving a Path Maximizing Dynamic Contraflow : Bicriteria Approach

2.3. Contraflow models

Contraflow models seek to identify a set of arcs R ⊆ A so that each (i, j) ∈ R can

be reversed to optimize the flow. One of the important strategies to solve such a

problem is to solve the corresponding flow problem in a modified network known

as auxiliary network.

Auxiliary network

The auxiliary network of N = (V,A, u, τ), is defined as the network N ′ =

(V,A′, u′, τ ′), where

A′ = {(i, j) : (i, j) ∈ A or (j, i) ∈ A},
the capacity function u′ : A′ → R≥0 is given by

u′(i, j) = u′ij =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

uij if (j, i) /∈ A,

uji if (i, j) /∈ A,

uij + uji otherwise,

and the travel time function τ ′ : A→ R≥0 is given by

τ ′(i, j) = τij =

⎧
⎨
⎩
τij if (i, j) ∈ A,

τji otherwise.

This concept is depicted in Fig. 1. Each arc label represents the capacity and

the travel time associated with the corresponding arc.

s

a b

d t

i

j

3,1

3,1 2,4

2,4

3,1 2,12,2 1,2
2,3

3,3

2,3

1,3

uij , τij

1,1

s

a b

d t

i

j

6,1

6,1 4,4

4,4

5,15,13,23,2
5,3

5,3

3,3

3,3

1,1

1,1

u′ij , τ
′
ij

(a) Network N (b) Auxiliary network N ′

Fig. 1. Auxiliary network construction.

2150027-7

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

H. N. Nath, S. Dempe & T. N. Dhamala

2.4. Multicriteria optimization

Let ψi : X → R, i = 1, . . . , p, then a problem of the form

min(ψ1(x), . . . , ψp(x))

subject to x ∈ X
(14)

is called multicriteria optimization problem, where X is the feasible set. The mini-

mization (min) has not be considered in the ordinary sense because elements of Rp

are not ordered in the sense the elements in R are ordered. We define some special

orders in Rp as follows.

Componentwise order in Rp

For a = (a1, . . . , ap), b = (b1, . . . , bp) ∈ Rp, the following orders in Rp are defined.

(i) a � b⇔ a1 ≤ b1, . . . , ap ≤ bp (weak componentwise order),

(ii) a ≤ b⇔ a1 ≤ b1, . . . , ap ≤ bp, a �= b (componentwise order),

(iii) a < b⇔ a1 < b1, . . . , ap < bp (strict componentwise order).

Pareto optimality, efficiency, weak efficiency

Let ψ = (ψ1, . . . , ψp). For a, b ∈ X , if ψ(a) ≤ ψ(b), we say that a dominates b, and

ψ(a) dominates ψ(b). A feasible solution a∗ ∈ X is called Pareto optimal or efficient

if there is no a ∈ X that dominates a∗. In other words, a∗ is Pareto optimal if there

is no a ∈ X satisfying ψ(a) ≤ ψ(a∗). A feasible solution aw ∈ X is called weakly

Pareto optimal (weakly efficient) if there is no a ∈ X satisfying ψ(a) < ψ(aw).

It is obvious that an efficient solution is also a weakly efficient solution, but the

converse is not true. The following result is important to find the solutions of the

bi-criteria model developed in this work.

Theorem 2.2 (Ehrgott, 2005). An optimal solution of the problem

min
x∈X

ψj(x)

subject to ψk(x) ≤ εk, k = 1, . . . , p k �= j,
(15)

where ε ∈ Rp, is a weakly efficient solution of the problem (14).

3. Developing the Model

3.1. The maximum dynamic contraflow problem

Given a time horizon T , the maximum dynamic contraflow problem seeks to iden-

tify the maximum dynamic contraflow with a possibility of reversing a set of arcs.

Rebennack et al. (2010) introduce the problem and present a procedure to solve it.

We present the procedure in Algorithm 1.

2150027-8

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

Saving a Path Maximizing Dynamic Contraflow : Bicriteria Approach

Algorithm 1. Maximum dynamic contraflow algorithm (Rebennack et al.,

2010)

Input : A network N = (V,A, u, τ), source s, sink t, time horizon T

Output: Maximum dynamic flow with arc reversal on N

1 Construct the auxiliary network N ′ of N .

2 Calculate the static flow x corresponding to the temporally repeated

maximum dynamic flow on N ′.
3 Decompose x into path (chain) flows and cycle flows. Remove cycle flows and

update x.

4 Arc (j, i) ∈ A is reversed if and only if (i, j) ∈ A and xij > uij or (i, j) /∈ A

and xij > 0.

5 Maximum dynamic flow with arc reversal on N = temporally repeated flow

generated by x.

Example 3.1. Consider a network given in Fig. 1(a) with source s, sink t and time

horizon T = 10. The value of the maximum dynamic flow is 29 as given in the

following table.

Path (P) xP T − τ(P) Dynamic flow value

s–a–b–t 1 7 7

s–a–t 2 6 12

s–b–t 2 5 10

Total dynamic flow value 29

Solving the problem in the auxiliary network (Fig. 1(b)), the value of the maximum

dynamic flow is 57 as mentioned in the following table. The arcs to be reversed

being (a, s), (b, s), (t, a), (t, b).

Path (P) x′P T − τ ′(P) Dynamic flow value

s–a–b–t 1 7 7

s–a–t 5 6 30

s–b–t 4 5 20

Total dynamic flow value 57

Removal of the cycle flows in Step 3 of Algorithm 1 is crucial to maintain the

feasibility of the flow in the network N after arc reversals. The following example

illustrates this fact.

Example 3.2. Consider a network as depicted in Fig. 2(a). Its auxiliary network is

given in Fig. 2(b) with static flow x corresponding to temporally repeated maximum

dynamic flow with T ≥ 4. We can decompose x into a path flow of value 3 along s–a–

b–t and a cycle flow of value 1 along a–b–a. Removing the cycle flow, we get a feasible

flow in the network constructed from N0 with arcs (a, s), (b, a), (b, t) reversed. If we

do not remove the cycle flow, it is feasible in the auxiliary network but not feasible

2150027-9

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

H. N. Nath, S. Dempe & T. N. Dhamala

s

a b

t

2,1 1,1

1,2

2,2

1,0

3,0

s

a b

t

3/3,1 0/3,1

0/3,2

3/3,2

4/4,0

1/4,0

(a) Network N0 with arc labels uij , τij (b) N ′
0 with arc labels xij/u

′
ij , τ

′
ij

Fig. 2. The network considered in Example 3.2.

in network N0 even after arc reversals. In N ′
0, the value v of the static flow is 3

which remains unchanged even after the removing the cycle flow. Taking T = 5, the

value of the dynamic flow is vT (f) = Tv−∑
τijxij = 5× 3− 3− 6 = 6. If τab > 0,

and x is the same, then removing the cycle flow does not change v but vT (f) is

increased.

The following theorem shows that if there is no cycle of zero length in N (the

length of cycle C is
∑

(i,j)∈C τij), there does not exist a positive flow in any of the

cycles of N .

Theorem 3.1. If every cycle in N is of positive length, an optimal flow in the

solution of problem (13) does not have a positive flow in a cycle in its flow decom-

position.

Proof. Suppose that D(x) = −Tv+∑
(i,j)∈A τijxij . Let x

∗ be the optimal solution

of problem (13) with v = v(x∗) = v∗ and the flow decomposition of x∗ have a

positive flow in cycles. Assume C to be the set of arcs which form a cycle with flow

value δ > 0, and that
∑

(i,j)∈C

τij > 0.

Define x1, x2 : A→ R by

x1ij =

{
x∗ij for (i, j) ∈ A\C,
x∗ij − δ for (i, j) ∈ C,

and x2 be a flow defined by

x2ij =

{
0 for (i, j) ∈ A\C,
δ for (i, j) ∈ C.

2150027-10

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

Saving a Path Maximizing Dynamic Contraflow : Bicriteria Approach

Then x1 and x2 are feasible static flows in N such that x1ij +x2ij = x∗ij , ∀ (i, j) ∈ A.

Moreover, since a static flow in a cycle does not contribute to the value of the static

flow, v(x1) = v∗. Now,

D(x∗) = −Tv∗ +
∑

(i,j)∈A

τijx
∗
ij

= −Tv∗ +
∑

(i,j)∈A

τijx
1
ij +

∑

(i,j)∈A

τijx
2
ij

= −Tv∗ +
∑

(i,j)∈A

τijx
1
ij + δ

∑

(i,j)∈C

τij

> −Tv∗ +
∑

(i,j)∈A

τijx
1
ij

⎛
⎝∵ δ > 0,

∑

(i,j)∈C

τij > 0

⎞
⎠ = D(x1).

Since x1 is a also a feasible static flow with v(x1) = v∗, this contradicts that x∗ is

optimal because x1 �= x∗.

An immediate corollary of the above theorem is.

Corollary 3.1. Given τij > 0, ∀ (i, j) ∈ A, if x∗ is an optimal solution of problem

(13), there is no positive cycle flow in its flow decomposition.

If no positive cycle flow can be guaranteed beforehand, Step 3 of Algorithm 1

can be skipped. Then the problem of finding the temporally repeated maximum

dynamic flow in the auxiliary network can be expressed as the linear program (13)

with A replaced by A′, u replaced by u′, and τ replaced by τ ′. In this way, because

of Theorem 3.1, we get the following result.

Theorem 3.2. In a network N = (V,A, u, τ), if

(a) for each (i, j) ∈ A, there is (j, i) ∈ A with τij = τji,

(b) every cycle in N is of positive length,

then a solution given by Algorithm 1 is also a solution of the linear program

min −Tv +
∑

(i,j)∈A

τijxij, (16a)

∑

j∈V +
i

xij −
∑

j∈V −
i

xji =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

v if i = s,

−v if i = t,

0 if i ∈ V \{s, t},

(16b)

0 ≤ xij ≤ uij + uji, ∀(i, j) ∈ A, (16c)

with (i, j) reversed if xji > uji.

2150027-11

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

H. N. Nath, S. Dempe & T. N. Dhamala

Assumption (a) in the above theorem is non-restrictive, because if (j, i) /∈ A for

some (i, j) ∈ A, we may add (j, i) to A with uji = 0 and τji = τij .

The arc reversal in a network increases the value of the flow whenever the reversal

results in the increase of the capacity of a path towards the sink. This is useful,

particularly, in case of evacuation planning. However, it may obstruct a flow towards

the source. In this work, we consider a problem of reserving a path (so that there

is no flow on any of its arcs) from a specific node, called depot, to the source for

some kind of facility movements.

Example 3.3. Consider the network in Fig. 1(a), in which s is the source, t is the

sink, and d is a depot. If we keep the path d–a–s for a possible facility movement

(Fig. 3(a)), taking T = 10, the maximum dynamic flow value with arc reversals

(solving the maximum dynamic flow problem in the auxiliary network 3(b)) is 39

(1 through path s–a–b–t repeated 7 times, 2 through s–a–t repeated 6 times, and,

4 through s–b–t repeated 5 times).

The dynamic flow values and the lengths for all the possible paths are given in

the following table.

Saved path (P) τ(P) v10(f)

P1 : d–a–s 3 39

P2 : d–t–a–s 7 39

P3 : d–a–b–s 7 44

P4 : d–t–b–s 8 47

P5 : d–a–t–b–s 10 43

P6 : d–t–a–b–s 11 26

s

a b

d t

i

j

3,1

2,4

2,4

3,1 2,12,2
2,3

3,3

2,3

1,3

uij , τij

1,1

s

a b

d t

i

j

3,1

3,1 4,4

4,4

5,15,12,22,2
5,3

5,3

3,3

3,3

1,1

1,1

u′ij , τ
′
ij

(a) Network N without path d−a−s (b) Auxiliary network N ′ of (a)

Fig. 3. Auxiliary network saving a path.

2150027-12

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

Saving a Path Maximizing Dynamic Contraflow : Bicriteria Approach

If we consider only the maximum flow value, the path P4 is the optimal path

with maximum flow value 47. But sometimes, the length of the path also matters,

e.g. to move the facility the fastest. The possible candidate for this option is the

path P1. Considering the objectives of minimizing the path length and maximizing

flow value, the non-dominated (see Sec. 2.4) paths are P1, P3, and P4.

3.2. Bicriteria path-saving model to maximize

dynamic contraflow (BPMDC)

In this section, we model the problem of saving a path towards the source from a

specific node called depot with the following assumptions.

(1) If there is an arc (i, j) between the nodes i and j, there is an arc (j, i) with a

positive travel time equal to that of (i, j). If there is no arc (j, i) corresponding

to (i, j), we can construct one with zero capacity. The symmetric travel time

is assumed so that the contraflow modeling of Rebennack et al. (2010) can

be applied. Positive travel time is considered to use the model presented in

Theorem 3.2.

(2) Each path from the depot to the source (without a zero capacity arc) has enough

capacity for the movement of facilities so that each path is a candidate for the

path to be saved. See Remark 3.1 for a more general case.

(3) Once a path is chosen to be saved, we maximize the dynamic flow from the

source to the sink in the rest of the network allowing arc reversals without

using any of the arcs in the saved path.

(4) For making the model simple, we neither allow arc reversals in the paths to

be saved, nor we use any unused capacity of the arcs in the saved path for the

dynamic flow.

We require the saved path to be as short as possible, and the value of the max-

imum dynamic contraflow as large as possible. As these objectives are conflicting,

in general, there is no single solution that optimizes both the objectives simultane-

ously. So, we formulate the problem as a bicriteria optimization problem.

Consider a network N = (V,A, u, τ) in which (j, i) ∈ A whenever (i, j) ∈ A,

and τij = τji. We formulate the problem on the basis of the famous shortest path

problem formulation and Theorem 3.2. Considering s, t, d ∈ V as the source, the

sink, and the depot, the variables and the parameters are described below.

Variables

xij : static flow rate on the arc (i, j),

yij =

⎧
⎨
⎩
1 if (i, j) is in the saved path,

0 otherwise.

Parameters

T : time horizon, a positive integer,

2150027-13

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

H. N. Nath, S. Dempe & T. N. Dhamala

τij : travel time on the arc (i, j), a positive integer,

uij : capacity of the arc (i, j), a non-negative integer.

Assuming that

ψ1 =
∑

(i,j)∈A

τijyij

and

ψ2 = −T

⎡
⎣ ∑

j∈V +
s

xsj −
∑

j∈V −
s

xjs

⎤
⎦+

∑

(i,j)∈A

τijxij ,

the problem is formulated as:

min(ψ1, ψ2) (17a)

subject to:

∑

j∈V +
i

yij −
∑

j∈V −
i

yji =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if i = s,

0 if i ∈ V \{s, d},

1 if i = d,

(17b)

yij ≤ uij , ∀ (i, j) ∈ A, (17c)

∑

j∈V +
i

xij −
∑

j∈V −
i

xji = 0, ∀ i ∈ V \{s, t}, (17d)

0 ≤ xij ≤ (1− yij)uij + (1− yji)uji, ∀ (i, j) ∈ A, (17e)

yij ∈ {0, 1} ∀ (i, j) ∈ A. (17f)

The objective (17a), minimizes the path length and the negative of the value

of the dynamic flow with path reversal. Constraints (17b) are the constraints for

the saved path. Constraints (17c) ensure that the path chosen does not contain the

arcs with zero capacity. Constraints (17d) are flow-conservation constraints, and

constraints (17e) limit the static flow rate on an arc (i, j) by uij if (j, i) is in the

saved path, by uji if (i, j) is in the saved path, and by uij + uji otherwise. For

brevity, we refer to the model as BPMDC.

Remark 3.1. Each arc of the path saved by the above model will have capacity

at least one. However, if one needs a path with a capacity at least b ∈ Z>0, one can

2150027-14

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

Saving a Path Maximizing Dynamic Contraflow : Bicriteria Approach

define

Uij =

⎧
⎨
⎩
1, b ≤ uij ,

0, b > uij ,

and replace the constraint (17c) by

yij ≤ Uij , ∀ (i, j) ∈ A. (17g)

This will force yij = 0 when b > uij . Consequently, the arcs with capacity less than

b will not be chosen for the saved path.

4. Solution Strategy

To solve the problem, we apply the idea given in Theorem 2.2 to convert the prob-

lem into an ε-constrained mixed binary integer linear program which gives a weakly

Pareto optimal (weakly efficient) solution for each ε ∈ R and then develop a pro-

cedure that gives Pareto optimal solutions whenever the transit time function is

positive integer-valued. We formulate the ε-constrained problem (ε ∈ R) as

min−T

⎡
⎣ ∑

j∈V +
s

xsj −
∑

j∈V −
s

xjs

⎤
⎦+

∑

(i,j)∈A

τijxij, (18a)

subject to

∑

j∈V +
i

yij −
∑

j∈V −
i

yji =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if i = s,

0 if i ∈ V \{s, d},

1 if i = d,

(18b)

yij ≤ uij , ∀ (i, j) ∈ A, (18c)

∑

j∈V +
i

xij −
∑

j∈V −
i

xji = 0, ∀ i ∈ V \{s, t}, (18d)

0 ≤ xij ≤ (1− yij)uij + (1 − yji)uji, ∀ (i, j) ∈ A, (18e)

yij ∈ {0, 1}, (18f)

∑

(i,j)∈A

τijyij ≤ ε. (18g)

In Algorithm 2, we propose a procedure which not only lists out the paths corre-

sponding to the non-dominated values of (ψ1, ψ2) but also gives the corresponding

static flow that can be temporally repeated to get the corresponding maximum

dynamic flow.

2150027-15

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

H. N. Nath, S. Dempe & T. N. Dhamala

Algorithm 2. Non-dominated solutions of BPMDC

Input : N = (V,A, u, τ) with uij ∈ Z≥0, τij ∈ Z>0, a source s, a sink t, a

depot d

Output: Set of non-dominated saved paths with the maximum dynamic

contraflow

1 εmin = length of a shortest d–s path, εmax =
∑

(i,j)∈A τij

2 LIST = {}
3 ψ0

2 = −∞
4 ε1 = εmax + 1

5 k = 1

6 while εk > εmin do

7 Xk = solution of problem (18) for ε = εk − 1

8 add Xk to LIST

9 ψk
1 = ψ1(Xk), ψ

k
2 = ψ2(Xk)

10 if ψk
2 = ψk−1

2 then

11 remove Xk−1 from LIST

12 end

13 εk+1 = ψk
1

14 k = k + 1

15 end

16 For each X = {(xij)(i,j)∈A, (yij)(i,j)∈A} ∈ LIST , construct the path using

(i, j) with yij = 1 and the dynamic flow by temporal repetition of x.

Theorem 4.1. Given τij ∈ Z>0, let X be the feasible set of BPMDC (17). Let YD

be the set of all non-dominated points in ψ(X), and S = {(ψ1(X), ψ2(X)) : X ∈
LIST }, then S = YD.

Proof. Because of Theorem 2.2, for each Xk given in Line 7 of Algorithm 2

(ψ1(Xk), ψ2(Xk)) is weakly non-dominated in ψ(X). Because ε decreases by at

least 1 in each iteration, the sequence {ψ1(Xk)} is a strictly decreasing sequence.

So because of Lines 10 and 11, (ψ1(Xk), ψ2(Xk)) ∈ YD.

Conversely, let X∗ ∈ X such that (ψ1(X
∗), ψ2(X

∗)) ∈ YD and (ψ1(X
∗),

ψ2(X
∗)) /∈ S. Clearly, the value of ψ1 (a d–s path length) is bounded above

by
∑

(i,j)∈A τij and below by the length of the shortest path. Thus, if LIST =

{X1, . . . , Xp}, there exists l such that ψ1(Xl) > ψ1(X
∗) > ψ1(Xl+1) and ψ2(Xl) <

ψ2(X
∗) < ψ2(Xl+1), where 1 ≤ l < p. This implies that there exists a d–s path

of length ψ1(X
∗) in N saving which gives a maximum dynamic contraflow value

−ψ2(X
∗). So, putting ε = ψ1(X

∗) in problem (18) gives the minimum value of ψ2

as ψ2(X
∗). This is a contradiction, because for such an ε the minimum value of ψ2

is ψ2(Xl+1) according to Algorithm 2.

2150027-16

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

Saving a Path Maximizing Dynamic Contraflow : Bicriteria Approach

Although integrality restrictions are not put for the variable x in problem (17), if

u, τ are integral, one can guarantee the existence of solutions in which x is integral.

Theorem 4.2. Given uij ∈ Z≥0, τij ∈ Z≥0, there exist solutions to problem (17)

with integral x.

Proof. Fixing yij to satisfy constraints (17b) and (17f), the problem is equivalent

to a maximum dynamic flow problem in the auxiliary network resulting from the

removal of a d–s path. Since a maximum dynamic flow problem with integer inputs

always has an integral solution, the result follows.

Fig. 4. Kathmandu road network for the computational experiment (Google, n.d.).

2150027-17

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

H. N. Nath, S. Dempe & T. N. Dhamala

The constraints (17b) and (17f) are satisfied by a d− s path which may include

cycles (subtours). However, the paths in the solutions generated by Algorithm 2

do not contain such cycles. Let us consider a path with a cycle. Removing the

cycle decreases the value of ψ1. However, it does not decrease the corresponding

maximum dynamic contraflow value because removal of the cycle frees capacities

which can be used by the flow. This leads to:

Theorem 4.3. The saved paths in the solution of problem (17) are simple.

5. Computational Experiments

We test the computational performance of the proposed algorithm, first, considering

a road network of Kathmandu (Nepal), and then considering randomly generated

networks of different sizes as N .

5.1. Kathmandu road network

We consider a portion of Kathmandu road network inside the Ring Road considering

only the major road-segments (no. of nodes n = 44, no. of arcs m = 132). We take

Pashupati Nath region as a source node s, where a large gathering of people takes

place in various religious occasions, and Tribhuvan University region as a sink node

t, where there is a sufficient open space (see Fig. 4). For an auto-based evacuation

Fig. 5. Weakly non-dominated points (Kathmandu road network).

2150027-18

2nd Reading

June 22, 2021 17:8 WSPC/S0217-5959 APJOR 2150027.tex

Saving a Path Maximizing Dynamic Contraflow : Bicriteria Approach

planning, we assume the capacity of each segment between 2 cars per second to 4 cars

per second according to the width of the segment. The travel time to traverse the

segment is taken as provided by Google Maps data. We consider node corresponding

to the Tundikhel area (node 24 in Fig. 4) as the depot node d from where medical

facilities, support from army, etc. can be sent.

Considering the time horizon of T = 120 min, the (weakly) non-dominated

efficient points are depicted in Fig. 5. The non-dominated saved paths along with

their path length and the corresponding maximum dynamic contraflow value are

shown in Table 1.

The paths along which the flow has to be temporally repeated along with their

flow values are recorded in Table 2. The arcs occupied by the flow with its direction

corresponding to the saved path 24–25–26–21–20–19–18–s are shown in Fig. 6.

Using the programming language Python 3.7 on a computer with Mac operat-

ing system having 1.8GHz dual-core Intel Core i5 processor and 8GB RAM, the

solutions are obtained in less than a second (0.85 s). The solver used to solve the

mixed integer program is CBC (Coin-OR branch and cut).

Table 1. Non-dominated solution (Kathmandu road network).

Non-dominated saved path Path length (mins.) Flow value

24–25–26–35–15–14–13–12–s (P1) 27 71,400
24–25–26–21–20–19–18–28–27–1–s (P2) 26 70,320
24–25–26–21–20–19–18–28–27–s (P3) 19 70,200
24–25–26–21–20–19–18–s (P4) 13 69,960

Table 2. Temporally repeated flow (Kathmandu road network).

Saved Paths for the temporally repeated flow Static flow Total flow value
path per minute

P1

s–1–2–38–39–40–t 240 240 × (120 − 37) = 19920
s–12–13–14–15–16–17–7–t 120 120 × (120 − 38) = 9840
s–18–28–29–30–31–32–4–5–42–41–40–t 120 120 × (120 − 33) = 10440
s–18–28–29–30–31–32–22–23–6–7–8–t 120 120 × (120 − 36) = 10080
s–27–3–4–5–6–7–8–t 120 120 × (120 − 37) = 9960
s–27–3–4–5–6–7–t 120 120 × (120 − 27) = 11160

P2

s–1–2–38–39–40–t 120 120 × (120 − 37) = 9960
s–12–13–14–15–16–17–7–t 240 240 × (120 − 38) = 19680
s–18–28–29–30–31–32–22–23–6–7–8–t 120 120 × (120 − 36) = 10080
s–18–28–29–30–31–32–4–5–6–7–8–t 120 120 × (120 − 35) = 10200
s–27–3–4–5–42–41–40–t 240 240 × (120 − 35) = 20400

P3

s–1–2–38–14–39–40–t 240 240 × (120 − 37) = 19920
s–12–13–14–15–16–17–7–t 240 240 × (120 − 38) = 19680
s–18–19–29–30–31–32–4–5–6–7–8–t 120 120 × (120 − 35) = 10200
s–18–28–29–30–31–32–4–5–6–7–8–t 120 120 × (120 − 35) = 10200
s–27–3–4–5–42–41–40–t 120 120 × (120 − 35) = 10200

P4

s–1–2–38–14–39–40–t 240 240 × (120 − 37) = 19920
s–12–13–14–15–16–17–7–t 240 240 × (120 − 38) = 19680
s–18–28–29–30–31–32–4–5–6–7–8–t 120 120 × (120 − 35) = 10200
s–27–3–4–5–6–7–8–t 120 120 × (120 − 37) = 9960
s–27–28–29–30–31–32–4–5–42–41–40–t 120 120 × (120 − 35) = 10200

2150027-19

Research Article
Network Reconfiguration with Orientation-Dependent
Transit Times

Hari Nandan Nath,1 Urmila Pyakurel ,2 and Tanka Nath Dhamala 2

1Bhaktapur Multiple Campus, Department of Mathematics, Tribhuvan University, Bhaktapur, Nepal
2Central Department of Mathematics, Tribhuvan University, P. O. Box 13143, Kathmandu, Nepal

Correspondence should be addressed to Urmila Pyakurel; urmilapyakurel@gmail.com

Received 5 December 2020; Revised 6 February 2021; Accepted 23 February 2021; Published 11 March 2021

Academic Editor: Fernando Bobillo

Copyright © 2021 Hari Nandan Nath et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Motivated by applications in evacuation planning, we consider a problem of optimizing flow with arc reversals in which the transit
time depends on the orientation of the arc. In the considered problems, the transit time on an arc may change when it is reversed,
contrary to the problems considered in the existing literature. Extending the existing idea of auxiliary network construction to
allow asymmetric transit time on arcs, we present strongly polynomial time algorithms for solving single-source-single-sink
maximum dynamic contraflow problem and quickest contraflow problem. +e results are substantiated by a computational
experiment in a Kathmandu road network. An algorithm to solve the corresponding earliest arrival contraflow problem with a
pseudo-polynomial-time complexity is also presented. +e partial contraflow approach for the corresponding problems has also
been discussed.

1. Introduction

+e transportation network is represented as a dynamic net-
work in which road segments represent the arcs and inter-
section between them are the nodes. +e unsafe locations of
network are the sources and the locations at safe regions are the
sinks. Each node and arc of the network are bounded by finite
capacities. Each arc has a transit time or a cost function that
determines the amount of time or cost needed to travel it. +e
network may contain arcs in both directions with different
capacities and asymmetric transit times or costs. +e com-
putational complexities for the transportation planning are
heavily dependent upon the number of sources, sinks, pa-
rameters on the arcs, and nodes, like constant, time-dependent,
or flow-dependent capacities or transit times as well as addi-
tional constraints. +e time we consider mostly is discrete,
which approximates the computationally heavy continuous
models at the cost of solution approximations. Also, the
constant time is probably approximated by free flow speeds or
certain queuing rules and constant capacity settings that reduce
the problem to be linear, at least more tractable, in contrast to

the more general and realistic flow-dependent traffic flow
scenarios. For extensive explanation on diversified theories and
applications, we recommend Dhamala et al.[1] and Kotsireas
et al. [2] and the citations therein.

+e transportation network, during or after disastrous
situations, becomes more congested due to large number of
people and vehicles towards the safer areas on the streets.
Moreover, the movement towards risk areas from safer
places is discouraged because of which the corresponding
road lanes are almost empty. +e empty lanes management
plays vital role to reduce the traffic congestion. +e optimal
lane reversal strategy makes the traffic systematic and
smooth by removing the traffic jams caused in different
large-scale natural and man-made disasters, busy office
hours, special events, and street demonstrations. +e con-
traflow reconfiguration, by means of various operations
research models, heuristics, optimization, and simulation
techniques, reverses the usual direction of empty lanes to-
wards the sinks satisfying the given constraints that increase
the flow value and decrease the average evacuation time
[3, 4].

Hindawi
International Journal of Mathematics and Mathematical Sciences
Volume 2021, Article ID 6613622, 11 pages
https://doi.org/10.1155/2021/6613622

Although the capacity of lanes is assumed to be constant,
the transit timesmay vary. If we consider the inflow-dependent
or load-dependent transit times, the empty lanes may have
likely zero time contrary to the congested segments where the
transit times increase with the flow density. In reality, the
transit time of incoming lanes towards the sources may not be
equal to the outgoing lanes. It may be the cases depending on
the network topology as well. In such cases, the free flow transit
time has been considered for the reversed lanes [4]. Recently,
the authors in [5] have considered the asymmetric transit times
on the lanes but those lanes are individual and reversal de-
cisions are made with their own transit times, that is, sym-
metric transit times such as in [3, 6, 7].

In this paper, we consider the asymmetric transit times
of reversed lanes in general form and show their impact on
optimal lane reversals; that is, our transit time is dependent
on the orientation of the lanes which applies asymmetric
times.+e capacities of both reversals are the same by adding
both capacities.

Consider a network in Figure 1(a). +e arc labels rep-
resent the capacity of the arc and travel time on the direction
of the arc. For example, the capacity of (s, a) is 4 and its
travel time is 1.+atmeans a flow of 4 units per unit time can
be sent from s to a and takes 1 unit of time to reach from s to
a. For a time horizon of 6 units, a maximum of 8 units of
flow (1 along s–a–d twice, 1 along s–b–d thrice, and 1 along
s–a–b–d thrice) can be sent from s to d without allowing arc
reversals.

If (b, a) is reversed and the transit time is kept intact
(Figure 1(b)), the maximum of 10 units of flow (1 along
s–a–d twice, 1 along s–b–d thrice, 1 along s–a–b–d (that
contains original (a, b)) thrice, and 2 along s–a–b–d (that
contains (b, a) reversed) once) can be sent.

If the transit time depends on the orientation, when
(b, a) is reversed, its transit time becomes that of original
(a, b) (Figure 1(c)). In this case, there is a maximum of 14
units of flow (1 along s–a–d twice, 1 along s–b–d thrice, and
3 along s–a–b–d thrice). In this case, we can add the ca-
pacities of (a, b), (b, a) and replace the two arcs by a single
arc (a, b). If (a, b) is reversed, however, the maximum flow
value reduces to 5 (Figure 1(d)).

Kim et al. [8] firstly model the contraflow problem as an
integer programming problem, thereby proving its
NP-hardness. As finding exact mathematical solutions for
general contraflow techniques is costly, they present two
greedy and bottleneck heuristics for possible numerical
approximate solutions to the quickest contraflow problem.
With computational experiments, it has been shown that at
least 40% evacuation time can be reduced by reverting at
most 30% arcs. Rebennack et al. [3] solve the two-terminal
maximum and quickest contraflow problems optimally in
strongly polynomial times. Pyakurel and Dhamala [6] solve
the earliest arrival contraflow problem on a two-terminal
network in pseudo-polynomial-time. +ey solve it in
strongly polynomial time if the network is series-parallel.
+e continuous time solution is given in [7] and the solu-
tions with similar objectives are given in [9, 10]. +ey show
that if the minimum cut arcs have symmetric capacities, then
the flow is double with the contraflow. Pyakurel et al. [11]

give the first temporally repeated flow algorithm to solve the
quickest contraflow problem, within a complexity of solving
a min-cost flow problem. +e costs for arc reversals as
switching costs are studied in [12]. +e contraflow models
with intermediate storage are introduced in [13].

In this paper, we introduce the maximum dynamic
contraflow, earliest arrival, and quickest contraflow prob-
lems on asymmetric transit time network and present effi-
cient algorithms to solve these problems in two-terminal
networks. Modifying the network transformation suggested
by Rebennack et al. [3] in case of symmetric travel time cases,
we show that the approach works equally well in the
asymmetric travel time settings. +e results are extended
with partial lane reversals as well. We analyze our solutions
in both discrete and continuous time settings. +e novelty of
this work is to optimize network topology with unequal
transit times on reversal arcs to improve congestion by
increasing the flow value and decreasing the evacuation
time.

We organize the paper as follows. Section 2 presents
mathematical formulations and models of the problems
allowing asymmetric transit times on arcs. We investigate
the maximum dynamic, earliest arrival, and quickest flow
problems in Section 3.+ese results are extended with partial
lane reversals in Section 4. In Section 5, some computational
results, taking a part of Kathmandu road network as an
example network, are presented. +e paper is concluded in
Section 6.

2. Basic Concepts

A network N is a directed graph consisting of a finite set of
nodes V and a finite set of arcs A with |V| � n, |A| � m. An
arc e ∈ A is associated with a unique pair of nodes i, j: one of
them is called the head of e and the other the tail. If e has
head i and tail j, then it is called directed from i to j. We
consider something known as flow that moves from a set of
nodes S ⊂ V, called sources to D ⊂ V (S≠D). +e amount of
flow is limited by a capacity function u: A⟶ R≥0. A travel
time τ: A⟶ R≥0 is associated with the flow. We denote
such a network by N � (V, A, u, τ, S, D). If S � s{ } and
D � d{ }, we denote the network by N � (V, A, u, τ, s, d). We
define the set of arcs incoming to node i as

A
−
i � e ∈ A: i is the head of e{ }, (1)

and the set of arcs going out of it as

A
+
i � e ∈ A: i is the tail of e{ }. (2)

2.1. Static Flow. A static flow is a function x: A⟶ R≥0
which satisfies the following conditions:

􏽘
e∈A+

i

x(e) − 􏽘
e∈A−

i

x(e) � 0 ∀i ∈ V \ S, D{ },
(3)

x(e)≤ u(e) ∀e ∈ A. (4)

+e value of the static flow x is

2 International Journal of Mathematics and Mathematical Sciences

v(x) � 􏽘
d∈D

􏽘
e∈A−

d

x(e).
(5)

A static flow x is called a circulation if (3) is satisfied by all
i ∈ V. A flow x that maximizes v(x) is called a maximum
static flow.

2.1.1. Flow Decomposition. LetP denote the set of all simple
paths from S to D, and let C denote the set of all simple cycles
in N. +en every static flow x has a flow decomposition
(xP)P∈P∪C such that xP ≥ 0∀P ∈ P∪C and

􏽘
P∈P∪CxP: e∈P

xP � x(e).
(6)

2.1.2. Minimum Cost Flow. Given two functions
b: V⟶ R, called supply, and c: A⟶ R, called cost with
􏽐i∈Vb(i) � 0, a flow x, satisfying (4) and

􏽘
e∈A+

i

x(e) − 􏽘
e∈A−

i

x(e) � b(i) ∀i ∈ V,
(7)

is called a minimum cost flow if it minimizes 􏽐e∈Ac(e)x(e).
In various applications, the travel time τ is considered as
cost.

2.1.3. Residual Network. A very important notion for various
network flow calculations is a residual network. Given a static
flow x, the residual network Nx has the same vertex set V. +e
arc set Ax consists of arcs constructed in the following way: For
each e ∈ A directed from i to j, if x(e)< u(e), there is an arc in
Ax directed from i to j with residual capacity u(e) − x(e) and
cost c(e). If x(e)> 0, we have an arc in Ax directed from j to i

with residual capacity x(e) and cost − c(e).
For more details, we refer the reader to Ahuja et al. [14].

2.2. Dynamic Flow. A dynamic flow Φ with time horizon T

consists of Lebesgue-integrable functions Φe: [0, T)⟶ R≥0
for each arc e ∈ A such that Φe(θ) � 0 for θ ≥T − τ(e). Here,
Φe(θ) can be realized as the rate of flow entering e at time θ.+e
flow entering the tail i of the arc e � (i, j) at time θ reaches the

head j of e at time θ + τe. For each i ∈ V, we define the excess of
node i induced by Φ at time θ as

excΦ(i, θ) � 􏽘
e∈A−

i

􏽚
θ− τ(e)

0
Φe(σ)dσ − 􏽘

e∈A+
i

􏽚
θ

0
Φe(σ)dσ, (8)

which is the net amount of flow that is stored at node i up to
time θ. In what follows, we assume S � s{ }, D � d{ } for
simplicity. A feasible dynamic flow Φ satisfies

excΦ(i, θ)≥ 0 ∀θ ∈ [0, T), ∀i ∈ V \ s{ }, (9)

excΦ(i, T) � 0, ∀i ∈ V \ s, d{ }, (10)

0≤Φe(θ) ≤ u(e), ∀e ∈ A, θ ∈ [0, T). (11)

+e value of the dynamic flow Φ at time θ is

vθ(Φ) � excΦ(d, θ), (12)

and the total value of the dynamic flow Φ is

v(Φ) � vT(Φ) � excΦ(d, T). (13)

For more details, refer to Skutella [15].
Given a time horizon T, the dynamic flow Φ that

maximizes vT(Φ) is called the maximum dynamic flow.
Given a flow value Q, the dynamic flow with minimum time
horizon T∗ such that vT∗(Φ) � Q is called the quickest flow,
and the dynamic flow Φ which maximizes vθ(Φ) for all
θ ∈ [0, T] is called the earliest arrival flow.

2.2.1. Temporally Repeated Flow. Given a static flow x and a
time horizon T, a flow decomposition on x gives a set of
pathsP with flow xP for each P ∈ P. Flow is sent along P at
a constant rate xP from time 0 to max T − τ(P), 0{ }, where
τ(P) � 􏽐e∈Pτ(e) is the travel time on path P, to define a
dynamic flow known as the temporally repeated flow. To
give an explicit expression for the dynamic flow, we define
the following for e in a path P directed from i to j:

Psi � the portion of the path P from s to i,
Pj d � the portion of the path P from j to d,

Pe (θ) � P ∈ P: e ∈ P, τ Psi(􏼁≤ θ, τ Pj d􏼐 􏼑<T − θ􏽮 􏽯. (14)

Now, the dynamic flow Φ is defined by

s

a

b

d

4, 1 1, 4

1, 2 4, 2

2, 3 1, 1

(a)

s

a

b

d

4, 1 1, 4

1, 2 4, 2

1, 12, 3

(b)

s

a

b

d

4, 1 1, 4

1, 2 4, 2

3, 1

(c)

s

a

b

d

4, 1 1, 4

1, 2 4, 2

3, 3

(d)

Figure 1: (a) Network with arc labels capacity and transit time; (b)(b, a) reversed with the same transit time; (c)(b, a) reversed with
orientation-dependent transit time; (d)(a, b) reversed with orientation-dependent transit time.

International Journal of Mathematics and Mathematical Sciences 3

Φe(θ) � 􏽘
P∈Pe(θ)

xP ∀e ∈ A, θ ∈ [0, T).
(15)

2.2.2. Discrete Dynamic Flow. Discretizing the time intervals
[0, T) into the time steps 0, 1, . . . , T − 1, each corresponding
to [0, 1), [1, 2), · · · [T − 1, T), we can replace the integral sign
in (9) by a summation sign (removing dσ); the corresponding
flow is known as discrete dynamic flow. Using the concept of
natural transformations, Fleischer and Tardos [16] show the
equivalence between the two problems so that the solution
procedures of a problem in continuous time version can be
carried to the solution procedure of the corresponding
problem in the discrete version, and vice versa.

3. Dynamic Contraflow Solutions

We consider the network N with set of nodes V, set of arcs
A, capacity u: A⟶ R≥0, and travel time functions
τ, τ
←

: A⟶ R≥0. For each e ∈ A, with the tail node i and
head node j, τ(e) or τe denotes the arc transit time from i to
j and τ

←
(e) or τ

←
e denotes arc transit time from j to i. Without

loss of generality, we make the following conventions:

(1) +ere exist at most two arcs (with opposite orien-
tations) between any two nodes i and j. We denote
the arc ewith the tail i and the head j by (i, j).

(2) Whenever (i, j) ∈ A, there is (j, i) ∈ A. +is can be
done, for our purpose, by assigning uji � 0 if such an
arc does not exist.

(3) Defining τ(j, i) � τ
←

(i, j), we assume the existence of
only one travel time function τ.

Remark 1. In case the above-mentioned conventions are not
satisfied, we can use suitable network transformations to meet
the requirements. For example, if τ(i, j)≠ τ

←
(i, j), we can

transform the network N0 in Figure 2(a) to the network N

shown in Figure 2(b). Given the capacities
u(i, j) � uij, u(j, i) � uji and transit times
τ(i, j) � α1, τ

←
(i, j) � α2, τ(j, i) � β1, τ

←
(j, i) � β2, we replace

arc (i, j) in N0 by two arcs (i, j), (j, i) with capacities and
transit times uij, α1 and 0, α2, respectively.+e arc (j, i) in N0
is replaced by (i, k), (k, j), (j, k), (k, i) adding a node k to the
network to avoid parallel arcs. +e capacities and travel times
of (j, k), (k, i) are taken as uji, 0 and uji, β1, respectively, and
those of (i, k), (k, j) are taken as 0, β2, and 0, 0, respectively.

Definition 1 (Auxiliary network). For each N � (V, A, u,

τ, s, d), we define the auxiliary network as N′ � (V′, A′,
u′, τ′, s, d), in which

(1) V′ � V, A′ � A

(2) ∀(i, j) ∈ A, u′(i, j) � u(i, j) + u(j, i)

(3) ∀(i, j) ∈ A′, τ′(i, j) � τ(i, j)

Example 1. Consider a network N as depicted in Figure 3(a).
+e arc labels represent the capacity and the transit time.+e

auxiliary network N′ of N is constructed in Figure 3(b). +e
capacity of each arc is the sum of its capacity and the op-
posite arc and the transit time is the same as that of the
corresponding arc in N.

3.1. Maximum Dynamic Contraflow

Problem 1 (maximum dynamic contraflow problem with
orientation-dependent transit times). Given a network N �

(V, A, u, τ, s, d) with transit time τ depending on the ori-
entation and a time horizon T, find the maximum dynamic
flow allowing the arc reversals at time 0.

According to Ford and Fulkerson [17], the problem of
finding the static flow corresponding to the temporally
repeated maximum dynamic flow can be formulated as

min − Tv + 􏽘
(i,j)∈A

τ (i, j)x (i, j),

􏽘
e∈A+

i

x (i, j) − 􏽘
(i,j)∈A−

i

x (i, j) �

v, i � s

− v, i � d

0, i ∈ V\ s, d{ }

⎧⎪⎪⎨

⎪⎪⎩
,

0≤x(i,j) ≤ u(i, j)∀(i, j) ∈ A.

(16)

Problem 1 is to find the maximum dynamic flow so that
an arc (i, j) can take also the capacity of (j, i) and vice versa.
So, x(i, j) + x(j, i)) must not exceed u(i, j) + u(j, i).
However, the removal of cycle flows does not change the
value of the static flow v and does not improve
− Tv + 􏽐(i,j)∈Aτ (i, j)x (i, j); we can impose the condition
that either x(i, j) � 0 or x(j, i) � 0. So, the problem to find
the static flow corresponding temporally repeated maximum
dynamic flow can be stated as

min − Tv + 􏽘
(i,j)∈A

τ(i, j)x(i, j),
(17)

􏽘
e∈A+

i

x(i, j) − 􏽘
(i,j)∈A−

i

x(i, j) �

v, i � s,

− v, i � d,

0, i ∈ V \ s, d{ },

⎧⎪⎪⎨

⎪⎪⎩
(18)

0≤ x(i,j) ≤ u(i, j) + u(j, i)∀(i, j) ∈ A, (19)

x(i, j) · x(j, i) � 0. (20)

See also [17] for the similar formulation of maximizing
the static flow in undirected and mixed networks. +e
problem in (17)–(19) is a linear programming problem and
(20) can be satisfied by the removal of cycle flows in the
solution. Since a linear programming problem is polynomial
solvable and using flow decomposition, removal of cycle
flows also can be done in polynomial time (see [14]); we can
find the static flow corresponding to the temporally repeated
maximum dynamic flow allowing arc reversals in a

4 International Journal of Mathematics and Mathematical Sciences

polynomial time. If the static flow in an arc exceeds its
capacity, the opposite arc has to be reversed at time zero.

In Algorithm 1, we present a procudure to solve Problem
1.

Theorem 1. Algorithm 1 solves the maximum dynamic
contraflow problem with orientation-dependent transit times
correctly.

Proof. It is easy to see that steps 1–3 are well defined. Step 4
may be ill defined if for some (i, j) ∈ A′, x(i, j), x(j, i)> 0.
But because the removal of cycle flows in Step 3 ensures
either x(i, j) or x(j, i) to be zero, Step 4 is also well defined.
Moreover, x(i, j)≤ u′(i, j) � u(i, j) + u(j, i). +is shows
that x is feasible in N after necessary arc reversals.

Since the cycle flows do not contribute to the value of the
flow, x is optimal in N′ even after removing the cycle flows
in Step 3. Let vx be the value of such a dynamic flow. We
claim that x is optimal in N (after arc reversals). If not so,
there exists an instance of arc reversals, Ny, of N in which we
can find a static flow y, temporal repetition of which results
in a dynamic flow with flow value more than vx. In Ny, we
can replace (i, j) and (j, i) by a single arc (i, j) with transit
time τ(i, j) and capacity u(i, j) + u(j, i) if (i, j) has been
reversed. LetP be the set of paths corresponding to the path
decomposition of y. Corresponding to each path P:
s–i1–i2–· · ·–ik–d inP, we have a path P′: s–i1–i2–· · ·–ik–d in
N′. Each arc in P′ has the same transit time and the capacity
not less than that of the corresponding arc in P. Let the

collection of such paths P′ be P′. Defining a flow y′(i, j) �

y(i, j) for each (i, j) ∈ P′, we can find a dynamic flow in N′
with a flow value more than vx. +is contradicts the opti-
mality of x in N′ also.

Hence, Algorithm 1 computes the maximum dynamic
flow in N reversing appropriate arcs. □

Theorem 2. Algorithm 1 runs in O(MDF + nm) time where
n � |V|, m � |A| andMDF is the running time of a temporally
repeated maximum dynamic flow computation.

Proof. +e construction of the auxiliary network in Step 1
requiresO(m) time.+e flow decomposition in Step 3 can be
done in O(mn) time (Ahuja et al.) [14]. Step 4 can be
performed in O(m) time. +us, if MDF is the running time
of Step 2, the algorithm runs in O(MDF + nm) time.
However, in general, this complexity could be considered as
the complexity of MDF solution. □ □

Theorem 3. 6e maximum dynamic contraflow problem
with orientation-dependent transit times can be solved in a
strongly polynomial time.

Proof. From+eorem 2, the running time of Algorithm 1 is
O(MDF + nm), where MDF is the running time of a
maximum dynamic flow calculation. In
N � (V, A, u, τ, s, d), and consequently in the auxiliary
network N′, we can find the static flow x corresponding to
the maximum dynamic flow as follows [16]:

i j
uij

τ (i, j) = α1
τ (i, j) = α2

τ (j, i) = β1

τ (j, i) = β2

uji

(a)

i j

k

uij, α1

0, α2

0, β2

uji, β1

uji, 0

0, 0

(b)

Figure 2: Network transformation for the cases τ(j, i)≠ τ
←

(i, j). (a) Network N0. (b) Network N.

s

a

b

d

i j
uij, τij

3, 3
2, 2

3, 4
4, 2

4, 1
3, 2

1, 2
1, 2

1, 2 1, 1

(a)

s

a

b

d

i j

5, 3
5, 2

7, 4
7, 2

7, 1
7, 2

2, 2
2, 2

2, 2 2, 1

u′ij, τ′ij

(b)

Figure 3: (a) Evacuation network N. (b) Auxiliary network N′.

International Journal of Mathematics and Mathematical Sciences 5

(1) Add an arc (d, s) with u(d, s) �∞ and τ′(d, s) � − T

to the auxiliary network N′ to obtain a network N″.
(2) Calculate the minimum cost circulation x′ in N″.
(3) x � the restriction of x′ to N′.

Using the enhanced capacity scaling algorithm men-
tioned by Orlin [18], the minimum cost circulation in N″
can be calculated in O(m log n(m + n log n)) time. +is
proves the assertion. □ □

3.2. Quickest Contraflow

Problem 2. (Quickest contraflow problem with orientation-
dependent transit times). Given a network
N � (V, A, u, τ, s, d) with transit time τ depending on the
orientation and a supply Q at s, find the dynamic flow with
minimum time horizon allowing the arc reversals at time 0.

We construct Algorithm 2 to solve Problem 2.
Let v(T) be the value of the maximum dynamic flow

with time horizon T. One of the strategies to find the
quickest flow with a supply Q at s is to search for the
minimum time horizon T∗ such that Q≤ v(T∗). Various
search strategies are described in Burkard et al.’s work [19].
+is requires solving the maximum dynamic flow problem
repeatedly. Using this technique in Step 2, the feasibility and
optimality arguments given in +eorem 1 are valid in Al-
gorithm 2 as well. Hence, we have the following result.

Theorem 4. Algorithm 2 solves the quickest contraflow
problem with orientation-dependent transit times correctly.

Analogous to the case of solving the maximum dynamic
contraflow problem, if QF is the complexity of solving the
quickest flow problem in N, we have the following.

Theorem 5. Algorithm 2 runs in O(QF + nm) time, where
QF is the running time of a temporally repeated quickest flow
problem.

Since there exist strongly polynomial algorithms for
solving the quickest flow problem, we have the following.

Theorem 6. 6e quickest contraflow problem with orienta-
tion-dependent transit times can be solved in a strongly
polynomial time.

Proof. Consider a network N � (V, A, u, τ, s, d) with a
supply Q at the source s. We show that the complexity of
Algorithm 2 is strongly polynomial to reach the conclusion.
Using the cancel-and-tighten algorithm described in the
work of Saho and Shigeno [20], to solve the quickest flow
problem Step 2 takes O (nm2log2 n) time. Using the fact in
+eorem 5, the complexity of Algorithm 2 is O(nm2log2 n).
+is proves the assertion. □ □

3.3. Earliest Arrival Contraflow. Consider a network N �

(V, A, u, τ, s, d) with orientation-dependent transit time τ.
With a given time horizon T, the earliest arrival flow
problem seeks to find the flow that is maximum with each
time horizon θ ∈ [0, T]. Carrying over the idea of solving
the maximum dynamic contraflow problem, we try to solve
the earliest arrival flow problem on the auxiliary network
N′. +is can be carried out by implementing the successive
shortest path algorithm in the residual network of N′
([21, 22]). +e idea is to send the flow successively through
shortest paths amounting the residual capacity of the path.
Such a path, being in the residual network, may contain
negative (cost) time arcs also. Sending flow through
negative cost arcs sends the flow back in time. +is may
result in the arc used by the flow in some time interval, not
used in the other time interval, and used again in some
further time interval. So, an arc reversed to optimize the
flow at one time does not remain reversed throughout the
given whole-time interval. In other words, an arc may have
to be flipped back and forth unlike in the cases of maxi-
mum dynamic contraflow and quickest contraflow, where
an arc reversed at the beginning (time zero) remains re-
versed throughout.

Problem 3. Given a network N � (V, A, u, τ, s, d) with
orientation-dependent transit time τ and a time horizon T,
find a dynamic flow which is maximum at every time ho-
rizon θ such that 0≤ θ≤T allowing arc reversals at time θ.

We propose Algorithm 3, which sends the flow along the
successive shortest paths in the residual network of the
auxiliary network.

+e earliest arrival flow in Step 2 can be found by sending
the flow equal to the residual capacity along the shortest
paths in the residual network of N′. +e generalized tem-
porally repeated flow can be found in [15]. Such an algo-
rithm runs in a pseudo-polynomial-time.

Input: A network N � (V, A, u, τ, s, d) with orientation dependent transit time τ, and a time horizon T

Output: Maximum dynamic flow with arc reversals
(1) Construct the auxiliary network N′ � (V′, A′, u′, τ′, s, d) according to Definition 1.
(2) Find a static flow x corresponding to the temporally repeated dynamic flow in N′.
(3) Decompose x into chain-flows and cycle-flows. Remove the cycle-flows and update x.
(4) Reverse (j, i) ∈ A if and only if x(i, j)> u(i, j). Dynamic flow in reconfigured N � a temporally repeated flow corresponding to x

with the time horizon T.

ALGORITHM 1: Maximum dynamic contraflow with orientation-dependent transit times.

6 International Journal of Mathematics and Mathematical Sciences

Theorem 7. Algorithm 3 solves the earliest arrival contraflow
problem with orientation-dependent transit times in a
pseudo-polynomial-time.

However, in a series-parallel network with a single
source and single sink, the maximum dynamic flow has the
earliest arrival property (Ruzika et al.) [23]. So, in case of a
series-parallel network N, Algorithm 1 solves Problem 3.
Moreover, the maximum dynamic flow in the auxiliary
network of a series parallel network with time horizon T can
be solved in O(mn + m log m) time by sending the flow
iteratively through the s–d paths with the minimum time
and removing the saturated arcs, considering only the paths
with time not exceeding T. So, we have the following.

Theorem 8. If N � (V, A, u, τ, s, d) is a series-parallel net-
work, then the earliest arrival contraflow problem with ori-
entation-dependent transit times can be solved in
O(mn + m log m) time.

4. Partial Contraflow Algorithm

+e approach described in Section 3 either reverses an arc
or does not reverse it. In various applications, for example,
evacuation planning, an arc refers to a collection of lanes
in a particular direction; it is beneficial if we reverse the
lanes required by the flow. +e unused lanes may be used
for other facilities [24]. Realizing the need of arc reversals
up to the required capacity only, the authors in [4] in-
troduce the concept of partial arc reversals. We extend the
procedure in case of orientation-dependent transit times
on arcs.

Algorithm 4 describes the generic procedure to solve the
corresponding problems described in Section 3. +e algo-
rithm not only reverses the arcs up to the necessary capacity
but also lists the unused capacities of the arcs of the network
considered.

+e correctness of Algorithm 4 can easily be realized
from the correctness of the corresponding algorithm with
full arc reversal and the following fact. For the arcs
(i, j), (j, i) between nodes i and j, it is evident that either
only one of them is reversed or both of them are not re-
versed. If (i, j) is reversed, it clearly indicates that
x(j, i)> u(j, i); there is no capacity of (j, i) unused; that is,
r(j, i) � 0, and

r(i, j) � u(i, j) − [x(j, i) − u(j, i)]

� u(i, j) + u(j, i) − x(j, i)

� u′(i, j) − x(j, i).

(21)

If both arcs are not reversed, then xij ≤ u(i, j) meaning
r(i, j) � u(i, j) − x(i, j).

+e flow x in Step 1 of Algorithm 4 has to be considered
as the corresponding static flow in case of the maximum
dynamic contraflow (Section 3.1) and quickest flow (Section
3.2) and the dynamic flow in case of the earliest arrival flow
(Section 3.3). Step 2 has to be implemented at time zero and
at time θ accordingly.

As the extra procedure of listing the unused capacities in
Step 3 takes only O(m) time, the overall complexities of the
algorithms in case of partial contraflow are the same as those
of the contraflow. +us, we have the following.

Theorem 9. 6e worst-case complexity of a partial contra-
flow problem with orientation-dependent transit times is the
same as that of the corresponding contraflow problem.

5. Computational Experiment

For testing the computational performance of the maximum
dynamic contraflow algorithm (Algorithm 1) and the
quickest contraflow algorithm (Algorithm 2), we consider
Kathmandu road network inside Ring Road with major road
segments as an example network (Figure 4). We consider a

Input: A network N � (V, A, u, τ, s, d) with orientation dependent transit time τ, and a supply Q at s

Output: Quickest flow with the arc reversals
(1) Construct the auxiliary network N′ � (V′, A′, u′, τ′, s, d) according to Definition 1.
(2) Find a static flow x corresponding to the temporally repeated quickest flow in N′, and the quickest time T∗.
(3) Decompose x into chain-flows and cycle-flows. Remove the cycle-flows and update x.
(4) Reverse (j, i) ∈ A if and only if x(i, j)> u(i, j). Quickest flow in reconfigured N � a temporally repeated flow corresponding to x

with the time horizon T∗.

ALGORITHM 2: Quickest contraflow with orientation-dependent transit times.

Input: A network N � (V, A, u, τ, s, d) with orientation dependent transit time τ, and a time horizon T

Output: Earliest arrival flow with the arc reversals
(1) Construct the auxiliary network N′ � (V′, A′, u′, τ′, s, d) according to Definition 1.
(2) Find the earliest arrival flow f in N′.
(3) Reverse (j, i) ∈ A if fij(θ)> u(i, j) at time θ ∈ [0, T]. f is the earliest arrival flow with arc reversals in N.

ALGORITHM 3: Earliest arrival contraflow with orientation-dependent transit times.

International Journal of Mathematics and Mathematical Sciences 7

Input: Network N � (V, A, u, τ, s, d) with orientation dependent transit times
Output: Partial contraflow reconfiguration of N with unused capacities r.

(1) Find a cycle-free flow x in the auxiliary network N′ � (V′, A′, u′, τ′, s, t).
(2) Reverse (j, i) ∈ A proportional to the capacity x(i, j) − u(i, j) if x(i, j)> u(i, j).
(3) For each (i, j) ∈ E, if (i, j) is reversed, then rij � uij

′ − xji and rji � 0. If neither (i, j) nor (j, i) is reversed, r(i, j) � u(i, j) − x(i, j).

ALGORITHM 4: Generic partial contraflow algorithm.

(a)

Source

(b)

Figure 4: (a) Kathmandu road network. (b) Maximum flow direction with arc reversals T � 1 hour.

Table 1: Network data for computations (Section 5).

i j uij uji τij τji i j uij uji τij τji i j uij uji τij τji

0 49 3 3 85 70 0 1 4 0 70 70 0 16 0 4 36 36
0 19 2 2 41 41 1 2 4 0 18 16 1 14 2 2 18 18
2 3 2 2 47 47 2 12 4 0 21 21 3 4 2 2 32 25
3 11 2 2 21 21 4 5 2 2 10 25 4 56 2 2 35 50
5 6 2 2 180 150 5 9 2 2 65 70 6 7 2 2 90 110
7 8 2 2 85 95 7 33 2 2 45 55 8 9 2 2 30 25
8 30 2 2 25 30 8 32 2 2 24 30 9 10 2 2 35 45
10 11 2 2 34 34 10 27 2 2 30 35 10 30 2 2 64 64
11 12 2 2 30 35 12 13 4 0 20 25 12 27 2 2 40 40
13 14 4 0 26 26 14 15 4 0 40 42 14 25 2 2 55 60
15 16 4 0 24 27 15 24 2 2 50 50 16 22 0 4 52 52
16 23 2 2 41 41 19 20 2 2 50 50 19 22 2 2 45 40
20 21 2 2 100 105 20 48 2 2 130 145 21 47 2 2 50 50
21 48 2 2 153 153 22 23 2 2 36 40 22 45 4 4 145 145
23 24 2 2 34 30 24 25 2 2 42 38 25 26 2 2 30 25
25 42 0 3 36 28 26 27 2 2 18 16 27 28 2 2 32 32
28 29 2 2 34 30 28 41 2 2 17 15 29 30 2 2 18 16
29 40 2 2 24 24 30 31 2 2 24 28 31 32 2 2 25 22
32 33 2 2 22 20 33 34 2 2 20 25 34 35 2 2 32 30

8 International Journal of Mathematics and Mathematical Sciences

problem of evacuating people in Dasharath Stadium and
surrounding area to outside of the Ring Road in case of
auto-based-emergency evacuation.

+e constructed directed network consists of 69 nodes
and 232 arcs (see Table 1). +e direction of arcs is taken as
the direction of the usual flow of the traffic in the

Table 1: Continued.

i j uij uji τij τji i j uij uji τij τji i j uij uji τij τji

34 37 2 2 88 80 35 37 2 2 24 28 36 37 2 2 35 40
38 39 2 2 65 75 39 40 2 2 47 47 39 43 2 2 32 35
40 41 2 2 30 34 41 42 2 2 30 34 41 43 2 2 37 37
42 44 2 2 120 135 44 45 2 2 135 135 45 46 2 2 135 135
48 49 2 2 126 126 49 50 2 2 38 38 50 51 2 2 38 38
50 64 2 2 20 20 51 52 2 2 80 75 51 63 2 2 130 125
51 64 2 2 45 45 52 53 2 2 50 45 52 61 2 2 40 35
53 54 2 2 18 18 53 61 2 2 25 22 54 55 2 2 68 68
54 58 2 2 70 70 55 56 2 2 36 34 55 57 2 2 76 70
55 58 2 2 82 75 57 58 2 2 80 75 58 59 2 2 45 40
59 60 2 2 60 65 60 62 2 2 34 34 62 63 2 2 68 68
64 101 2 2 180 160 101 999 2 2 0 0 63 999 2 2 60 60
62 999 2 2 108 100 60 999 2 2 117 110 59 104 2 2 47 47
104 999 2 2 0 0 59 999 2 2 45 45 57 999 2 2 21 21
56 999 2 2 171 171 6 999 2 2 108 108 35 999 2 2 153 153
36 110 2 2 90 100 110 999 2 2 0 0 36 999 2 2 70 65
38 112 2 2 50 40 112 999 2 2 0 0 38 999 2 2 41 36
43 999 2 2 100 90 44 999 2 2 145 135 46 999 4 4 50 50
21 999 2 2 190 200 47 118 2 2 198 198 118 999 2 2 0 0
47 999 2 2 80 80 64 999 2 2 135 135

Source node: 0; sink node: 999.

10

Without arc reversals
With arc reversals

8

6

4

M
ax

im
um

 d
yn

am
ic

 fl
ow

 v
al

ue
 (×

10
00

)

2

0

400 600
Time horizon

800

(a)

Without arc reversals
With arc reversals

8

7

6

5

4

3

Q
ui

ck
es

t t
im

e (
×1

00
)

0 1000 2000
Flow value

3000 4000

(b)

Figure 5: Flow value and time comparisons.

International Journal of Mathematics and Mathematical Sciences 9

corresponding segments. +e capacities of the road seg-
ments are taken from 2 to 4 units of flow per second
according to the number of lanes. +e travel time (in sec-
onds) in one of the arcs between any two nodes is considered
according to the length and that in the opposite arc is chosen
differing from it by 0 to 30 seconds (chosen randomly). +e
considered data are taken only for the purpose of testing the
algorithms. +e accuracy of capacity and travel time de-
mands complex technical examinations.

We calculate the maximum dynamic flow with and
without contraflow taking time horizons from as low as 5
minutes to as high as 1 hour. At each time horizon con-
sidered, we find that the value of the flow after allowing arc
reversals is almost the double of that without arc reversals
(Figure 5(a)). At T � 5 minutes, it is 44 without arc reversals
and 88 with arc reversals. At T � 60 minutes, the corre-
sponding values are 29,312 and 58,502.

Given a flow value at the source, the calculation of
quickest flow shows that the decrease in the quickest time
increases with the increase in the flow value. With the flow
value as low as 500, the quickest time decreases only by 7%,
which is 47% for the flow value 50,000.

With growing time horizon and growing flow value, as
well as the number of arcs, the flow occupies more and more
arcs and, consequently, the number of arcs reversed in-
creases. However, it remains fixed after some value of time or
the flow value (Figure 6(a) for maximum dynamic flows
calculations and Figure 6(b) for quickest flows).

Among the considered instances, the running time of a
maximum contraflow calculation is at most 0.013 seconds,
and that of a quickest contraflow calculation is at most 0.067
seconds. +e coding is done in Python programming lan-
guage and run in MacOS 11.1 with 1.8GHz Dual-Core Intel
Core i5 processor, and 8GB RAM.

6. Conclusion

In this work, we introduce the contraflow problem in
which the transit time on an arc depends on the direction
of the arc; that is, the transit time on an arc may change
after its reversal. +is extends the notion, in the existing
literature, that the transit time on arcs remains the same
before and after the arc reversal to the cases where the
time on arcs depends on its orientation. Presenting a
method of constructing an auxiliary network, strongly
polynomial time algorithms for maximum dynamic
contraflow problem and quickest contraflow problem
with orientation-dependent transit times are presented
for a single-source-single-sink network. In the similar
settings, for the earliest arrival contraflow problem, a
pseudo-polynomial-time algorithm is also presented. +e
computational performance of the algorithms for maxi-
mum dynamic contraflow and quickest contraflow taking
a Kathmandu road network is also tested.

+e presented approach is useful, particularly, in
transportation planning, where the transit time depends on
the direction of the traffic flow because of various reasons,
for example, topography of the road. When the direction of
the traffic flow in a road segment is reversed, if the capacity
permits, it is beneficial to reverse only the necessary lanes.
To address such an issue, we present corresponding al-
gorithms in the partial contraflow setting as well. Analyzing
impressive results from this research, its further extensions
to flow-dependent scenarios would be interesting
problems.

Data Availability

No data were used to support this study.

25

20

15

10

N
o.

 o
f a

rc
s r

ev
er

se
d

5

0

400 600
Time horizon

800

(a)

25

20

15

10

5

N
o.

 o
f a

rc
s r

ev
er

se
d

0 1000 2000
Flow value

3000 4000

(b)

Figure 6: Number of arcs reversed.

10 International Journal of Mathematics and Mathematical Sciences

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+e first author acknowledges the support of UGCNepal for
Ph.D. fellowship, and the second author acknowledges the
support of AvH Foundation for the return fellowship.

References

[1] T. N. Dhamala, U. Pyakurel, and S. Dempe, “A critical survey
on the network optimization algorithms for evacuation
planning problems,” International Journal of Operations
Research, vol. 15, pp. 101–133, 2018.

[2] I. S. Kotsireas, A. Nagurney, and P. M. Pardalos, Dynamics of
Disasters-Algorithmic Approaches and Applications, Springer
Optimization and Its Applications, New York, NY, USA,
2018.

[3] S. Rebennack, A. Arulselvan, L. Elefteriadou, and
P. M. Pardalos, “Complexity analysis for maximum flow
problems with arc reversals,” Journal of Combinatorial Op-
timization, vol. 19, no. 2, pp. 200–216, 2010.

[4] U. Pyakurel, H. N. Nath, S. Dempe, and T. N. Dhamala,
“Efficient dynamic flow algorithms for evacuation planning
problems with partial lane reversal,” Mathematics, vol. 7,
pp. 1–29, 2019.

[5] P. P. Bhandari and S. R. Khadka, “Evacuation contraflow
problems with not necessarily equal transit time on anti-parallel
arcs,” American Journal of Applied Mathematics, vol. 8,
pp. 230–235, 2020.

[6] U. Pyakurel and T. N. Dhamala, “Models and algorithms on
contraflow evacuation planning network problems,” Inter-
national Journal of Operations Research, vol. 12, pp. 36–46,
2015.

[7] U. Pyakurel and T. N. Dhamala, “Continuous time dynamic
contraflow models and algorithms,” Advances in Operations
Research, vol. 2016, Article ID 368587, 7 pages, 2016.

[8] S. Kim, S. Shekhar, and M. Min, “Contraflow transportation
network reconfiguration for evacuation route planning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 20,
pp. 1–15, 2008.

[9] U. Pyakurel, T. N. Dhamala, and S. Dempe, “Efficient con-
tinuous contraflow algorithms for evacuation planning
problems,” Annals of Operations Research, vol. 254, no. 1-2,
pp. 335–364, 2017.

[10] U. Pyakurel, H. N. Nath, and T. N. Dhamala, “Partial con-
traflow with path reversals for evacuation planning,” Annals
of Operations Research, vol. 283, no. 1-2, pp. 591–612, 2019.

[11] U. Pyakurel, H. N. Nath, and T. N. Dhamala, “Efficient
contraflow algorithms for quickest evacuation planning,”
Science China Mathematics, vol. 61, no. 11, pp. 2079–2100,
2018.

[12] R. C. Dhungana and T. N. Dhamala, “Flow improvement in
evacuation planning with budget constrained switching
costs,” International Journal of Mathematics and Mathe-
matical Sciences, vol. 2020, Article ID 1605806, 10 pages, 2020.

[13] U. Pyakurel and S. Dempe, “Network flow with intermediate
storage: models and algorithms,” SN Operations Research
Forum, vol. 1, pp. 1–23, 2020.

[14] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows:
6eory, Algorithms, and Applications, Prentice Hall, Upper
Saddle River, NJ, USA, 1993.

[15] M. Skutella, “An introduction to network flows over time,” in
Research Trends in Combinatorial Optimization, pp. 451–482,
Springer, Berlin, Germany, 2009.

[16] L. Fleischer and É. Tardos, “Efficient continuous-time dy-
namic network flow algorithms,” Operations Research Letters,
vol. 23, no. 3-5, pp. 71–80, 1998.

[17] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton
University Press, Princeton, NJ, USA, 1962.

[18] J. B. Orlin, “A faster strongly polynomial minimum cost flow
algorithm,” Operations Research, vol. 41, no. 2, pp. 338–350,
1993.

[19] R. E. Burkard, K. Dlaska, and B. Klinz, “+e quickest flow
problem,” ZOR Zeitschrift fur Operations Research Methods
and Models of Operations Research, vol. 37, no. 1, pp. 31–58,
1993.

[20] M. Saho and M. Shigeno, “Cancel-and-tighten algorithm for
quickest flow problems,”Networks, vol. 69, no. 2, pp. 179–188,
2017.

[21] E. Minieka, “Maximal, lexicographic, and dynamic network
flows,” Operations Research, vol. 21, no. 2, pp. 517–527, 1973.

[22] W. L. Wilkinson, “An algorithm for universal maximal dy-
namic flows in a network,” Operations Research, vol. 19, no. 7,
pp. 1602–1612, 1971.

[23] S. Ruzika, H. Sperber, and M. Steiner, “Earliest arrival flows
on series-parallel graphs,” Networks, vol. 57, no. 2,
pp. 169–173, 2011.

[24] H. N. Nath, U. Pyakurel, T. N. Dhamala, and S. Dempe,
“Dynamic network flow location models and algorithms for
evacuation planning,” Journal of Industrial and Management
Optimization, vol. 13, 2020.

International Journal of Mathematics and Mathematical Sciences 11

International Journal of Operations Research Vol. 15, No. 4, 175-185 (2018)

Network Flow Approach for Locating Optimal Sink
in Evacuation Planning

Hari Nandan Nath1*, Tanka Nath Dhamala2

1Tribhuvan University, Bhaktapur Multiple Campus, Bhaktapur, Nepal

2Tribhuvan University, Central Department of Mathematics, Kathmandu, Nepal

Abstract: Network flow models have been widely applied for evacuation planning, which involves moving people from
risk areas (sources) to safe places (sinks) using some means of transportation, to optimize traffic flow in urban road
networks. The decisions related to the locations of the sinks are also important to maximize the number of evacuees
or minimize time for the evacuees to reach the safe places. In this work, we consider the problems of identifying the
optimal sink node out of a given set of possible sink-nodes in a single source network to maximize the flow value, and
that to minimize the time to transfer a given flow value to the sink in minimum time. Designing efficient computational
procedures to solve the problems, we prove that the problems can be solved with strongly polynomial time complexity.
Corresponding optimal sink location problems along with identification of ideal direction of the flow based on con-
traflow approach are also solved in strongly polynomial time. Our results are substantiated by a case illustration based
on Kathmandu road network.
Keyword— Evacuation planning, sink location, network flow, dynamic flow, maximum flow, quickest flow, contraflow

1. INTRODUCTION

Evacuation planning decisions involve the decisions related to the traffic flow on urban road networks to transfer people
from danger areas to safe places or shelters. Choosing optimal shelters out of a given number of shelters is an important
optimization problem, and is a growing research area. Likewise, reversing the direction of usual traffic flow so as to
increase the flow towards the shelters is also one of the active research problems in evacuation planning. We discuss,
briefly, some of the works done in these directions.

Sherali, Carter, and Hobeika (1991) develop a location-allocation model to choose a set of shelter locations from
among feasible locations. Their approach is a discrete minisum or median location approach, in which they minimize
the total time spent by evacuees. They use the congestion related travel time developed by U.S. Bureau of Public Roads
(BPR) (1964). Noting that the problem is NP -hard, they develop a fast heuristic which performs well in practice and
also present exact enumeration algorithms with running time increase rapidly with the growing size of the problem.

Kongsomsaksakul, Chen, and Yang (2005) propose a bilevel model in which the upper level (representing the
planner) chooses the number of shelters and their locations from among a given set of potential locations with the
objective to minimize the total evacuation time. The lower level (representing evacuees) is a combined distribution
and assignment (CDA) which is formulated with a principle that evacuees try to travel to safe shelter with the least
travel time. They also use the travel time developed by BPR. Realizing the difficulty of solving the bilevel programming
problems analytically, they develop a genetic algorithm (GA) to solve the problem. A similar approach can be found in
Ng, Park, and Waller (2010) in which the lower level problem is a deterministic user equilibrium (DUE) (Sheffi (1985))
in which the evacuees find their shortest routes to the shelters they are assigned to.

For the evacuees who depend on transit vehicles, Goerigk, Grün, and Heßler (2014) develop an integer program-
ming model to find locations for optimal shelters along with the schedule of buses from pick-up locations to shelters.
Realizing theNP -completeness of the problem, they develop a branch-and-price approach to solve the problem. Con-
sidering the movement of transit-dependent evacuees and evacuees having individual vehicles, Goerigk, Deghdak, and
Heßler (2014) present a comprehensive evacuation plan. They formulate the problem as a multicommodity flow, mul-
ticriteria mixed-integer programming problem with the objectives to minimize the number of used shelters, evacuation
time, and the total risk exposure of evacuees. Given a risk value to each arc, the total risk value is the sum the product

*Corresponding author’s e-mail: hari672@gmail.com

http://doi.org/10.6886/IJOR.201812_15(4).0003

176

of number of people moving on the arc and risk value of the arc. They propose a heuristic solution procedure based
on Genetic Algorithms (GA) because the mixed-integer programming problem is not likely to be solvable in sufficient
time for real-world instances.

Based on network flow approach, Heßler and Hamacher (2016) present a mixed integer programming model in
which given a supply at each node of a network, and cost of opening a shelter at a node, they minimize the total cost of
the opened shelter. They present exact algorithms for choosing single/multiple sink(s), in cases when flows originating
at different nodes do not add up on edges, and sinks are uncapacitated, approximation algorithms for the cases when
flows originating at different nodes add up on edges and on the chosen sinks as well.

In case of emergency evacuation, since the traffic flow is directed towards the safe areas, the road segments on the
direction of paths towards the danger areas (sources) are little occupied or empty while the segments in the opposite
direction are over-occupied. Contraflow problems focus on addressing such situations, mathematically, to optimize
traffic flow with the ideal direction of arcs in the transportation network.

To solve a multi-source, multi-sink contraflow configuration problem, Kim, Shekhar, andMin (2008) present algo-
rithms based on greedy heuristic and bottleneck relief heuristic. Wang, Wang, Zhang, Ip, and Furuta (2013) considered
a multi-objective optimization model to minimize the evacuation time of different categories of evacuees from a single
source to appropriate (multiple) shelters and to minimize the traffic set-up time to reverse traffic flow. Their algorithm
uses discrete version of particle swarm optimization (PSO) metaheuristic. Zhao, Feng, Li, and Bernard (2016) propose
a bi-level model in which a tabu search algorithm is applied to find an optimal lane reversal plan in the upper-level, and
the lower-level utilizes a simulated annealing algorithm for lane-based route plans with intersection crossing conflict
elimination.

Apart from heuristic techniques, there are available exact analytical algorithms also. Rebennack, Arulselvan, Eleft-
eriadou, and Pardalos (2010) introduce efficient algorithms to solve the maximum dynamic contraflow and the quickest
contraflow problems in a single source single sink network. T. Dhamala and Pyakurel (2013) present strongly polyno-
mial time algorithm for the earliest arrival (also known as universally maximum) contraflow problem on a series parallel
network. Algorithms to solve the lexicographically maximum contraflow problem on multi-source-multi-sink network
and the earliest arrival contraflow problem on multi-source-single-sink network are presented in Pyakurel and Dhamala
(2015). Pyakurel and Dhamala (2017b) present a pseudo-polynomial time algorithm to solve the problem on two ter-
minal general network. These problems are solved for discrete time set up. The discrete time algorithms are converted
to continuous time algorithms by Pyakurel and Dhamala (2016, 2017a) using the idea of natural transformations in
Fleischer and Tardos (1998). Algorithms for contraflow approach for quickest flow with constant and load dependent
time on arcs can be found in Pyakurel, Nath, and Dhamala (2018a). Realizing the need of saving capacities of arcs for
other facilities during evacuation, Pyakurel, Nath, and Dhamala (2018b) apply partial contraflow technique in a network
with path reversal capabilities.

The paper is organized as follows. In Section 2, we present the necessary network flow models on which our
approach is based. We introduce optimal sink models and solution procedures in Section 3. Section 4 deals with the
identification of optimal sinks allowing arc reversals, and Section 6 concludes the paper.

2. BASIC IDEAS

In this section, we present basic mathematical tools used for developing models and solution algorithms in this work.
For modeling, we consider road segments as arcs and their intersections as nodes of a directed network. Anything that
moves on arcs is referred to as flow. The amount of flow that can enter a road segment per unit time is the capacity of
the arc and the time the flow takes to travel from one end to the other end of the road segment represents the travel
time on the corresponding arc.

2.1 Static and dynamic flows

LetN = (V,A) be a directed network where V is the set of nodes andA is the set of arcs with |V | = n and |A| = m.
For a node i ∈ V , we denote the set of outgoing arcs from i by Aout

i = {e ∈ A : e = (i, j) for some j ∈ V }, and
the set of incoming arcs to i by Ain

i = {e ∈ A : e = (j, i) for some j ∈ V }. For each e ∈ A, be, τe denote the
upper capacity (or capacity), and travel time on e. A flow travels from a special S ⊂ V , called source nodes to another
D ⊂ V , called sink nodes. We represent such a network by N = (V,A, b, τ, S,D). If S = {s}, D = {d}, we write
N = (V,A, b, τ, s, d).

A static s-d flow x : A→ R≥0 is a function of non-negative values such that x(e) = xe satisfying the following.

∑

e∈Aout
i

xe −
∑

e∈Ain
i

xe =





v if i = s
−v if i = d
0 if i ∈ V \ {s, d}

(1)

0 ≤ xe ≤ be (2)

1813-713X Copyright © 2018 ORSTW

177

The quantity v is the value of the static flow x which is the flow that goes out of the source s and reaches the sink
d. The third set of constraints in (1) states that whatever flow comes to a node other than the source or the sink goes
out of it. The constraints set (2) restricts the flow in any arc exceed its capacity. The maximum static flow problem seeks
to maximize v under the constraints (1) - (2) for the solution of which there are available highly efficient algorithms
because of the special structure of the linear program stated above. For more details, see T. N. Dhamala, Pyakurel, and
Dempe (2018).

A dynamic flow xdyn with time horizon T consists of a Lebesgue- integrable functions xdyne : [0, T) → R≥0 for
each arc e ∈ A with xdyne (t) = 0 for t ≥ T − τ(e) and satisfies the following.

∑

e∈Ain
i

∫ t−τ(e)

0

xdyne (θ)dθ −
∑

e∈Aout
i

∫ t

0

xdyne (θ)dθ ≥ 0, ∀t ∈ [0, T),∀i ∈ V \ {s, d} (3)

∑

e∈Ain
i

∫ T−τ(e)

0

xdyne (θ)dθ −
∑

e∈Aout
i

∫ T

0

xdyne (θ)dθ = 0, ∀i ∈ V \ {s, d} (4)

0 ≤ xdyne (t) ≤ be, ∀e ∈ A,∀t ∈ [0, T). (5)

x
dyn
e (θ) is the rate of flow that enters arc e at time θ. The value of the dynamic flow xdyn for the time horizon T is:

valT (xdyn) =
∑

e∈Ain
d

∫ T−τ(e)

0

xdyne (θ)dθ −
∑

e∈Aout
d

∫ T

0

xdyne (θ)dθ

=
∑

e∈Aout
s

∫ T−τ(e)

0

xdyne (θ)dθ −
∑

e∈Ain
s

∫ T

0

xdyne (θ)dθ (6)

For a given T , the maximum dynamic flow problem seeks to maximize valT (xdyn) under the constraints (3) - (5). The
constraints (3) state that there can be a holdover of the flow in the intermediate nodes which ultimately gets cleared by
the time horizon T as stated in (4). The constraints in (5) do not allow the flow value to exceed the upper capacity at any
time. For more details, we refer to Skutella (2009). If we replace each of the integral by the corresponding summation
over the discretized set of times {0, . . . , T}, we get the discrete-time version of the problem.

3. IDENTIFICATION OF THE OPTIMAL SINK

In a network with a single source, given a set of feasible sink nodes, we take a straightforward approach for the choice of
a single sink depending on the objective of the evacuation problem. If the objective is to send as much flow as possible,
we choose the sink which maximizes flow value. Likewise, when a given flow value is given, we choose the sink so as
to minimize the time for the flow to reach the sink.

3.1 Optimal sink to maximize the flow value

Definition 1 (MaxStatic sink, MaxDynamic sink). Let N = (V,A, b, τ, s) be a network with a set of feasible sinks
D ⊂ V \ {s} and let vstat(d), vTdyna(d) denote the value of maximum static flow, and maximum dynamic flow with
time horizon T , respectively, from s to d ∈ D. We call the node dstat = argmaxd∈D{vstat(d)}, the MaxStatic sink
and dTdyna = argmaxd∈D{vTdyna(d)}, the MaxDynamic sink.

Example 1. We consider an evacuation network in Figure 1. Let the source node be s and the set of feasible sinks
D = {d1, d2, d3}. If node d1 is taken as the sink, the maximum static flow value is 6 (4 via path s − d1, 1 each via
s− d2 − d1, and s− d2 − d3 − d1). The dynamic flow value with 2 as the sink and discrete time horizon T = 3 is 2
(1 via s− d2 − d1 twice). The values corresponding to other sinks and time horizons are listed in the following table.
So, one can easily conclude that dstat = 4 and d3dyna = 3, d8dyna = 2, d12dyna = 4.

d vstat(d) v3dyna(d) v8dyna(d) v12dyna(d)

d1 6 2 30 54
d2 4 9 28 44
d3 7 1 28 56

1813-713X Copyright © 2018 ORSTW

178

s

d1

d2

d3

4,4
3,4

4,1
1,1

3,1
3,1

3,4

1,11,1

Figure 1: Evacuation Network with arc labels capacity, travel time

Now, we present mathematical programming formulation to identify the MaxStatic sink. We consider a network
N = (V,A, b, τ, s) with a set of feasible sinks D. For the modeling purpose, we consider that there is only one arc
incoming to each d ∈ D. This does not restrict the general case because we can always add a node d′ to V , and (d, d′)
to A such that τ(d, d′) = 0, b(d, d′) = ∞ and replace d ∈ D by d′ so that d is identified with d′. Practically, infinite
capacity of (d, d′) can be replaced by

∑
e∈Ain

d
be. Figure 2 shows such a network transformation in whichD becomes

{d′1, d′2, d′3}.

s

d1

d2

d3

4,4
3,4

4,1
1,1

3,1
3,1

3,4

1,11,1

d′1

d′2

d′3

∞, 0

∞, 0

∞, 0

Figure 2: Transformation of the network in Figure 1

Let A′ = {(i, d) ∈ A : d ∈ D}. We present the problem of finding MaxStatic sink as a mixed binary integer
formulation as:

max
∑

e∈A′

xe (7a)

∑

e∈Aout
i

xe −
∑

e∈Ain
i

xe = 0, ∀i ∈ V \ ({s} ∪D) (7b)

xe ≤ be, ∀e ∈ A \A′ (7c)
xe ≤ beye, ∀e ∈ A′ (7d)∑

e∈A′

ye = 1 (7e)

ye ∈ {0, 1} (7f)

The objective (7a) maximizes the flow entering to the sinks. Because of (7d)-(7f), the flow will be directed towards
only one sink. Constraints (7b) are mass balance constraints in the intermediate nodes. (7c),(7d) are capacity constraints.
The constraint (7e) chooses only one sink out of feasible sinks.

In the constraint set (7d), since be may not be in {−1, 0,+1}, the matrix associated with the constraints is not
totally unimodular. Thus the linear programming relaxation of the above integer programming may not give the integral
solution. However, if ye, e ∈ A′ is bound to be binary, we have the following observation.

1813-713X Copyright © 2018 ORSTW

179

Theorem 1. If be ∈ Z, the mixed integer programming (7a)-(7f) has all integral solutions.

Proof. Let I |D| denote the set of the column vectors of the |D| × |D| identity matrix. Because of our assumption,
indegree of each d ∈ D is 1, and hence the solution set of the constraints (7e) and (7f) is I |D|. If y = [ye : e ∈ A′],
then the column vector y has exactly |D| components. If a fix y ∈ I |D| is chosen, the mixed integer programming
problem (7) becomes a linear programming problem. Since |I |D|| = |D|, MIP (7) can be solved by solving linear
program (7a-7d) at most |D| times.

Further, let the matrix equationMx = 0 represent the constraints (7b). If e has both of its ends in V \({s}∪D),
then the column of M corresponding to xe will have exactly two entries +1,−1. Each of the other columns of M
corresponding to xe with an end of e in {s} ∪ D will have exactly one entry either 1 or −1. This shows that M is
totally unimodular. Since the polyhedron {x ∈ Rn : Mx = b, 0 ≤ x ≤ u} with totally unimodularM and integer u
is an integral polyhedron, we can get all integer solutions of the mixed integer programming (7) if be ∈ Z,∀e ∈ A.

The above is particularly important, becausemost of the network flow algorithms use integrality of flow to develop
efficient algorithms. We present a straight-forward procedure to identify MaxStatic sink in Algorithm 1 which iteratively
chooses an element d ∈ D, finds the maximum static s-d flow value, and selects d as the MaxStaic sink if the flow-value
is improved. When the iteration ends, the algorithm returns the MaxStatic sink and the corresponding static flow.

Algorithm 1: Locating the MaxStatic sink
Input : Directed network N = (V,A, b, s), the set of possible sink locationsD
Output: Optimal sink d∗, the corresponding static flow x

1 curr_max_v = −1
2 for d ∈ D do
3 new_max_v = vstat(d)
4 if new_max_v > curr_max_v then
5 d∗ = d
6 curr_max_v = new_max_v
7 x = corresponding static flow
8 end
9 end
10 return d∗, x

The practical running time of Algorithm 1 can be improved by finding vstat(d) in Line 3 only if
∑

e∈Ain
d
be >

curr_max_v in the network without the transformation mentioned in Figure 2, and exiting the for loop and returning
d as d∗ if vstat(d) =

∑
e∈Aout

s
be.

Algorithm 1 leads to the following important implication.

Theorem 2. The problem of identifying MaxStatic sink can be solved with strongly polynomial time complexity of
O(nm|D|).

Proof. Let C be the complexity of a maximum static flow calculation. Since Algorithm 1 terminates after |D| iterations
and Line 3 calculates a maximum static flow value in each iteration, the complexity of the algorithm isO(C|D|). Using
the algorithm of Orlin (2013), the maximum static flow calculation can be done inO(nm) time, where n,m denote the
number of nodes and number of arcs in N . Hence, Algorithm 1 solves the problem in O(nm|D|) time. This proves
the assertion.

Given a time horizon T , Ford and Fulkerson (1962) showed that for a dynamic maximum flow problem, the
maximum flow can be obtained by temporally repeating the static flow. The following result, for the continuous time
case, connects the dynamic flow with its static counterpart. For the discrete-time version, time T is replaced by T +1.

Lemma 1 (Fleischer and Tardos (1998); Skutella (2009)). Let x be a feasible static s-d flow with value v, then the value
of the corresponding temporally repeated dynamic flow is equal to Tv −∑

e∈A τexe.

Using the result in Lemma 1, we can replace the objective (7a) by
∑

e∈A′ Txe − ∑
e∈A τexe to obtain the

MaxDynamic sink, in continuous time setting. In the discrete time setting, we can just replace T by T + 1. The result
analogous to that in Theorem 1 is valid in this case also.

Replacing vstat(d) by vTdyna(d) in Line 3, we can adapt Algorithm 1 to identify the MaxDynamic sink.

1813-713X Copyright © 2018 ORSTW

180

Theorem 3. The problem of identifying MaxDynamic sink can be solved with strongly polynomial time complexity of
O((m logn)(m+ n logn)|D|).

Proof. For a given sink d ∈ D, letN ′ be the network obtained by adding an arc (d, s) toN with b(d, s) = ∞, τ(d, s) =
−T in a continuous-time setting (in the discrete time setting, we take τ(d, s) = −(T + 1)). Assuming that there is
no directed path from d to s in N , let x be the the min-cost circulation in N ′, then as a result of Lemma 1, the
restriction of x toN is the temporally repeated static flow, with value v, corresponding to the maximum dynamic flow
and vTdyna(d) = Tv − ∑

e∈A τexe (in discrete-time setting, vTdyna(d) = (T + 1)v − ∑
e∈A τexe). As minimum

cost flow problem, using enhanced capacity scaling technique, can be solved inO((m logn)(m+n logn)) time (Orlin
(1993)), and the MaxDynamic sink can be identified iterating over elements ofD, we get the required result.

3.2 Optimal sink to minimize the quickest time

Given supply F at s, the quickest flow problem seeks to find the dynamic s-d flow which has the value F within the
minimum time horizon. The following result is crucial in this regard.

Theorem 4 (Lin and Jaillet (2015)). The quickest flow problem in N = (V,A, b, τ, s, d) with a given supply at s can
be formulated as the following linear programming problem

min
F +

∑
e∈A τe · xe
v

(8a)

∑

e∈Aout
i

xe −
∑

e∈Ain
i

xe =





v, if i = s

−v, if i = d

0, otherwise
(8b)

0 ≤ xe ≤ be ∀e ∈ A (8c)

Proof. Let x be a feasible static s-d flow with value v. Then the value of the corresponding dynamic flow with time
horizon T is Tv−∑

e∈A τexe (see Lemma 1). So, we can formulate the maximum dynamic flow problem with a time
horizon T as:

max Tv −
∑

e∈A

τexe (9a)

∑

e∈Aout
i

xe −
∑

e∈Ain
i

xe =





v, if i = s

−v, if i = d

0, otherwise
(9b)

0 ≤ xe ≤ be ∀e ∈ A (9c)

Let ψ(T) = maxTv − ∑
e∈A τexe under constraints (9b)-(9c). Then ψ(T) is non-decreasing function of T

(Burkard, Dlaska, and Klinz (1993)). So, the quickest flow problem with a given supply F is equivalent to finding the
minimum time T ∗ such that ψ(T ∗) ≥ F . Hence, the quickest flow problem can be formulated as:

min T (10a)

Tv −
∑

e∈A

τexe ≥ F (10b)

along with (9b)-(9c). The constraint (10b) can be reshuffled as:

T ≥ F +
∑

e∈A τexe

v
(11)

in which v ̸= 0 because if v = 0, no flow can be sent from the source to the sink. Since (9b)-(9c) do not involve T ,
we can replace T in (10a) with F+

∑
e∈A τexe

v and the result follows.

Given a source s and a supply F , if a sink is to be chosen from a given set of feasible sets, then we take a point of
view to choose the sink which minimizes the quickest time.

1813-713X Copyright © 2018 ORSTW

181

Definition 2 (Quickest sink). Let N = (V,A, b, τ, s) be a network with a set of feasible sinks D ⊂ V and let TF (d)
denote the quickest time to transport the flow value of F from s to d ∈ D. We call the node argmind∈D{TF (d)},
the Quickest sink.

We can adapt the mathematical formulation given in (7), replacing its objective by (8a) where v =
∑

e∈A′ xe.
To linearize the objective (8a), we can introduce a new variable x′e = xe/v and adjust the constraints accordingly
converting the problem into mixed binary integer linear program.

We present a simple procedure to identify the quickest sink in Algorithm 2. The algorithm iteratively chooses an
element d ∈ D, finds the quickest time to send F from s to d, and selects d as the Quickest sink if the quickest time
decreases. When the iteration ends, the algorithm returns the Quickest sink and the static flow corresponding to the
temporally repeated quickest flow.

Algorithm 2: Locating the Quickest sink
Input : directed network N = (V,A, b, s, τ), supply F at s, the set of possible sink locationsD
Output: optimal sink d∗, the corresponding static flow x

1 curr_quickest_time = ∞
2 for d ∈ D do
3 new_quickest_time = TF (d)
4 if new_quickest_time < curr_quickst_time then
5 d∗ = d
6 curr_quickest_time = new_quickest_time
7 x = corresponding static flow
8 end
9 end
10 return d∗, x

On the basis of Algorithm 2, we have the following result.

Theorem 5. The Quickest sink can be computed in strongly polynomial time complexity of O(nm2 log2 n)|D|.

Proof. There are |D| iterations in Algorithm 2 in each of which it calculates the quickest flow. Saho and Shigeno (2017)
adapted cancel-and-tighten algorithm of findingminimum cost flow to compute quickest flow, which has the complexity
of O(nm2 log2 n). Hence, Quickest sink can be identified in O(nm2 log2 n|D|) time.

4. OPTIMAL SINK WITH ARC REVERSAL STRATEGY

4.1 Contraflow approach

The contraflow approach reverses the direction of necessary arcs to optimize the flow in a directed network. The
common procedure to do so is to solve the corresponding problem in, what is known as, an auxiliary network. The
auxiliary network of N = (V,A, b, τ, s, d) is N̄ = (V, Ā, b̄, τ̄ , s, d) where

Ā = {(i, j) : (i, j) ∈ A or (j, i) ∈ A}

and for each (i, j) ∈ Ā,

b̄(i, j) = b(i, j) + b(j, i)

τ̄(i, j) =

{
τ(i, j) if (i, j) ∈ A
τ(j, i) otherwise

in which we consider b(i, j) = 0 whenever (i, j) /∈ A, and vice versa. Figure 3 is the auxiliary network constructed
for the network in Figure 1.

4.2 Optimal sink with contraflow

Because of the change in capacity of the arcs, the decisions related to optimal sink also change if we apply contraflow
approach. Example 2 illustrates this fact.

1813-713X Copyright © 2018 ORSTW

182

s

d1

d2

d3

7,4
7,4

5,1
5,1

6,1
6,1

3,4
3,4

2,12,1

Figure 3: Auxiliary network of the network in Figure 1

Example 2. Consider the network considered in Example 1. To allow arc reversal, we construct the auxiliary network
as depicted in Figure 3. Taking s as source, if d = d1, the maximum static flow value is 12 (7 via s − d1, 3 via
s − d2 − d3 − d1, 2 via s − d2 − d1). The corresponding values with d = 3, 4 are 11 and 8, respectively. Thus
MaxStatic sink allowing lane reversals is the node 2 while it is node 4 without allowing arc reversals with maximum
static flow value 7 (see Example 1). Considering 2 as the sink, the maximum static flow x allowing arc reversals is given
in the following table.

e (s, d1) (s, d2) (d1, s) (d1, d3) (d1, d2) (d2, s) (d2, d1) (d2, d3) (d3, d1) (d3, d2)
x(e) 7 5 0 0 0 0 2 3 3 0

Since x(s, d1) > b(s, d1), x(s, d2) > b(s, d2), x(d2, d1) > b(d2, d1), x(d3, d1) > b(d3, d1), the arcs to be reversed
are: (d1, s), (d2, s), (d1, d2) and (d1, d3).

Given a network N = (V,A, b, τ, s) and set of feasible sinks D, to identify the MaxStatic sink, MaxDynamic
sink, Quickest sink allowing arc reversals, we solve the corresponding problem in N̄ . We present Algorithm 3 in which
the input is N = (V,A, b, τ, s) and a set of feasible sinks D. For the calculation of the quickest sink, the supply F
at the source s is also be given. In Line 1, the the auxiliary network N̄ = (V, Ā, b̄, τ̄ , s) is constructed. In Line 2,
depending on the objective, MaxStatic sink, MaxDynamic sink, or Quickest sink is identified as described in Section 3.
The corresponding static flow x is also calculated. In Line 3, x is decomposed into paths and cycles and cycle flows
are removed so that the set of arcs to be reversed in Line 4 is well-defined. After the removal of cycle flows, if an arc
in A has flow value more than its original capacity, its opposite arc will be reversed. If the solution shows any positive
flow in any arc not in A, then the corresponding opposite arc is also reversed. In this way, Line 4 gives the set of arcs
to be reversed.

Algorithm 3: Locating sink with contraflow
Input : directed network N = (V,A, b, τ, s), the set of possible sink locationsD (and supply F at the

source s in case of Quickest sink) with arc reversal capability
Output: optimal sink d∗, set of arcs to be reversed, corresponding static flow x

1 Construct the auxiliary network N̄ .
2 Solve the corresponding problem in N̄ to find the optimal sink d∗, and the corresponding static flow x.
3 Decompose x into paths and cycles and remove cycles.
4 R = {(j, i) ∈ A : x(i, j) > b(i, j) if (i, j) ∈ A or x(i, j) > 0 if (i, j) /∈ A}
5 return d∗, R, x.

Theorem 6. The problems of identification of MaxStatic sink, MaxDynamic sink, and Quickest sink allowing arc
reversals can be solved in strongly polynomial time with the complexity of the corresponding problems without allowing
lane reversals.

Proof. In Algorithm 3, the auxiliary network, in Line 1, can be constructed inO(m) times. Line 2 finds MaxStatic sink,
MaxDynammic sink, or Quickest sink in the auxiliary network depending on the problem. So, the complexity of Line
2 is O(C|D|) where C is

(i) O(mn), the complexity of the maximum static flow calculation, in case of the MaxStatic sink

1813-713X Copyright © 2018 ORSTW

183

(ii) O((m logn)(m+ n logn)), the complexity of the minimum cost flow calculation, in case of the MaxDynamic
sink

(iii) O(nm2 log2 n), the complexity of quickest flow calculation, in case of the Quickest sink

The decomposition of a static flow into paths and cycles can be done in O(nm) time (see Ahuja, Magnanti, and
Orlin (1993)). So the time complexity of Line 3 in Algorithm 3 is O(mn). The construction of R in Line 4 requires
O(m) comparisons. Hence, the overall complexity of the algorithm is dominated by the complexity of Line 2, which
is O(C|D|). This proves the assertion.

5. CASE ILLUSTRATION

As an illustration, we consider Kathmandu road network within Ring Road only with major road segments (cf. Figure
4). We take the node adjoining Tundikhel area (denoted in the figure by 24) as the source and Kalanki (8), Balaju (9),
Gongabu (11), Narayan Gopal Chowk (12), Gaushala (45), Koteshwar Jadibuti (44), Satdobato (38), Ekantakuna (39),
and Balkhu (43) as possible sinks. To implement auto-based evacuation planning, we take the capacities of arcs between
2 cars per second to 4 cars per second depending on the width of the segment. The direction of the usual traffic flow
is taken as the direction of the arc. The time related to an arc is taken using Google Maps.

(a) (b)

Figure 4: Kathmandu network with (a) Node 11 asMaxDynamic sink (b) Node 45 asMaxDynamic sink with contraflow

Considering a time horizon T = 1 hour, we find the Maxdynamic sink as Gongabu(11) with the dynamic flow
value of 12,120 cars. However, if we allow arc reversal, the Maxdynamic sink is Gaushala(45) with the corresponding
flow value 27,360 cars. If we take a time horizon of T = 2 hours, the sink locations with and without arc reversal are
respectively the same as those of T = 1 hour with flow values 33,720 and 70,560.

The Quickest sink locations with different values of F are listed in the following table.

Without contraflow With contraflow
F Quickest sink Quickest time (sec) Quickest sink Quickest time (sec)

1,000 Balaju (9) 1,160 Balaju (9) 910
10,000 Gongabu (11) 3,247 Gaushala(45) 2,150
20,000 Gongabu (11) 4,913 Gaushala(45) 2,987

1813-713X Copyright © 2018 ORSTW

184

6. CONCLUSION

In this work, the problem of identification of an optimal sink from among a given set of uncapacitated sinks is considered
with and without allowing arc reversals, with different aspects of network flow, viz. maximum static flow, maximum
dynamic flow, and quickest flow. Presenting the solution procedures, it is proved that the problems can be solved in
strongly polynomial time. The problem considered is particularly important in case of evacuation planning when a
single shelter has to be chosen from among given shelters of sufficient capacities. One can use MaxStatic sink, when a
maximum number of evacuees are to be sent as one wave, MaxDynamic sink, when the maximum number of evacuees
are to be sent within a given time horizon, and Quickest sink when a given number of evacuees are to be evacuated as
quickly as possible.

ACKNOWLEDGMENTS

The authors acknowledge partial supports of Alexander von Humboldt Foundation (AvH) and German Academic
Exchange Service (DAAD). The first author acknowledges the support of University Grants Commission (UGC) Nepal
also for granting PhD fellowship and research support.

REFERENCES

Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network flows: Theory, algorithms, and applications. Prentice Hall.
Bureau of Public Roads. (1964). Traffic assignment manual. Washington D.C.: US Department of Commerce, Urban

Planning Division.
Burkard, R. E., Dlaska, K., & Klinz, B. (1993). The quickest flow problem. ZOR - Meth. & Mod. of OR, 37(1), 31–58.

Retrieved from https://doi.org/10.1007/BF01415527
Dhamala, T., & Pyakurel, U. (2013). Earliest arrival contraflow problem on series-parallel graphs. International Journal of

Operations Research, 10(1), 1–13.
Dhamala, T. N., Pyakurel, U., & Dempe, S. (2018). A critical survey on the network optimization algorithms for

evacuation planning problems. International Journal of Operations Research, 15(3), 101–133.
Fleischer, L., & Tardos, E. (1998). Efficient continuous-time dynamic network flow algorithms. Operations Research

Letters, 23(3), 71–80.
Ford, F., & Fulkerson, D. (1962). Flows in networks. New Jersey: Princeton University Press.
Goerigk, M., Deghdak, K., & Heßler, P. (2014). A comprehensive evacuation planning model and genetic soution

algorithm. Transportation Research, Part E, 71, 82–97.
Goerigk, M., Grün, B., & Heßler, P. (2014). Combining bus evacuation with location decisions: A branch-and-price

approach. Transportation Research Procedia, 2, 783–791.
Heßler, P., & Hamacher, H. (2016). Sink location to find optimal shelters in evacuation planning. EURO Journal on

Computational Optimization, 4(3-4), 325–347.
Kim, S., Shekhar, S., & Min, M. (2008). Contraflow transportation network reconfiguration for evacuation route

planning. IEEE Transactions on Knowledge and Data Engineering, 20(8), 1115–1129.
Kongsomsaksakul, S., Chen, A., & Yang, C. (2005). Shelter location-allocation model for flood evacuation planning.

Journal of the Eastern Asia Society for Transportation Studies, 6, 4237–4252.
Lin, M., & Jaillet, P. (2015). On the quickest flow problem in dynamic networks: a parametric mincost flow approach.

In Proceedings of the twenty-sixth annual ACM-SIAM symposium on discrete algorithms (pp. 1343–1356).
Ng, M., Park, J., &Waller, S. (2010). A hybrid bilevel model for the optimal shelter assignment in emergency evacuations.

Computer-Aided Civil and Infrastructure Engineering, 25(8), 547–556.
Orlin, J. (1993). A faster strongly polynomial minimum cost flow algorithm. Operations research, 41(2), 338–350.
Orlin, J. (2013). Max flows in o(nm) time, or better. , 765–774.
Pyakurel, U., & Dhamala, T. (2015). Models and algorithms on contraflow evacuation planning network problems.

International Journal of Operations Research, 12(2), 36–46.
Pyakurel, U., & Dhamala, T. (2016). Continuous time dynamic contraflow models and algorithms. Advances in Operations

Research.
Pyakurel, U., & Dhamala, T. (2017a). Continuous dynamic contraflow approach for evacuation planning. Annals of

Operations Research, 253(1), 573–598.
Pyakurel, U., &Dhamala, T. (2017b). Evacuation planning by earliest arrival contraflow. Journal of Industrial &Management

Optimization, 13(1), 489–503.
Pyakurel, U., Nath, H., & Dhamala, T. (2018a). Efficient contraflow algorithms for quickest evacuation planning. Science

China Mathematics, 61(11), 2079–2100.
Pyakurel, U., Nath, H., & Dhamala, T. (2018b). Partial contraflow with path reversals for evacuation planning. Annals

of Operations Research.

1813-713X Copyright © 2018 ORSTW

185

Rebennack, S., Arulselvan, A., Elefteriadou, L., & Pardalos, P. (2010). Complexity analysis for maximum flow problems
with arc reversals. Journal of Combinatorial Optimization, 19(2), 200–216.

Saho, M., & Shigeno, M. (2017). Cancel-and-tighten algorithm for quickest flow problems. Networks, 69(2), 179–188.
Sheffi, Y. (1985). Urban transportation networks: Equilibrium analysis with mathematical programming methods. Englewood Cliffs,

NJ: Prentice-Hall.
Sherali, H., Carter, T., & Hobeika, A. (1991). A location-allocation model and algorithm for evacuation planning under

hurricane/flood conditions. Transportation Research Part B: Methodological , 25(6), 439–452.
Skutella, M. (2009). An introduction to network flows over time. In W. Cook, L. Lovász, & J. Vygen (Eds.), Research

trends in combinatorial optimization (pp. 451–482). Springer.
Wang, J., Wang, H., Zhang, W., Ip, W., & Furuta, K. (2013). Evacuation planning based on the contraflow technique

with consideration of evacuation priorities and traffic setup time. IEEE Transactions on Intelligent Transportation Systems,
14(1), 480–485.

Zhao, X., Feng, Z., Li, Y., & Bernard, A. (2016). Evacuation network optimization model with lane-based reversal and
routing. Mathematical Problems in Engineering.

1813-713X Copyright © 2018 ORSTW

OptimizationModels andAlgorithms forEvacuationPlanning:
TheBusEvacuationProblem

Hari Nandan Nath

hari_672@gmail.com
Tribhuvan University,Kathmandu, Nepal

Introduction
Every human activity is directed towards saving life or enhancing it. Among the various factors which put life in

danger are natural or human-created disasters. To save human life in such situations, it is imperative to evacuate

people to safe places. Evacuation planning is studied using mathematical models expressing them as network problem

as per requirements, e.g. maximum �ow problem, lexicographic �ow problem, quickest �ow problem, earlies arrival

�ow problem, time dependent problem, contra�ow problem, etc. (Dhamala, 2015).

Bus Evacuation Problem, BEP

Figure 1: BEP network

Most of the evacuation problems studied so far address auto-based evacuation, or building evacuation (Hua, Ren,
Cheng, & Ran, 2014; Bish, 2011). To address the need of the population which depends on the public vehicles,
Bish(2011) devised the evacuation problem as a bus evacuation problem (BEP). The solution of BEP gives the routes
to be followed by a given number of buses and number of evacuees to be assigned to particular bus so that the
evacuation time is minimized. Although it is based on well-known vehicle routing problem (VRP), it di�ers from
traditional VRP and other similar evacuation models in that it minimizes the time of the vehicle which takes the
longest time for evacuation while most of the other models use minimum cost �ow model which minimizes the total
cost of evacuation. The fact that BEP surpasses the minimum cost problems in minimizing the evacuation time can
be realized by the following ordinary observation

1 + 2 + 7 = 1 + 4 + 5

Although the sum is the same, the maximum of the constituents is smaller in the second.

Mathematical Model of BEP
The BEP is modeled as a network (N,A) where N , the set of nodes is the union of Y , the set of yards, P , the set of
pick-up locations, and S, the set of shelters. The set of available buses with equal capacity Q is denoted by V which is
the union of the set of buses available at an yard i, Vi's. Dj denotes demand (number of evacuees) at the pick-up node
j, and Ci, the capacity of a shelter i. The travel cost along the arc (i, j) is denoted by τij .The decision variables are
xmt
ij , bmt

j . xmt
ij is a binary variable which equals 1 if trip t of a bus m traverses arc (i, j), whereas bmt

j is the number

of evacuees from node j assigned to (or, if j is a shelter, released from) bus m after trip t.

Minimize Tevac (1)

subject to: Tevac ≥
∑

(i,j)∈A

T∑

t=1

τijx
mt
ij , ∀m ∈ V (2)

∑

i:(i,j)∈A

x
mt
ij =

∑

k:(j,k)∈A

x
m(t+1)
jk , ∀j ∈ P,m ∈ V, t = 1, . . . , T − 1 (3)

∑

i:(i,j)∈A

x
mt
ij ≥

∑

k:(j,k)∈A

x
m(t+1)
jk , ∀j ∈ S,m ∈ V, t = 1, . . . , T − 1 (4)

∑

(i,j)∈A

x
mt
ij ≤ 1, ∀m ∈ V, t = 1 . . . , T (5)

x
m1
ij = 1, ∀i ∈ Y, j : (i, j) ∈ A,m ∈ Vi (6)

x
mt
ij = 0, ∀i ∈ Y, j : (i, j) ∈ A,m ∈ V, t = 2, . . . , T (7)

x
mT
ij = 0, ∀j ∈ P, i : (i, j) ∈ A,m ∈ V (8)

b
mt
j ≤

∑

(i,j)∈A

Qx
mt
ij , ∀j ∈ N,m ∈ V, t = 1, . . . , T (9)

0 ≤
∑

j∈P

t∑

l=1

b
ml
j −

∑

k∈S

t∑

l=1

b
ml
k ≤ Q, ∀m ∈ V, t = 1, . . . , T (10)

∑

m∈V

T∑

t=1

b
mt
j ≤ Cj , ∀j ∈ S (11)

∑

m∈V

T∑

t=1

b
mt
j = Dj , ∀j ∈ P (12)

∑

j∈P

T∑

t=1

b
mt
j =

∑

k∈S

T∑

t=1

b
mt
k , ∀m ∈ V (13)

b
mt
j ≥ 0, ∀(i, j) ∈ A,m ∈ V, t = 1, . . . , T (14)

BEP Variants
Realizing the importance of BEP, Goerigk, Grün, & Heÿler (2013) present a simpli�ed version of it assuming the

number of evacuees to be equal to the integer multiples of bus capacities, and considering all buses to be located at a

single yard initially.

Goerigk and Grün(2014) adapted BEP model to situations when the number of evacuees is known only after some

time the evacuation begins with aforementioned assumptions.

BEP with Su�cient Buses
Although BEP is crucial for planning evacuation for min-
imum evacuation time, it is di�cult to solve, becuase
buses move from pick-up nodes to shelter, between pick-
up nodes, from shelter to pick-up nodes, and between
shelters. To make the network structure simpler, the
idea used by Hua et al. (2014) can be applied in BEP.
Dividing an evacuation in several evacuation zones, they
estimate the number of buses required at a pick-up lo-

cation representing a zone by
P i−aV i

auto
b

where V i
auto is

the number of auto-vehicles in the zone, a is the average
no. of occupants in an auto-vehicle, and b is the capacity
of a transit-vehicle.
In this way, if the number of buses made available in
BEP becomes ∑

dDj

Q
e

and if the yards are close enough to the pick-up locations,
the BEP network can be simpli�ed to the one given in
�gure 2.

Figure 2: Simpli�ed BEP network

Moreover, if the shelters are uncapacitated, the number

of buses calculated, in this way, is optimal.

Heuristic Solution
To �nd a quick feasible solution to BEP with su�cient
number of buses, the following heuristic (suggested by
Bish(2011) with necessary modi�cations) can be used.
The feasible solution can be improved using other opti-
mization techniques.

Step1 Produce a list of buses sequenced in nondecreas-
ing order of their total number of movements from
a yard to a pickup location plus the movements
from a pickup location to a shelter, and then fur-
ther sequenced by the travel costs of the routes
assigned to each bus, breaking ties arbitrarily.

Step2 Denote the �rst bus in the list as bus i. If bus
i is at a pickup location, route it to the nearest
shelter with su�cient remaining capacity, and if
bus i is at a yard, route it to the nearest pickup
location that has remaining evacuees. Once there,
pick up as many evacuees as the vehicle capacity
allows. Update the list of buses.

Step 3 Go to Step 1 and continue until all evacuees are
in shelters.

Conclusion
If su�cient number of buses is available, the BEP net-

work gets simpli�ed reducing the movement of buses

from shelter to pick-up nodes, and between pick-up nodes

making it relatively easier to solve.

References
Bish, D.R. (2011). Planning for a bus-based evacuation. OR

Spectrum, 33, 629-654.
Dhamala, T.N. (2015). A survey on models and algo-

rithms for discrete evacuation planning network prob-
lems. Journal of Industrial and Management Opti-

mization, 11(1), 265-289.
Goerigk, M., & Grün, B. (2014). A robust bus evacuation

model with delayed scenario information. OR Spectrum.
Goerigk, M., Grün, B., & Heÿler P. (2013). Branch and

bound algorithms for the bus evacuation problem. Com-

puters & Operations Research, 40,3010-3020.
Hua, J., Ren, G., Cheng, Y. & Ran, B. (2014). An inte-

grated contra�ow strategy for multimodal evacuation.
Mathematical problems in engineering.

Acknowledgements
I am grateful to Prof. Dr. Tanka Nath Dhamala for

continuous guidance, Dr. Urmila Pyakurel for technical

support, and Society for Mathematical Biology for travel

support.

IN
T

E
R

N
AT

IO
N

A
L

C
O

N
F

E
R

E
N

C
E

O
N

C
O

M
P

U
TA

T
IO

N
A

L
S

C
IE

N
C

E
S

-
M

O
D

E
LL

IN
G

,
C

O
M

P
U

T
IN

G
A

N
D

S
O

F
T

C
O

M
P

U
T

IN
G

C
SM

C
S-

20
20

N
AT

IO
N

A
L

IN
ST

IT
U

T
E

O
F

T
EC

H
N

O
LO

G
Y

C
A

LI
C

U
T

SE
PT

EM
B

ER
10

-1
2,

20
20

C
ER

T
IF

IC
AT

E
T

hi
s

is
to

ce
rt

if
y

th
at

M
r.

H
ar

i
N

an
da

n
N

at
h,

C
en

tr
al

D
ep

ar
tm

en
t

of
M

at
he

m
at

ic
s,

Tr
ib

hu
va

n
U

n
iv

er
si

ty
,

K
at

hm
an

du
,

N
ep

al
,

ha
s

pa
rt

ic
ip

at
ed

in
th

e
vi

rt
ua

l
w

eb

“I
n

te
rn

at
io

n
al

C
on

fe
re

n
ce

on
C

om
pu

ta
ti

on
al

Sc
ie

n
ce

s-
M

od
el

li
n

g,
C

om
pu

ti
n

g
an

d
So

ft

C
om

pu
ti

n
g”

he
ld

on
lin

e
du

ri
ng

Se
pt

em
be

r
10

-1
2,

20
20

or
ga

ni
ze

d
by

th
e

D
ep

ar
tm

en
t

of

M
at

he
m

at
ic

s
of

N
at

io
n

al
In

st
it

u
te

of
Te

ch
n

ol
og

y
C

al
ic

u
t,

K
er

al
a.

H
e

/S
he

ha
s

al
so

pr
es

en
te

d
th

e
pa

pe
r

en
ti

tl
ed

T
he

Q
u

ic
ke

st
Fl

ow
Lo

c
Pr

ob
le

m
.

D
r.

A
sh

is
h

A
w

as
th

i
C

on
ve

n
er

D
r.

Su
n

il
Ja

co
b

Jo
hn

C
on

ve
n

er
D

r.
Sa

ty
an

an
da

Pa
n

da
C

ha
ir

pe
rs

on

