
STRUCTURE AND PROPERTIES OF FATOU, JULIA,
ESCAPING AND FAST ESCAPING SETS OF

HOLOMORPHIC SEMIGROUPS

A THESIS SUBMITTED TO THE

CENTRAL DEPARTMENT OF MATHEMATICS

INSTITUTE OF SCIENCE AND TECHNOLOGY

TRIBHUVAN UNIVERSITY

NEPAL

FOR THE AWARD OF

DOCTOR OF PHILOSOPHY

IN MATHEMATICS

BY

BISHNU HARI SUBEDI

JANUARY, 2020





DECLARATION

Thesis entitled “ Structure and Properties of Fatou, Julia, Escaping and Fast Es-
caping Sets of Holomorphic Semigroups ” which is being submitted to the Central
Department of Mathematics, Institute of Science and Technology (IOST), Tribhuvan
University, Nepal for the award of the degree of Doctor of Philosophy (Ph.D.), is a
research work carried out by me under the supervision of Associate Prof. Dr. Ajaya
Singh, Central Department of Mathematics, Tribhuvan University and co-supervised by
Prof. Dr. Prakash Muni Bajracharya.

This research is original and has not been submitted earlier in part or full in this or
any other form to any university or institute, here or elsewhere, for the award of any
degree.

.................................
Bishnu Hari Subedi

ii



RECOMMENDATION

This is to recommend that Mr. Bishnu Hari Subedi has carried out research entitled “
Structure and Properties of Fatou, Julia, Escaping and Fast Escaping Sets of Holo-
morphic Semigroups ” for the award of Doctor of Philosophy (Ph.D.) in Mathematics
under our supervision. To our knowledge, this work has not been submitted for any
other degree.

He has fulfilled all the requirements laid down by the Institute of Science and Tech-
nology (IOST), Tribhuvan University, Kirtipur for the submission of the thesis for the
award of Ph.D. degree.

...........................................................
Dr. Ajaya Singh
(Supervisor)
Associate Professor of Mathematics
Central Department of Mathematics
Tribhuvan University
Kirtipur, Kathmandu
Nepal

...........................................................
Dr. Prakash Muni Bajracharya
(Co-supervisor)
Professor of Mathematics
Central Department of Mathematics
Tribhuvan University
Kirtipur, Kathmandu
Nepal

iii



         Phone No: 00977- 14331977 

TRIBHUVAN UNIVERSITY 
CENTRAL DEPARTMENT OF MATHEMATICS 

OFFICE OF THE HEAD OF DEPARTMENT 
 

KRITIPUR, KATHMANDU 

   NEPAL 

 

Date: January 21, 2020 

           

Ref. No. 

 

LETTER OF APPROVAL 
 

On the recommendation of Associate Prof. Dr. Ajaya Singh and Prof. Dr. Prakash Muni 

Bajracharya, this Ph.D. thesis submitted by Mr. Bishnu Hari Subedi entitled "Structure 

and Properties of Fatou, Julia, Escaping and Fast Escaping Sets Holomorphic 

Semigroups” forwarded by Central Department Research Committee (CDRC) to the Dean, 

IOST, T.U. 

 

 

 

.......................................................... 
Prof. Dr. Tanka Nath Dhamala  

(Head) 
Central Department of Mathematics 

Tribhuvan University 

Kirtipur, Kathmandu 

Nepal 

 
 

iv 



ACKNOWLEDGEMENTS

It is my immense pleasure to thank many people and institutions that made my Ph.D.
research work possible. I would like to highlight four significant groups of people and
seven institutions without whose help this dissertation of my Ph.D. research would never
has been completed.

Firstly, I would like to express grateful thanks to my supervisor Dr. Ajaya Singh and
co-supervisor Prof. Dr. Prakash Muni Bajracharya at Central Department of Mathemat-
ics, Tribhuvan University, Kirtipur, Kathmandu, Nepal for their regular help, unlimited
encouragement, careful guidance, sound suggestions and comments, inspiration and
clear explanation from early stage of registration time of my Ph.D. to final draft of this
thesis.

Secondly, I would like to thank Prof. Andrei Tetenov, Novosibirsk State University,
Novosibirsk, Russia, Prof. Walter Bergweiler, University of Kiel, Kiel, Germany, Prof.
Aimo Hinkannen, University of Illinois, Illinois, USA, Prof. Shunshuke Morosawa,
Kochi University, Japan, Dr. David Sixsmith, The Open University, UK, Prof. Gajendra
Bahadur Thapa, Tribhuvan University, Nepal, Prof. Roger Wiegand, University of Ne-
braska, Lincoln, USA, and Prof. Pushpa Raj Adhikary, Kathmandu University, Nepal,
for their valuable suggestions and comments on the drafts of my research papers.

Thirdly, I would like to express my sincere thanks to Prof. Dr. Tanka Nath Dhamala,
Head (and President of CDRC) and all research committee members as well as teachers
and the staff of Central Department of Mathematics, Tribhuvan University, Kirtipur,
Kathmandu, Nepal. At the same time my special thanks go to the Dean, Assistant Deans
and research committee members of the Institute of Science and Technology, Tribhuvan
University, and the staff of Dean’s office for their kind cooperation and help during my
Ph.D. research study.

Fourthly but most importantly, I feel incredibly grateful to my father Mr. Lekh Nath
Subedi and mother Mrs. Tej Kumari Subedi for their liberal attitude, never ending sup-
port, encouragement, patience and unconditional love. At the same time, I acknowledge
with great thanks the service rendered by my wife Mrs. Sarala Sapkota Subedi, who pa-

v



tiently stood by me and said - just concentrate on your study and leave everything else to

me. I also want to acknowledge the great work of my son Abhishek Subedi of installing
and arranging the LATEX program on my computer as well as preparing the thesis tem-
plate in this form at the young age of Fourteen and as a tenth grade student. It would not
be an exaggeration to say that without his help, this LATEX version of my thesis would
not have been possible. I would like to thank to all my family members and relatives
whose support and good wishes for my research remained constant. This thesis is for-
mally dedicated to all of them. There is nothing that I can give them in return, but I
hope that this thesis at least make them proud.

My special thanks go to University Grants Commission, Sano Thimi Bhaktapur,
Nepal, for providing me a Ph.D. Faculty Fellowship-2070 during my study. Its gen-
erous financial support and assistance have meant more to me than I could ever ex-
press. I am thankful also to the Nepal Mathematical Society for providing me a NMS-
Nick-Simon Ph.D. Fellowship-2018. I like to acknowledge the Centre International de
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ABSTRACT

We study the dynamical behavior of a semigroup generated by holomorphic functions in
the complex plane. In particular, we concentrate on semigroup dynamics, where semi-
groups are generated by transcendental entire functions. It is a study of the behavior
of the compositions of a finite set of holomorphic functions in the complex plane. We
study Fatou, Julia, escaping and fast escaping sets of such semigroups. The principal
aim of this thesis is to investigate the structure and the properties of these sets in the
more general settings of holomorphic semigroups. In this thesis, we see to what extent,
the structure and the properties of the Fatou, Julia, escaping and fast escaping sets of
classical holomorphic dynamics are preserved and generalized to semigroup dynamics,
and what new phenomena can occur. A holomorphic semigroup is not abelian in gen-
eral; however, a cyclic semigroup is abelian, so differences in the dynamics can occur
in the structure and the properties of these sets. If a semigroup is abelian, such types
of differences will narrow down, and most of the structure and the properties of these
sets of classical holomorphic dynamics are preserved and generalized. In this thesis, we
generalize the notion of abelian semigroups to nearly abelian semigroups, and we in-
vestigate the identical structure and the properties of these sets in such semigroups. On
the basis of the algebraic notion of different indices such as finite index, cofinite index
and Rees index, we also investigate subsemigroups whose Fatou, Julia and escaping sets
coincide with their corresponding parent semigroup. In the holomorphic semigroup set-
ting, there may be empty Fatou sets and empty escaping sets; hence we also investigate
certain holomorphic semigroups whose Fatou sets and escaping sets are non-empty on
the basis of (partial)fundamental sets and Carlemen sets. Finally, we define fast escap-
ing sets of transcendental semigroups, and we discuss some fundamental structure and
properties of these sets.
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Chapter 1

INTRODUCTION

1.1 Introduction

We study the dynamical behavior of a semigroup of holomorphic functions in the com-
plex plane. This is a natural generalization of the study of the dynamics of a given
holomorphic function. The main idea in the dynamics of a given holomorphic function
is to study the iteration of such a function, and in the semigroup case we have finite set
of holomorphic functions and each iterative step we have several functions to compose
with. The dynamical study of a holomorphic semigroup was initiated by Hinkkanen and
Martin in a series of papers [46, 47, 48]. The main goal of these works was to extend
the classical theory of the dynamics associated to the iteration of a rational function of a
complex variable, to the more general setting of the dynamics associated to an arbitrary
semigroup of rational functions. In the first step, they generalized the notions of Fatou
and Julia sets to the context of semigroups and then investigated the structure of these
sets and their basic properties. Poon [75] extended the study to the dynamics on semi-
groups generated by transcendental entire functions and discussed several properties of
Fatou and Julia sets. Kumar and Kumar [61, 62, 63] initiated the study of an escap-
ing set of a semigroup generated by transcendental entire functions. They extended
several results of the escaping sets of classical transcendental dynamics to the more
general setting of the dynamics of transcendental semigroups. In addition, there are few
others who are working in this field. Among them Stankewitz [103, 104] and Haung
[43] studied respectively on completely invariant Fatou and Julia sets for holomorphic
semigroups, and the dynamics of semigroups of transcendental meromorphic functions.
Some of them are jointly working in this field. The joint works of Stankewitz and Sumi
[105, 106], Kriete and Sumi [57], Haung and Cheng [52], and Wang and Haung [127]
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also appeared in this field.

The dynamics of iteration of a holomorphic function has been investigated success-
fully over the past 100 years after its formal foundation laid by Pierre Joseph Louis
Fatou (1878-1929) and Gaston Maurice Julia (1893-1978), and is still an active and
exciting area of modern research. The holomorphic dynamical theory in its century of
history has undergone many changes, from the classical study of the Fatou, Julia, Man-
delbrot, escaping and fast escaping sets of a single rational or transcendental function,
to the dynamical study of these sets in the holomorphic semigroup setting. The objects
of interest in both classical and semigroup holomorphic dynamics are Fatou, Julia, es-
caping and fast escaping sets. It is noted that the Fatou, Julia, escaping and fast escaping
sets of a single holomorphic function is a particular case of the Fatou, Julia, escaping
and fast escaping sets, respectively, of a holomorphic semigroup. In this thesis, classical

holomorphic dynamics refers the iteration theory of a single holomorphic function, and
holomorphic semigroup dynamics refers the dynamical theory generated by the compo-
sition of various classes of holomorphic functions. In holomorphic semigroup dynam-
ics, the algebraic structure of a semigroup is naturally attached to the dynamics, and
hence the situation is little bit complicated. In holomorphic semigroup dynamics, some
fundamental results of the classical holomorphic dynamics may not be preserved and
generalized, and new phenomena may occur. In addition, the complication in the study
of the dynamics of holomorphic semigroups makes the intricate structure and proper-
ties of Fatou, Julia, escaping and fast escaping sets less visible. Except in some explicit
results, we can not describe the real structure of Fatou, Julia, escaping and fast escaping
sets of a holomorphic semigroup. In general, there is no obvious visible structure of
these sets in holomorphic semigroup dynamics.

This manuscript is organized as follows:

In this first chapter, we introduce briefly the Fatou, Julia, escaping and fast escaping
sets of holomorphic semigroups with short historical background in less technical detail.
We also state briefly the rationale and objectives of the research. In short, this chapter
is a mirror of this thesis and has been written independently of other chapters.

In Chapter 2, we collect introductory and background materials which are required
for the understanding of the results of this thesis. In this chapter, we collect a number
of useful notations, necessary definitions and various useful and well-known results of
the classical dynamics of a single holomorphic function.

In Chapter 3, we introduce different aspects of holomorphic semigroups.

In Chapter 4, we compare results of the classical holomorphic dynamics and the
holomorphic semigroup dynamics, to see how far results of the classical holomorphic
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dynamics are preserved and generalized in the holomorphic semigroup dynamics and
what new phenomena can occur.

In Chapter 5, we investigate the structure and properties of the Fatou, Julia and
escaping sets in the more general setting of nearly abelian holomorphic semigroups.
We focus on how far the results of abelian holomorphic semigroups are preserved and
generalized for nearly abelian holomorphic semigroups.

In Chapter 6, we investigate subsemigroups of holomorphic semigroups whose dy-
namics coincide with the dynamics of their corresponding semigroups. That is, we
investigate subsemigroups whose Fatou, Julia and escaping sets coincide with Fatou,
Julia and escaping sets of their corresponding semigroups.

In Chapter 7, we investigate some concrete examples of transcendental semigroups
which have non-empty Fatou and escaping sets.

In Chapter 8, we define fast escaping sets of transcendental semigroups and discuss
some fundamental structure and properties of this set in semigroup settings.

At the end of the thesis, we give a brief Chapter-9 containing summary and con-
clusions of our research findings with interesting open problems and suggestions for
further research.

Almost all results provided in this thesis have been published in the Nepali Mathe-
matical Sciences Report [107, 110, 118, 122], Universal Journal of Applied Mathemat-
ics [114], Turkish Journal of Mathematics [115], Journal of Institute of Engineering-
Tribhuvan University [117], Indian Journal of Mathematics [116], Nepal Journal of
Science and Technology [119], Journal of Nepal Mathematical Society [120, 121] and
arXiv pre-prints [108, 109, 111, 112, 113]. However, this thesis is not a compilation
of these papers. The main reason for this is that the papers have been written as the
research progressed, so the special research results have been followed by more general
ones. However, this order is completely reversed in the thesis: the special results are
proved as consequences of general ones. We have also tried to retain some of the flavor
of the original research by commenting frequently on the history and motivation for the
main ideas.

Mathematical statements in this thesis are classified as theorems, corollaries, propo-
sitions and lemmas. Theorems are main original results of this thesis. Corollaries are
consequences of the theorems. Propositions are relevant results of other authors. Lem-
mas are technical results that are needed for the proof of the theorems. The square
shape � denotes the end of a mathematical statement and typically found at the end of
the proofs of the theorems (corollaries, lemmas) and end of the solution of examples.

We now have a few words about the arrangement of material of this thesis. The first
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number of the definition (or conjecture, lemma, proposition, theorem, example etc.)
indicates the chapter number, the second number indicates the section of the concerned
chapter and the third number indicates its serial number. The numbers within the bracket
[ ] indicate alphabetical referenced serial number in the reference section. We have not
collected any more materials (research papers, books, monographs etc.) in reference
section which are not cited in this thesis.

1.2 Rationale

We study Fatou, Julia, escaping and fast escaping sets of a semigroup of holomorphic
functions in the complex plane. This is a natural generalization of these sets of a given
holomorphic function.

A holomorphic semigroup S is a semigroup of holomorphic functions defined on
the complex plane C or extended complex plane C∞ or certain subsets thereof with the
semigroup operation being the functional composition. Let

F = {fα : fα is a holomorphic function for all α ∈ ∆},

where index set ∆ is allowed to be infinite in general unless stated otherwise. When a
semigroup S generated by F , we write S = 〈fα〉α∈∆ or simply S = 〈fα〉. Holomorphic
semigroup S is said to be a rational semigroup or a transcendental semigroup depending
on whether F is a collection of rational functions or transcendental entire functions. In
particular, S is said to be a polynomial semigroup if F is a collection of polynomials of
degree at least 2. The holomorphic semigroup S is said to be abelian if fα◦fβ = fβ ◦fα
for all generators fα, fβ of S. A semigroup generated by finitely many holomorphic
functions fi, (i = 1, 2, . . . , n) is called finitely generated holomorphic semigroup, and
we write it by S = 〈f1, f2, . . . , fn〉. If S is generated by a single holomorphic function
f , then S is called a cyclic holomorphic semigroup, and we write it by S = 〈f〉. In this
case, each g ∈ S can be written as g = fn, where fn is the nth iterate of f with itself.

We say that F is a normal family if every sequence (fα) ⊆ F has a subsequence
(fαk) which is uniformly convergent or divergent on all compact subsets of C. If there
is a neighborhood U of a point z such that F is a normal family in U , then we say
that F is normal at z. We say that a function f is iteratively divergent at z ∈ C if
fn(z) → ∞ as n → ∞. A semigroup S is iteratively divergent at z if every f ∈ S is
iteratively divergent at z. The study of holomorphic semigroup dynamics begins with
a description of the Fatou set F (S) of a semigroup S which is defined as a maximal
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open set where S is a normal family, and its complement is the Julia set J(S). Also, the
escaping set

I(S) = {z ∈ C : S is iteratively divergent at z}

of a semigroup S has equally played an important role in transcendental semigroup dy-
namics. There is a dynamically significant subset of an escaping set which we called by
fast escaping set of a transcendental semigroup. Let S be a transcendental semigroup.
Let us define a set AR(S) = {z ∈ C : |fn(z)| ≥ Mn(R, f) for all f ∈ S and n ∈ N}
where M(r, f) = max|z|=r |f(z)|, and Mn(r, f) denotes the nth iterates of M(r, f).
R > 0 can be taken any value such that M(r, f) > r for r ≥ R. The fast escaping set
A(S) of a transcendental semigroup S consists the set AR(S) and all its pre-images.

If S = 〈f〉, then the Fatou, Julia, escaping and fast escaping sets are respectively
denoted by F (f), J(f), I(f) and A(f). Therefore, this definition generalizes the Fa-
tou, Julia, escaping and fast escaping sets of a single holomorphic function. A cyclic
semigroup S = 〈f〉 is abelian, however, a non-cyclic semigroup may not be abelian.
Therefore, fundamental contrasts in the dynamics are appeared by different algebraic
structure of corresponding semigroups. In this sense, classical holomorphic dynamics
is a dynamical study of cyclic semigroups whereas semigroup dynamics is a dynamical
study of non-cyclic holomorphic semigroups. The theory of classical holomorphic dy-
namics is well developed and well understood since last 100 years in the work of Fatou
[35, 36, 37, 38], Julia [53, 54, 55], Baker [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
Eremenko [31], Eremenko and Lyubich [32, 33, 34], Bergweiler [17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27], Rippon and Stallard [85, 86, 87, 88, 89, 90, 91], Schleicher
[93, 94], Rempe [78, 79, 80, 81, 82, 83, 84], Osborne [69, 70, 71, 72, 73, 74], Sixsmith
[98, 99, 100, 101] and many others. In addition, nowadays, it has a large number of
published results, own journals, a growing number of monographs [15, 51, 65, 68], a
lot of summer /winter research schools, a lot of fully funded research projects and many
other open research fronts. The naive reason for a number of interesting developments
of the classical holomorphic dynamics is that it appears naturally in almost mathemat-
ical contexts, and the structure of its fundamental sets look naturally beautiful fractal
images of the real universe or nature earth. In contrast, there are comparatively less re-
search, less number of published research papers, no monographs, very less number of
conferences / workshops / research schools, very few number of fully funded research
projects, and comparatively very less visible structure of Fatou, Julia and escaping sets
in holomorphic semigroup dynamics. Therefore, to enrich this field of study little bit
more, we decided to study the structure and properties of Fatou, Julia, escaping and fast
escaping sets of holomorphic semigroups.
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1.3 Objectives

Structure and properties of Fatou and Julia sets of rational semigroups were studied
by Hinkannen and Martin [46, 47, 48] and that of transcendental semigroups by Poon
[75], Haung [43], and others. Escaping sets of transcendental semigroups were studied
first by Kumar and Kumar [61, 62, 63]. In this thesis, we study further structure and
properties of Fatou, Julia and escaping sets of holomorphic semigroups. We also study
fast escaping sets of transcendental semigroups and discuss their basic structure and
properties. In this context, we have the following objectives of this thesis.

1. To what extent, the structure and properties of Fatou, Julia, escaping and fast es-
caping sets of the classical holomorphic dynamics are generalized and preserved
in the holomorphic semigroup dynamics.

2. What new phenomenna occur in the structure and properties of these sets of holo-
morphic semigroups.

To achieve these objectives, we have proved altogether sixty new assertions as lemmas,
theorems and corollaries. We have also investigated seventeen new examples. Among
them fourty two assertions and twelve examples are published in the international and
national Journals of Mathematics [110, 114, 115, 116, 117, 118, 119, 120, 121, 122].
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Chapter 2

PRELIMINARIES

2.1 Notations

We first give some notations used throughout the thesis. We denote the set of integers,
the set of integers greater than zero, the set of rational numbers, the set of real numbers
(the real line) and the set of irrational numbers respectively by Z, N, Q, R and R−
Q. The complex plane and the extended complex plane (Riemann sphere) are denoted
respectively by C, C∞ = C∪{∞}. The disc in C of radius r with center at z0 is denoted
by Dr(z0) = {z ∈ C : |z − z0| < r}, the unit disc by D = D1(0) = {z ∈ C : |z| < 1},
and the unit circle by S1 = {z ∈ C : |z| = 1} = ∂D, where |z| represents the
modulus of the complex number z. We denote the left half plane, right half plane,
lower half plane and upper half plane respectively by lH = {z ∈ C : <(z) < 0},
Hr = {z ∈ C : <(z) > 0}, Hl = {z ∈ C : =(z) < 0}, and Hu = {z ∈ C : =(z) > 0},
where <(z) and =(z) respectively denote the real and imaginary parts of a complex
number z, and the annulus by A(r, R) = {z ∈ C : r < |z| < R} for 0 < r < R.
For any set A ⊂ C (or C∞), the closure, the boundary, the interior, the exterior, the
derived set and the compliment of A are denoted by A, ∂A, Int.A, Ext.A, A′ and Ac

respectively.

2.2 Background on function theory

We frequently use terms open set, closed set, topological space, Hausdorff space, home-
omorphism, connected set, bounded set, unbounded set, component of a set, compact
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set, perfect set, holomorphic function, meromorphic function, entire function, transcen-
dental entire function, conformal map, singularities, uniform convergence, continuity,
equicontinuity etc. related to classical complex analysis. For defnitions, examples and
other related theorems, we refer [29, 40, 42, 49].

We frequently need to use maximum modulus and minimum modulus of a holomor-
phic function. We begin with the following definitions.

Definition 2.2.1 (Maximum modulus and minimum modulus). Let f be holomorphic

in |z| < R < ∞. The maximum modulus and minimum modulus of f are defined

respectively by

M(r, f) = max
|z|=r
|f(z)|

and

m(r, f) = min
|z|=r
|f(z)|

for all r < R.

According to the classical maximum modulus principle, the maximum and mini-
mum modulus of a holomorphic function f are always attained in the boundary. It is
noted that maximum modulus M(r, f) describes the growth of an entire function f in
the whole complex plane C. The notion of maximum modulus and minimum modulus
are used to define order and type of an entire function.

Definition 2.2.2 (Order and type of entire function). The order ρ(f) and lower order

λ(f) of an entire function f are defined respectively by

ρ(f) = lim sup
r→∞

log logM(r, f)

log r

and

λ(f) = lim inf
r→∞

log logm(r, f)

log r
.

Also, type of f of order ρ is defined by

σ(f) = lim sup
r→∞

logM(r, f)

rρ

where M(r, f) and m(r, f) denote respectively the maximum modulus and minimum

modulus of the function f . We say that the growth of f is minimal type if σ = 0, mean

type if 0 < σ <∞, and maximal type if σ =∞.

It is noted that order is an important characterization of an entire function, which
compares the rate of growth of maximum modulus with the growth of the modulus
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of simple entire function ez. For example, the exponential function z → ez, the sine
function z → sin z and the cosine function z → cos z has order 1, the function z →
exp(zd) has order d. Also, the iterated maximum modulus Mn(r, f) gives an upper
bound for |fn|. That is, if |z| ≤ r, then |fn(z)| ≤ Mn(r, f). However, the point z
satisfying |z| ≥ r can go faster to ∞. That is, for an entire function f , there exists
z ∈ C such that |fn(z)| ≥ Mn(r, f) for all n ∈ N and r ≥ R with r > 0. However, in
the case of iterated minimum modulus mn(r, f), this fact may not hold. That is, for an
entire function f , there exists R > 0 with m(r, f) > r for all r ≥ R, we can not always
find r > 0 such that mn(r, f)→∞ as n→∞.

2.3 Background on classical holomorphic dynamics

The subject holomorphic dynamics is an iteration theory of a holomorphic function.
This subject formally begins with the description of the local behavior of a holomorphic
function near its fixed points which enable us to establish some basic properties of
Fatou-Julia theory.

Definition 2.3.1 (nth iterate). Let f be a holomorphic function. For any n ∈ N,

the nth iterate of f is a function fn = f ◦ f ◦ . . . ◦ f which is defined by f 0(z) =

an identity, f 1(z) = f(z), f 2(z) = f(f(z)), . . . , fn(z) = fn−1(f(z)).

It is noted that fn(z) is defined for all z ∈ C if f is an entire function, and it is
defined for all z ∈ C except for a countable set of poles of fn for each n = 1, 2, . . . , n

if f is a meromorphic function. If f is a rational function, then f has a meromorphic
extension to C∞ and fn is defined and meromorphic in C∞. However, if f is transcen-
dental, there is no way to define f(∞). The iterate of any function f form a group if f
is invertible and semigroup, otherwise. Moreover, the the set of the form

O+(z) = {fn(z)}∞n=0

is called a forward orbit of z under f . The finite orbit {fn(z)}p−1
n=0 is called a cycle. The

backward orbit of z under f is the set

O−(z) = {f−n(z)}∞n=0 = {w : fn(w) = z} =
⋃

n≥0

f−n(z)

where f−n(z) = {w : fn(w) = z}. That is, backward orbit of z is a set of pre-images
of z under f . The large (grand) orbit is the set {w : there exist m,n ∈ N : fn(z) =
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fm(w)}. That is, it is a set of point w ∈ C whose orbits eventually intersects the orbit
of z. Thus, z and w have same grand orbit if and only if fn(z) = fm(w) for some
choice of m ≥ 0 and n ≥ 0. A point z ∈ C is said to have finite grand orbit or it is an
exceptional under f if its grand orbit is finite set.

Definition 2.3.2 (Periodic point and fixed point). A point z ∈ C is called a periodic

point of the function f if fn(z) = z for some n ∈ N. The smallest n is called its period.

In particular, if f(z) = z, then z is called a fixed point of f .

It is noted that unlike the case of rational functions, a transcendental entire function
may not have fixed points, for example, z → ez + z has no fixed points. However,
Bergweiler [17] proved the following result.

Proposition 2.3.1 (Number of fixed points of fn). Let f be a transcendental entire

function. For n ≥ 2, fn has infinitely many (repelling) fixed points.

Definition 2.3.3 (Pre-periodic point). The point z is called a pre-periodic (or even-

tually periodic) if fk+n(z) = fk(z) for some integer k ≥ 0, n > 0 and strictly pre-

periodic if it is pre-periodic but not periodic.

Let z is a periodic point of period nwith (fn)′(z) = λ, where f ′ denotes the complex
differentiation of f with respect to z and

(fn)′(z) =
n−1∏

i=0

f ′(f i(z)) =
n−1∏

i=1

f ′(zi) (2.3.1)

where zi = f i−1(z). The complex number λ obtained in this way is called multiplier. It
is noted that the multiplier at z is same as that any other point in the cycle of z.

Definition 2.3.4 (Attracting and super attracting periodic point). Let f be a holo-

morphic function. The point z is called an attracting (or super-attracting) periodic point

of f if |λ| < 1 (or |λ| = 0) where λ is a multiplier of f as defined in (2.3.1).

Definition 2.3.5 (Repelling periodic point). The point z is called a repelling periodic

point or unstable point of a holomorphic function f if |λ| > 1 where λ is a multiplier of

f .

Definition 2.3.6 (Indifference periodic point). The point z is called an indifferent

periodic point or a neutral point of a holomorphic function f if |λ| = 1 where λ is a

multiplier of f .

It is noted that in the case of (supper) attracting periodic point, nearby points are
attracted to the orbit under iteration by f ; in the case of repelling periodic points, points
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close to the orbit move away; and in the case of indifference periodic points, nearby
points stay near z but does not converge to z.

Definition 2.3.7 (Rationally indifference and irrationally indifference periodic point).
The periodic point z is said to be a parabolic or rationally indifferent if λm = 1

for some m ∈ N. The periodic point z is said to be an irrationally indifferent if

λ = e2πiθ, θ ∈ R−Q, where λ is a multiplier of f .

It is noted that in the case of rationally indifference periodic points, the nearby dy-
namics is completely known but in the case of irrationally indifference periodic points,
there are certain values of θ, where nearby dynamics is still not known.

Definition 2.3.8 (Picard exceptional value). Let f be a holomorphic function. A num-

ber w ∈ C is a Picard exceptional value or an omitted value of f if f does not assume

w in C.

By classical Picard’s theorem, f has at most one or two finite omitted values accord-
ing to f is an entire or a meromorphic function. For examples: f(z) = λ tan z, (−1 <

λ < 1) has two omitted values ±λi, and f(z) = λez has an omitted value 0.

Definition 2.3.9 (Conjugate function). A holomorphic function f defined in a domain

U ⊂ C is said to be conformally conjugate to another holomorphic function g defined

in a domain V ⊂ C if there is a conformal map φ : U → V such that g = φ ◦ f ◦ φ−1.

If we waive inversibility of φ, that is, simply g ◦ φ = φ ◦ f holds, then we say
f is semi-conjugate to g. An irrationally indifference periodic point of a holomorphic
function f is a Siegel point or Cremer point if f is locally conjugated to a linear function
or not.

There are two types of points for which the inverse of holomorphic functions are
not well defined, namely critical values and asymptotic values and collectively they
are known as singular values, and holomorphic dynamics in a large extent is almost
determined by such values.

Definition 2.3.10 (Critical value, asymptotic value and singular value). For any

holomorphic function f ,

CV (f) = {w ∈ C : w = f(z) for some z such that f ′(z) = 0}

is the set of critical values of f . The set AV (f) consisting of all w ∈ C such that there

exists a curve Γ : [0,∞) → C so that |Γ(t)| → ∞ and f(Γ(t)) → w as t → ∞ is

the set of asymptotic values of f , and SV (f) = CV (f) ∪ AV (f) is the set of singular

values of f .
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It is noted that among the entire functions only transcendental entire functions may
have asymptotic values. It is clear that polynomials can not have finite asymptotic val-
ues. If f is a rational or transcendental entire, then immediate basin of any cycle of
attracting and parabolic periodic points contain singular values of f . There are certain
holomorphic functions whose finite asymptotic values can also be critical values. For
exapmle, the function f(z) = z2e−z

2 has AV (f) = {0} and CV (f) = {0, 1/e}.
Definition 2.3.11 (Finite type and bounded type function). Let f be a holomorphic

function. If SV (f) is finite, then f is said to be of finite type. If SV (f) is bounded, then

f is said to be of bounded type.

Definition 2.3.12 (Speiser class and Eremenko-Lyubich class). Let f be a holomor-

phic function. The sets

S = {f : f is of finite type}

and

B = {f : f is of bounded type}

are respectively known as Speiser class and Eremenko-Lyubich class.

It is noted that S ⊂ B and B−S 6= ∅. For example,
sin z

z
∈ B−S 6= ∅ (that is,

this function has asymptotic value 0 and the set of critical values is an infinite set of real
numbers, all of modulus not greater than 1). The most important class of functions in
the class S are functions of the exponential family λez, (λ 6= 0), and the cosine family
cos(αz + β), (α 6= 0).

Definition 2.3.13 (Post singular point and post singular set). Let f be a holomorphic

function. The post-singular point of f is the point on the orbit of a singular value. That

is, if z is a singular value of f , then fn(z) is a post-singular point for n ≥ 0. The set of

all post-singular points is called post-singular set and it is denoted by

P (f) =
⋃

n≥0

fn(SV (f))

It is noted that for a transcendental entire function f , P (f) contains at least two
points. Bakar [6] proved that P (fk) = P (f) for all k ∈ N. The Cremer point of any
transcendental entire function f is contained in P (f) ([51, Theorem 4.17]).

Definition 2.3.14 (Post singularly bounded (finite) function). A holomorphic function

f is called post-singularly bounded (finite) if its post-singular set is bounded (finite).

Definition 2.3.15 (Hyperbolic holomorphic function). A holomorphic function f ∈
B is said to be hyperbolic if every point in SV (f) belongs to the basin of attracting

periodic cycle of f .
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For example, the function f(z) = π
2

sin z is hyperbolic. For this function, SV (f) =

{±π
2
} which are super-attracting fixed points, so by definition, f is hyperbolic.

The chief objects of classical holomorphic dynamics are Fatou and Julia sets of a
holomorphic function and their definitions depend on normal family of the sequence of
nth iterates of a holomrphic function.

Definition 2.3.16 (Normal family). A family F of holomorphic functions in a domain

D ⊂ C∞ is called a normal family in D if every sequence (fn)n∈N in F contains a

subsequence (fnk)nk∈N which converges uniformly on every compact subset of D either

to a holomorphic function f or to∞. The family F is called normal at a point z ∈ C
if this point has a neighborhood where it is normal.

The theory of normal family of holomorphic functions was investigated by P. Montel
in 1907. It is noted that the set F = {fn : n ∈ N} forms a normal family in the basin
of attraction of any attracting periodic points of the function f .

Two most important fundamental objects of holomorphic dynamics are Fatou and
Julia sets which are defined as follows.

Definition 2.3.17 (Fatou set, Julia set and Fatou component). Let f be a holomorphic

function. The Fatou set F (f) of the function f is defined as the maximal open set where

the sequence (fn)n∈N forms a normal family, and its complement is the Julia set J(f).

A connected component of F (f) is called Fatou component.

For any holomorphic function f , there are different Fatou components of dynamical
interest.

Definition 2.3.18 (Pre-periodic and periodic Fatou component). Let U ⊂ F (f) be

a Fatou component of a holomorphic function f such that fn(U) is contained in some

component of F (f) which is usually denoted by Un. Then U is called pre-periodic if

Un = Um, for some integers n > m ≥ 0. In particular, if Un = U0 = U (that is,

fn(U) ⊂ U ) for some smallest positive integer n ≥ 1, then U is called a periodic Fatou

component of period n.

Let U is a periodic Fatou component of period n. The set {U0, U1 . . . , Un−1} is
called the periodic cycle of U . If U1 = f(U) ⊂ U , then U is called an invariant

domain.

Definition 2.3.19 (Wandering domain). A component U of the Fatou set F (f) of a

holomorphic function f is a wandering domain if it is not pre-periodic.

It is noted that if f is a rational or an entire function with a finite number of singular
values, then f has no (simply or multiply connected) wandering domains. Periodic
Fatou components of a holomorphic function can also further classified and analyzed.
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Proposition 2.3.2 (Classification of periodic Fatou components). For a holomorphic

function f , a periodic Fatou component U of period p is one of the following types.

1. (Super) attracting domain if U contains a (super) attracting periodic point z0 of

period p such that fnp(z)→ z0 as n→∞ for all z ∈ U .

2. Parabolic domain or Leau domain if ∂U contains an indifferent periodic point z0

of period p such that fnp(z)→ z0 as n→∞ for all z ∈ U .

3. Seigal disk if there is an analytic homeomorphism φ : U → D such that (φ ◦ fp ◦
φ−1)(z) = e2παz for some α ∈ R−Q.

4. Hermann ring if there is an analytic homeomorphism φ : U → A, where A is an

annulus {z : 1 < |z| < r}, r > 1 such that (φ ◦ fp ◦ φ−1)(z) = e2παz for some

α ∈ R−Q.

5. Baker domain if fnp(z)→∞ as n→∞ for all z ∈ U .

Definition 2.3.20 (Forward, backward and completely invariant set). Let f a holo-

morphic function. A set U ⊂ C is called forward invariant under f if f(z) ∈ U for

all z ∈ U (or f(U) ⊂ U ), backward invariant under f if f−1(z) ∈ U for all z ∈ U

(or f−1(U) ⊂ U) (here f−1(U) denotes the pre-image U under f ), and completely

invariant if it is both forward and backward invariant.

It is noted that a rational function (and a meromorphic function) has at most two
completely invariant domains ([15, Theorem 5.6.1]), and a transcendental entire func-
tion has at most one completely invariant domain ([7]). For examples: f(z) = z2 has
two completely invariant domains, namely D and {z ∈ C : |z| > 1}, where J(f) = S1

is also completely invariant. Likewise, f(z) = tan z has two completely invariant do-
mains, namely, Hu and Hl, where J(f) = R ∪ {∞} is also completely invariant. The
function f(z) = λez, (0 < λ < 1/e) has a completely invariant domain, namely, the
attracting domain (which is F (f) itself) of the attracting fixed point.

From [15, 18, 51, 68], we can state the following structure and properties of the
Fatou and Julia sets of any holomorphic function.

Proposition 2.3.3 (Structure and Properties of the Fatou and Julia sets). Let f be a

holomorphic function.

1. F (f) is an open set, and J(f) is a non-empty and a closed prefect set. In par-

ticular, J(f) is uncountable. J(f) is unbounded if f is a transcendental entire

function.
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2. F (f) = ∅ for every entire function of finite type for which all singular values are

either pre-periodic or escape to ∞, and F (f) 6= ∅ for any entire function with

attracting periodic points.

3. F (f) = F (fn), and J(f) = J(fn) for all n ≥ 2.

4. F (f) and J(f) are completely invariant under f . Either J(f) = C or Int.J(f) =

∅.

5. J(f) is the closure of the set repelling periodic points. In particular, repelling

periodic points are dense in J(f).

6. J(f) is never totally disconnected if f is a transcendental entire function.

7. There is a single unbounded component of the Fatou set (which is immediate basin

of∞) if f is a polynomial.

8. F (f) does not have wandering domains if f is a rational function.

9. F (f) does not have Herman rings if f is a transcendental entire function.

10. F (f) does not have wandering domains if f is an entire function of finite type.

11. F (f) does not have Baker domains if f is a transcendental entire function of

bounded type.

12. F (f) contains all (super) attracting fixed points and cycles, all Siegel points and

cycles. J(f) contains all repelling fixed points and cycles, all rationally indiffer-

ence fixed points and cycles, and all Cremer points and cycles.

13. Every unbounded component and a pre-periodic component of F (f) is simply

connected if f is a transcendental entire function, and for such a function, a

multiply connected Fatou component is bounded and wandering.

14. Any component of F (f) is simply connected if f is a bounded type transcendental

function.

15. If F (f) has an unbounded component, then all components are simply connected

if f is a transcendental entire function.

16. Any component of F (f) is simply connected if f is a transcendental entire func-

tion bounded on some curve tending to∞.

17. All component of F (f) are simply connected if f is an entire function and it has

finite asymptotic values.
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18. The number of components of F (f) is either 0, 1, 2 or∞ if f is a rational function

and either 0, 1 or∞ if f is a transcendental entire function, and in this case, the

number of multiply connected components is either 0 or∞.

19. If f is a hyperbolic transcendental entire function, then P (f) is a compact subset

of F (f).

20. Every component of F (f) is bounded if and only if a hyperbolic transcendental

entire function f has no finite asymptotic values and every component of F (f)

contains at most finitely many critical points.

The order ρ(f) of an entire function f plays crucial role in the structure of Fatou
components. For a polynomial or an entire function of order 0, the attracting basin
of any finite attracting periodic point is bounded. For example, the polynomial func-
tion f(z) = z2 has bounded attracting basin D of the finite attracting periodic point
0. However, in the case of transcendental entire function f , there are bounded basin of
attraction if ρ(f) ≤ 1/2. The one of the most important open problem in the field of
holomorphic dynamics is the conjecture of Baker concerned about the certain order of
f and bounded components of the Fatou set.

Conjecture 2.3.1 (Baker’s conjecture). If a hoomorphic function f has order less than

1/2 or has order at most 1/2, minimal type, then all components of the Fatou set F (f)

are bounded.

This conjecture arosed by Baker in his paper [11] in 1981 and remain open in gen-
eral. Anderson and Hinkkanen [1, Theorem 1] and Stallard [102, Theorem 3A, Page
49] proved the following result.

Proposition 2.3.4 (A partial solution to the Baker conjecture). Let f be a transcen-

dental entire function of order less than 1/2. Then every pre-periodic or periodic com-

ponents of F (f) is bounded.

From this result, we can say that a case has been settled down and there is open
problem only for wandering domains and Baker domains of period greater than 1. By
using the notion of log-regularity, Andersion and Hinkkanen [1, Theorem 2] proved the
following result which is considered a most general answer to the Baker’s conjecture
2.3.1.

Proposition 2.3.5 (A more strong partial solution to the Baker conjecture). Let f

is a transcendental entire function of order less than 1/2 such that for some positive

constant c
φ′(x)

φ(x)
≥ 1 + c

x
(2.3.2)
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for sufficiently large x, where φ(x) = logM(ex, f). Then every components of F (f) is

bounded.

It is noted that the function f is log-regular if condition (2.3.2) is satisfied by the
function φ(x) = logM(ex, f). It is given in [45, Page 205] that the regularity condition
(2.3.2) holds for all transcendental entire functions of finite order and positive lower
order.

2.4 Escaping set and Eremenko’s conjecture

The third fundamental object of the holomorphic dynamics, in particular of the tran-
scendental dynamics is the escaping set.

Definition 2.4.1 (Escaping set). Let f be a holomorphic function. The escaping set of

f is defined by I(f) = {z : fn(z) → ∞ as n → ∞}. A point z ∈ I(f) is called an

escaping point.

The escaping set I(f) has played significant role in polynomial dynamics, and in
transcendental dynamics. The set I(f) of a polynomial f (of degree d ≥ 2) is an
open subset of the Fatou set F (f), and the Julia set J(f) equals the boundary of I(f).
However, for a general transcendental entire function f , I(f) is no longer open but as in
polynomial, boundary of I(f) is the Julia set J(f). The set I(f) was studied first time
for a general transcendental entire function f by Eremenko [31]. He [31, Theorems 1,
2, 3, 4 (Corrollary)] proved the following results.

Proposition 2.4.1 (Structure and properties of the escaping set). Let f be a tran-

scendental entire function. Then

1. I(f) 6= ∅,

2. J(f) ∩ I(f) 6= ∅,

3. The closure I(f) of I(f) has no bounded components,

4. J(f) = I(f) when f ∈ B.

Furthermore,

5. I(f) = I(fn), for n ≥ 2,

6. I(f) is completely invariant.
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In view of the third statement of Proposition 2.4.1, he posed a conjecture:

Conjecture 2.4.1 (Eremenko’s conjecture). Let f be a transcendental entire function.

Then every component of I(f) is unbounded.

This conjecture is considered an important open problem of transcendental dynam-
ics, and nowadays it is famous as Eremenko’s conjecture. This conjecture was proved
first by Rempe [78, Theorem 1.1] for certain class of transcendental entire functions.

Proposition 2.4.2 (A partial solution to Eremenko conjecture). Let f ∈ B be an

entire function and P (f) is bounded. Then every component of I(f) is unbounded.

If U is a Fatou component such that U ∩ I(f) 6= ∅, then by normality U ⊂ I(f).
We call such type of Fatou component by an escaping Fatou component. It is not
always necessary that the boundary of an escaping Fatou component must lie in I(f).
For example, the Fatou function f(z) = e−z + z + 1 has Hr as an escaping Fatou
component.

The conjecture 2.4.1 has been proved for a general transcendental entire function
for the fast escaping set A(f), which consists of points that tend to infinity as fast as
possible under iteration. This set is a subset of I(S), and it was introduced first time
by Bergweiler and Hinkkanen [22], and defined in the following form by Rippon and
Stallard [89].

Definition 2.4.2 (Fast escaping set). For a transcendental entire function f , the fast

escaping set is defined by

A(f) = {z ∈ C : ∃L ∈ N such that |fn+L(z)| ≥Mn(R, f) for n ∈ N}

where M(r, f), r > 0 represents the maximum modulus of f , and Mn(r, f) denotes nth

iterate of M(r, f) with respect to r. R > 0 can be taken to be any number such that

M(r, f) > r for r ≥ R.

Most of properties and structure of the fast escaping setA(f) were proved by Rippon
and Stallard on the basis of the properties of certan subsets of the set A(f), which is
defined as follows.

Definition 2.4.3 (Lth label of fast escaping set). For any L ∈ Z, the Lth label of the

fast escaping set is defined by

ALR(f) = {z : |fn(z)| ≥Mn+L(R, f) for n ∈ N, n+ L ≥ 0}

where L ∈ Z and R > 0 be such that M(r, f) > r for r ≥ R.
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It is noted that each of the level of A(f) is a closed set, and since Mn+1(R, f) >

Mn(R, f) for all n ≥ 0, we must have ALR(f) ⊂ AL−1
R (f) for all L ∈ Z. This implies

that
A(f) =

⋃

L∈N
A−LR (f) and A−LR (f) ⊂ A

−(L+1)
R (f), L ∈ N.

The concept of level provides a new understanding of the structure of A(f) as a count-
able union of closed sets. On the basis of Definition 2.4.3, Rippon and Stallard [89,
Theorem 1.1] obtained the following strongest result in the direction of Eremenko’s
conjecture 2.4.1.

Proposition 2.4.3 (A more strong partial solution to Eremenko conjecture). Let f be

a transcendental entire function, and R > 0 be such that M(r, f) > r for r ≥ R. Then

for each L ∈ Z, every component of ALR(f) is closed and unbounded. In particular,

every component of A(f) is closed and unbounded.

Since A(f) ⊂ I(f) and A(f) 6= ∅ (see [22]), so this result provides a partial an-
swer to Eremenko’s conjecture. That is, the set I(f) must has at least one unbounded
component. Like escaping sets, we can get from [89, 99] the following further similar
structure and properties of fast escapimg sets.

Proposition 2.4.4 (Properties of fast escaping sets). Let f be a transcendental entire

function. Then the following hold.

1. A(f) 6= ∅.

2. A(f) = A(fn) for n ≥ 2.

3. A(f) is completely invariant.

4. A(f) is independent of R.

5. J(f) ∩ A(f) 6= ∅.

6. J(f) = ∂A(f).

7. J(f) = A(f) ∩ J(f).

8. A(f) has no bounded components.

9. U ⊂ A(f) for any Fatou component U that meets A(f).

10. U ⊂ A(f) for any multiply connected Fatou component U .

11. If U is a Fatou component and U ∩ A(f) 6= ∅, then U is a wandering domain.
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12. J(f) ⊂ A(f), and if f does not have wandering domain, then A(f) ⊂ J(f).

It is noted that almost properties of the fast escaping set A(f) were proved by Rip-
pon and Stallard on the basis of levels ([89, Theorems 1.1, 1.2, 2.2, 2.6, 4.4, 5.1]). Fur-
thermore, statements 8 and 9 of Proposition 2.4.4 are much stronger properties of A(f)

than the set I(f). Also, according to the statement (8) of Proposition 2.4.4, Eremenko’s
conjecture hold for the subset A(f) of I(f).

2.5 Connection between Baker and Eremenko conjec-

ture

In recent years, active research in the field of escaping set has been devoted mostly to see
the structure that has number of strong dynamical properties as well as able to establish a
connection between the conjecture of Baker and the conjecture of Eremenko. The new
research in this direction has become possible by introducing spider’s web structure.
This new set structure is defined as follows.

Definition 2.5.1 (Spider’s web). A set E is an (infinite) spider’s web if E is connected,

and there exists a sequence of bounded simply connected domains Gn with Gn ⊂ Gn+1

for n ∈ N, ∂Gn ⊂ E for n ∈ N and
⋃
n∈NGn = C.

Rippon and Stallard [89, Lemma 7.1] proved the following basic properties of spi-
der’s web structure which are useful for many purposes.

Proposition 2.5.1 (Properties of spider’s web). Let f be a transcendental entire func-

tion, and let R > 0 be such that M(r, f) > r for r ≥ R and L ∈ Z.

1. If G is a bounded components of ALR(f)C , then ∂G ⊂ ALR(f), and fn is a proper

map of G onto the bounded component of An+L
R (f)C for each n ∈ N.

2. If ALR(f)C has bounded component, then ALR(f) is a spider’s web, and hence

every component of ALR(f)C is bounded.

3. AR(f) is a spider’s web if and only if ALR(f) is a spider’s web.

4. For R
′
> R, then AR(f) is a spider’s web if and only if AR′(f) is a spiders web.

5. If I(f), J(f), I(f)∩J(f) contain spider’s web, then each of set is a spider’s web.

20



It is noted that if I(f) is a spider’s web, then I(f) is connected and unbounded, and
so Eremenko’s conjecture holds. In [85], Rippon and Stallard have proved that AR(f),
A(f) and I(f) are spider’s web for a transcendental entire function f whenever f has
a multiply connected Faou component. With these strong dynamical properties, it is
better to ask: Which function f that gives AR(f) a structure of spider’s web? Several
classes of functions that gives AR(f) a structure of spider’s web are derived using the
idea of following results of Rippon and Stallard [89, Theorem 1.9].

Proposition 2.5.2 (Functions that give spider’s web structure for I(f)). Let f be

transcendental entire function. Let R > 0 be such that M(r, f) > r for r ≥ R. Then

AR(f) is a spider’s web if one of the following holds:

1. f has a multiply connected Fatou component.

2. f is of order less than 1/2.

3. f has finite order of Fabray gaps.

4. f has Hayman gaps.

5. f exihibits the pits effects.

Osborne et al. [74, Theorem 1.1] recently investigated classes of transcendental
entire functions stated in Proposition 2.5.2 are also enough to give

mn(r, f)→∞ as n→∞ (2.5.1)

for any r > 0, where m(r, f) is a minimum modulus of f . In general, it is not always
necessary that mn(r, f) → ∞ as n → ∞ for any r > 0. Therefore, A(f) may not
always be a subset of I(f) if we replace M(r, f) by m(r, f) in Definition 2.4.2 of
A(f). Suppose f is a transcendental entire function satisfying the condition (2.5.1).
Osborne et al. [74, Page 49] defined a set of the form

BR(f) = {z ∈ C : |fn(z)| ≥ m̂n(R, f), for n ∈ N}

where
m̂(r, f) = max

0≤t≤r
m(t, f), for r ∈ [0,∞).

Indeed, the set BR(f) consists of points whose modulus of iterates under the function
f grows at least as fast as iterates of the maximal function: m̂(r, f). Osborne et al. [74,
Theorem 1.2] recently proved the following result.
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Proposition 2.5.3. If mn(r, f)→∞ as n→∞ for any r > 0, then there exists R > 0

such that m̂n(R, f)→∞ as n→∞, and for any such R, there exists r ≥ R such that

mn(r, f) ≥ m̂n(R, f).

The set BR(f) is well defined and independent of R as well as completely invariant
under f . They also formed a set

B(f) =
⋃

l≥0

f−l(BR(f)).

of all pre-images of the set BR(f). This set is again well defined and independent of R
as well as completely invariant under f if mn(r, f) → ∞ as n → ∞ for all r > 0. As
Mn(r, f) ≥ m̂n(r, f) for any integer n ≥ 0, there always have A(f) ⊂ B(f), and so
B(f) 6= ∅. The most concerned issue for the development of the set B(f) is to find the
class of functions for which A(f) = B(f). This condition appeared as a milestone for
both Baker and Eremenko’s conjectures as in the following results due to Osborne et al.
[74, Theorem 1.3].

Proposition 2.5.4 (A solution for both Baker and Eremenko conjecture). Let f be a

transcendental entire function such that mn(r, f)→∞ as n→∞ for any r > 0. Then

1. B(f) = A(f) if and only if there exists r ≥ R > 0 such that mn(r, f) ≥
Mn(R, f) for integer n ≥ 0 and Mn(R, f)→∞ as n→∞.

2. If (1) holds, then B(f) and A(f) are spider’s web and F (f) has no unbounded

components.

The hypothesis B(f) = A(f) is a very strong condition to hold both of Baker’s and
Eremenko’s conjectures. If this condition is loosed, the essence of the above second
condition may not hold. The subset B(f) of the escaping set is a recently investigated
tool that can be used to make spider’s web structure of A(f) and I(f) together with to
get Fatou set that has no unbounded components.

.

22



Chapter 3

THE NOTION OF HOLOMORPHIC

SEMIGROUPS

3.1 The general notion of semigroups

The purpose of this section is to introduce the general notion of semigroup structure and
substructure. We only define here semigroups and groups, and for more detailed study
of classical semigroup theory, we refer [44, 50].

Definition 3.1.1 (Semigroup, subsemigroup, monoid and group). A semigroup is an

ordered pair (S, ◦), where S is a non-empty set and ◦ is a binary composition on S (by

which we mean a map ◦ : S × S → S) that satisfies the associative law

a ◦ (b ◦ c) = (a ◦ b) ◦ c (3.1.1)

for all a, b, c ∈ S. A non-empty subset T ⊂ S is called a subsemigroup if a ◦ b ∈ T

for all a, b ∈ T . A monoid is a semigroup S with an element i ∈ S (which is known as

identity) such that

i ◦ a = a ◦ i = a (3.1.2)

for all a ∈ S. A monoid S is a group if for all a ∈ S, there exists a−1 ∈ S such that

a ◦ a−1 = a−1 ◦ a = i, where i is an identity element in S satisfying the relation (3.1.2).

Probably the simplest examples of semigroups are additive and multiplicative semi-
groups of various number sets such as N,Z,Q, R and C. An important example of a
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semigroup is the set of all self-maps τX of a non-empty set X- the full transformation
semigroup on a set X under the functional composition. Also, every group is a semi-
group. Note that every semigroup S can be extended to a monoid Si by adjoining an
extra element i to S such that i ◦ f = f ◦ i = f for all f ∈ S.

For any A ⊂ S, the intersection of all subsemigroups of S containing A is called a
subsemigroup generated by A. It is denoted by 〈A〉, and it is a set of all elements of S
that can be expressed as a finite composition (product) of elements in A. That is,

〈A〉 = {a1 ◦ a2 ◦ . . . ◦ an : a1, a2, . . . , an ∈ A and n ∈ N}.

It is a least subsemigroup of S containing the set A. A subsemigroup T of S is said
to be generated by a non-empty set A if T = 〈A〉. If A = {a} for any a ∈ S, then
T = 〈a〉 = {a, a2, a3, . . . , an, . . .} is called a cyclic subsemigroup of S generated by a.
If S = 〈a〉 for some a ∈ S, then S is called a cyclic semigroup. It is noted that either
〈a〉 is algebraically similar to N or it is a cyclic group of order n for some n ∈ N.

3.2 The notion of holomorphic semigroups

From Section 3.1, we can say that semigroups are very classical algebraic structures
with a binary composition that satisfies associative law (3.1.1). It naturally arose from
the general mapping of a set into itself. Hence, a set of holomorphic functions on C or
C∞ or certain subsets thereof naturally forms a semigroup.

Definition 3.2.1 (Holomorphic semigroup and subsemigroup). A holomorphic semi-

group S is a semigroup of holomorphic functions defined on C or C∞ or certain subsets

thereof with the semigroup operation being the functional composition. A non-empty

subset T ⊆ S is a subsemigroup of S if f ◦ g ∈ T for all f, g ∈ S.

Let
F = {fα : fα is a holomorphic function for all α ∈ ∆}, (3.2.1)

where ∆ is an index set which is allowed to be infinite in general unless stated otherwise.
In this sense, a holomorphic semigroup is a set S of holomorphic functions from F

such that fα+β(z) = fα(fβ(z)) for all z ∈ C or C∞ or certain subsets thereof and for
all α, β, α + β ∈ ∆. If ∆ ⊆ N, then S is called a discrete semigroup.

We are more interested in special holomorphic semigroups whose each element can
be expressed as a finite composition of certain holomorphic functions. More formally,
such a semigroup is defined as follows:
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Definition 3.2.2 (Holomorphic semigroup generated by holomorphic functions).
Let F be a family of holomorphic functions as defined in (3.2.1). A holomorphic

semigroup S generated by F is a semigroup of all elements that can be expressed

as a finite composition of elements in F . We denote such a holomorphic semigroup by

S = 〈fα〉α∈∆ or simply by S = 〈fα〉.

Holomorphic semigroup S is said to be a rational semigroup or a transcendental

semigroup depending on whether F is a collection of rational functions or transcen-
dental entire functions. In particular, S is said to be a polynomial semigroup if F is a
collection of polynomial functions. The transcendental semigroups or polynomial semi-
groups are also called entire semigroups. It is noted that if f ∈ S, then there is a finite
number of functions fα for α ∈ ∆ such that f = fα1 ◦ fα2 ◦ · · · ◦ fαm for some m ∈ N,
and α1, α2, . . . αm ∈ {1, 2, . . . ,m}.

Definition 3.2.3 (Cancellative semigroup). A holomorphic semigroup S is said to be

right cancellative if f ◦g = h◦g =⇒ f = h, left cancellative if h◦g = h◦f =⇒ g = f

for all f, g, h ∈ S, and cancellative if it is both right and left cancellative.

Definition 3.2.4 (Abelian holomorphic semigroup). A holomorphic semigroup S =

〈fα〉 is abelian if fα ◦ fβ = fβ ◦ fα for all generators fα, fβ of S.

Definition 3.2.5 (Finitely generated holomorphic semigroup and cyclic semigroup).
A semigroup generated by finitely many holomorphic functions fj, (j = 1, 2, . . . , n) is

called a finitely generated holomorphic semigroup, and we write S = 〈f1, f2, . . . , fn〉.
If S is generated by only one holomorphic function f , then S is called a cyclic holo-

morphic semigroup, and we write S = 〈f〉. In this case, each g ∈ S can be written as

g = fn, where fn is the nth iterate of f with itself.

By Definition 3.2.2 of a holomorphic semigroup, we at once get the following result.

Proposition 3.2.1 ([115, Proposition 1.1]). Let S = 〈fα〉 be a holomorphic semigroup.

Then for every f ∈ S, fm (for allm ∈ N) can be written as fm = fα1◦fα2◦fα3◦· · ·◦fαp ,
where αi ∈ {α : α ∈ ∆} for some p ∈ N.

Example 3.2.1 ([121, Example 1.1]). Let S be a set consisting of all powers z which

are either all powers of 2 or all powers of 3 or the product of all powers of 2 and 3.

Then S forms a semigroup under the functional composition. It is a finitely generated

polynomial semigroup generated by two polynomials z → z2 and z → z3. In this case,

S = 〈z2, z3〉.

Example 3.2.2 ([121, Example 1.2]). Let α ∈ C such that <(α) ≥ 0. For any k ∈ N,

the function fk(z) = e−αkz for all z ∈ C is holomorphic in C, and so S = {fk :

k ∈ N} is a holomorphic (entire) semigroup. Also, each f ∈ S can be written as

f(z) = f l1(z) for some l ∈ N. Therefore, S = 〈f1〉.
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Example 3.2.3 ([121, Example 1.3]). If we choose ∆ a set of positive rational numbers

Q+ in Example 3.2.2, then every function fr(z) = e−αrz for all z ∈ C and r ∈ Q+ for

some α ∈ C such that <(α) ≥ 0 can be written as a finite composition of ft(z) = e−αtz

with t ∈ Q+. Hence, S = 〈ft〉t∈Q+ is a holomorphic semigroup generated by the set

{ft : t ∈ Q+}.

It is noted that these are examples of abelian holomorphic semigroups. The follow-
ing holomorphic semigroups are non-abelian.

Example 3.2.4 ([121, Example 1.4]). S1 = 〈ez, e−z〉 and S2 = 〈sin z, cos z〉.

There are certain subsets of semigroups with a stronger closure property rather than
that of subsemigroups.

Definition 3.2.6 (Left ideal, right ideal and two sided ideal). Let I be a non-empty

subset of a holomorphic semigroup S. We say that I is a left ideal (or right ideal) of S

if f ◦ h ∈ I (or h ◦ f ∈ I) for all f ∈ S and h ∈ I , that is, SI ⊂ I (or IS ⊂ I). We say

that I is a two sided ideal (or simply ideal) if it is both left and right ideal.

It is noted that if S is an abelian semigroup, then the notions of left ideal, right
ideal and two sided ideal coincide. Evidently, every ideal (left, right or two sided) is a
subsemigroup, but not every subsemigroup is an ideal.

Ideals can be constructed naturally from the semigroup S. For example, the sets

SK = {f ◦ g : f ∈ S, g ∈ K} =
⋃

g∈K
S ◦ g,

KS = {g ◦ f : f ∈ S, g ∈ K} =
⋃

g∈K
g ◦ S,

and
SKS = {f ◦ g ◦ h : f, h ∈ S, g ∈ K} =

⋃

g∈K
S ◦ g ◦ S

for any non-empty subset K of a holomorphic semigroup S, are respectively left, right
and two sided ideals. Likewise, for any g ∈ S, the sets S ◦ g , g ◦ S and S ◦ g ◦ S are
respectively left, right and two sided ideals. In general, g may not be in g ◦ S ( or S ◦ g
or S ◦ g ◦ S) for each g ∈ S. If it happens to be in g ◦ S ( or S ◦ g or S ◦ g ◦ S), then
g = g ◦ f (or g = f ◦ g or g = f ◦ g ◦ h) for some f, h ∈ S. In this case, g ◦ S (or S ◦ g
or S ◦ g ◦ S) is a smallest right (or left or two sided) ideal containing g, which is a right
(or left or two sided) ideal generated by g. Otherwise, g ◦ S (or g ◦ S or S ◦ g ◦ S) is
said to be quasi-generated by g. It is obvious that the union of any non-empty family of
left (or right or two sided) ideals of S is a left (or right or two sided) ideal of S.
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On the basis of some topological structure of the complement of g ◦ S in S, we
can define the following types of holomorphic semigroups. Recall that a space X is
compact if every open covering of X contains a finite subcover.

Definition 3.2.7 (F-semigroup and C-semigroup). Let S is a holomorphic semigroup

and g ∈ S. Then we say

1. S is a F-(right) semigroup if S − g ◦ S is finite;

2. S is a C-(right) semigroup if S − g ◦ S is relatively compact (that is, S − g ◦ S is

compact in S).

Analogously, we can define F-(left) semigroup and C-(left) semigroup of any holo-
morphic semigroup S. We say only F-semigroup and C-semigroup onward for such
a holomrphic semigroup S on the assumption that left/right is clear from the context.
For example, holomorphic semigroup of Example 3.2.2 is both F-semigroup and C-
semigroup and that of Example 3.2.3 is a C-semigroup. A cyclic holomorphic semi-
group is also both F-semigroup and C-semigroup.

There are certain type of left (or right) ideals which are connected to two sided
ideals. That is, on the basis of such ideals of holomorphic semigroups, we can construct
two sided ideals. This ideal structure is defined as follows.

Definition 3.2.8 (Minimal left (or right) ideal). A left (or right) ideal M of a holo-

morphic semigroup S is said to be minimal if for every left (or right) ideal I of S such

that I ⊆M , then M = I .

It is noted that minimal left (or right) ideal of S may be empty. Also, there are
semigroups which have minimal left ideals but no minimal right ideals. If it is non-
empty for a certain holomorphic semigroup S, then for every f ∈ M , there must be
M ◦ f = M (or f ◦M = M ) and S ◦ f = M (or f ◦ S = M ). That is, if semigroup S
contains at least one minimal left (or right) ideal, then it has the kernel. Also, a minimal
left (or right) ideal is always contained in every two sided ideal of S. We can also make
a two sided ideal by the help of the minimal left (or right) ideals. For any holomorphic
semigroup S, let us define

K(S) =
⋃
{M : M is a minimal left (or right) ideal of S}.

The set K(S) is called a kernel of S (in fact, kernel is a two sided ideal of the semi-
group). This set is non-empty if and only if S has at least one minimal left (or right)
ideal, and in such a case, it is itself a minimal left (or right) ideal. Therefore, as stated
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above, it is contained in every two sided ideal of S. For all f ∈ S, we have

K(S) ◦ f =
⋃
{M ◦ f : M is a minimal left (or right) ideal of S} ⊆ K(S).

Hence, K(S) is also a left (or right) ideal. From this discussion, we can conclude the
following result.

Proposition 3.2.2 (Example of minimal two sided ideal). For any holomorphic semi-

group S, K(S) is a minimal two sided ideal of S if it is non-empty.

Proof. See for instance [16, Theorem 2.9].

We can define a special type of holomorphic semigroup S where K(S) is non-
empty. This type semigroup has some special features such as every left (or right) ideal
of S includes minimal one and every left (or right) ideal of S contains a special element
which is called an idempotent. Recall that an element e ∈ S is called an idempotent if
e ◦ e = e.

Definition 3.2.9 (Abundant semigroup). A holomorphic semigroup S is said to be

abundant if every left (or right) ideal of S includes a minimal one, and every minimal

left (or right) ideal contains an idempotent element.

It is obvious that K(S) 6= ∅ if S is abundant. There are topologically significant
examples of abundant semigroups which can be defined as follows.

Definition 3.2.10 (Compact right topological holomorphic semigroup). Let S be a

holomorphic semigroup and g ∈ S.

1. We define a right translation map Fg : S → S with respect to g by Fg(h) = h ◦ g
for all h ∈ S.

2. We define a compact holomorphic right topological semigroup by the pair (S, τ),

where τ is a topology on S such that the space (S, τ) is compact and Hausdorff,

and right translation map Fg for every g ∈ S is continuous with respect to τ .

It is noted that a left translation map, and a compact holomorphic left topological
semigroup are defined similarly. Also, note that in a compact right topological semi-
group, we do not require that left translation maps are continuous. We say only transla-
tion map and compact holomorphic topological semigroup if left or right is clear from
the context.
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Example 3.2.5 ([121, Example 2.1]). Let S = {ft : t ∈ Q} be a holomorphic semi-

group, where ft is a function of Example 3.2.3 for all t ∈ Q. The collection of all subsets

of S forms a topology τ on S and hence it is also open cover of S. There are some finite

number of elements in τ that can cover S. Hence, space (X, τ) is compact and Haus-

dorff. Therefore, this semigroup is compact holomorphic topological semigroup, and

hence abundant.

It is noted that in the holomorphic semigroup S of Example 3.2.5, there is an element
f0(z) = e−α0z such that f0 ◦ f0 = f0 which an idempotent by definition. Therefore,
except the holomrphic semigroup in general, an abundant semigroup, and in particular,
compact holomorphic topological semigroup has idempotents.

Theorem 3.2.1 ([121, Theorem 2.1]). Let S be a compact holomorphic topological

semigroup. Then there is an element e ∈ S such that e ◦ e = e.

This theorem can be proved as a standard application of Zorn’s lemma from set
theory. It states that if every chain C in a partially ordered set (S,≤) has upper bound

in S, then (S,≤) has a maximal element. It is noted that partial ordered set is a system
consisting of non-empty set S and a relation denoted by ≤ satisfying the properties of
anti-symmetry, reflexivity and transitivity. A chain C in a partial ordered set (S,≤) is a
subset of S such that for every x, y ∈ C , either x ≤ y or x ≥ y. An element m ∈ S is a
maximal element of (S,≤) if m ≤ x for x ∈ S implies m = x.

Sketch of the Proof of Theorem 3.2.1. The proof of this theorem follows from the fol-
lowing two facts:
Fact 1: S has a minimal close subsemigroup.
Let τ be a family of all closed subsemigroups of the semigroup S. Then τ 6= ∅, and it
is a topology of closed sets partially ordered by the reverse inclusion. Let C ⊂ τ be
a chain in (τ,⊇). S is compact and C has the finite intersection property. Therefore,
∩T∈CT is non-empty and serves as a least upper bound of C . Then by Zorn’s lemma,
τ has a maximal element M (say), where M ⊆ ∩T∈CT . In reality of this context, M is
minimal closed subsemigroup of S.
Fact 2: If e ∈M , then M = {e} and e is an idempotent.
We can consider two cases of the proof of this fact 2.
Case 1: We prove M = M ◦ e = {e}. Let e ∈M . Then M ◦ e is a subsemigroup of M .
The map Fe : M → M ◦ e, Fe(h) → h ◦ e is a right translation map of a topological
holomorphic semigroup S restricted to M . Then it is continuous. M is compact, so
M ◦ e is also compact as a image of a compact set under continuous map Fe. By fact 1,
M is minimal, and M ◦ e is non-empty. We must have M = M ◦ e = {e}. This proves
that e is an idempotent.
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Case 2: We prove N = {f ∈ M : f ◦ e = e} = M . By the construction of the set
N , it is a subset of M and closed under the functional composition. This shows that
N is a subsemigroup of M . By Case 1, e ∈ M = M ◦ e can be written as e = f ◦ e
for some f ∈ M . This shows that e ∈ N 6= ∅. Finally, N can be written as the inter-
section of closed subsets of M and F−1

e {{e}}. This proved N is a non-empty closed
subsemigroup of M . Then as in Case 1, N = {e}.

From Theorem 3.2.1, we may also conclude the following assertion.

Theorem 3.2.2 ([121, Theorem 2.2]). Every compact holomorphic topological semi-

group is abundant.
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Chapter 4

DYNAMICS OF HOLOMORPHIC

SEMIGROUPS

In this chapter, we compare existing results of the classical holomorphic dynamics with
some of the existing results of holomorphic semigroup dynamics. We also prove some
results of holomorphic semigroup dynamics, and we see whether there is a connection
or contrast with classical one. Also, we see how far the results generalize, and what new
phenomena appear.

4.1 The Fatou, Julia and escaping sets

Let a family F of holomorphic functions is a normal family in some neighborhood of a
point z ∈ C. If F is a semigroup S such that it is normal family in a neighborhood U
of a point z ∈ C, then we say S is normal at z. We say that a holomorphic function f is
iteratively divergent at z ∈ C if fn(z) → ∞ as n → ∞. A semigroup S is iteratively

divergent at z if every f ∈ S is iteratively divergent at z. A semigroup S is said to be
iteratively bounded at z if there is an element f ∈ S which is not iteratively divergent
at z.

Like in classical holomorphic dynamics (that is, based on the Fatou-Julia-Eremenko
theory of a holomorphic function), the Fatou, Julia and escaping sets in the settings of a
holomorphic semigroup are defined as follows:

Definition 4.1.1 (Fatou, Julia and escaping sets). The Fatou set of a holomorphic

semigroup S is defined by F (S) = {z ∈ C : S is normal at z}, and the Julia set

31



J(S) of S is the complement of F (S). Let S is a transcendental semigroup. Then the

escaping set of S is defined by I(S) = {z ∈ C : S is iteratively divergent at z} We call

each point of the set I(S) an escaping point.

It is obvious that F (S) is the largest open subset (of C or C∞) on which the semi-
group S is normal. And its complement J(S) is a closed set for any semigroup S.
However, the escaping set I(S) is neither an open nor a closed set (if it is non-empty)
for any transcendental semigroup S. If S = 〈f〉, then the Fatou, Julia and escaping
sets are respectively denoted by F (f), J(f) and I(f). Furthermore, let f ∈ S. Then
T = 〈f〉 is a cyclic subsemigroup of S generated by f . From these facts, we can say
that the Fatou, Julia and escaping sets of the subsemigroup T = 〈f〉 are respectively the
Fatou, Julia and escaping sets of the holomorphic function f . Hence, Definition 4.1.1
generalizes the Fatou, Julia and escaping sets of a holomorphic function of Sections 2.3
and 2.4.

Any maximally connected subset U of the Fatou set F (S) is called a Fatou compo-

nent. As in classical holomorphic dynamics, a Fatou component U of a holomorphic
semigroup S can be simply connected or multiply connected. Kumar and Kumar [60,
Theorems 4.1, 4.2, 4.3, 4.5] extended some results of classical holomorphic dynamics
related to simply and multiply connected Fatou components to holomorphic semigroup
dynamics.

If S is a polynomial semigroup, then I(S) is a Fatou component containing∞, and
so it is an open subset of Fatou set F (S). If S is a transcendental semigroup, then
escaping set I(S) is neither an open nor a closed set (if it is non-empty). The following
immediate result holds from Definition 4.1.1 of an escaping set.

Theorem 4.1.1. Let S be a holomorphic semigroup. Then z ∈ C is an escaping point

under S if and only if every sequence (gk)k∈N in S is iteratively divergent at z.

Example 4.1.1. For k ∈ N, let us consider a semigroup S = 〈{fk}〉, where fk(z) =

e−1− 1
k ez. For x > 1, we have fnk (x) → ∞ as n → ∞. Furthermore, it is easy to see

that fn(x)→∞ as n→∞ for every f ∈ S. Therefore, by Theorem 4.1.1, x > 1 is in

I(S).

Definition 4.1.1 of escaping set is different than that of the definition given by Ku-
mar and Kumar [61, Definition 2.1]. According to our definition, the escaping set of
Example 4.1.1 is non-empty. However, according to Kumar and Kumar, the escaping
set of this example is empty because the sequence (fk)

∞
k=1 ⊂ S does not contain subse-

quences tending to infinity. We can slightly generalize Theorem 4.1.1 to the following
assertion which can be an alternative definition of an escaping set.
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Theorem 4.1.2 ([115, Lemma 3.3]). Let a complex number z ∈ C is an escaping point

of a holomorphic semigroup S. Then every non-convergent sequence in S has a subse-

quence which diverges to∞ at z.

Proof. Let z ∈ C be an escaping point of a holomorphic semigroup S. Then by Defini-
tion 4.1.1, fn(z)→∞ as n→∞ for all f ∈ S. By Proposition 3.2.1, for each n ∈ N,
we have fn = fα1 ◦fα2 ◦· · ·◦fαn ,where fαi is a generator of S for all i = 1, 2, . . . n. We
can consider a sequence (gn)n∈N in S representing g1 = f, g2 = f 2, . . . , gn = fn, . . .

(say), where each gi = fα1 ◦ fα2 ◦ · · · ◦ fαj for i = 1, 2, . . . , n, . . . and j = 1, 2, . . . , i

such that gn(z) → ∞ as n → ∞ or there is a non-convergent sequence in S which
contains (gn)n∈N as a subsequence such that gn(z)→∞ as n→∞.

Example 4.1.2. Let us consider a semigroup S = 〈f, g〉, where f(z) = λez and g(z) =

µez with λ < µ < e−1. For x > 1, we have hn(x)→∞ as n→∞ for every (hn) ⊂ S.

Therefore, by Theorem 4.1.2, every x > 1 is in I(S).

It is noted that if for a sequence (hn) ⊂ S such that hn(z) → ∞ as n → ∞,
then we can not conclude always that there is an element f ∈ S such that hn = fk

for some k ∈ N with fk(z) → ∞ as k → ∞. For example, if we choose hn(z) =

f ◦ g ◦ f ◦ g2 ◦ · · · ◦ f ◦ gn in Example 4.1.2, then there does not exist an element l ∈ S
such that lk(z)→∞ as k →∞.

The following immediate relations hold between the Fatou, Julia and escaping sets
of a holomorphic semigroup S and its cyclic subsemigroup from Definition 4.1.1. In-
deed, this is a connection between classical and semigroup holomorphic dynamics.

Theorem 4.1.3. Let S be a holomorphic semigroup. Then

1. F (S) ⊂ F (f) for all f ∈ S and hence F (S) ⊂ ⋂f∈S F (f).

2. J(f) ⊂ J(S) for all f ∈ S.

3. I(S) ⊂ I(f) for all f ∈ S and hence I(S) ⊂ ⋂f∈S I(f).

It is noted that we deal Theorem 4.1.3 (3) in the case of transcendental semigroups
even though it holds for polynomial semigroups.

In analogy to classical rational dynamics ([15, Theorem 4.2.4]), Hinkkanen and
Martin ([46, Lemma 3.1 and Corollary 3.1]) proved the following assertion.

Proposition 4.1.1. Let S be a rational semigroup. Then the Julia set J(S) is perfect

and J(S) =
⋃
f∈S J(f).
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In analogy to classical transcendental dynamics ([51, Theorem 3.10]), Poon ([75,
Theorems 4.1 and 4.2]) proved the following assertion.

Proposition 4.1.2. Let S be a transcendental semigroup. Then the Julia set J(S) is

perfect and J(S) =
⋃
f∈S J(f).

From Theorem 4.1.3 ((1) and (3)), we can say that the Fatou and escaping sets of
a holomorphic semigroup may be empty. For example, the Fatou set of the semigroup
S = 〈f, g〉 generated by the functions f(z) = eλz and g(z) = esλz + 2πi/λ for all
s ∈ N is empty for λ > 1/e (and non-empty for 0 < λ < 1/e (see [75, Example
2.1])). The escaping set of the semigroup S = 〈f, g〉 generated by functions f(z) = ez

and g(z) = e−z is empty (that is, the particular (say) h = g ◦ fk ∈ S is iteratively
bounded at any z ∈ I(f)). It is difficult to generalize holomorphic semigroups that can
have empty escaping sets. From the fact that we developed in Chapter 3.2, we can say
that an abundant holomorphic semigroup has empty escaping set. It is not known that
the semigroup S = 〈ez, e−z〉 is abundant or not. We know that the Fatou set may be
empty but the escaping set is non-empty in classical holomorphic dynamics. This is a
contrast feature of the escaping set in classical and semigroup holomorphic dynamics.
From the same Theorem part (2), and Propositions 4.1.1 and 4.1.2, we can say that, in
classical and semigroup holomorphic dynamics, the Julia set is a closed, non-empty,
unbounded and a perfect set. There are several transcendental semigroups whose Fatou
and escaping sets are non-empty. From the following examples of Kumar and Kumar
[63, Examples 3.2 and 3.3] and [61, Examples 2.6 and 2.7], we get non-empty Fatou
and escaping sets.

Example 4.1.3. Let S = 〈f, g〉, where f(z) = ez + λ and g(z) = ez + λ + 2πi for all

λ ∈ C− {0}. Then F (S) = F (f) 6= ∅ and I(S) = I(f) 6= ∅.

Example 4.1.4. Let S = 〈f, g〉, where f(z) = λ sin z and g(z) = λ sin z + 2π for all

0 < |λ| < 1. Then F (S) = F (f) 6= ∅ and I(S) = I(f) 6= ∅.

Example 4.1.5. Let S = 〈f, g〉, where f(z) = eλz and g(z) = esλz + 2πi/λ for all

λ ∈ C − {0} and s ∈ N. Then I(S) = I(f) 6= ∅ and F (S) = F (f) 6= ∅ for

0 < λ < e−1.

Example 4.1.6. Let S = 〈f, g〉, where f(z) = λ sin z for all λ ∈ C − {0} and g(z) =

fn + 2π for all n ∈ N. Then I(S) = I(f) 6= ∅ and F (S) = F (f) 6= ∅.

Kumar and Kumar [61, Theorem 3.4] generalized these examples to the following
result.

Proposition 4.1.3. Let S = 〈f, g〉 be a transcendental semigroup generated by a peri-

odic function f with period p and another function g defined by g = fn + p, n ∈ N.

Then F (S) = F (f) and I(S) = I(f).
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Next, we see series of results where classical transcendental dynamics (in particular,
results related to escaping set) can be generalized to transcendental semigroup dynam-
ics. If I(S) 6= ∅, then the statement ∂I(f) = J(f) ([31, Statement 1, Page 339]) of
classical holomorphic dynamics can be generalized to semigroup dynamics. The fol-
lowing results is due to Kumar and Kumar [61, Lemma 4.2 and Theorem 4.3] which
yields a generalized answer in semigroup dynamics.

Proposition 4.1.4. Let S be a transcendental semigroup such that I(S) 6= ∅. Then

1. Int.(I(S)) ⊂ F (S) and Ext.(I(S)) ⊂ F (S), where Int. and Ext. respectively

denote the interior and exterior of I(S).

2. ∂I(S) = J(S), where ∂I(S) denotes the boundary of I(S).

Proof. 1. We refer, for instance, [61, Lemma 4.2 ].

2. The facts Int.(I(S)) ⊂ F (S) and Ext.(I(S)) ⊂ F (S) yield J(S) ⊂ ∂I(S).
The fact ∂I(S) ⊂ J(S) is obvious.

From Proposition 4.1.4, the fact J(S) ⊂ I(S) follows trivially. If I(S) 6= ∅, then we
prove the following result which is a generalization of Eremenko’s result I(f)∩J(f) 6=
∅ (Proposition 2.4.1(3)) of classical transcendental dynamics to holomorphic semigroup
dynamics.

Theorem 4.1.4. Let S be a transcendental semigroup such that I(S) 6= ∅. Then I(S)∩
J(S) 6= ∅

Lemma 4.1.1. Let f be a transcendental entire function and U be a multiply connected

component of F (f). Then fn(z)→∞ locally uniformly on U .

Proof. See, for instance, [6, Theorem 3.1].

Proof of Theorem 4.1.4. Case (1). Suppose F (S) has a multiply connected component
U . Then by Theorem 4.1.3 (1), U is also a multiply connected component of F (f) for
each f ∈ S. By Lemma 4.1.1, for each f ∈ S, fn(z)→∞ locally uniformly on U and
on ∂U . It follows by normality (and also by Theorem 4.1.2) that every non-convergent
sequence in S has a subsequence which diverges to∞ locally uniformly on U and ∂U .
This proves that fn(z) → ∞ for all z ∈ U , and z ∈ ∂U for all f ∈ S. Again, by
Theorem 4.1.3 (3) , U ⊂ I(S). As ∂U ⊂ J(f) for all f ∈ S, so, by Theorem 4.1.3 (2),
∂U ⊂ J(S). This proves that I(S) ∩ J(S) 6= ∅.
Case (2). Suppose that every components of F (S) are simply connected. Let U be
an arbitrary simply connected Fatou component of F (S). Then by Theorem 4.1.3 (1),
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U is also a simply connected component of F (f) for all f ∈ S. Then by Proposition
2.4.1(2), we have I(f) ∩ J(f) 6= ∅ for each f ∈ S. Again, by Theorem 4.1.3 (3) and
Propositions 4.1.2 and 4.1.4 (2), we must conclude I(S) ∩ J(S) 6= ∅.

Theorem 4.1.5. Let S be a transcendental semigroup such that I(S) 6= ∅. Then I(S)

has no bounded components.

Lemma 4.1.2. A multiply connected component of the Fatou set F (S) of a transcen-

dental semigroup S lies in escaping set I(S).

Proof. Let U be a multiply connected component of F (S). Then it is a multiply con-
nected component of F (f) for all f ∈ S. Then by Lemma 4.1.1, fn → ∞ locally uni-
formally on U for all f ∈ S. This proves U ⊂ I(f) for all f ∈ S. Hence U ⊂ I(S).

Proof of Theorem 4.1.5. By Theorem 4.1.3(3), we can write I(S) ⊂ I(f) for all f ∈ S.
Therefore, I(S) ⊂ I(f) for all f ∈ S. By Proposition 2.4.1(3), I(f) has no bounded
components. We prove that I(S) also has no bounded components. Suppose for the
contrary that A be a bounded component of I(S). Then it is bounded component of
I(f) for each f ∈ S. In such a case, there is a domain B (possibly homeomorphic to an
annulus) which separatesA from∞. Therefore,B∩I(f) = ∅ for all f ∈ S. This shows
that B ⊂ F (f) for all f ∈ S. Hence, B ⊂ F (S). Let C be the bounded component
of C − B, then C ∩ J(f) 6= ∅ for all f ∈ S. Therefore, C ∩ J(S) 6= ∅. This proves
that A is contained in a multiply connected component of F (S). Then by Lemma 4.1.2,
A ⊂ I(S), a contradiction.

There are certain classes of transcendental semigroups whose escaping sets satisfy
Eremenko’s Conjecture 2.4.1. However, in general, as in classical transcendental dy-
namics, it is an open problem of transcendental semigroup dynamics. In each of above
examples 4.1.3, 4.1.4, 4.1.5 and 4.1.6, we have I(S) = I(h) = I(f) for all h ∈ S,
where every components of I(f) is unbounded and hence Conjecture 2.4.1 holds for
such transcendental semigroups. More generally, there are certain classes of transcen-
dental semigroups, whose escaping sets satisfy Conjecture 2.4.1. First, we need to
define the following types of holomorphic semigroups.

Definition 4.1.2 (Bounded (or finite) type semigroup). A holomorphic semigroup S

is said to be bounded type (or finite type) if each of its generators is of bounded type (or

finite type).

There is a more specific case of Theorem 4.1.5 which was proved by Kumar and
Kumar ([61, Theorem 4.7] and [63, Theorem 5.9]).
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Proposition 4.1.5. Let S be a finitely generated bounded type transcendental semi-

group. Then F (S) = F (f) for all f ∈ S and I(S) has no bounded components.

It is noted that for a finite type transcendental semigroup S, F (S) = F (f) for all
f ∈ S was proved first by Poon [75, Theorem 5.1]. There is a specialty of Fatou and
Julia sets if a transcendental semigroup S is of bounded type. This specialty was proved
by Huang and Cheng [52, Theorem 3], Huang [43, Theorem 2] and Kumar and Kumar
[61, Theorem 4.5].

Proposition 4.1.6. Let S = 〈f1, f2, . . . , fn〉 be a bounded (or finite) type transcendental

semigroup. Then I(S) ⊂ J(S) and J(S) = I(S).

The following result proved by Huang and Cheng [52, Theorem 3] and Huang [43,
Theorem 2].

Proposition 4.1.7. Let S = 〈f1, f2, . . . , fn〉 be a bounded (or finite) type transcendental

semigroup. Then for all z ∈ F (S), there does not exist any sequence (gk)k∈N in S such

that gk(z)→∞ as k ∈ ∞.

As a consequence of Proposition 4.1.7, Kumar and Kumar [63, Theorem 5.10]
proved the following result.

Proposition 4.1.8. Let S = 〈f1, f2, . . . , fn〉 be a bounded (or finite) type transcendental

semigroup. Then every component of F (S) is simply connected.

Proposition 4.1.8 is a generalization of the following fact proved by Eremenko and
Lyubich [34, Proposition 3] of classical transcendental dynamics.

Proposition 4.1.9. If f is a bounded type transcendental entire function. Then all com-

ponents of F (f) are simply connected.

We can generalize the definitions of post singularly bounded (or finite) transcenden-
tal entire function to post singularly bounded semigroup as shown below.

Definition 4.1.3 (Post singularly bounded (or finite) transcendental semigroup). A

transcendental semigroup S is said to be post-singularly bounded (or post-singularly

finite) if each g ∈ S is post-singularly bounded (or finite). Post singular set of a post

singularly bounded semigroup S is defined by

P (S) =
⋃

f∈S,n≥1

fn(SV (f))
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It is noted that if a transcendental semigroup S is post singularly bounded (or finite),
then each f ∈ S is post singularly bounded (or finite). However, the converse may not
true. The fact P (fk) = P (f) for all k ∈ N shows that fk is post singularly bounded
(or finite) if f is post singularly bounded (or finite). The following result was proved by
Kumar and Kumar [61, Theorems 3.8 and 3.14] which generalizes the Proposition 2.4.2
to a particular class of transcendental semigroup. In other words, the Conjecture 2.4.1
holds in a particular type of transcendental semigroup.

Proposition 4.1.10. Let f ∈ B (or f ∈ S ) periodic with period p and post singularly

bounded (or finite). Let g = fn+p, n ∈ N. Then S = 〈f, g〉 is post singularly bounded

(or finite) and all components of I(S) are unbounded.

Recall that a transcendental entire function f is hyperbolic if the post singular set
P (f) is a compact subset of the Fatou set F (f). It is noted that Proposition 2.4.2 ap-
plies, in particular, to hyperbolic transcendental entire functions. We can generalize the
definition of the hyperbolic transcendental entire function to the hyperbolic semigroup
as shown below.

Definition 4.1.4 (Hyperbolic semigroup). A transcendental semigroup S is said to be

hyperbolic if each g ∈ S is hyperbolic (that is, if P (S) is a compact subset of F (S)).

It is noted that if a transcendental semigroup S is hyperbolic, then each f ∈ S is
hyperbolic. However, the converse may not true. The fact P (fk) = P (f) for all k ∈ N
shows that fk is hyperbolic if f is hyperbolic. The following result was proved by
Kumar and Kumar [61, Theorem 3.16] where the Conjecture 2.4.1 holds.

Proposition 4.1.11. Let f ∈ B periodic with period p and hyperbolic. Let g = fn +

p, n ∈ N. Then S = 〈f, g〉 is hyperbolic and all components of I(S) are unbounded.

Example 4.1.7. f(z) = eλz is hyperbolic entire function for each λ ∈ (0, 1
e
). The

semigroup S = 〈f, g〉 where g = fm + p and p = 2πi
λ

, is a hyperbolic transcendental

semigroup.

We generalized Proposition 4.1.11 to finitely generated hyperbolic semigroup with
some modifications in [110, Theorem 3.1]. This theorem will be the good source of
non-empty escaping set of transcendental semigroup as well as we get Conjecture 2.4.1
in transcendental semigroup dynamics.

Theorem 4.1.6 ([110, Theorem 3.1]). Let S = 〈f1, f2, . . . , fn〉 is an abelian bounded

(or finite) type transcendental semigroup in which each fi is hyperbolic for i = 1, 2, . . . , n.

Then the semigroup S is hyperbolic, and all components of I(S) are unbounded.
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Lemma 4.1.3. Let f and g be transcendental entire functions. Then

SV (f ◦ g) ⊂ SV (f) ∪ f(SV (g))

Proof. See, for instance, [22, Lemma 2].

Lemma 4.1.4 ([110, Lemma 3.2]). Let f and g be permutable transcendental entire

functions. Then fm(SV (g)) ⊂ SV (g) and gm(SV (f)) ⊂ SV (f) for all m ∈ N.

Proof. First, we prove that f(SV (g)) ⊂ SV (g). Then we use induction to prove

fm(SV (g)) ⊂ SV (g).

Let w ∈ f(SV (g)). Then w = f(z) for some z ∈ SV (g). In this case, z is either a
critical value or an asymptotic value of g.

First, let us suppose that z is a critical value of g. Then z = g(u) with g′(u) = 0. f
and g are permutable functions, sow = f(z) = f(g(u)) = (f◦g)(u) = (g◦f)(u).Also,
(f ◦ g)

′
(u) = f

′
(g(u))g

′
(u) = 0. This shows that u is a critical point of f ◦ g = g ◦ f

and w is a critical value of f ◦ g = g ◦ f . By permutability of f and g, we can write
f
′
(g(u))g

′
(u) = g

′
(f(u))f

′
(u) = 0 for any critical point u of f ◦g. We have g′(u) = 0.

Therefore, either f ′(u) = 0 ⇒ u is a critical point of f or g′(f(u)) = 0 ⇒ f(u)

is a critical point of g. This shows that w = g(f(u)) is a critical value of g. Hence,
w ∈ SV (g).

Next, suppose that z is an asymptotic value of the function g. We have to prove that
w = f(z) is also asymptotic value of g. Then there exists a curve γ : [0,∞)→ C such
that γ(t) → ∞ and g(γ(t)) → z. Therefore, f(g(γ(t))) → f(z) = w as t → ∞ along
γ. We have f ◦ g = g ◦ f , so f(g(γ(t))) → f(z) = w ⇒ g(f(γ(t))) → f(z) = w as
t→∞ along γ. This shows w is an asymptotic value of g. This proves our assertion.

Assume that fk(SV (g)) ⊂ SV (g) for some k ∈ N with k ≤ m. Then

fk+1(SV (g)) = f(fk(SV (g))) ⊂ f(SV (g)) ⊂ SV (g)

Therefore, by induction, for all m ∈ N, we must have fm(SV (g)) ⊂ SV (g). The next
part gm(SV (f)) ⊂ SV (f) can be proved similarly as above.

Lemma 4.1.5 ([110, Lemma 3.3]). Let f and g are two permutable hyperbolic tran-

scendental entire functions. Then f ◦ g is also hyperbolic.

Proof. We have to prove that P (f ◦ g) is a compact subset of F (f ◦ g). From [58,
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Lemma 3.2], we can write F (f ◦ g) ⊂ F (f) ∩ F (g). This shows that F (f ◦ g) is a
subset of F (f) and F (g). This lemma will be proved if we prove P (f ◦ g) is a compact
subset of F (f) ∪ F (g). By Definition 2.3.13, we can write

P (f ◦ g) =
⋃

m≥0

(f ◦ g)m(SV (f ◦ g))

=
⋃

m≥0

fm(gm(SV (f ◦ g))) (by using permutabilty of f and g)

⊂
⋃

m≥0

fm(gm(SV (f) ∪ f(SV (g))) (by Lemma 4.1.3)

=
⋃

m≥0

fm(gm(SV (f))) ∪ gm(fm+1(SV (g)))

⊂
⋃

m≥0

fm(SV (f))) ∪
⋃

m≥0

gm(SV (g))) (by Lemma 4.1.4)

= P (f) ∪ P (g).

f and g are hyperbolic, so P (f) and P (g) are compact subset of F (f) and F (g). There-
fore, the set P (f) ∪ P (g) must be compact subset of F (f) ∪ F (g).

Proof of Theorem 4.1.6. Any f ∈ S can be written as f = fi1 ◦ fi2 ◦ fi3 ◦ · · · ◦ fim . By
permutability of each fi, we can rearrange fij and ultimately represented by

f = f t11 ◦ f t22 ◦ . . . ◦ f tnn

where each tk ≥ 0 is an integer for k = 1, 2, . . . , n. Lemma 4.1.5 can be applied
repeatably to show that each of f t11 , f

t2
2 , . . . , f

tn
n is hyperbolic. Again, by repeated ap-

plication of same lemma, we can say that f is itself hyperbolic and so the semigroup
S is hyperbolic. Next part follows from [108, Theorem 3.3] by the assumption of this
theorem.

The one of the most important result of classical holomorphic dynamics is either
J(f) = C or C∞ or J(f) has empty interior for any holomorphic function f on
C or C∞ (see [15, Theorem 4.2.3] for rational function and [18, Lemma 3] for general
holomorphic function). There are lot of examples of transcendental entire functions
and rational functions whose Julia set is the entire complex plane or extended complex
plane. For example,

1. J(λzez) = C for a suitable value of λ,
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2. J(ez) = C,

3. J(λzez/z) = C∞ for a suitable value of λ,

4. J(λ tan z) = C∞ for a suitable value of λ,

5. J((z − 2)2/z2) = C∞,

6. J((z2 + 1)2/4z(z2 − 1)) = C∞.

However, the analogous result is not hold in semigroup dynamics. Hinkkanen and Mar-
tin [46, Example-1] provided the following example that shows that Julia set of a ratio-
nal semigroup S may have non-empty interior even if J(S) 6= C∞.

Example 4.1.8. Entire semigroup S = 〈z2, z2/a〉, where a ∈ C, |a| > 1 has Fatou set

F (S) = {z : |z| < 1 or |z| > |a|} and Julia set J(S) = {z : 1 ≤ |z| ≤ |a|}.

Let U be a component of Fatou set F (f). Then f(U) is contained in some compo-
nent V of F (f). It is noted that if f is a rational function, then V = f(U). If f is a
transcendental function, then it is possible that V 6= f(U). Let us recall the following
result of Bergweiler [18] of classical holomrphic dynamics.

Proposition 4.1.12. If f is entire, then V − f(U) contains at most one point which is

an asymptotic value of f .

The following example of Huang [43, Example 2] shows that Proposition 4.1.12) can
not be preserved for general semigroup dynamics. This is a contrast between classical
holomorphic dynamics and semigroup dynamics.

Example 4.1.9. Let S = 〈zn, azn〉, where n > 2 and |a| > 1. The Fatou set F (S)

contains following components

U =

{
n

√
1

|a| < |z| <
n

√√√√ n−1

√
1

|a|

}
and V = {|z| > 1}.

For a function f(z) = azn in semigroup S, f(U) ⊂ V and V − f(U) is an unbounded

domain.

Definition 4.1.5 (Backward orbit and exceptional set). Let S be a holomorphic semi-

group. We define the backward orbit of any z ∈ C (or C∞) by

O−(z) = {w ∈ C∞ : there exists f ∈ S such that f(w) = z}
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and the Fatou exceptional set of S is defined by E(S) = {z ∈ C∞ : O−(z) is finite}.
Any z ∈ E(S) is called exceptional value.

It is noted that if S finitely generated rational semigroup, then E(S) ⊂ F (S), oth-
erwise we can not assert it. For example ([43, example 1]), semigroup S = 〈fm〉,
where fm(z) = amzn,m ∈ N, n ≥ 2 and |a| > 1, is an infinitely generated poly-
nomial semigroup. Then, E(S) = {0,∞}. It is easy to see that 0 is a limit point of
J(fm) = {z : |z| = |a| −mn−1}, and hence 0 ∈ J(S). In the case of finitely generated ratio-
nal semigroup S, we always have E(S) ⊂ F (S) ⊂ F (f) for any f ∈ S. Hence E(S)

contains at most two points. However, if S finitely generated transcendental semigroup,
then we can not assert E(S) ⊂ F (S) in general because for a transcendental function, it
is difficult to determine whether Fatou exceptional value belongs Fatou set or Julia set.
For example, 0 is the Fatou exceptional value of f(z) = eλz. It is known in classical
holomorphic dynamics that 0 ∈ J(f) if λ > 1/e and 0 ∈ F (f) if λ < 1/e. Poon
and Yang [77] gave the following characterization whether a Fatou exceptional value
belongs to the Fatou set or Julia set.

Proposition 4.1.13. Let f is transcendental entire function. If F (f) has no unbounded

component, then Fatou exceptional value always belongs to Julia set.

In the case of finitely generated transcendental semigroup S, if E(f) ⊂ F (f) for all
f ∈ S, then we can say E(S) ⊂ F (S) ⊂ F (f) for any f ∈ S. Hence E(S) contains
at most one point. This fact is a generalization of classical holomorphic dynamics to
semigroup dynamics and so it is a nice connection between these two types of dynamics.
Huang [43, Proposition 1] proved the following result which also shows a connection
between classical holomorphic dynamics and semigroup dynamics.

Proposition 4.1.14. Let S be a holomorphic semigroup. If z /∈ E(S), then J(S) ⊆
O−(z).

If z ∈ J(S) and z /∈ E(S), then J(S) = O−(z) for any holomorphic semigroup
S. This says that O−(z) clusters at each point of J(S). This result proved for rational
semigroup by Hinkkanen and Martin [46, Lemma 3.2].

4.2 Invariant feature of Fatou, Julia and escaping sets

The main contrast between classical and semigroup holomorphic dynamics will appear
in the invariant feature of the Fatou, Julia and escaping sets. Note that invariant feature
is considered a very basic and fundamental structure of these sets.
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Definition 4.2.1 (Forward, backward and completely invariant set). Let S be a holo-

morphic semigroup. A set U ⊂ C is said to be S-forward invariant if f(U) ⊂ U for all

f ∈ S, it is said to be S-backward invariant if f−1(U) = {z ∈ C : f(z) ∈ U} ⊂ U

for all f ∈ S, and it is said to be S-completely invariant if it is both S-forward and

S-backward invariant.

Proposition 4.2.1. Let S be a holomorphic semigroup. Then the Fatou set F (S) is

S-forward invariant and the Julia set J(S) is S-backward invariant.

This Proposition 4.2.1 was proved by Hinkkanen and Martin [46, Theorem 2.1]
if S is a rational semigroup and it was proved by Poon [75, Theorem 2.1] if S is a
transcendental semigroup.

Kumar and Kumar [61, Theorem 4.1] proved the following result that shows escap-
ing set I(S) is also S-forward invariant. Here, we provide another proof based on our
Definition 4.1.1 of an escaping set.

Theorem 4.2.1 ([122, Theorem 3.1]). The escaping set I(S) of a transcendental semi-

group S is S-forward invariant.

Proof. Let z ∈ I(S). Then by Definition 4.1.1, semigroup S is iteratively divergent
at z. Therefore, for any g ∈ S, the subsemigroup S ◦ g = {f ◦ g : f ∈ S} is also
iteratively divergent at z. That is, (f ◦ g)n(z) → ∞ as n → ∞ for all f ∈ S. By
Proposition 3.2.1, for all n ∈ N, we have (f ◦ g)n = hni ◦ g for some hni ∈ S where ni
depends on n. Therefore, (f ◦ g)n(z)→∞ as n→∞⇒ (hni ◦ g)(z)→∞. Then by
Theorem 4.1.2, there is a subsequence (hnij ◦ g)nij∈N of the sequence ((hni ◦ g) such
that (hnij ◦ g)(z) = hnij (g(z))→∞ as nij →∞. This proves that S diverges at g(z),
so g(z) ∈ I(S) for all g ∈ S. Hence I(S) is S-forward invariant.

Hinkkanen and Martin [46, Example1] provided the following example that show
that the Fatou set F (S) need not be backward invariant and the Julia set J(S) need not
be forward invariant.

Example 4.2.1. For a rational semigroup S = 〈z2, z2/a〉, where a ∈ C, |a| > 1, the

Fatou set F (S) = {z : |z| < 1 or |z| > |a|} is not S-backward invariant and Julia set

J(S) = {z : 1 ≤ |z| ≤ |a|} is not S-forward invariant.

It is noted that the escaping sets of Examples 4.1.1 and 4.1.2 are not S-backward in-
variant. Fatou [35] and Julia [53] independently proved that the Fatou and Julia sets of
a rational function are completely invariant. Note that all the three sets F (f), J(f) and
I(f) of a transcendental entire function are also completely invariant. This is a funda-
mental contrast between classical holomorphic dynamics and holomorphic semigroup
dynamics.
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We prove under certain conditions, the Fatou set of a holomorphic semigroup is
S-backward invariant, and the Julia set is S-forward invariant.

Theorem 4.2.2 ([122, Theorem 3.2]). Let S be an abelian holomorphic semigroup.

Then the Fatou set F (S) is S-backward invariant and Julia set J(S) is S-forward in-

variant.

Proof. We prove that if g(z) ∈ F (S), then z ∈ F (S) for all g ∈ S. This follows that
g−1(F (S)) ⊂ F (S) for all g ∈ S. Suppose, g(z) ∈ F (S). Let U be a neighborhood
of g(z) such that U ⊂ F (S). Then there is a subsequence (fnj) such that fnj(g(z))→
f(g(z)) uniformly on U , where f is holomorphic function or constant∞. S is abelian,
so we have g(fnj(z)) → g(f(z)) uniformly on U . This shows that g ◦ fnj → g ◦ f
uniformly on U . This proves that z ∈ F (S) for all g ∈ S.

From Theorems 4.2.1 and 4.2.2, we can say that the sets F (S) and J(S) are S-
completely invariant if S is an abelian holomorphic semigroup. The following example
of Hinkkanen and Martin [46, Example 2] is best for Theorem 4.2.2.

Example 4.2.2. The semigroup S = 〈Tn(z) : n = 0, 1, 2, . . .〉 generated by Tchebyshev

polynomials Tn(z) defined by T0(z) = 1, T1(z) = z and Tn+1(z) = 2zTn(z)− Tn−1(z)

is abelian. Therefore, by Theorem 4.2.2, Fatou set F (S) is S-backward invariant and

Julia set J(S) is S-forward invariant.

In [62, Theorem 2.1], Kumar et al. provided the following condition for backward
invariance of I(S). Here, we give another proof based on Definition 4.1.1 of escaping
set.

Theorem 4.2.3 ([122, Theorem 3.3]). The escaping set I(S) of transcendental semi-

group S is S-backward invariant if S is abelian.

Proof. We prove that if g(z) ∈ I(S), then z ∈ I(S) for all g ∈ S. This follows
that g−1(I(S)) ⊂ I(S) for all g ∈ S. This will be proved if we are able to prove its
contrapositive statement: if z /∈ I(S), then g(z) /∈ I(S) for all g ∈ S. Let z /∈ I(S).
Then there is some f ∈ S which is iteratively bounded at z. That is, fn(z) 9 ∞
as n → ∞. In this case, there exists a sequence (fk)k∈N in S containing f which is
iteratively bounded at z and all subsequences of this sequence containing f are also
iteratively bounded at z. Now, for any g ∈ S, (fk ◦ g)k∈N is a sequence in S. Then S is
abelian and g is a transcendental entire function, so by the continuity of g at z ∈ C, we
can write (fk◦g)(z) = (g◦fk)(z) for all k ∈ N. From which it follows that the sequence
(fk ◦ g)k∈N is iteratively bounded at z. Therefore, all subsequence of this sequences are
iteratively bounded at z. From the fact (fk ◦ g)(z) = (g ◦ fk)(z) for all k ∈ N, we can
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say that all subsequences of the sequence (fk ◦ g)k∈N are iteratively bounded at g(z).
That is, g(z) /∈ I(S) for all g ∈ S. Therefore, g−1(I(S)) ⊂ I(S) for all g ∈ S. This
proves that I(S) is backward invariant.

From the result of Proposition 4.2.1 and Theorems 4.2.1, 4.2.2 and 4.2.3, we can
conclude that the Fatou, Julia, and escaping sets are S-completely invariant if S is an
abelian transcendental semigroup. For example, the following

1. 〈z + γ sin z, z + γ sin z + 2kπ〉,

2. 〈z + γ sin z, −z − γ sin z + 2kπ〉,

3. 〈z + γez, z + γez + 2kπi〉,

4. 〈z − sin z, z − sin z + 2π〉,

5. 〈eγz, eγz+ 2πi
γ 〉, where 0 < γ < e−1,

are abelian transcendental semigroups, so their Fatou, Julia and escaping sets are S-
completely invariant.

Theorems 4.2.2 and 4.2.3 give a kind of connection between classical and semigroup
holomorphic dynamics. We got a completely invariant structure of the Fatou, Julia and
escaping sets in both classical and semigroup holomorphic dynamics because of their
associated abelian semigroups.

If S is a finitely generated rational semigroup, then Sumi [123, Lemma 1.1.4 (2)]
proved the following result.

Proposition 4.2.2. If S = 〈f1, f2, . . . , fn〉 is a finitely generated rational semigroup,

then F (S) =
⋂n
i=1 f

−1
i (F (S)) and J(S) =

⋃n
i=1 f

−1
i (J(S))

In the case of finitely generated transcendental semigroup, we prove following result
which is analogous to Proposition 4.2.2.

Theorem 4.2.4 ([122, Theorem 3.4]). If S = 〈f1, f2, . . . , fn〉 is a finitely generated

transcendental semigroup, then F (S) =
⋂n
i=1 f

−1
i (F (S)) and J(S) =

⋃n
i=1 f

−1
i (J(S))

Proof. The Fatou set F (S) is S-forward invariant in general (Theorem 4.2.2). So,
fi(F (S)) ⊂ F (S) and it follows F (S) ⊂ ⋂n

i=1 f
−1
i (F (S)) for all i.

Next, let z0 ∈
⋂n
i=1 f

−1
i (F (S)). Then (say) wi = fi(z0) ∈ F (S) for all i. The

semigroup S is normal at wi for all i. In other words, every g ∈ S is equicontinu-
ous at wi for all i. That is, for any ε > 0, there is δ > 0 such that d(g(w), g(wi)) <
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ε, whenever d(w,wi) < δ for all w ∈ F (S) and i = 1, 2, 3, . . . , n. Where d repre-
sents Euclidean metric on C. For such δ, there is η > 0 such that d(fi(z), fi(z0)) <

δ, whenever d(z, z0) < η for all z ∈ ⋂n
i=1 f

−1
i (F (S)) and i = 1, 2, 3, . . . , n. Thus,

ultimately, we conclude that d(g(fi(z)), g(fi(z0))) < ε whenever d(z, z0) < η for all
z ∈ ⋂n

i=1 f
−1
i (F (S)) and i = 1, 2, 3, . . . , n. We can also write S =

⋃n
i=1(S ◦ fi). So, S

is equicontinuous at z0. That is, z0 ∈ F (S). Hence, F (S) =
⋂n
i=1 f

−1
i (F (S)). Second

part of the theorem easily follows as

J(S) = C− F (S) = C−
n⋂

i=1

f−1
i (F (S)) =

n⋃

i=1

(C− f−1
i (F (S)) =

n⋃

i=1

f−1
i (J(S)).

The relation J(S) =
⋃n
i=1 f

−1
i (J(S)) for the Julia set is called backward self sim-

ilarity. With this property, dynamics of a holomorphic semigroup can be regarded as
backward iterated function system-BIFS associated to the set {f1, f2, . . . , fn} of gener-
ators of the semigroup S. The Julia set J(S) is considered as an attractor or invariant
for BIFS. Indeed, J(S) is a unique attractor, which is usually a fractal.

Theorems 4.2.1 and 4.2.3 can be used directly to express the escaping set I(S) as a
finite intersection of all pre-images of itself under the generators of the semigroup S if
it is finitely generated. The following result is due to Kumar et al. [62, Theorem 2.6].
Here, we give an alternative proof.

Theorem 4.2.5 ([122, Theorem 3.5]). If S = 〈f1, f2, . . . , fn〉 is a finitely generated

transcendental semigroup, then I(S) =
⋂n
i=1 f

−1
i (I(S)) if S is abelian semigroup.

Proof. I(S) is completely invariant under the assumption of the theorem (see for in-
stance Theorems 4.2.1, 4.2.3). So, we have fi(I(S)) ⊂ I(S) and f−1

i (I(S)) ⊂ I(S)

for all 1 ≤ i ≤ n. From which we get respectively I(S) ⊂ ⋂n
i=1 f

−1
i (I(S)) and I(S) ⊃⋂n

i=1 f
−1
i (I(S)) for all 1 ≤ i ≤ n. Thus, we get I(S) =

⋂n
i=1 f

−1
i (I(S)).

There are certain holomorphic semigroups whose dynamical behavior coincide with
classical holomorphic dynamics. That is, there are certain holomorphic semigroups
whose Fatou, Julia and escaping sets are same as Fatou, Julia and escaping sets of each
of its generators.

Theorem 4.2.6 ([122, Theorem 4.1]). Let S be an abelian rational semigroup. Then

J(S) = J(f) and F (S) = F (f) for all f ∈ S of degree at least two.

We recall the following results of Fatou [38] and Julia [54] concerning commuting
rational functions.
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Proposition 4.2.3. Let f and g be two rational functions of degree at least two such that

f ◦ g = g ◦ f . Then J(f) = J(g).

Proof of Theorem 4.2.6. S is abelian, so we have fi ◦ fj = fj ◦ fi for all generators
fi and fj with i 6= j. Then by Proposition 4.2.3, J(fi) = J(fj) for all i and j with
i 6= j. Also, every f ∈ S permutes with each generator fi for all i, so again by the same
Proposition 4.2.3, J(f) = J(fi) for all i. This fact together with the fact of Proposition
4.1.1, we can conclude that J(S) = J(f) for all f ∈ S.

The analogous result in transcendental semigroup dynamics may not hold in general
because of the essence of Proposition 4.2.3 is still unanswered for permutable transcen-
dental entire functions. Julia sets for two permutable entire functions were studied in
[77, 97, 125], where we found certain conditions from which we can get the essence of
Proposition 4.2.3. If we expose extra conditions in the statement, then result analogous
to Theorem 4.2.6 holds in the case of a transcendental semigroup. One of the analogous
result was proved by Poon [75, Theorem 5.1]. Here, we only give sketch of the proof
similar to the proof of Theorem 4.2.6.

Proposition 4.2.4. Let f and g be two transcendental entire functions of finite type.

Then f ◦ g is of finite type. Moreover, if f and g are permutable, then J(f) = J(g).

Proposition 4.2.5. Let S be an abelian transcendental semigroup in which each gener-

ator is of finite type. Then J(S) = J(f) for all f ∈ S.

Proof of Proposition 4.2.5. Since semigroup S is abelian, then by Proposition 4.2.4,
J(fi) = J(fj) for all generators fi and fj with i 6= j. Each f = fi1 ◦ fi2 ◦ . . . fim is of
finite type and J(f) = J(fi) for all i. This fact together with the fact of the Proposition
4.2.3, we can conclude that J(S) = J(f) for all f ∈ S.

We expect that the condition mentioned in the Proposition 4.2.5 will also be enough
to hold I(S) = I(f) for all f ∈ S.

Theorem 4.2.7 ([122, Theorem 4.2]). Let S is an abelian transcendental semigroup

in which each generator is of finite type (or bounded type). Then I(S) = I(f) for all

f ∈ S.

Lemma 4.2.1. Let f and g are transcendental entire functions of finite (or bounded)

type. Then f ◦ g is of finite (or bounded) type.

Proof. See, for instance, [75, Lemma 5.1].

Lemma 4.2.2 ([122, Lemma 4.1]). If f and g are permutable transcendental entire

functions of finite type (or bounded type), then I(f) = I(g).
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Proof. As given in the statement of this lemma, Poon [75, Lemma 5.2] showed that
F (f) = F (g) (Proposition 4.2.4). Eremenko and Lyubich [34] proved that if transcen-
dental function f ∈ B, then I(f) ⊂ J(f) and J(f) = I(f). For any function
of finite type (or bounded type), we must have I(f) = I(g). This Lemma will be
proved if we show J(f) − I(f) = J(g) − I(g). Let z ∈ J(f) − I(f). Then z is a
non-escaping point of J(f), and so the sequence (fn) has a bounded subsequence at
z. J(f) = J(g) implies that the sequence (gn) has also a bounded subsequence at z.
Therefore, z ∈ J(g) − I(g). Hence, J(f) − I(f) ⊂ J(g) − I(g). By similar fashion,
we can show that J(g)− I(g) ⊂ J(f)− I(g). Hence, we got our claim.

Proof of Theorem 4.2.7. S is an abelian semigroup, so we have fi ◦ fj = fj ◦ fi for all
generator fi and fj with i 6= j. By Lemma 4.2.2, we have I(fi) = I(fj). Any f ∈ S
can be written as f = fi1 ◦ fi2 ◦ fi3 ◦ · · · ◦ fim . By permutability of each fi, we can
rearrange fij , and ultimately represented by

f = f t11 ◦ f t22 ◦ . . . ◦ f tnn ,

where each tk ≥ 0 is an integer for k = 1, 2, . . . , n. Lemma 4.2.1 can be applied
repeatably to show each of f t11 , f

t2
2 , . . . , f

tn
n is of finite (or bounded) type and so f is

itself finite (or bounded) type. Each fi permutes with f , and hence again by Lemma
4.2.2, I(fi) = I(f) for all f ∈ S. Therefore, I(S) = I(f) for all f ∈ S.

4.3 Completely invariant Fatou and Julia sets

From Proposition 4.2.1, we can say that the setsF (S) and J(S) need not be S-completely
invariant. In this section, we generalize the completely invariant notion of the Fatou and
Julia sets of a single transcendental entire function to the completely invariant notion
of these sets in transcendental semigroup dynamics. In rational semigroups, and in par-
ticular, in polynomial semigroups, there are few studies over such completely invariant
Fatou and Julia sets (see, for instance, [103, 104, 105] for more detail) but there is noth-
ing study over transcendental semigroups. In this section, we give little bit attention on
completely invariant Julia and Fatou sets of transcendental semigroups.

Definition 4.3.1 (Completely invariant Julia and Fatou sets). Let S be a transcen-

dental semigroup. We define a completely invariant Julia set of S by

J1(S) =
⋂
{G : G is a closed, completely invariant set under each f ∈ S}
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The completely invariant Fatou set F1(S) is defined as the complement of J1(S) in C.

It is noted that in transcendental semigroup S, J1(S) exists, is closed, and com-
pletely invariant under each f ∈ S, and it contains the Julia set of each element of S.
The corresponding Fatou set F1(S) is open, completely invariant, and contained in the
Fatou set of each element of S.

The sets J1(S) and F1(S) of Definition 4.3.1 may and may not be the sets J(S) and
F (S) respectively. The following examples can help to compere the sets J1(S) & J(S)

and F1(S) & F (S).

Example 4.3.1. Let S = 〈f, g〉 be a transcendental semigroup generated by f(z) =

λ sin z and g(z) = λ sin z + 2π, where 0 < |λ| < 1. Then J1(S) = J(f) = J(g).

It is also verified that J(S) = J(f) = J(g). In this case, J1(S) = J(S), and so,

F1(S) = F (S).

There are other examples (see for instance [63, Example 3.2], and [75, Example
2.1]) of transcendental semigroups similar to Example 4.3.1.

Example 4.3.2. Let S = 〈f, g〉 be a transcendental semigroup generated by f(z) =

λez, (0 < λ < e−1) and g(z) = λez, (λ > 1/e). Then, by Devaney [30], J(f) is

a Cantor set (bouquet), and J(g) = C. In this case, F (g) = ∅. Therefore, we have

F (S) = ∅ and J(S) = C. It is easy to verify that J1(S) = J(S) = C and F1(S) =

F (S) = ∅.

Example 4.3.3. Let S = 〈f, g〉 be a transcendental semigroup generated by f(z) =

λ sin z, where λ ∈ C is chosen in such a way that there are two attracting cycles and

|<(λ)| ≥ π/2, and g(z) = µez, where µ ∈ (0, 1/e). Then, by Osborne [74, Example

6.4], J(f) is a spider’s web, and by Devaney [30], J(g) is a Cantor bouquet. In this

case, it is easy to verify that J1(S) = J(S) = C and F1(S) = F (S) = ∅.

It is noted that the Cantor’s bouquet, and the spider’s web are structurally different
sets. The Cantor’s bouquet is closed, and has uncountably many components with a
single unbounded complement, whereas the spider’s web is connected with infinitely
many complementary components, each of which is bounded. Hence, the Julia set J(S)

that contains both J(f) and J(g) of Example 4.3.3 must be the entire complex plane C.
In all of these three examples, we have J1(S) = J(S) and F1(S) = F (S). However, in
the first Example 4.3.1, we have J(f) = J(g), but in the next two Examples 4.3.2 and
4.3.3, we have J(f) 6= J(g). The following example of entire (polynomial) semigroup
[103, Example-2], we have J(f) 6= J(g) as well as F1(S) 6= F (S) and J1(S) 6= J(S).

Example 4.3.4. Let S = 〈z2, z2/a〉, where a ∈ C, |a| > 1. Then the Julia set J(S) =

{z : 1 ≤ |z| ≤ |a|} which not forward invariant. Therefore, J1(S) 6= J(S). In this case,
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J1(S) = C∞. Note that J(f) = {z : |z| = 1} and J(g) = {z : |z| = |a|}. The Fatou

set F (S) = {z : |z| < 1 or |z| > |a|} is not backward invariant, and so F1(S) 6= F (S).

In this case, it is obvious that F1(S) = ∅.

One of the main result in classical complex dynamics is that if Julia set has non-
empty interior, then Julia set explodes, and it becomes whole complex plane C. This
result can be generalized to completely invariant Julia set J1(S). For this, we workout
some constructions for the comparison of sets J1(S) and J(S). Let S = 〈f1, f2, . . . fn〉
be a finitely generated transcendental semigroup. It is noted that J(h) ⊂ J1(S) for all
h ∈ S and so

⋃
h∈S J(h) ⊂ J1(S). Let us define the following countable collections of

sets:
E0 = {J(h)}

for all h ∈ S.
E1 =

⋃

h∈S
h−1(E0) ∪

⋃

h∈S
h(E0)

. . . . . . . . . . . . . . .

En+1 =
⋃

h∈S
h−1(En) ∪

⋃

h∈S
h(En)

and

E =
∞⋃

n=0

En

where h−1(Ei) = {h−1(E) : E ∈ Ei} and h(Ei) = {h(E) : E ∈ Ei} for any collec-
tion of sets Ei, (i = 1, 2, . . .), and a function h ∈ S. The following result will be an
alternative description of the set J1(S) of a transcendental semigroup S.

Theorem 4.3.1. For a transcendental semigroup 〈f1, f2, . . . fn〉, we have J1(S) =⋃
E∈E E.

Proof. By Definition 4.3.1, J1(S) is closed, completely invariant under each h ∈ S, and
contains J(h) for all h ∈ S. Therefore, we can write

J1(S) ⊃
⋃

E∈E

E

The set
⋃
E∈E E is closed, and contains J(h) for all h ∈ S. It remains to show that it

is also completely invariant under each h ∈ S. h is a continuous closed map, so under
each h ∈ S, h(

⋃
E∈E E) and h−1(

⋃
E∈E E) are closed sets. It proves our claim.
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Corollary 4.3.1. The set J1(S) is a perfect set.

Proof. J(h) ⊂ J1(S) for all h ∈ S and J(h) is perfect, unbounded, and contains an
infinite number of points for each h ∈ S. This corollary will be proved if we show J1(S)

has no isolated points. Suppose α ∈ J1(S) is an isolated point. Then it an isolated point
of some E ∈ E . Choose a neighborhood U of α so that U −{α} ⊂ F1(S) where F1(S)

is completely invariant Fatou set of S. h−1(F1(S)) ⊂ F1(S) and h(F1(S)) ⊂ F1(S) for
all h ∈ S, so each h ∈ S omits J1(S) on U − {α}, which implies that every element in
S is normal on U . Which is a contradiction.

Theorem 4.3.2. Let S be a transcendental semigroup. If J1(S) has non-empty interior,

then J1(S) = C.

Proof. Let Int.J1(S) 6= ∅, where Int.J1(S) denotes the interior of J1(S). Then there
exists a disk D = {|z − z0| < r} ⊂ J1(S) such that it intersects J(h) for some h ∈ S.
Then by [51, Theorem 3.9], for each finite value a, there is sequence zk → z0 ∈ J(h)

and a sequence of positive integers nk → ∞ such that fnk(zk) = a, (k = 1, 2, 3, . . .)

except at most for a finite value. Then by backward invariance of J(h), zk ∈ J(h) and
by forward invariance of J(h), a ∈ J(h). It shows that every finite value is in J(h),
except at most a single value. Since h ∈ S is arbitrary, so we must have J1(S) = C.

Corollary 4.3.2. If J1(S) 6= C, then F1(S) is unbounded.

Proof. If F1(S) is bounded, then J1(S) has interior points. By Theorem 4.3.2, J1(S) =

C, which is a contradiction.

Theorem 4.3.3. Let S be a transcendental semigroup which contains functions f and g

such that J(f) 6= J(g). Then J1(S) = C.

Lemma 4.3.1. Let S = 〈f, g〉 be a transcendental semigroup such that J(f) 6= J(g).

Then J1(S) = C.

Proof. Let U be a completely invariant component of F (f). Then by [51, Theorem
4.36], U is unbounded, simply connected, and ∂U = J(f). Likewise, a completely
invariant component V of F (g) is unbounded, simply connected, and ∂V = J(g).
J(f) 6= J(g) implies that ∂U 6= ∂V . By [51, Theorem 3.8], J(f) and J(g) are un-
bounded, so U ∩ J(g) 6= ∅ and V ∩ J(f) 6= ∅. The fact ∂U 6= ∂V implies that J(f)

must intersect interior of V , and J(g) must intersect interior of U .

Let z ∈ J(f) ∩ Int.V , where Int.V is an interior of V . Then by the forward
invariance of J1(S) and Int.V under the function g, its nth iterates, that is, gn(z) ∈
J1(S) and gn(z) ∈ Int.V for all n ∈ N. Likewise, we can write fn(z) ∈ J1(S)
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intersects open sets Int.U and Int.V . Therefore, J1(S) intersects Int.U∩Int.V . J1(S)

is perfect and completely invariant set, so it contains all limits of the sequences (fn) and
(gn). This prove that Int.J1(S) 6= ∅ and hence by Theorem 4.3.2, J1(S) = C.

Proof of Theorem 4.3.3. The proof follows by using Lemma 4.3.1 to the Theorem 4.3.2.

F1(S) may also have a completely invariant component as in classical transcendental
dynamics.

Theorem 4.3.4. If S is a transcendental semigroup, then F1(S) has at most one com-

pletely invariant component.

Proof. For a transcendental entire function f , F (f) has at most one completely invariant
component ([51, Theorem 4.38]). By Theorem 4.1.3(1), F1(S) ⊂ F (h) for all h ∈ S.
This follows the assertion.

F1(S) can have either 0 or infinitely many multiply connected components as in
classical transcendental dynamics.

Theorem 4.3.5. Let F1(S) be a completely invariant Fatou set of transcendental semi-

group S. Then number of multiply connected components of F1(S) is either 0 or∞.

Proof. For a transcendental entire function f , the number of multiply connected com-
ponents of F (f) are either 0 or∞ ([51, Theorem 4.43]). By Definition 4.3.1, F1(S) ⊂
F (h) for all h ∈ S. This follows the assertion.

4.4 Completely invariant escaping sets

From Theorem 4.2.1, we can say that the set I(S) is not neccessirly S-completely in-
variant. In this section, we generalize the completely invariant notion of the escaping
set of a single transcendental entire function to the completely invariant notion of this
set in transcendental semigroup dynamics. By Theorem 4.2.3, the escaping set I(S) of
an abelian transcendental semigroup S is S-backward invariant. This is a condition for
a completely invariant escaping set of a transcendental semigroup. It is a generalization
of completely invariant property of classical escaping sets of a function to more general
settings of semigroups. In this section, we generalize the classical completely invariant
notion of escaping sets of a function to the completely invariant notion of escaping sets
of transcendental semigroups.

52



Definition 4.4.1 (Completely invariant escaping set). Let S be a transcendental semi-

group. We define a completely invariant escaping set of S by

I1(S) =
⋂

i∈N
{Gi : Gi is a completely invariant set under each f ∈ S and each Gi

contains points z ∈ C such that fn(z)→∞ as n→∞ for every f ∈ S}

By Definition 4.4.1, the set I1(S) is completely invariant under each element of S,
and this set is same as the escaping set I(S) if and only if S is an abelian semigroup.
There are non-trivial transcendental semigroups from which one can get completely in-
variant escaping sets. The following assertion will be a good source of several examples.

Theorem 4.4.1. Suppose that S = 〈f, g〉 and I(f) = I(g). Then I1(S) = I(S).

Proof. Since I(f) is completely invariant under f and I(g) is completely invariant un-
der g. If I(f) = I(g), then I(h) = I(f) = I(g) = I(S) for all h ∈ S. In this case,
I1(S) = I(S).

For an example, semigroup S = 〈f, g〉 generated by functions f(z) = eλz, λ ∈
C \ {0} and g(z) = fk + 2πi

λ
, k ∈ N is completely invariant. Here, we can find

that I(h) = I(f) = I(g) = I(S) for all h ∈ S. Another example of same kind
is a semigroup S = 〈f, g〉 generated by the functions f(z) = λ sin z, λ ∈ C \ {0}
and g(z) = fk + 2π, k ∈ N. Note that in both of examples, the semigroup S is
not abelian. From this discussion, we can conclude that escaping set I(S) may be
completely invariant even if semigroup S is not abelian. If S is an abelian transcendental
semigroup, then I(S) is nothing other than the set I1(S). There are transcendental
semigroups, where escaping sets and completely invariant escaping sets might be empty.

Example 4.4.1. Suppose that S = 〈f, g〉, where f(z) = ez and g(z) = e−z. Then

both I1(S) and I(S) are empty sets. For z ∈ I(f), then g(fn(z)) = 1/ef
n(z) =

1/f(fn(z)) = 1/fn+1(z)→ 0 as n→∞.

Theorem 4.4.2. Let S be a transcendental semigroup. Then I1(S) ⊂ I(S).

Proof. Let z ∈ I1(S). Then by Definition 4.4.1, z ∈ Gi for all i and fn(z) → ∞ as
n→∞ for every f ∈ S. This proves that z ∈ I(S).

Let S be a transcendental semigroup such that I1(S) 6= ∅. Then by Theorem 4.4.2,
we can write I1(S) ⊂ I(h) for all h ∈ S. I(h) is completely invariant for every h ∈ S,
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so their intersection
⋂
h∈S I(h) is also completely invariant. Define

E0 =
⋂

h∈S
I(h)

E1 =
⋃

h∈S
h−1(E0) ∪

⋃

h∈S
h(E0)

. . . . . . . . . . . . . . .

En+1 =
⋃

h∈S
h−1(En) ∪

⋃

h∈S
h(En)

and
E =

⋂

n∈N∪{0}
En (4.4.1)

Theorem 4.4.3. Let S be a transcendental semigroup. The set E =
⋂
n∈N∪{0}En is

non-empty.

Proof. We show that I1(S) ⊂ En for every n ∈ N ∪ {0} by induction. I1(S) ⊂ E0

is obvious. By the completely invariant property of I1(S) under each h ∈ S, I1(S) is
subset of each sets h−1(E0) and h(E0) for all h ∈ S. This shows I1(S) ⊂ E1. Let us
suppose I1(S) ⊂ En. En+1 = h−1(En)∪h(En) for all h ∈ S, so, by the similar fashion
as above, I1(S) is subset of each of the sets h−1(En) and h(En) for all h ∈ S. This
shows that I1(S) ⊂ En+1 for each n ∈ N ∪ {0}. This proves that E 6= ∅.

The following result will be a convenient description of a completely invariant es-
caping set of a transcendental semigroup.

Theorem 4.4.4. Let S be a transcendental semigroup. Then E = I1(S), where E is a

set as defined in (4.4.1).

First, we prove the following lemma.

Lemma 4.4.1. The closure E of any E ⊂ C is completely invariant under a transcen-

dental entire function f if and only if the set E itself is completely invariant under the

same function f .

Proof. Let E is completely invariant under f . Then f(E) ⊂ E and f−1(E) ⊂ E.
Let z ∈ E, then f(z) ∈ f(E), and so f(z) ∈ E. Also, z ∈ E =⇒ there exists
sequence (zn)n∈N in E such that zn → z as n → ∞. f is a continuous function f ,
so f(zn) → f(z) as n → ∞. As f(z) ∈ E, we must have f(zn) ∈ E. Note that
f(zn) ∈ f(E) as zn ∈ E. Thus, we must have f(E) ⊂ E.
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Next, let z ∈ E, then f−1(z) ∈ f−1(E) ⊂ E. So there exists f−1(zn) ∈ E such that
f−1(zn) → f−1(z) as n → ∞. However, it is obvious that f−1(zn) ∈ f−1(E). Thus
we must have f−1(E) ⊂ E.

The converse part of this lemma follows from [15, Theorem 3.2.3].

It is noted that under the assumption of Lemma 4.4.1, not only the closure of com-
pletely invariant set is completely invariant but also its complement, interior and bound-
ary are also completely invariant (see, for instance, [15, Theorem 3.2.3]).

Proof of Theorem 4.4.4. By Definition 4.4.1, I1(S) is completely invariant for every
h ∈ S, and is contained in I(h) for all h ∈ S. Hence, by Theorem 4.4.3, I1(S) is
contained in En for all n ∈ N ∪ {0}. Therefore, I1(S) ⊂ E.

On the other hand, set E is contained in I(h), where each I(h) is completely in-
variant. We need to show that E is completely invariant for all f ∈ S, and for every
z ∈ E, fn(z)→∞ as n→∞ for all f ∈ S.

Any f ∈ S is continuous in C, and E ⊂ C. Therefore, by the usual topological
argument, f(E) ⊂ f(E)⇒ f−1(f(E)) is closed in C for all f ∈ S ⇒ f is a continuous
closed map. This shows that f(E) and f−1(E) are both closed sets in C. As each f ∈ S
is continuous closed map and f(En) ⊂ En and f−1(En) ⊂ En for all n, then f(E) ⊂ E

and f−1(E) ⊂ E. By Lemma 4.4.1, it proves that E is completely invariant under each
f ∈ S.

Finally, any z ∈ E ⇒ z ∈ En for all n. Again, En is a union of all images and
pre-images of En−1 under each f ∈ S. By this way, the point z belongs to the image
or pre-image of E0 under each f ∈ S. E0 is contained in I(f) for all f ∈ S, so,
fn(z)→∞ for all f ∈ S. Hence, E ⊂ I1(S).
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Chapter 5

NEARLY ABELIAN

HOLOMORPHIC SEMIGROUPS

In this chapter, we extend some results of abelian transcendental semigroups to more
general setting of nearly abelian transcendental semigroups. The principal feature of
nearly abelian rational semigroups was investigated by Hinkannen and Martin [46, The-
orem 4.1]. In such a case, they found that the Julia set J(S) of a rational semigroup S
is same as the Julia set J(f) of each f ∈ S.

5.1 Nearly abelian transcendental semigroups

We defined abelian holomorphic semigroups, and we discussed some results associated
with it. There is also a slightly larger family of transcendental semigroups that can fulfill
this criteria. We call these semigroups by nearly abelian and it is considered the more
general form than that of abelian semigroups.

Definition 5.1.1 (Nearly abelian transcendental semigroup). We say that a transcen-

dental semigroup S is nearly abelian if there is a family Φ = {φi} of conformal maps

of the form az + b for some non-zero a such that

1. φi(F (S)) = F (S) for all φi ∈ Φ, and

2. for all f, g ∈ S, there is a φ ∈ Φ such that f ◦ g = φ ◦ g ◦ f .

It is noted that a particular example of a nearly abelian semigroup is an abelian
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semigroup. An abelian semigroup follows trivially from a nearly abelian semigroup if
we choose φ an identity function.

The Definition 5.1.1 of nearly abelian transcendental semigroup looks more restric-
tive on affine maps of the form φ(z) = az + b, a 6= 0, and this type of function can
play the role of semiconjugacy to certain class of transcendental entire functions. Re-
call that a function f is (semi) conjugate to another function g if there is a continuous
function φ such that φ ◦ f = g ◦ φ. For example, the transcendental entire function
f1(z) = λ cos z, λ ∈ C is semi-conjugate to another transcendental entire function
f2(z) = −λ cos z because there is a function φ(z) = −z such that φ ◦ f1 = f2 ◦ φ. If
there is a transcendental semigroup generated by such type of semi-conjugate functions,
then semigroup will more likely to be nearly abelian.

Theorem 5.1.1 (An example of nearly abelian transcendental semigroup). Let S =

〈f1, f2, . . . fn, . . .〉 be a transcendental semigroup, and let φ be an entire function of the

form z → az + b for some non zero a with a, b ∈ C such that fi ◦ φ = fi ◦ φ for all i,

and fj = φ ◦ fi with i 6= j. Then semigroup S is nearly abelian.

To prove this Theorem 5.1.1, we need the following lemma.

Lemma 5.1.1. Let S = 〈f1, f2, . . . fn, . . .〉 be a transcendental semigroup and let φ be

an entire function of the form z → az + b for some non zero a such that a, b ∈ C. If

φ◦fi = fj ◦φ for all fi and fj with i 6= j, then φ(F (S)) = F (S) and φ(J(S)) = J(S).

Proof. First, we prove that if φ◦fi = fj ◦φ for all i and j with i 6= j, then φ◦f = g ◦φ
for all f, g ∈ S. By definition, any f, g ∈ S can be written as f = fi1 ◦ fi2 ◦ . . . ◦ fin,
and g = fj1 ◦ fj2 ◦ . . . ◦ fjn , where ik, jk ∈ {1, 2 . . .}, and k = 1, 2, . . . , n. Now,
φ◦f = φ◦fi1◦fi2◦. . .◦fin = fj1◦φ◦◦fi2◦. . .◦fin = . . . = fj1◦fj2◦. . .◦fjn◦φ = g◦φ.
This proves our claim.

Let w ∈ φ(F (S)). Then there is z0 ∈ F (S) such that w = φ(z0). Let U ⊂ F (S)

is a neighborhood of z0 such that |f(z) − f(z0)| < ε/2 for all z ∈ U and f ∈ S. This
shows that f(U) has diameter less than ε for all f ∈ S. The function φ has the bounded
first derivative a 6= 0, so it is a Lipschitz with Lipschitz constant k = sup |φ′(z)| = a.

Now, for any g ∈ S, the diameter of g(φ(U)) = φ(f(U)) is less than kε. Hence
w = φ(z0) ∈ F (S). This shows that φ(F (S)) ⊂ F (S).

Next, let w ∈ φ(J(S)). Then w = φ(z0) for some z0 ∈ J(S). Let z0 be a repelling
fixed point for some f ∈ S, but not a critical point of φ. Then φ ◦ f = g ◦ φ gives g
has a fixed point at φ(z0) with same multiplier as that of f at z0. Thus, φ maps repelling
fixed points of any f ∈ S to repelling fixed points of another g ∈ S. By [75, Theorem
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4.1 and 4.2], Julia set of a transcendental semigroup is perfect, and

J(S) =
⋃

f∈S
J(f)),

where repelling periodic points are dense in J(f) for each f ∈ S. Therefore, by above
discussion, it then follows that φ(J(S)) ⊂ J(S).

Finally, the fact φ(C) = C is obvious. Using this fact in F (S) = C − J(S) and
J(S) = C− F (S), we get

φ(F (S)) = C− φ(J(S)) and φ(J(S)) = C− φ(F (S)). (5.1.1)

Again, using facts φ(J(S)) ⊂ J(S) and φ(F (S)) ⊂ F (S) in 5.1.1, we will get required
reverse inclusions F (S) ⊂ φ(F (S)), and J(S) ⊂ φ(J(S)).

It is noted that this Lemma 5.1.1 tells us that the first condition φi(F (S)) = F (S)

of the nearly abelian semigroup holds obviously if a semigroup is generated by (semi)
conjugate functions. This is a way that one can replace the first condition of Definition
5.1.1 of the nearly abelian transcendental semigroup.

Proof of Theorem 5.1.1. The first part for nearly abelian semigroup follows from Lemma
5.1.1. The second part follows from the following simple calculations. The hypothesis
φ ◦ fi = fj ◦φ for all fi and fj with i 6= j gives f ◦φ = φ ◦ g for all f, g ∈ S. From the
hypothesis φ ◦ fi = fj for all f 6= j, we can get φ ◦ f = g for all f, g ∈ S. Therefore,
φ ◦ g ◦ f = f ◦ φ ◦ f = f ◦ g for all f, g ∈ S.

There are general and particular examples of transcendental entire functions that can
fulfill the essence of Theorem 5.1.1, and so the semigroup generated by these functions
is nearly abelian.

Example 5.1.1. Let φ be an entire function of the form z → −z + c for some c ∈ C.

Let f be a transcendental entire function with f ◦ φ = f , and a function g is defined

by g = φ ◦ f . Then functions f and g are conjugates, and the semigroup S = 〈f, g〉 is

nearly abelian.

Solution. Let f, g and φ be as in the statement of the question. It is clear that φ2

= identity. Then g ◦ φ = φ ◦ f ◦ φ = φ ◦ f. This proves that functions f and g

are conjugates. The condition φ(F (S)) = F (S) for all φ ∈ Φ of the definition of
nearly abelian semigroup follows from Lemma 5.1.1. The second condition follows
from the Theorem 5.1.1. More explicitly, it follows from the following calculation.
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f ◦ g = f ◦ φ ◦ f = f ◦ f = f 2 = φ2 ◦ f 2 = φ ◦ φ ◦ f ◦ f = φ ◦ g ◦ f. Therefore, the
semigroup S = 〈f, g〉 generated by these two functions f and g is nearly abelian. From
the fact g = φ ◦ f , we can say that φ is not an identity.

Example 5.1.2. Let f(z) = ez
2

+ λ, and g = φ ◦ f where φ(z) = −z. Then the

semigroup S = 〈f, g〉 is nearly abelian. Likewise, functions f(z) = λ cos z and g =

φ ◦ f , where φ(z) = −z, generate the nearly abelian semigroup.

Solution. The given functions in the question fulfills all conditions such as f ◦ φ = f ,
φ2 = identity as well as φ ◦ f = g ◦ φ of Theorem 5.1.1 and Example 5.1.1. Therefore,
the semigroup S = 〈f, g〉 is nearly abelian. Note that φ ◦ f = −f 6= f , so φ is not an
identity.

It is noted that Example 5.1.1 is just for a nice general example of Theorem 5.1.1,
and it says there is a nearly abelian transcendental semigroup. Unfortunately, this exam-
ple does not generate many more examples of transcendental entire functions that can
generate transcendental semigroup. Basically, it generates even functions or translates
of even functions. For example: If we set h(z) = f(z+c/2), then h(z) = f(z+c/2) =

(f ◦ φ)(z) = f(c− z − c/2) = f(c/2− z) = h(−z). That is, h is an even function.

Hinkkanen and Martin [46, Theorem 4.1] proved that the Julia set of the nearly
abelian rational semigroup is same as the Julia set of each of its element. Indeed, this is
a generalization of the result of abelian rational semigroup that we proved in Theorem
4.2.6. It will be difficult to say the same in general if we take abelian transcendental
semigroup. That is, if we have abelian transcendental semigroup S, it would not always
J(S) = J(f) for all f ∈ S. It would be sometime in certain case, and one of the case
was proved by Poon [75, Theorem 5.1].

Proposition 5.1.1. Let S = 〈f1, f2, . . . fn〉 is an abelian finite type transcendental semi-

group. Then F (S) = F (f) for all f ∈ S.

Indeed, this result looks like an extension work of the following results of Singh and
Wang [97, Theorems 2, 3] of classical transcendental dynamics.

Proposition 5.1.2. Let f and g are two permutable transcendental entire functions. If

both f and g have no wandering domains, then J(f) = J(f ◦ g) = J(g).

Proposition 5.1.3. Let f and g are two permutable transcendental entire functions. If

both f and g are of bounded type, then J(f) = J(f ◦ g) = J(g).

Our particular interest is how far the result of Poon [75, Theorem 5.1] can be gener-
alized to nearly abelian transcendental semigroups.
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Theorem 5.1.2. Let S be a nearly abelian semigroup generated by transcendental entire

functions of finite type. Then for each g ∈ S, we have I(S) = I(g), J(S) = J(g) and

F (S) = F (g).

First, we state and prove the following results.

Lemma 5.1.2. Let f and g be two transcendental entire functions of finite type such

that f ◦ g = φ ◦ g ◦ f , where φ(z) = az + b, and |a| = 1. Then F (f) = F (g).

Proof. f and g are transcendental entire functions of finite type such that f ◦ g = φ ◦
g ◦ f. Then by [51, Theorems 4.29 and 4.32], f and g do not have Baker domains
and wandering domains. That is, there are subsequences (fni) and (gni) which do not
diverge to∞ for all z in their respective Fatou sets. In order to prove this lemma, we
only need to show that F (f) ⊂ F (g), that is, g(F (f)) ⊂ F (g). By symmetry, the
reverse inclusion F (g) ⊂ F (f) holds similarly.

Consider a point z0 ∈ F (f) and a neighborhood U of z0 such that U ⊆ F (f). Then
g(U) is a neighborhood of g(z0). Consider a sequence (fn) of iterates of f on g(U). By
assumption, there is a subsequence (fni) of (fn) converges to a holomorphic function
h : U → C. In such a case, fni converges to g ◦ h on g(U), that is, g ◦ fni → g ◦ h = ξ

uniformly on U . By assumption, fni ◦ g = φ ◦ g ◦ fni → φ ◦ ξ = ϕ uniformly on U .
This proves that {fn ◦ g : n ∈ N} is a normal family on U , and so {fn : n ∈ N} is
a normal family on g(U). Since F (f) is a maximal open set where {fn : n ∈ N} is
normal. Therefore, we have g(U) ⊆ F (f). This proves that g(z0) ∈ F (f), and hence
g(F (f)) ⊂ F (g).

Lemma 5.1.3. Let f and g be two transcendental entire functions of finite type such

that f ◦ g = φ ◦ g ◦ f , where φ(z) = az + b, and |a| = 1. Then I(f) = I(g).

Proof. By Lemma 5.1.2, we have J(f) = J(g). By Lemma 4.2.2, the rest of the proof
of this lemma follows.

Proof of Theorem 5.1.2. We prove I(S) = I(f) for all f ∈ S and the remaining equal-
ities follows from Proposition 4.1.4. The semigroup S is nearly abelian, so for all
f, g ∈ S, there is φ ∈ Φ such that f ◦ g = φ ◦ g ◦ f . Also, f = fi1 ◦ fi2 ◦ . . . ◦ fin ,
and g = fj1 ◦ fj2 ◦ . . . ◦ fjn , where ik, jk ∈ {1, 2 . . .}, k = 1, 2, . . . , n, and each fik , fjk
is of finite type. By [75, Lemma 5.1], every f and g in S is of finite type. By Lemma
5.1.3, we have I(f) = I(g) for all f, g ∈ S. By Theorem 4.1.3(3), I(S) =

⋂
f∈S I(f).

Therefore, this fact together with the fact I(f) = I(g) for all f, g ∈ S of Lemma 5.1.3,
we can conclude the assertion of Theorem 5.1.2.
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5.2 Conjugate semigroups of a holomorphic semigroup

The notion of nearly abelian holomorphic semigroup can be useful for defining conju-
gate semigroups of a holomorphic semigroup. The family of Φ = {φi} of conformal
maps of the form z → az + b for some non-zero a used in Definition 5.1.1 has given a
spacial name.

Definition 5.2.1 (Commutator). Let S be a nearly abelian transcendental semigroup.

The set of the form Φ(S) = {φ : there are f, g ∈ S such that f ◦ g = φ ◦ g ◦ f} is

called the set of commutators of S.

We write φ = [f, g] if f ◦ g = φ ◦ g ◦ f . Note that [f, g]−1 = [g, f ] and for any
f ∈ S, [f, f ] = identity.

Definition 5.2.2. Let S = 〈f1, f2, f3, . . . , fn〉 be a nearly abelian transcendental semi-

group, and Φ(S) be a set of its commutators. Let us define a set

S
′
= 〈φ ◦ f1 ◦ φ−1, φ ◦ f2 ◦ φ−1, . . . , φ ◦ fn ◦ φ−1〉 (5.2.1)

where φ ∈ Φ(S) such that φ = [fi, fj] and φ−1 = [fj, fi]. If we let gi = φ ◦ fi ◦ φ−1,

then we say function fi is conjugate to gi by a conformal map φ : C → C of the form

az + b for some non-zero a. The semigroup S
′

is then called a conjugate semigroup of

the semigroup S.

Theorem 5.2.1 ([118, Theorem 2.1]). Let S
′

be a conjugate semigroup of a holomor-

phic semigroup S. Then S
′

is nearly abelian if and only if S is nearly abelian.

Proof. Let S be a nearly abelian transcendental semigroup. Then fi ◦ fj = φ ◦ fj ◦ fi
for φ ∈ Φ(S) and fi, fj ∈ S. Now for any φ ◦ fi ◦ φ−1, φ ◦ fj ◦ φ−1 ∈ S ′ , we have

(φ ◦ fi ◦ φ−1) ◦ (φ ◦ fj ◦ φ−1) =φ ◦ fi ◦ fj ◦ φ−1

=φ ◦ ξ ◦ fj ◦ fi ◦ φ−1 for some ξ ∈ Φ(S)

=ξ ◦ φ ◦ fj ◦ fi ◦ φ−1

=ξ ◦ (φ ◦ fj ◦ φ−1) ◦ (φ ◦ fi ◦ φ−1)

This shows that the conjugate semigroup S ′ of a nearly abelian semigroup S is a nearly
abelian.
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Conversely, suppose that the semigroup S ′ is nearly abelian. Then gi◦gj = φ◦gj ◦gi
for φ ∈ Φ(S) and gi, gj ∈ S ′ , where gi = φ ◦ fi ◦ φ−1 and gj = φ ◦ fj ◦ φ−1. From
which get fi = φ−1 ◦ gi ◦ φ and fj = φ−1 ◦ gj ◦ φ. Now, for any fi, fj ∈ S, we have

fi ◦ fj =(φ−1 ◦ gi ◦ φ) ◦ (φ−1 ◦ gj ◦ φ)

=φ−1 ◦ gi ◦ gj ◦ φ

=φ−1 ◦ φ ◦ gj ◦ gi ◦ φ

=gj ◦ gi ◦ φ

=φ ◦ fj ◦ φ−1 ◦ φ ◦ fi ◦ φ−1 ◦ φ

=φ ◦ fj ◦ fi

This shows that semigroup S is nearly abelian if its conjugate semigroup S ′ is nearly
abelian.

The image of the Fatou, Julia and escaping sets of a nearly abelian semigroup under
commutator φ ∈ Φ(S) is respectively the Fatou, Julia and escaping sets of its conjugate
semigroup.

Theorem 5.2.2 ([118, Theorem 1.1]). Let S be a nearly abelian transcendental semi-

group, and Φ = {φi} be a set of commutators of of the form z → az + b for some

non-zero a. Let S
′

be a conjugate semigroup of S. Then there exists φ ∈ Φ such that

φ(I(S)) = I(S
′
), φ(J(S)) = J(S

′
) and φ(F (S)) = F (S

′
).

To proof this theorem, we need the following lemma.

Lemma 5.2.1 ([118, Lemma 2.1]). Let f and g be two transcendental entire functions,

and φ be an entire function of the form z → az+ b, where a 6= 0 such that φ◦f = g ◦φ.

Then φ(I(f)) = I(g), φ(J(f)) = J(g) and φ(F (f)) = F (g).

Proof. Let w ∈ φ(I(f)), then there is z ∈ I(f) such that w = φ(z). The condition
z ∈ I(f) =⇒ fn(z) → ∞ as n → ∞. Now gn(w) = gn(φ(z)) = (gn ◦ φ)(z) =

(gn−1 ◦ g ◦ φ)(z) = (gn−1 ◦ φ ◦ f)(z) = (gn−2 ◦ φ ◦ f 2)(z) = . . . = (φ ◦ fn)(z) =

φ(fn(z)). From φ(z) = az + b, (a 6= 0) and fn(z) → ∞ as n → ∞, we must have
gn(w)→∞ as n→∞. This shows that φ(I(f)) ⊂ I(g). For opposite inclusion, we
note that if z ∈ I(g) then we must have φ(z) ∈ I(g). Because φ(z) ∈ φ(I(g)) ⊂ I(g)

(similar argument as above). As above φ(fn(z)) = gn(φ(z)) → ∞ as n → ∞. This
shows that z ∈ φ(I(f)), and so I(g) ⊂ φ(I(f)). This proves that φ(I(f)) = I(g).
Remaining equality obtained from the facts ∂I(f) = J(f), and F (f) = C \ J(f).
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Proof of Theorem 5.2.2. Let φ ◦ fi ◦ φ−1 = gi for all i = 1, 2, · · · , n. From which we
get φ ◦ fi = gi ◦ φ for all i = 1, 2, · · · , n. Any f ∈ S and g ∈ S

′ can be written
respectively as f = fi1 ◦ fi2 ◦ . . . ◦ fin , and g = gi1 ◦ gi2 ◦ . . . ◦ fgin . From which we get
φ◦f = φ◦fi1◦fi2◦. . .◦fin = gi1◦φ◦fi2◦. . .◦fin = gi1◦gi2◦φ◦. . .◦fin = . . . = gi1◦gi2◦
. . .◦gin ◦φ = g ◦φ for all f ∈ S and g ∈ S ′ . S = 〈f1, f2, f3, . . . , fn〉 is a nearly abelian
transcendental semigroup, so from Theorem 5.1.2, we have I(S) = I(f), J(S) = J(f)

and F (S) = F (f) for all f ∈ S. Now I(S) = I(f) =⇒ φ(I(S)) = φ(I(f)). By
Lemma 5.2.1, φ(I(f)) = I(g). By Theorem 5.2.1, semigroup S ′ is nearly abelian, so
again by Theorem 5.1.2, we have I(S

′
) = I(g). Thus we get φ(I(S)) = I(S

′
). Next

two equality are obtained by the similar fashion.

Analogous to [46, Theorem 4.3], every function of the nearly abelian transcendental
semigroup S can be written as the composition of an element of commutator Φ(S), and
the composition of the certain powers of its generators.

Theorem 5.2.3 ([118, Theorem 1.2]). Let S = 〈f1, f2, f3, . . . , fn〉 be a nearly abelian

cancellative holomorphic semigroup. Then every element f ∈ S can be written as

f = φ ◦ f t11 ◦ f t22 ◦ f t33 ◦ · · · f tmm where φ ∈ Φ(S) if Φ(S) is a group or semigroup.

Otherwise, φ ∈ G, where G = 〈Φ(S)〉 is a group generated by Φ(S), and ti are non-

negative integers.

First, we need the following lemma.

Lemma 5.2.2 ([118, Lemma 3.1]). Let S be a nearly abelian transcendental semigroup.

Then for any f ∈ S, and for any φ ∈ Φ(S), there is a conformal map ξ such that

f ◦ φ = ξ ◦ f . Moreover, there are ξ1, ξ2 ∈ Φ(S) such that ξ = ξ1 ◦ ξ2.

Proof. Given φ ∈ Φ(S), there are g, h ∈ S such that g ◦ h = φ ◦ h ◦ g. For any f ∈ S,
we have

f ◦ g ◦ h = f ◦ φ ◦ h ◦ g. (5.2.2)

Furthermore, there are ξ1, ξ2 ∈ Φ(S) such that

f ◦ g ◦ h = ξ1 ◦ g ◦ f ◦ h = ξ1 ◦ ξ2 ◦ f ◦ h ◦ g. (5.2.3)

From the equations 5.2.2 and 5.2.3, we get f ◦ φ = ξ1 ◦ ξ2 ◦ f = ξ ◦ f, where ξ =

ξ1 ◦ ξ2.

Example 5.2.1 ([118, Example 3.1]). For f(z) = λ cos z ∈ S, there are φ(z) = π −
z, ξ(z) = −z ∈ Φ(S) such that f ◦ φ = ξ ◦ f . The linear map φ(z) = π − z can

be written as the composition of rotation through the angle π anticlockwise about the
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origin and the translation by π. The map ξ(z) = −z ∈ Φ(S) can be written as the

composition of identity map and the rotation through the angle π anticlockwise about

the origin.

However, it is not always possible to find an element φ ∈ Φ(S) such that f◦φ = ξ◦f .
For example if f(z) = ez

2
+ λ and ξ(z) = −z, then ξ ◦ f = −f 6= f = f ◦ φ for any

suitable choice of φ ∈ Φ(S).

Proof of Theorem 5.2.3. The proof of this theorem follows from the inductive applica-
tion of Lemma 5.2.2 to each element f = fi1 ◦ fi2 ◦ . . . ◦ fin of S.
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Chapter 6

FATOU, JULIA AND ESCAPING

SETS IN HOLOMORPHIC

(SUB)SEMIGROUP DYNAMICS

In this chapter, we investigate under what conditions the Fatou, Julia and escaping sets
of a holomorphic semigroup are respectively equal to the Fatou, Julia, and escaping sets
of its proper subsemigroups.

6.1 Finite indexed and cofinite indexed subsemigroups

There are various notions of how large a substructure is inside of an algebraic object in
order that the two structures share certain properties. One such a notion is index, and
it plays an important role in general group theory and semigroup theory. It is used to
measure the difference between a group (semigroup) and a subgroup (subsemigroup).
It occurs in many important theorems of the group theory and semigroup theory. The
notions of finite index, cofinite index and Rees index of a subsemigroup have been used
to gauge the size of subsemigroup. If the subsemigroup T is big enough in semigroup
S, then S and T share many properties.

It is possible that the Fatou, Julia, or escaping set of a holomorphic semigroup may
be equal, respectively, to the Fatou, Julia, or escaping set of a proper subsemigroup.

Definition 6.1.1 (Finite index and cofinite index). A subsemigroup T of a holomorphic
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semigroup S is said to be of finite index if there exists a finite collection {f1, f2, . . . , fn}
of elements of S1, where S1 = S ∪ {Identity}, such that

S = (f1 ◦ T ) ∪ (f2 ◦ T ) ∪ . . . ∪ (fn ◦ T ) (6.1.1)

The smallest n that satisfies (6.1.1) is called the index of T in S. Similarly, a subsemi-

group T of a holomorphic semigroup S is said to be of cofinite index if there exists

finite collection {f1, f2, . . . , fn} of elements of S1 such that for any f ∈ S, there is

i ∈ {1, 2, . . . , n} such that

fi ◦ f ∈ T (6.1.2)

The smallest n that satisfies (6.1.2) is called the cofinite index of T in S.

It is noted that the size of a subsemigroup T of a semigroup S is measured in terms
of index. If a subsemigroup T has a finite index or cofinite index in the semigroup
S, then we say T is a finite indexed subsemigroup or a cofinite indexed subsemigroup
respectively.

In semigroup theory, the cofinite index is also known as Grigorochuk index, and this
index was introduced by Grigorochuk [41] in 1988. Maltcev and Ruskuc [64, Theorem
3.1] proved that for every element f of a finitely generated semigroup S, and every
proper cofinite indexed subsemigroup T , one has f ◦ T 6= S. It is noted that if the
semigroup is a group, the notion of finite index and cofinite index coincide. The sub-
semigroup T of a finitely generated semigroup S consisting of all words of finite length
(compositions of a finite number of holomorphic functions) has a finite index and a
cofinite index in S.

From Definition 6.1.1, the finite index and cofinite index of subsemigroups of the
following examples will be clear.

Example 6.1.1 ([115, Example 2.1]). A subsemigroup T = 〈sin sin z, cos cos z, sin cos z,

cos sin z〉 of the transcendental semigroup S = 〈sin z, cos z〉 has finite index 3 and cofi-

nite index 2.

Example 6.1.2 ([115, Example 2.2]). A subset T = {words (compositions) begining with

f} of a holomorphic semigroup S = 〈f, g〉 is clearly a subsemigroup of S. Then T has

an infinite index but cofinite index 1 in S.

It is noted that in Example 6.1.2, S is finitely generated but T is not. Since any
generating set of T must contain {f ◦ gn : n ≥ 1}. The only cofinite subsemigroup of
T is T itself. So T has cofinite index 1 in S.
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Example 6.1.3 ([115, Example 2.3]). Let S = 〈f〉 where f is a holomorphic function.

Then the subsemigroup T = 〈fn : n ∈ N〉. has finite index n in S and cofinite index 1

in S.

It is noted that in Example 6.1.3, the subsemigroup T has n different translates in
S, which are T, f ◦ T, . . . , fn−1 ◦ T . Here, the only cofinite subsemigroup of T is T
itself. If we choose the subsemigroup of S to be S itself, then there are infinitely many
translates of S, namely, h ◦ S = h ◦ 〈f〉 for all h ∈ S. So, S has an infinite index in
itself. Again, it has cofinite index 1 in itself.

Using Theorem 4.1.3, we can prove the following assertion:

Lemma 6.1.1 ([115, Lemma 2.1]). For any subsemigroup T of a holomorphic semi-

group S, we have F (S) ⊂ F (T ), J(S) ⊃ J(T ).

Proof. We prove F (S) ⊂ F (T ). The next inclusion follows taking the complements.
By Theorem 4.1.3, F (S) ⊂ ∩f∈SF (f), and F (T ) ⊂ ∩g∈TF (g) for any subsemigroup
T of the semigroup S. Since any g ∈ T is also in S, so by same Theorem 4.1.3, we
also have F (S) ⊂ F (g) for all g ∈ T , and hence F (S) ⊂ ∩g∈TF (g). Now for any
z ∈ F (S), we have z ∈ ∩g∈TF (g) for all g ∈ T . This implies z ∈ F (g) for all g ∈ T .
This proves z ∈ F (T ) and hence F (S) ⊂ F (T ).

Hinkannen and Martin [46, Theorem 2.4] proved that if a subsemigroup T has a
finite index or a cofinite index in the rational semigroup S, then F (S) = F (T ) and
J(S) = J(T ). In the following theorem, we prove the same result in the case of a
general holomorphic semigroup. It is noted that by a general holomorphic semigroup,
we mean either a rational semigroup or a transcendental semigroup.

Theorem 6.1.1 ([115, Theorem 2.1]). If a subsemigroup T has a finite index or a cofinite

index in the holomorphic semigroup S, then F (S) = F (T ) and J(S) = J(T ).

Proof. By Lemma 6.1.1, F (S) ⊂ F (T ) for any holomorphic semigroup S. If S is a
rational semigroup, the result follows from [46, Theorem 2.4]. We prove the reverse
inclusion, if S is a transcendental semigroup.

Let the subsemigroup T of a semigroup S has finite index n. Then by Definition
6.1.1, there exists a finite collection {f1, f2, . . . , fn} of elements of S1 such that

S = f1 ◦ T ∪ f2 ◦ T ∪ . . . ∪ fn ◦ T

Then for any g ∈ S, there is an h ∈ T such that g = fi ◦ h. Choose a sequence
(gj)j∈N in S. Then each gj is of the form gj = fi ◦ hj , where hj ∈ T and 1 ≤ i ≤ n.

67



Here, we may assume the same i for all j. Hence, without loss of generality, we may
choose a subsequence (gjk) of (gj) such that gjk = fi ◦hjk for particular fi, where (hjk)

is a subsequence of (hj) in T . Since on F (T ), the sequence (hjk) has a convergent
subsequence so do the sequences (gjk) and (gj) in F (S). This proves F (T ) ⊂ F (S).

Let the subsemigroup T of a semigroup S have cofinite index n. Then by Definition
6.1.1, there exists a finite collection {f1, f2, . . . , fn} of elements of S1 such that for
every f ∈ S, there is i ∈ {1, 2, . . . , n} such that fi ◦ f ∈ T . Let us choose a sequence
(gj)j∈N in S. Then, for each j, there is an i with 1 ≤ i ≤ n such that fi ◦ gj = hj ∈ T .
Let z ∈ F (T ). Then the sequence (hj) has a convergent subsequence in T , and hence
so does the sequence (gj) in F (S). This proves F (T ) ⊂ F (S).

Next, we see a special subsemigroup of a holomorphic semigroup that yields a cofi-
nite index.

Definition 6.1.2 (Stablizer, wandering component and stable domains). For a holo-

morphic semigroup S, let U be a component of the Fatou set F (S) and Uf be a compo-

nent of the Fatou set containing f(U) for some f ∈ S. The set of the form

SU = {f ∈ S : Uf = U}

is called the stabilizer of U on S. If SU is non-empty, we say that a component U

satisfying Uf = U is a stable basin for S. The component U of F (S) is said to be

wandering if the set {Uf : f ∈ S} contains infinitely many elements. That is, U is a

wandering domain if there is sequence (fi)i∈N of elements of S such that Ufi 6= Ufj for

i 6= j.

It is noted that for any rational function f , we always have Uf = U , and hence US is
non-empty for a rational semigroup S. However, if f is transcendental, it is possible that
Uf 6= U . Therefore, SU may be empty for a transcendental semigroup S. Bergweiler
and Rohde [22] proved that Uf − U contains at most one point which is an asymptotic
value of f if f is an entire function.

Lemma 6.1.2 ([115, Lemma 2.2]). Let S be a holomorphic semigroup. Then the stabi-

lizer SU (if it is non-empty) is a subsemigroup of S and F (S) ⊂ F (SU), J(S) ⊃ J(SU).

Proof. Let f, g ∈ SU . Then by Definition 6.1.2, Uf = U and Ug = U where Uf
and Ug are components of the Fatou set containing f(U) and g(U) respectively. Then
f(U) ⊆ Uf = U and g(U) ⊆ Ug = U =⇒ (f ◦ g)(U) = f(g(U)) ⊆ f(Ug) =

f(U) ⊆ Uf = U Since (f ◦ g)(U) ⊆ Uf◦g, so either Uf◦g ⊆ U or U ⊆ Uf◦g. The
only possibility in this case is Uf◦g = U . Hence f ◦ g ∈ SU , which proves that SU
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is a subsemigroup of S. The proofs of F (S) ⊂ F (SU), J(S) ⊃ J(SU) follow from
Lemma 6.1.1.

There may be a connection between having no wandering domains and the stable
basins of cofinite index. We have established the connection in the following theorem
for a general holomorphic semigroup S.

Theorem 6.1.2 ([115, Theorem 2.2]). Let S be a holomorphic semigroup with no

wandering domains. Let U be any component of Fatou set. Then the forward orbit

{Uf : f ∈ S} of U under S contains a stabilizer of U of cofinite index.

Proof. If S is a rational semigroup, see, for instance, the proof of [46, Theorem 6.1].
If S is a transcendental semigroup, we sketch our proof in the following way. We are
given that U is a non-wandering component of the Fatou set F (S). So U has a finite
forward orbit U1, U2, . . . , Un (say) with U1 = U .
Case (i): If for every i = 1, 2, . . . n, there is fi ∈ S such that fi(Ui) ⊆ U1, then by
Lemma 6.1.2, the stabilizer SU1 = {f ∈ S : U1f = U1} is a subsemigroup of S. For
any f ∈ S there is fi for each i = 1, 2, . . . , n such that U1fi◦f

= U1. This shows that
fi ◦ f ∈ SU1 . Therefore U1 is a required stable basin such that the stabilizer SU1 has a
cofinite index in S.
Case (ii): If, for every j = 2, . . . n, there is fj ∈ S such that fj(Uj) ⊆ V , where V = Uj

such that j ≥ 2, then the number of components of forward orbits of V is strictly less
than that of U . In this way, we can find a component W = Ui for some i ≤ n whose
forward orbit has fewest components. For every component Wg of the forward orbit of
W , there is f ∈ S such that f(Wg) ⊆ W . That is, Wg◦f = W , and it follows that W is
a required stable basin such that the stabilizer SW has a cofinite index.

We prove the following result which is an extension of [46, Theorem 2.4] to tran-
scendental semigroup dynamics.

Theorem 6.1.3 ([115, Theorem 1.1]). If a subsemigroup T has finite index or cofinite

index in an abelian transcendental semigroup S, then I(S) = I(T ), J(S) = J(T ) and

F (S) = F (T ).

We now prove a result analogous to Lemma 6.1.1 in the case of an escaping set of a
transcendental semigroup.

Lemma 6.1.3 ([115, Lemma 3.1]). For any subsemigroup T of a transcendental semi-

group S, we have I(S) ⊂ I(T ).

Proof. By Theorem 4.1.1, I(S) ⊂ ∩f∈SI(f) and I(T ) ⊂ ∩g∈T I(g) for any sub-
semigroup T of S. Since T ⊂ S, the same theorem implies that I(S) ⊂ I(g) for all
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g ∈ T . Hence I(S) ⊂ ∩g∈T I(g). Now for any z ∈ I(S), we have z ∈ ∩g∈T I(g)

for all g ∈ T . This implies z ∈ I(g) for all g ∈ T . By Definition 4.1.1, we
have gn(z) → ∞ as n → ∞ for all g ∈ T . This proves z ∈ I(T ) and hence
I(S) ⊂ I(T ).

Proof of Theorem 6.1.3. We prove I(S) = I(T ). The fact that J(S) = J(T ) follows
from Lemma 4.1.4 (2). That F (S) = F (T ) is also obvious. By Lemma 6.1.3, we
always have I(S) ⊂ I(T ) for any subsemigroup T of S. For proving this theorem, it is
enough to show the reverse inclusion I(T ) ⊂ I(S).

Let a subsemigroup T of a semigroup S have finite index n. Then, by Definition
6.1.1, there exists a finite collection {f1, f2, . . . , fn} of elements of S1 such that

S = f1 ◦ T ∪ f2 ◦ T ∪ . . . ∪ fn ◦ T

Then, for any g ∈ S, there is h ∈ T such that g = fi ◦ h. Choose a sequence (gj)j∈N in
S. Then each gj is of the form gj = fi ◦ hj , where hj ∈ T , 1 ≤ i ≤ n. Here, we may
assume the same i for all j. Let z ∈ I(T ). Then by Lemma 4.1.2, every non-convergent
sequence (hj)j∈N in T has a divergent subsequence (hjk)jk∈N at the point z. That is,
hnjk(z) → ∞ as n → ∞ for all jk. In this case, every sequence (gj)j∈N in S has a
subsequence (gjk)k∈N, where gjk = fi ◦ hjk with hnjk(z) → ∞ as n → ∞. Since S is
an abelian transcendental semigroup, gjk = fi ◦ hjk = hjk ◦ fi. Thus, we may write
gnjk(z) = hnjk(fi(z)) → ∞ as n → ∞ This shows that fi(z) ∈ I(S). If fi = identity
for a particular i, we are done. If fi is not identity, then it is an element of an abelian
transcendental semigroup S, and in this case I(S) is backward invariant by Theorem
4.2.3. So we must have z ∈ I(S). Therefore, I(T ) ⊂ I(S).

Let a subsemigroup T of a semigroup S have cofinite index n. Then by Definition
6.1.1, there exists a finite collection {f1, f2, . . . , fn} of elements of S1 such that for
every f ∈ S, there is i ∈ {1, 2, . . . , n} such that fi ◦ f ∈ T . Let us choose a sequence
(gj)j∈N in S. Then for each j, there is a i with 1 ≤ i ≤ n such that fi ◦ gj = hj ∈ T .
Let z ∈ I(T ). Then by Lemma 4.1.2, every non-convergent sequence (hj)j∈N in T has
a divergent subsequence (hjk)jk∈N at the point z. This follows that sequence (fi ◦ gj)
has a divergent subsequence (fi ◦ gjk) (say) at z. Since S is abelian, we can write
(fi ◦ gjk)(z) = (gjk ◦ fi)(z) = gjk(fi(z)) = hjk(z) Now for any z ∈ I(T ), hjk ∈ T , we
must have hnjk(z) = gnjk(fi(z)) → ∞ asn → ∞. This implies that fi(z) ∈ I(S). If fi
= identity for a particular i, we are done. If fi is not an identity, then it is an element of
abelian transcendental semigroup S. So, as in the first part, we write I(T ) ⊂ I(S).
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6.2 Rees indexed subsemigroups

Let S be a holomorphic semigroup and f ∈ S. Then S ◦ f and f ◦S are subsemigroups
of S. It is noted that S ◦ f and f ◦S may not be finitely generated even if the semigroup
S is. For, if S ◦ f = 〈f1, f2, . . . , fn〉 where fi ∈ S for i = 1, 2, . . . n, then fi = gi ◦ f ,
where gi ∈ S. For any g ∈ S, we have gn◦f ∈ S ◦f for all n ≥ 1 but not every gn◦f ∈
〈f1, f2, . . . , fn〉. From this fact, we came to know that the notion of cofinite index fails
to preserve the basic finiteness (finitely generated) condition of a subsemigroup. That is,
if T is a subsemigroup of cofinite index in semigroup S, then S being finitely generated
may not always imply that T is finitely generated. There is another notion of index
which preserves the finiteness condition of a subsemigroup.

Definition 6.2.1 (Rees index). Let S be a semigroup and T be a subsemigroup. The

Rees index of T in S is defined as |S − T |+ 1, where |S − T | represents the cardinality

of S − T . In this case, T is a large subsemigroup of S, and S is a small extension of T .

The Rees index was first introduced by Jura [56] in the case where T is an ideal of
the semigroup S. In such a case, the Rees index of T in S is the cardinality of factor
semigroup S/T . From Definition 6.2.1, it is clear that the Rees index of T in S is the
size of the complement S − T . For a subsemigroup to have finite Rees index in its
parent semigroup is a fairly restrictive property, and it occurs naturally in semigroups
(for instance, all ideals in the additive semigroup of positive integers are of finite Rees
index). It is noted that Rees index does not generalize group index, and even the notion
of finite Rees index does not generalize finite group index. That is, if G is an infinite
group and H is a proper subgroup, the group index of H in G may be finite even though
the Rees index is infinite. In fact, let G be an infinite group and H is a subgroup of G.
Then H has finite Rees index in G if and only if H = G.

Next, we investigate how similar a semigroup S and its large subsemigroup T are.
One basic similarity (proved first by Jura [56]) is the following result.

Proposition 6.2.1. Let T be a large subsemigroup of a semigroup S. Then S is finitely

generated if and only if T is finitely generated.

Proof. See, for instance, [92, Theorem 1.1].

The abelian hypothesis can be deleted from Theorem 6.1.3 if we use the Rees index.
So, we have the following generalization of Theorem 6.1.3.

Theorem 6.2.1 ([115, Theorem 2.3]). Let T be a large subsemigroup of a finitely gen-

erated holomorphic semigroup S. Then F (S) = F (T ) and J(S) = J(T ).

71



Proof. We prove F (S) = F (T ). The other equality follows by taking complements.
By Lemma 6.1.1, it is clear that F (S) ⊂ F (T ). So, it is sufficient to prove that F (T ) ⊂
F (S). By Proposition 6.2.1, T is finitely generated. Let X = {f1, f2, . . . , fn} ⊂ S be a
generating set of T . Clearly, S is generated by the set Y = X∪ (S−T ) Every sequence
(fi) in F (T ) (where fi = fi1 ◦ fi2 ◦ . . . ◦ fin , and in ∈ {1, 2, . . . , n}) has a convergent
subsequence. Now each element gm of a sequence (gm) in S can be written as

gm = fi1 ◦ fi2 ◦ . . . ◦ fin ◦ hj1 ◦ hj2 ◦ . . . ◦ hjk ,

where S−T = {h1, h2, . . . , hk} ⊂ S and jk ∈ {1, 2, . . . , k}. Since S−T is finite, so a
convergent sequence in F (T ) can be extended to a convergent sequence in F (S). Thus,
every sequence (gm) in F (S) has a convergent subsequence. Hence F (T ) ⊂ F (S).

Theorem 6.2.2 ([115, Theorem 3.1]). If a subsemigroup T of a finitely generated tran-

scendental semigroup S has a finite Rees index, then I(S) = I(T ).

Proof. If we prove I(S) = I(T ), then the equality J(S) = J(T ) will follow from
Lemma 4.1.4 (2). The inclusion I(S) ⊂ I(T ) follows from Lemma 6.1.3. So we prove
I(T ) ⊂ I(S).

By Theorem 6.2.1, T is finitely generated. Let X = {f1, f2, . . . , fn} ⊂ S be a
generating set of T . Clearly, S is generated by the set Y = X ∪ (S − T ). By Lemma
4.1.2, every non-convergent sequence (fi) in T (where fi = fi1 ◦ fi2 ◦ . . . ◦ fin , and
in ∈ {1, 2, . . . , n}) has a divergence subsequence (fnk) at each point of I(T ). Now each
element gm of the sequence (gm) in S can be written as gm = fi1 ◦ fi2 ◦ . . . ◦ fin ◦ hj1 ◦
hj2 ◦ . . .◦hjk ,where S−T = {h1, h2, . . . , hk} ⊂ S is a finite set and jk ∈ {1, 2, . . . , k}.
This shows that a divergent sequence in I(T ) can be extended to a divergent sequence
in I(S). So, every non-convergent sequence (gm) in I(S) has a divergent subsequence.
Hence I(T ) ⊂ I(S).
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Chapter 7

SOME NON-CYCLIC

HOLOMORPHIC SEMIGROUPS

WITH NON-EMPTY FATOU AND

ESCAPING SETS

It is known that for certain holomorphic semigroups, the Fatou sets and escaping sets
might be empty. In this chapter, we obtain certain holomorphic semigroups of special
interest, whose Fatou and escaping sets are non-empty.

7.1 (Partial) fundamental set of a holomorphic semigroup

From Theorem 4.1.1 (1) and (3), we can say that Fatou set and escaping set of holo-
morphic semigroup may be empty. The result [75, Theorem 5.1] is one of the case of
non-empty Fatou set and that of [108, Theorem 3.3] is a case of the non-empty escap-
ing set of a transcendental semigroup. We obtain another case of non-empty Fatou and
escaping sets on the basis of the following definitions.

Definition 7.1.1 (Discontinuous semigroup). A semigroup S is said to be discontin-

uous at a point z ∈ C if there is a neighborhood U of z such that f(U) ∩ U = ∅ for

all f ∈ S or equivalently, translates of U by distinct elements of S (S-translates) are

disjoint. The neighborhood U of z is also called a nice neighborhood of z.
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Remark 7.1.1. Given a holomorphic semigroup S, there are two natural subsets asso-

ciated with S.

1. The regular set R(S) that consists of points z ∈ C at which S is discontinuous.

2. The limit set L(S) that consists of points z ∈ C for which there is a point z0, and

a sequence (fn) of distinct elements of S such that fn(z0)→ z as n→∞.

A set X ⊂ C is S-invariant or invariant under S if f(X) = X for all f ∈ S. It is
clear that both of the sets R(S) and L(S) are S-invariant. If U is a nice neighborhood,
then U ⊂ R(S). Thus R(S) is an open set, whereas the set L(S) a closed set, and
R(S) ∩ L(S) = ∅.

Definition 7.1.2 (Partial fundamental set and fundamental set). A set U is called a

partial fundamental set for the semigroup S if

1. U 6= ∅,

2. U ⊂ R(S),

3. f(U) ∩ U = ∅ for all f ∈ S.

If in addition to (1), (2) and (3), U satisfies the property

4.
⋃
f∈S f(U) = R(S),

then U is called a fundamental set for S.

We say that x, y ∈ C are S-equivalent if there is an f ∈ S such that f(x) = y.
Condition (3) asserts that no two points of U are S-equivalent under semigroup S, and
condition (4) asserts that every point of R(S) is equivalent to some point of U . It is
noted that if we replace (3) by f−1(U) ∩ U = ∅ for all f ∈ S, we say U is a backward
partial fundamental set for S; if, in addition, U satisfies

⋃
f∈S f

−1(U) = R(S), then we
say U is a backward fundamental set. Similar to the results of Hinkkanen and Martin
[46, Lemma 2.2] in the case of a rational semigroup, we have proved the following in
the case of transcendental semigroup S.

We prove the following assertion that shows that a partial fundamental set is in the
Fatou set F (S) and that a fundamental set is in the escaping set I(S).

Theorem 7.1.1 ([115, Theorem 1.2]). Let S be a holomorphic semigroup and U a

partial fundamental set for S. Then U ⊂ F (S). If, in addition, S is a transcendental

semigroup and U is a fundamental set, then U ⊂ I(S).
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Proof. Let S be a holomorphic semigroup. The set U is a non-empty open set, and
f(U) ∩ U = ∅ for all f ∈ S by Definition 7.1.1. The statement f(U) ∩ U = ∅ for
all f ∈ S implies that S omits U on U . U is an open set, so it contains more than two
points. Then by Montel’s theorem, S is normal on U . Therefore, U ⊂ F (S).

Let S be a transcendental semigroup. To prove U ⊂ I(S), we have to show that
fn(z)→∞ as n→∞ for all f ∈ S, and for all z ∈ U . The condition f(U) ∩ U = ∅
for all f ∈ S implies that fn(U) ∩ U = ∅, and f ∈ S implies fn ∈ S. Also, U is a
fundamental set, so by Definition 7.1.2 (4), we have

⋃
f∈S f(U) = R(S). By Remark

7.1.1(2), there are no points inU which appear as the limit points under distinct (fm)m∈N

in S. That is, (fm) has a divergent subsequence (fmk) at each point of U . Thus, by
Theorem 4.1.2 for any z ∈ U , fn(z) → ∞ as n → ∞ for any f ∈ (fm). This shows
that U ⊆ I(S).

Finally, we generalize Theorem 7.1.1 in the following form. We give a short sketch
of the proof. For a more detailed proof, we refer to [76, Theorem 2.1].

Theorem 7.1.2 ([115, Theorem 4.1]). Let U1 and U2 be two (partial) fundamental sets

for transcendental semigroups S1 and S2 respectively. Suppose furthermore that C \
U1 ⊂ U2 and C \ U2 ⊂ U1. Then the semigroup S = 〈S1, S2〉 is discontinuous, and

U = U1 ∩ U2 is a (partial) fundamental set for the semigroup S.

Sketch of the proof. Let U1, U2 and S1, S2 be as given in the statement of the theorem. It
is clear from Theorem 7.1.1 that F (S1) 6= ∅, F (S2) 6= ∅; also I(S1) 6= ∅ and I(S2) 6= ∅
if U1 and U2 are fundamental sets of S1 and S2 respectively. Note that U 6= ∅ by the
assumption. Clearly, f(U) ∩ U = ∅ for every f ∈ S. This proves S is discontinuous
and that U is a (partial) fundamental set for S.

It is noted that Theorems 7.1.1 and 7.1.2 hold if we have given (partial) backward
fundamental set in the statements.

7.2 Carleman set and a non-empty Fatou set

In this section, we prove that there exist three transcendental entire functions that can
have infinite number of domains which lie in the wandering (pre-periodic, or periodic)
components of each of these functions and their compositions. This result is a general-
ization of the result of Kumar et al. [59]. By using this result, our aim is to prove the
following assertion.
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Theorem 7.2.1 ([117, Theorem 1]). There is a non trivial transcendental semigroup S

such that the Fatou set F (S) has at least a simply connected component.

It is noted that if the semigroup S is cyclic, then by [20, Theorem 1], the Fatou set
F (S) has both a simply and a multiply connected wandering domains. However, in
the case of non-cyclic transcendental semigroups, the proof is not so easy. The reason
behind is that the dynamics of individual transcendental entire functions differ largely
from the dynamics of their compositions. To workout in this direction, we need a notion
in approximation theory of entire functions. In our case, we can use the notion of
Carleman set from which we obtain approximation of any holomorphic function by
entire functions.

Definition 7.2.1 (Carleman Set). Let F be a closed proper subset of C and C(F ) =

{f : F → C : f is continuous on F and analytic in the interior Int.F of F}. Then f is

called a Carleman set (for C) if for any g ∈ C(F ), and any positive continuous function

ε on F , there exists entire function h such that |g(z)− h(z)| < ε for all z ∈ F .

The following important characterization of Carleman set was proved by Nersesjan
in 1971 but we cite this from [39, Theorem 4, Page 157].

Proposition 7.2.1. Let F be proper subset of C. Then F is a Carleman set for C if and

only if F satisfies:

1. C∞ − F is connected;

2. C∞ − F is locally connected at∞;

3. for every compact subset K of C, there is a neighborhood V of ∞ in C∞ such

that no component of Int.F intersects both K and V .

It is noted that the space C∞ − F is connected if and only if each component Z of
open set C − F is unbounded. This fact together with Proposition 7.2.1 can be a nice
tool for checking whether a set is a Carleman set for C. The sets given in the following
examples are Carlemen sets for C.

Example 7.2.1. The setE = {z ∈ C : |z| = 1,<z > 0}∪{z = x : x > 1}∪⋃∞n=3{z =

reiθ : r > 1, θ = π/n} is a Carleman set by Proposition 7.2.1. This set is shown in

figure 7.1.

Example 7.2.2. The set E = G0 ∪
⋃∞
k=1(Gk ∪BK ∪ Lk ∪Mk), where

G0 = {z ∈ C : |z − 2| ≤ 1};
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y

Figure 7.1: Carleman set E of Example 7.2.1

Gk = {z ∈ C : |z − (4k + 2)| ≤ 1} ∪ {z ∈ C : <(z) = 4k + 2, =(z) ≥ 1}
∪{z ∈ C : <(z) = 4k + 2, =(z) ≤ −1}, (k = 1, 2, 3, 4, . . .);

Bk = {z ∈ C : |z + (4k + 2)| ≤ 1} ∪ {z ∈ C : <(z) = −(4k + 2), =(z) ≥ 1} ∪
{z ∈ C : <(z) = −(4k + 2), =(z) ≤ −1}, (k = 1, 2, 3, 4, . . .);

Lk = {z ∈ C : <(z) = 4k}, (k = 1, 2, 3, 4, . . .);

and

Mk = {z ∈ C : <(z) = −4k}, (k = 1, 2, 3, 4, . . .)

is a Carleman set by Proposition 7.2.1. This set is shown in figure 7.2.

From the help of the Carleman set of Example 7.2.2, Singh [96, Theorem 2] proved
the following assertion.

Proposition 7.2.2. There exist two transcendental entire functions f and g and a domain

U such that U lies in the wandering component of the F (f), F (g), F (f ◦ g) and

F (g ◦ f).

In fact, Singh [96] also proved other results regarding the dynamics of two individual
functions and their compositions (see for instance [96, Theorems 1, 3 and 4]) which
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x

Figure 7.2: Carleman set E of Example 7.2.2

are also stricly based on the Carleman set of Example 7.2.2. Tomar [124] extended
Proposition 7.2.2) to the following result.

Proposition 7.2.3. There exist two transcendental entire functions f and g, and in-

finitely many domains in the angular region which lies in the wandering component of

the F (f), F (g), F (f ◦ g) and F (g ◦ f).

It is noted that Singh [95, Theorems 3.2.1 - 3.2.6] studied different components of
the Fatou set of a transcendental entire function in an angular region by using approxi-
mation theory of entire functions, in particular, by the help of Carleman set.

Kumar et al. [59, Theorem 2.1 to Theorem 2.15] extended these results, and for our
purpose, we cite the following two assertions.

Proposition 7.2.4. There exist two different transcendental entire functions f and g, and

infinitely many domains which lie in different wandering component of the F (f), F (g),

F (f ◦ g) and F (g ◦ f).

Proposition 7.2.5. There exist two different transcendental entire functions f and g, and

infinitely many domains which lie in different pre-periodic component of theF (f), F (g),

F (f ◦ g) and F (g ◦ f).

Our particular interest of this study is that whether there are more than two transcen-
dental entire functions that can have similarity between the dynamics of their compo-
sitions and dynamics of each of these individual functions. We investigate three tran-
scendental entire functions such that each of individual function as well as their every
composition consists of infinite number of domains which lie in the wandering (pre-
periodic or periodic) component of the Fatou set. That is, we extend Propositions 7.2.4
and 7.2.5 to the following results:

Lemma 7.2.1 ([116, Theorem 1.1]). There exist three different transcendental entire

functions f , g and h, and infinitely many domains which lie in different wandering
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components of F (f), F (g), F (h), F (f ◦g), F (g◦f), F (f ◦h), F (g◦h), F (h◦f), F (h◦
g), F (f ◦ g ◦ h), F (f ◦ h ◦ g), F (g ◦ f ◦ h), F (g ◦ h ◦ f), F (h ◦ f ◦ g) and F (h ◦ g ◦ f).

Proof. Let

E = G0 ∪
( ∞⋃

k=1

(Gk ∪BK ∪ Lk ∪Mk)
)
.

where G0, Gk, Bk, Lk and Mk are sets as defined in Example 7.2.2. Then E is a Carle-
man set for C. By the continuity of exponential function, for given ε > 0, there exists
δ > 0, may depend on a given point w0 such that

|w − w0| < δ =⇒ |ew − ew0| < ε.

Let us choose ε = 1/2, then there exist sufficiently small δk > 0, δ
′
k > 0 and δ′′k > 0

such that

|w − (πi+ log(4k + 6))| < δk =⇒ |ew + (4k + 6)| < 1/2, (k = 1, 2, 3, . . .);

|w − log(4k − 2)| < δ
′
k =⇒ |ew − (4k + 6)| < 1/2, (k = 1, 2, 3, . . .);

and

|w − log(4k − 6)| < δ
′′
k =⇒ |ew − (4k − 6)| < 1/2, (k = 3, 4, 5, . . .).

In particular, let us choose sufficiently small δ0 > 0, λ1 > 0 and λ2 > 0 such that

|w − log 2| < δ0 =⇒ |ew − 2| < 1/2;

|w − (πi+ log 6)| < λ1 =⇒ |ew + 6| < 1/2;

and
|w − (πi+ log 10)| < λ2 =⇒ |ew + 10| < 1/2.

Next, let us define the following functions:

α(z) =





log 2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

πi+ log 6, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

πi+ log(4k + 6), ∀z ∈ Bk, k = 1, 2, 3, . . . ;
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β(z) =





log 2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

log(4k − 2), ∀z ∈ Gk, k = 2, 3, 4, . . . ;

πi+ log 6, ∀z ∈ G1;

πi+ log(4k + 6), ∀z ∈ Bk, k = 1, 2, 3, . . . ;

γ(z) =





log 2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

log(4k − 6), ∀z ∈ Gk, k = 3, 4, 5 . . . ;

πi+ log 6, ∀z ∈ G2;

πi+ log 10, ∀z ∈ G1;

πi+ log(4k + 6), ∀z ∈ Bk, k = 1, 2, 3, . . . .

Let us define the following functions:

ε1(z) =





δ0, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

λ1, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

δk, ∀z ∈ Bk, k = 1, 2, 3, . . . ;

ε2(z) =





δ0, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

δ
′
k, ∀z ∈ Gk, k = 2, 3, 4 . . . ;

λ1, ∀z ∈ G1;

δk, ∀z ∈ Bk, k = 1, 2, 3, . . . ;

and

ε3(z) =





δ0, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

δ
′′
k , ∀z ∈ Gk, k = 3, 4, 5 . . . ;

λ1, ∀z ∈ G2;

λ2, ∀z ∈ G1;

δk, ∀z ∈ Bk, k = 1, 2, 3, . . . .

Clearly, the functions α(z), β(z) and γ(z) are piecewise constant functions, so they are
continuous on the set E and holomorphic in Int.E. Also, since E is a Carleman set, so
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there exist entire functions f1(z), g1(z) and h1(z) such that

∀z ∈ E, |f1(z)− α(z)| ≤ ε1(z), |g1(z)− β(z)| ≤ ε2(z) and |h1(z)− γ(z)| ≤ ε3(z).

Consequently, we get transcendental entire functions f(z) = ef1(z), g(z) = eg1(z) and
h(z) = eh1(z) which respectively satisfy the following:

|f(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|f(z) + 6| < 1/2, ∀z ∈ Gk, k = 1, 2, 3 . . . ;

|f(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(7.2.1)

|g(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|g(z)− (4k − 2)| < 1/2, ∀z ∈ Gk, k = 2, 3, 4, . . . ;

|g(z) + 6| < 1/2, ∀z ∈ G1;

|g(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(7.2.2)

and
|h(z)− 2| < 1/2, ∀z ∈ G0 ∪

⋃∞
k=1(Lk ∪Mk);

|h(z)− (4k − 6)| < 1/2, ∀z ∈ Gk, k = 3, 4, 5 . . . ;

|h(z) + 6| < 1/2, ∀z ∈ G2;

|h(z) + 10| < 1/2, ∀z ∈ G1;

|h(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3 . . . .

(7.2.3)

From (7.2.1), (7.2.2), and (7.2.3), we can say that each of the functions f , g and h maps
G0 ∪

⋃∞
k=1(Lk ∪Mk) into smaller disk |z− 2| < 1/2 contained in G0 and each of these

function is a contracting mapping. Therefore, G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)

contains a fixed
points z1, z2 and z3 (say) such that

fn(G0 ∪
∞⋃

k=1

(Lk ∪Mk)) −→ z1 as n −→∞,

gn(G0 ∪
∞⋃

k=1

(Lk ∪Mk)) −→ z2 as n −→∞,

hn(G0 ∪
∞⋃

k=1

(Lk ∪Mk)) −→ z3 as n −→∞.
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The fixed points z1, z2 and z3 are respectively the attracting fixed points for the functions
f , g and h, so G0 ∪

(⋃∞
k=1(Lk ∪ Mk)) lies in the attracting cycle, and hence G0 ∪(⋃∞

k=1(Lk ∪Mk)) is a subset of each of the Fatou set F (f), F (g) and F (h). J(f) 6=
C, J(g) 6= C and J(h) 6= C, and so Julia set of each of the function f , g and h does
not contain interior points, and hence Fatou set of each of these function contains all
interior points. Fatou set of each of the function f , g and h contains Carleman set E.

Also, from (7.2.1), we can say that function f maps each Gk into smaller disk con-
tained in B1, and each Bk into smaller disk contained in Bk+1. In fact, Gk and Bk

are contained in the wandering components of Fatou set F (f). Again from (7.2.2), we
can say that function g maps each of the domains Gk into the smaller disk contained in
Gk−1, (k = 2, 3, 4, . . .), G1 into smaller disk contained inB1, andBk, (k = 1, 2, 3, . . .)

into the smaller disks contained inBk+1. In fact,Gk andBk are contained in the wander-
ing components of the Fatou set F (g). Likewise, from (7.2.3), we can say that domains
Gk and Bk, (k = 1, 2, 3 . . .) are contained in the wandering components of F (h).

Next, we examine the dynamical behavior of compositions of the functions f , g and
h. The composite of any two and all of three of these functions satisfy the following.

Dynamical behavior of f ◦ g:

|(f ◦ g)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(f ◦ g)(z) + 6| < 1/2, ∀z ∈ Gk, k = 2, 3, 4 . . . ;

|(f ◦ g)(z) + 10| < 1/2, ∀z ∈ G1;

|(f ◦ g)(z)− (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . .

(7.2.4)

The composition rule (7.2.4) shows that the domains G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
, Gk and

Bk, (k = 1, 2, 3, . . .) belong to F (f ◦ g), and in fact, each Gk and Bk is contained in
the wandering components of F (f ◦ g).

Dynamical behavior of g ◦ f :

|(g ◦ f)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(g ◦ f)(z) + 10| < 1/2, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

|(g ◦ f)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . .

(7.2.5)

From the composition rule (7.2.5), we can say that the domainsG0∪
(⋃∞

k=1(Lk∪Mk)
)
,

Gk and Bk, (k = 1, 2, 3, . . .) belong to F (g ◦ f), and in fact, each Gk and Bk belongs
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to the wandering component of F (g ◦ f).

Dynamical behavior of f ◦ h:

|(f ◦ h)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(f ◦ h)(z) + 14| < 1/2, ∀z ∈ G1;

|(f ◦ h)(z) + 10| < 1/2, ∀z ∈ G2;

|(f ◦ h)(z) + 6| < 1/2, ∀z ∈ Gk, k = 4, 5, 6, . . . ;

|(f ◦ h)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . .

(7.2.6)

As defined in above composition rule (7.2.6), the domains G0 ∪
(⋃∞

k=1(Lk ∪ Mk)
)
,

Gk and Bk, (k = 1, 2, 3, . . .) belong to F (f ◦ h), and in fact, each Gk and Bk for all
k = 1, 2, 3, . . . belongs to the wandering components of F (f ◦ h).

Dynamical behavior of h ◦ f :

|(h ◦ f)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(h ◦ f)(z) + 10| < 1/2, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

|(h ◦ f)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . .

(7.2.7)

From the composition rule (7.2.7), we can say that the domainsG0∪
(⋃∞

k=1(Lk∪Mk)
)
,

Gk and Bk for all k = 1, 2, 3, . . . belong to F (h ◦ f) and , in fact, each Gk and Bk for
all k = 1, 2, 3, . . . is contained in the wandering components of F (h ◦ f).

Dynamical behavior of g ◦ h:

|(g ◦ h)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(g ◦ h)(z) + 14| < 1/2, ∀z ∈ G1;

|(g ◦ h)(z) + 10| < 1/2, ∀z ∈ G2;

|(g ◦ h)(z) + 6| < 1/2, ∀z ∈ Gk; k = 3, 4, 5 . . . ;

|(g ◦ h)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . .

(7.2.8)

As defined in the above composition rule (7.2.8), the domains G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
,

Gk and Bk, (k = 1, 2, 3, . . .) belong to F (g ◦ h), and in fact, each Gk and Bk for all
k = 1, 2, 3, . . . is contained in wandering components of F (g ◦ h).
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Dynamical behavior of h ◦ g:

|(h ◦ g)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(h ◦ g)(z) + 10| < 1/2, ∀z ∈ Gk, k = 1, 2;

|(h ◦ g)(z) + 6| < 1/2, ∀z ∈ G3, ;

|(h ◦ g)(z)− (4k − 10)| < 1/2, ∀z ∈ Gk, k = 4, 5, 6, . . . ;

|(h ◦ g)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . .

(7.2.9)

As defined in the above composition rule (7.2.9), the domains G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
,

Gk and Bk, (k = 1, 2, 3, . . .) belong to F (h ◦ g), and in fact, each Gk and Bk for all
k = 1, 2, 3, . . . is contained in wandering components of F (h ◦ g).

Dynamical behavior of f ◦ g ◦ h:

|(f ◦ g ◦ h)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(f ◦ g ◦ h)(z) + 18| < 1/2, ∀z ∈ G1;

|(f ◦ g ◦ h)(z) + 14| < 1/2, ∀z ∈ G2;

|(f ◦ g ◦ h)(z) + 10| < 1/2, ∀z ∈ G3;

|(f ◦ g ◦ h)(z) + 6| < 1/2, ∀z ∈ Gk, k = 4, 5, 6, . . . ;

|(f ◦ g ◦ h)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . .

(7.2.10)

The composition rule (7.2.10) assigned above tells us that domains G0 ∪
(⋃∞

k=1(Lk ∪
Mk)

)
, Gk and Bk, (k = 1, 2, 3, . . .) lie in F (f ◦ g ◦ h), and in fact, each Gk and Bk for

all k = 1, 2, 3, . . . is contained in the wandering component of F (f ◦ g ◦ h).

Dynamical behavior of f ◦ h ◦ g:

|(f ◦ h ◦ g)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(f ◦ h ◦ g)(z) + 14| < 1/2, ∀z ∈ Gk, for k = 1, 2;

|(f ◦ h ◦ g)(z) + 10| < 1/2, ∀z ∈ G3, for k = 1, 2;

|(f ◦ h ◦ g)(z) + 6| < 1/2, ∀z ∈ Gk, k = 4, 5, 6, . . . ;

|(f ◦ h ◦ g)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . .

(7.2.11)

The composition rule (7.2.11) assigned above tells us that domains G0 ∪
(⋃∞

k=1(Lk ∪
Mk)

)
, Gk and Bk, (k = 1, 2, 3, . . .) lie in F (f ◦ g ◦ h), and in fact, each Gk and Bk for
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all k = 1, 2, 3, . . . is contained in the wandering component of F (f ◦ h ◦ g).

Dynamical behavior of g ◦ f ◦ h:

|(g ◦ f ◦ h)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(g ◦ f ◦ h)(z) + 18| < 1/2, ∀z ∈ G1;

|(g ◦ f ◦ h)(z) + 14| < 1/2, ∀z ∈ G2;

|(g ◦ f ◦ h)(z) + 10| < 1/2, ∀z ∈ Gk, k = 3, 4, 5, . . . ;

|(g ◦ f ◦ h)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . .

(7.2.12)

The composition rule (7.2.12) assigned above tells us that domains G0 ∪
(⋃∞

k=1(Lk ∪
Mk)

)
, Gk and Bk, (k = 1, 2, 3, . . .) lie in F (g ◦ f ◦ h), and in fact, each Gk and Bk for

all k = 1, 2, 3, . . . is contained in the wandering component of F (g ◦ f ◦ h).

Dynamical behavior of g ◦ h ◦ f :

|(g ◦ h ◦ f)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(g ◦ h ◦ f)(z) + 14| < 1/2, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

|(g ◦ h ◦ f)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . .

(7.2.13)

The composition rule (7.2.13) assigned above tells us that domains G0 ∪
(⋃∞

k=1(Lk ∪
Mk)

)
, Gk and Bk, (k = 1, 2, 3, . . .) lie in F (g ◦ h ◦ f), and in fact, each Gk and Bk for

all k = 1, 2, 3, . . . is contained in the wandering component of F (g ◦ h ◦ f).

Dynamical behavior of h ◦ f ◦ g:

|(h ◦ f ◦ g)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(h ◦ f ◦ g)(z) + 14| < 1/2, ∀z ∈ G1;

|(h ◦ f ◦ g)(z) + 10| < 1/2, ∀z ∈ Gk, k = 2, 3, 4, . . . ;

|(h ◦ f ◦ g)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . .

(7.2.14)

The composition rule (7.2.14) assigned above tells us that domains G0 ∪
(⋃∞

k=1(Lk ∪
Mk)

)
, Gk and Bk, (k = 1, 2, 3, . . .) lie in F (h ◦ f ◦ g), and in fact, each Gk and Bk for

all k = 1, 2, 3, . . . is contained in the wandering component of F (h ◦ f ◦ g).
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Dynamical behavior of h ◦ g ◦ f :

|(h ◦ g ◦ f)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(h ◦ g ◦ f)(z) + 14| < 1/2, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

|(h ◦ g ◦ f)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . .

(7.2.15)

The composition rule (7.2.15) assigned above tells us that domains G0 ∪
(⋃∞

k=1(Lk ∪
Mk)

)
, Gk and Bk, (k = 1, 2, 3, . . .) lie in F (h ◦ g ◦ f), and in fact, each Gk and Bk for

all k = 1, 2, 3, . . . is contained in the wandering component of F (h ◦ g ◦ f).

From all of the above discussion, we found that the domains Gk and Bk for all
k = 1, 2, 3, . . . are contained in the wandering domains of the functions f, g, h, and
their compositions.

Lemma 7.2.2 ([119, Theorem 1]). There exist three different transcendental entire func-

tions f , g and h, and infinitely many domains which lie in different pre-periodic com-

ponents of F (f), F (g), F (h), F (f ◦ g), F (g ◦ f), F (f ◦ h), F (g ◦ h), F (h ◦ f), F (h ◦
g), F (f ◦ g ◦ h), F (f ◦ h ◦ g), F (g ◦ f ◦ h), F (g ◦ h ◦ f), F (h ◦ f ◦ g) and F (h ◦ g ◦ f).

Proof. Let E, ε, δ, and δ0 be as defined as in Lemma 7.2.1. For each k = 2, 3, . . .,
choose δk and δ′k > 0 such that

|w − (πi+ log(4k − 2))| < δk =⇒ |ew + (4k − 2)| < 1/2,

and
|w − log(4k − 2)| < δ

′
k =⇒ |ew − (4k − 2)| < 1/2.

In particular, let us choose sufficiently small λ1 > 0, λ2 > 0, λ′1 > 0 and λ′2 > 0 such
that

|w − log 2| < δ0 =⇒ |ew − 2| < 1/2,

|w − (πi+ log 6)| < λ1 =⇒ |ew + 6| < 1/2,

|w − (πi+ log 10)| < λ2 =⇒ |ew + 10| < 1/2,

|w − log 6| < λ
′
1 =⇒ |ew + 6| < 1/2,

and
|w − log 10| < λ

′
2 =⇒ |ew + 10| < 1/2.
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Next, let us define the following functions:

α(z) =





log 2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

πi+ log 6, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

πi+ log 10, ∀z ∈ B1;

πi+ log(4k − 2), ∀z ∈ Bk, k = 2, 3, 4 . . . ;

β(z) =





log 2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

πi+ log 6, ∀z ∈ G1;

πi+ log 10, ∀z ∈ B1;

πi+ log(4k − 2), ∀z ∈ Bk, k = 2, 3, 4, . . . ;

log(4k − 2), ∀z ∈ Gk, k = 2, 3, 4, . . . ;

γ(z) =





log 2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

log 6, ∀z ∈ Bk, k = 1, 2, 3, . . . ;

log 10, ∀z ∈ G1;

log(4k − 2), ∀z ∈ Gk, k = 2, 3, 4 . . . ;

ε1(z) =





δ0, ∀z ∈ G0 ∪
(⋃∞

k=1(BK ∪ Lk)
)
;

λ1, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

λ2, ∀z ∈ B1;

δk, ∀z ∈ Bk, k = 2, 3, 4 . . . ;

ε2(z) =





δ0, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

λ1, ∀z ∈ G1;

λ2, ∀z ∈ B1;

δk, ∀z ∈ Bk, k = 2, 3, 4, . . . ;

δ
′
k, ∀z ∈ Gk, k = 2, 3, 4, . . . ;
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and

ε3(z) =





δ0, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

λ
′
1, ∀z ∈ Bk; k = 1, 2, 3, . . .

λ
′
2, ∀z ∈ G1;

δ
′
k, ∀z ∈ Gk, k = 2, 3, 4, . . . .

Clearly, the functions α(z), β(z) and γ(z) are piecewise constant functions, so they are
continuous on the set E, and analytic in int.E. Also, since E is a Carleman set, so there
exist entire functions f1(z), g1(z) and h1(z) such that

∀z ∈ E, |f1(z)− α(z)| ≤ ε1(z), |g1(z)− β(z)| ≤ ε2(z) and |h1(z)− γ(z)| ≤ ε3(z).

Consequently, we get transcendental entire functions f(z) = ef1(z), g(z) = eg1(z) and
h(z) = eh1(z) which respectively satisfy the following:

|f(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|f(z) + 6| < 1/2, ∀z ∈ Gk, k = 1, 2, 3 . . . ;

|f(z) + 10| < 1/2, ∀z ∈ B1

|f(z) + (4k − 2)| < 1/2, ∀z ∈ Bk, k = 2, 3, 4 . . . ;

(7.2.16)

|g(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|g(z) + 6| < 1/2, ∀z ∈ G1;

|g(z) + 10| < 1/2, ∀z ∈ B1;

|g(z) + (4k − 2)| < 1/2, ∀z ∈ Bk, k = 2, 3, 4, . . . ;

|g(z)− (4k − 2)| < 1/2, ∀z ∈ Gk, k = 2, 3, 4 . . . ;

(7.2.17)

and

|h(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|h(z)− 6| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . ;

|h(z)− 10| < 1/2, ∀z ∈ G1;

|h(z)− (4k − 2)| < 1/2, ∀z ∈ Gk, k = 2, 3, 4, . . . ;

(7.2.18)

As in Lemma 7.2.1, from (7.2.16), (7.2.17), and (7.2.18), we can say that Fatou set of

88



each of the functions f , g and h contains the Carleman set E. Also, from (7.2.16),
(7.2.17), and (7.2.18), it is easy to to say that Gk and Bk are contained in the pre-
periodic components of F (f), F (g) and F (h). However, from (7.2.16) and (7.2.17), we
can say that domains B1 and B2 lie in the periodic component of the Fatou sets of both
of the functions f and g but from (7.2.18), we can say that domains G1 and G2 lie in the
periodic component of the Fatou set of function h.

As in Lemma 7.2.1, it is easy to check that domainsGk andBk for all k = 1, 2, 3, . . .

are contained in the pre-periodic domains of F (f ◦g), F (g◦f), F (f ◦h), F (g◦h), F (h◦
f), F (h ◦ g), F (f ◦ g ◦ h), F (f ◦ h ◦ g), F (g ◦ f ◦ h), F (g ◦ h ◦ f), F (h ◦ f ◦ g) and
F (h ◦ g ◦ f).

Lemma 7.2.3 ([120, Theorem 1.1]). There exist three different transcendental entire

functions f , g and h, and infinitely many domains which lie in different periodic com-

ponents of F (f), F (g), F (h), F (f ◦ g), F (g ◦ f), F (f ◦ h), F (g ◦ h), F (h ◦ f), F (h ◦
g), F (f ◦ g ◦ h), F (f ◦ h ◦ g), F (g ◦ f ◦ h), F (g ◦ h ◦ f), F (h ◦ f ◦ g) and F (h ◦ g ◦ f).

Proof. Let E, ε, δ, δk , δ′k, δ0, λ1 and λ2 be as defined as in Lemmas 7.2.1 and 7.2.3.
For each k = 1, 2, . . ., choose ξk > 0, ζk > 0 and ηk > 0 such that

|w − log(4k + 6)| < ξk =⇒ |ew − (4k + 6)| < 1/2,

|w − log(4k + 2)| < ζk =⇒ |ew − (4k + 2)| < 1/2,

and
|w − (πi+ log(4k + 2))| < ηk =⇒ |ew + (4k + 2)| < 1/2.

Let us define the following functions:

α(z) =





log 2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

log(4k + 2), ∀z ∈ Bk, k = 1, 2, 3, . . . ;

πi+ log(4k + 2), ∀z ∈ Gk, k = 1, 2, 3, . . . ;

β(z) =





log 2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

log(4k + 6), ∀z ∈ Bk, k = 1, 3, 5, . . . ;

log(4k − 2), ∀z ∈ Bk, k = 2, 4, 6, . . . ;

πi+ log(4k + 6), ∀z ∈ Gk, k = 1, 3, 5, . . . ;

πi+ log(4k − 2), ∀z ∈ Gk, k = 2, 4, 6, . . . ;
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γ(z) =





log 2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

log(4k + 6), ∀z ∈ Gk, k = 1, 2, 3, . . . , n− 1;

log 6, ∀z ∈ Gn;

πi+ log(4k + 6), ∀z ∈ Bk, k = 1, 2, 3, . . . , n− 1;

πi+ log 6, ∀z ∈ Bn.

ε1(z) =





δ0, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

ζk, ∀z ∈ Bk, k = 1, 2, 3, . . . ;

ηk, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

ε2(z) =





δ0, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

ξk, ∀z ∈ Bk, k = 1, 3, 5 . . . ;

δ
′
k, ∀z ∈ Bk, k = 2, 4, 6 . . . ;

δ
′
k, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

δk, ∀z ∈ Gk, k = 2, 4, 6 . . . ;

and

ε3(z) =





δ0, ∀z ∈ G0 ∪
⋃∞
k=1(BK ∪ Lk ∪Mk);

δk, ∀z ∈ Gk, k = 1, 2, 3, . . . , n− 1;

λ1, ∀z ∈ Gn;

δk, ∀z ∈ Bk, k = 1, 2, 3, . . . , n− 1;

λ1, ∀z ∈ Bn.

Clearly, the functions α(z), β(z) and γ(z) are piece wise constant functions, so they
are continuous on the set E, and analytic in Int.E. Also, since E is a Carleman set, so
there exist an entire functions f1(z), g1(z) and h1(z) such that

|f1(z)− α(z)| ≤ ε1(z), |g1(z)− β(z)| ≤ ε2(z) and |h1(z)− γ(z)| ≤ ε3(z),∀z ∈ E.

Consequently, we get transcendental entire functions f(z) = ef1(z), g(z) = eg1(z) and
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h(z) = eh1(z) which respectively satisfy the following:

|f(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|f(z)− (4k + 2)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3 . . . ;

|f(z) + (4k + 2)| < 1/2, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

(7.2.19)

|g(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|g(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . ;

|g(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . ;

|g(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5, . . . ;

|g(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . ;

(7.2.20)

and

|h(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|h(z)− (4k + 6)| < 1/2, ∀z ∈ Gk, k = 1, 2, 3, . . . , n− 1;

|h(z)− 6| < 1/2, ∀z ∈ Gn;

|h(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . , n− 1;

|h(z) + 6| < 1/2, ∀z ∈ Bn;

|h(z)− (4k + 2)| < 1/2, ∀z ∈ Bk, k > n;

|h(z) + (4k + 2)| < 1/2, ∀z ∈ Gk, k > n.

(7.2.21)

As in Lemma 7.2.1 and 7.2.3, from (7.2.19), (7.2.20), and (7.2.21), we can see that the
Fatou set of each of the functions f , g and h contains the Caleman set E. Also, from
(7.2.19), (7.2.20), we can say that Gk and Bk are periodic components of period 2 of
the function f , and g. Likewise, as defined in (7.2.21) , domains Gk and Bk, (k ≤ n)

are periodic components of period n under the function h and Gk and Bk are periodic
component of period 2 for k > n. So, all these domains lie in periodic component of
Fatou sets F (f), F (g) and F (h).

Next, we examine the dynamical behavior of composites of any two and three of the
functions f , g and h.
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Dynamical behavior of f ◦ g:

|(f ◦ g)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(f ◦ g)(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . ;

|(f ◦ g)(z) + (4k − 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . ;

|(f ◦ g)(z)− (4k + 6)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5, . . . ;

|(f ◦ g)(z)− (4k − 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . .

(7.2.22)

Dynamical behavior of g ◦ f :

|(g ◦ f)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(g ◦ f)(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . ;

|(g ◦ f)(z) + (4k − 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . ;

|(g ◦ f)(z)− (4k + 6)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5, . . . ;

|(g ◦ f)(z)− (4k − 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . .

(7.2.23)

The composition rules (7.2.22) and (7.2.23) shows that the domains Gk and Bk, (k =

1, 2, 3, . . .) for each k ∈ N is a periodic domain of period 2 which belongs to the periodic
components of F (f ◦ g).

Dynamical behavior of f ◦ h:

|(f ◦ h)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(f ◦ h)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . , n− 1;

|(f ◦ h)(z)− 6| < 1/2, ∀z ∈ Bn;

|(f ◦ h)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k = 1, 2, 3, . . . , n− 1;

|(f ◦ h)(z) + 6| < 1/2, ∀z ∈ Gn;

|(f ◦ h)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k > n;

|(f ◦ h)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k > n.

(7.2.24)

The composition rule (7.2.24) tells us that each Gk and Bk, (k > n) is a periodic do-
main of period 1, and each Gk and Bk for k = 1, 2, 3, . . . , n is a periodic component of
period n for even n.

Dynamical behavior of h ◦ f :
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|(h ◦ f)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(h ◦ f)(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . , n− 1;

|(h ◦ f)(z) + 6| < 1/2, ∀z ∈ Bn;

|(h ◦ f)(z)− (4k + 6)| < 1/2, ∀z ∈ Gk, k = 1, 2, 3 . . . , n− 1;

|(h ◦ f)(z)− 6| < 1/2, ∀z ∈ Gn;

|(h ◦ f)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k > n;

|(h ◦ f)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k > n.

(7.2.25)

From composition rule 7.2.25, we can say that each Gk and Bk, (k > n) is a periodic
component of period , and each Gk and Bk for k = 1, 2, 3, . . . , n is a periodic compo-
nent of period n for odd n.

Dynamical behavior of g ◦ h:

|(g ◦ h)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(g ◦ h)(z)− (4k + 2)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5 . . . , n− 1;

|(g ◦ h)(z)− (4k + 10)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;

|(g ◦ h)(z)− 10| < 1/2, ∀z ∈ Bn;

|(g ◦ h)(z) + (4k + 2)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;

|(g ◦ h)(z) + (4k + 10)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;

|(g ◦ h)(z) + 10| < 1/2, ∀z ∈ Gn;

|(g ◦ h)(z) + (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;

|(g ◦ h)(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;

|(g ◦ h)(z)− (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even;

|(g ◦ h)(z)− (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd.

(7.2.26)

From composition rule (7.2.26), it is easy to say that each Gk and Bk, (k > n) is a
periodic components of period 1, and each Gk and Bk for odd k ≤ n are periodic com-
ponents of period 2.

Dynamical behavior of h ◦ g:
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|(h ◦ g)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(h ◦ g)(z)− (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5 . . . , n− 1;

|(h ◦ g)(z)− (4k + 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;

|(h ◦ g)(z) + (4n+ 6)| < 1/2, ∀z ∈ Bn, for odd n;

|(h ◦ g)(z)− (4n+ 2)| < 1/2, ∀z ∈ Bn, for even n;

|(h ◦ g)(z) + (4k + 10)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;

|(h ◦ g)(z) + (4k + 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;

|(h ◦ g)(z)− (4n+ 6)| < 1/2, ∀z ∈ Gn, for odd n;

|(h ◦ g)(z) + (4n+ 2)| < 1/2, ∀z ∈ Gn, for even n;

|(g ◦ h)(z) + (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;

|(h ◦ g)(z)− 6| < 1/2, ∀z ∈ Bk, k > n and k − 1 = n;

|(h ◦ g)(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;

|(h ◦ g)(z)− (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even;

|(h ◦ g)(z) + 6| < 1/2, ∀z ∈ Gk, k > n and k − 1 = n;

|(h ◦ g)(z)− (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd.

(7.2.27)

From (7.2.27), we can say that each Gk and Bk, (k > n) is a periodic component
of period 1, and each Gk and Bk for even k ≤ n is a periodic component of period 2.

Dynamical behavior of f ◦ g ◦ h:

|(f ◦ g ◦ h)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(f ◦ g ◦ h)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . , n− 1;

|(f ◦ g ◦ h)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;

|(f ◦ g ◦ h)(z) + 10| < 1/2, ∀z ∈ Bn;

|(f ◦ g ◦ h)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;

|(f ◦ g ◦ g)(z)− (4k + 10)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;

|(f ◦ g ◦ g)(z)− 10| < 1/2, ∀z ∈ Gn;

|(f ◦ g ◦ h)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;

|(f ◦ g ◦ h)(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;
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|(f ◦ g ◦ h)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;

|(f ◦ g ◦ h)(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even. (7.2.28)

The composition rule (7.2.28) tells us that each Gk and Bk, (k > n) is a periodic
components of period 1, and each Gk and Bk for odd k ≤ n is a periodic component of
period 1.

Dynamical behavior of f ◦ h ◦ g:

|(f ◦ h ◦ g)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(f ◦ h ◦ g)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . , n− 1;

|(f ◦ h ◦ g)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;

|(f ◦ h ◦ g)(z) + (4n+ 6)| < 1/2, ∀z ∈ Bn and n is odd;

|(f ◦ h ◦ g)(z) + (4n+ 2)| < 1/2, ∀z ∈ Bn and n is even;

|(f ◦ h ◦ g)(z)− (4k + 10)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;

|(f ◦ h ◦ g)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;

|(f ◦ h ◦ g)(z) + (4n+ 6)| < 1/2, ∀z ∈ Gn and n is odd; (7.2.29)

|(f ◦ h ◦ g)(z)− (4n+ 2)| < 1/2, ∀z ∈ Gn and n is even;

|(f ◦ h ◦ g)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;

|(f ◦ h ◦ g)(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;

|(f ◦ h ◦ g)(z) + 6| < 1/2, ∀z ∈ Bk, k > n k is even and k-1=n;

|(f ◦ h ◦ g)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;

|(f ◦ h ◦ g)(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even;

|(f ◦ h ◦ g)(z)− 6| < 1/2, ∀z ∈ Gk, k > n k is even and k-1=n.

The composition rule (7.2.29) tells us that each Gk and Bk, (k > n) belong to the pe-
riodic components of F (f ◦ h ◦ g) of period 1. Each Gk and Bk for even k are periodic
components of period 1.

Dynamical behavior of g ◦ f ◦ h:
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|(g ◦ f ◦ h)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(g ◦ f ◦ h)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . , n− 1;

|(g ◦ f ◦ h)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;

|(g ◦ f ◦ h)(z) + 10| < 1/2, ∀z ∈ Bn;

|(g ◦ f ◦ h)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;

|(g ◦ f ◦ h)(z)− (4k + 10)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;

|(g ◦ f ◦ h)(z)− 10| < 1/2, ∀z ∈ Gn;

|(g ◦ f ◦ h)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;

|(g ◦ f ◦ h)(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;

|(g ◦ f ◦ h)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;

|(g ◦ f ◦ h)(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even. (7.2.30)

The composition rule (7.2.30) tells us that each Gk and Bk, (k > n) is a periodic com-
ponents of period 1, and each Gk and Bk for odd k ≤ n is a periodic component of
period 1.

Dynamical behavior of g ◦ h ◦ f :

|(g ◦ h ◦ f)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(g ◦ h ◦ f)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . , n− 1;

|(g ◦ h ◦ f)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;

|(g ◦ f ◦ h)(z) + 10| < 1/2, ∀z ∈ Bn;

|(g ◦ h ◦ f)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;

|(g ◦ g ◦ f)(z)− (4k + 10)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;

|(g ◦ f ◦ h)(z)− 10| < 1/2, ∀z ∈ Gn;

|(g ◦ h ◦ f)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;

|(g ◦ h ◦ f)(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;

|(g ◦ h ◦ f)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;

|(g ◦ h ◦ f)(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even. (7.2.31)

The composition rule (7.2.31) tells us that each Gk and Bk, (k > n) is a periodic
components of period 1, and each Gk and Bk for odd k ≤ n is a periodic component
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of period 1. Note that composition rules (7.2.30) and (7.2.31) show that dynamics of
g ◦ f ◦ h and g ◦ h ◦ f coincide.

Dynamical behavior of h ◦ f ◦ g:

|(h ◦ f ◦ g)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(h ◦ f ◦ g)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . , n− 1;

|(h ◦ f ◦ g)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;

|(h ◦ f ◦ g)(z)− (4n+ 6)| < 1/2, ∀z ∈ Bn and n is odd;

|(h ◦ f ◦ g)(z) + (4n+ 2)| < 1/2, ∀z ∈ Bn and n is even;

|(h ◦ f ◦ g)(z)− (4k + 10)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;

|(h ◦ g ◦ g)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;

|(h ◦ f ◦ g)(z) + (4n+ 6)| < 1/2, ∀z ∈ Gn and n is odd;

|(h ◦ f ◦ g)(z)− (4n+ 2)| < 1/2, ∀z ∈ Gn and n is even;

|(h ◦ f ◦ g)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;

|(h ◦ f ◦ g)(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;

|(h ◦ f ◦ g)(z) + 6| < 1/2, ∀z ∈ Bk, k > n k is even and k-1=n;

|(h ◦ f ◦ g)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;

|(h ◦ f ◦ g)(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even;

|(h ◦ f ◦ g)(z)− 6| < 1/2, ∀z ∈ Gk, k > n k is even and k-1=n. (7.2.32)

The composition rule (7.2.32) assigned above tells us that each Gk and Bk, (k > n)

is a periodic component of period 1, and each Gk and Bk for even k ≤ n is a periodic
component of period 1.

Dynamical behavior of h ◦ g ◦ f :

|(h ◦ g ◦ f)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(h ◦ g ◦ f)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . , n− 1;

|(h ◦ g ◦ f)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;

|(h ◦ g ◦ f)(z)− (4n+ 6)| < 1/2, ∀z ∈ Bn and n is odd;

|(h ◦ g ◦ f)(z) + (4n+ 2)| < 1/2, ∀z ∈ Bn and n is even;
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|(h ◦ g ◦ f)(z)− (4k + 10)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;

|(h ◦ g ◦ f)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;

|(h ◦ g ◦ f)(z) + (4n+ 6)| < 1/2, ∀z ∈ Gn and n is odd; (7.2.33)

|(h ◦ g ◦ f)(z)− (4n+ 2)| < 1/2, ∀z ∈ Gn and n is even;

|(h ◦ g ◦ f)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;

|(h ◦ g ◦ f)(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;

|(h ◦ g ◦ f)(z) + 6| < 1/2, ∀z ∈ Bk, k > n, k is even and k-1=n;

|(h ◦ g ◦ f)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;

|(h ◦ g ◦ f)(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even;

|(h ◦ g ◦ f)(z)− 6| < 1/2, ∀z ∈ Gk, k > n, k is even and k-1=n.

The composition rule (7.2.33) tells us that each Gk and Bk, (k > n) is a periodic
components of period 1, and each Gk and Bk for even k ≤ n is a periodic component
of period 1.

From all of the above discussion, we found that all domainsGk andBk, (k > n) are
periodic components period 2 for the composition of any two functions, and period 1
for the compositions of three functions. Therefore, these domains lie in the Fatou sets of
the functions f, g and h, and their compositions. Also, there are other periodic domains
Gk and Bk for k ≤ n of different periods of the composition that lie in the periodic
components of the Fatou sets of the functions f, g and h, and their compositions.

It is noted that Lemmas 7.2.1, 7.2.2, 7.2.3 were proved by approximation theory,
provide neither any information about possible existence of other wandering (or pre-
periodic or periodic) domains for f or g or h nor global nature of the maps. That is,
these lemmas can not say whether there exist unexpected wandering (or pre-periodic
or periodic) domains for f or g or h. However, from these lemmas, we can say that
whatever domains that lie in the wandering (pre-periodic or periodic) components of
F (f), F (g), F (h), F (f ◦ g), F (g ◦ f), F (f ◦ h), F (g ◦ h), F (h ◦ f), F (h ◦ g), F (f ◦
g ◦ h), F (f ◦ h ◦ g), F (g ◦ f ◦ h), F (g ◦ h ◦ f), F (h ◦ f ◦ g) and F (h ◦ g ◦ f), they
also lie respectively in the wandering (pre-periodic or periodic) components of their
successive compositions. For example, set B1 is a periodic component of period two
of the functions f and g as defined in (7.2.19), and (7.2.20), then it is also periodic
component of period two of their compositions f ◦ g, g ◦ f , f ◦ g ◦ f and g ◦ f ◦ g etc.
In this context, we can also prove the following two results:
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Lemma 7.2.4 ([117, Theorem 3]). If D is a set which lies in the wandering (or pre-

periodic or periodic) component of F (f), F (g), F (f ◦ g) and F (g ◦ f), then it also lies

in wandering (or pre-periodic or periodic) component of F (fnk ◦ gnk−1 ◦ . . . ◦ gn1) and

F (gnk ◦ fnk−1 ◦ . . . ◦ fn1), where nk, . . . n1 ∈ N.

Proof. By the Propositions 7.2.4 and 7.2.5, such a set D exists. Since F (f) = F (fn)

and F (g) = F (gn) for all n ∈ N. Therefore, D lies in the wandering (or pre-periodic
or periodic) component of F (fn) and F (gn) for all n ∈ N. As D lies in the wandering
(pre-periodic or periodic) component of F (f ◦ g), it also lies in the wandering (or pre-
periodic or periodic) component of F (fn ◦ gn) for all n ∈ N. By the same argument we
are using here, D also lies in the wandering (or pre-periodic or periodic) component of
F (f ◦ g)n for all n ∈ N. Since F (f ◦ g)n = F (f ◦ g ◦ . . . ◦ f ◦ g) (n -times f ◦ g), so, D
lies in the wandering (or pre-periodic or periodic) component of F (fn◦gn◦. . .◦fn◦gn)

(n-times fn ◦ gn) for all n ∈ N. n ∈ N is arbitrary, so we conclude that D lies in the
wandering (or pre-periodic or periodic) component of F (fnk ◦ gnk−1 ◦ . . . ◦ gn1) for all
nk, . . . n1 ∈ N. Similarly, we can show that D lies in the wandering (or pre-periodic or
periodic) component of F (gnk ◦ fnk−1 ◦ . . . ◦ fn1) for all nk, . . . n1 ∈ N.

Lemma 7.2.5 ([117, Theorem 4]). If D is a set which lies in the wandering (or pre-

periodic or periodic) component of F (f), F (g), F (h), F (f ◦ g), F (g ◦ f), F (f ◦
h), F (g ◦ h), F (h ◦ f), F (h ◦ g), F (f ◦ g ◦ h), F (f ◦ h ◦ g), F (g ◦ f ◦ h), F (g ◦ h ◦
f), F (h ◦ f ◦ g) and F (h ◦ g ◦ f), then it also lies in the wandering (or pre-periodic or

periodic) component of F (fnk ◦gnk−1 ◦hnk−2 . . .◦fn1), F (gnk ◦fnk−1 ◦hnk−2 ◦ . . .◦gn1)

and F (hnk ◦ fnk−1 ◦ gnk−2 ◦ . . . ◦ hn1) etc.

Proof. By Lemmas 7.2.1, 7.2.2, 7.2.3, such a set D exists. By the similar argument of
above Lemma 7.2.4, the proof of this lemma follows.

We prove the Theorem 7.2.1 for a semigroup generated by two or three transcenden-
tal entire functions as defined as in Propositions 7.2.4 and 7.2.5 or Lemmas 7.2.1, 7.2.2
and 7.2.3.

Proof of Theorem 7.2.1. Let S be a holomorphic semigroup generated by two or three
transcendental entire functions. If S is generated by two transcendental entire functions
f and g as defined in the Propositions 7.2.4 and 7.2.5, then by Lemma 7.2.4, there is at
least a domain which lies in the wandering (or periodic or perioduc) component of the
F (fnk◦gnk−1◦. . .◦gn1) and F (gnk◦fnk−1◦. . .◦fn1) for all nk, . . . n1 ∈ N. By definition
transcendental semigroup, any h ∈ S = 〈f, g〉 can be written in either of the form
h = fnk ◦gnk−1 ◦ . . .◦gn1 or h = gnk ◦fnk−1 ◦ . . .◦fn1 for all nk, . . . n1 ∈ N. Therefore,
there is a domain which lies in the wandering (or pre-periodic or periodic) component
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of the Fatou set F (S) of transcendental semigroup S. Since for a transcendental entire
function, pre-peridic (or periodic) domains are simply connected and so a domain within
simply connected domains is also simply connected. The construction of functions in
Propositions 7.2.4 and 7.2.5, the domain which lies in the wandering domains is simply
connected. If S is generated by three transcendental entire functions f , g and h as
defined in Lemmas 7.2.1, 7.2.2 and 7.2.3, then by Lemma 7.2.5 and similar argument
as above, Fatou set F (S) contains a simply connected domain.

We restricted our proof of Theorem 7.2.1 to the holomorphic semigroup generated
by two or three transcendental entire functions. Rigorously, it is not known that the
essence of this theorem holds if a semigroup is generated by more than three transcen-
dental entire functions. We can only say intuitively that the essence of this theorem may
hold if semigroup S is generated by n-transcendental entire functions. There is another
strong aspect of this theorem, which is- if a holomorphic semigroup generated by such
type of two or three transcendental entire functions, then the Fatou set is non-empty.

It is noted that if f1, f2 and f3 respectively represent the functions f, g and h of
Lemmas 7.2.1, 7.2.2 and 7.2.3, then by construction these are functions of bounded
type (that is, these are exponential functions). By the result of Huang [43, Theorem
2], for all z ∈ F (S), every function lm ∈ S = 〈f1, f2, f3〉 can be written as lm(z) =

(fik ◦ fik−1
◦ fik−2

. . . ◦ fi1)(z) does not tend to infinity on F (S) as m → ∞, where
1 ≤ ik ≤ 3, 1 ≤ k ≤ m. Again note that for such functions, every components of Fatou
set F (S) is simply connected and lm(B(z0, R0)) is contained in the simply connected
component of F (S), whereB(z0, R0) is a disk with center at z0 and radiusR0. Theorem
7.2.1 is a very concrete supporting example of the result of Huang ([43, Theorem 2]).

It is noted that Haung has proved that every multiply connected component of F (S)

must be wandering and bounded ([43, Theorem 1]). There is connection between certain
Fatou component and escaping set of a transcendental semigroup. Such type of connec-
tion exhibits non-empty escaping set of a transcendental semigroup. In [63, Theorem
2.4], Kumar and Kumar proved this relation as follows.

Theorem 7.2.2. For a transcendental semigroup S, a multiply connected Fatou com-

ponent and a Baker domain are in the escaping set. That is, if U ⊂ F (S) and U is a

multiply connected Fatou component or a Baker domain, then U ⊂ I(S).

Proof. Let U be a multiply connected component of Fatou set F (S). The rest of the
proof follows from Lemma 4.1.2.

Next, suppose that U ⊂ F (S) is a Bakar domain of a semigroup S. Let Uf ⊂ F (f)

be a Baker domain of f ∈ S. Since F (S) ⊂ F (f) for all f ∈ S, we have U ⊂ Uf ⊂
F (f) and Uf ⊂ I(f) for some f ∈ S. Therefore by normality, Uf ⊂ I(S).

100



Chapter 8

FAST ESCAPING SETS OF

TRANSCENDENTAL SEMIGROUPS

In this chapter, we study fast escaping sets of transcendental semigroups. In particular,
we discuss some fundamental structure and properties of the fast escaping sets of tran-
scendental semigroups. We also show how far the classical dynamical theory of fast
escaping sets applies to general settings of transcendental semigroups, and what new
phenomena can occur.

8.1 Fast escaping set

There is no formulation of the fast escaping set of a transcendental semigroup. In this
section, we define fast escaping set, and try to formulate some other related terms and
results.

Let S be a transcendental semigroup. Let us define a set

AR(S) = {z ∈ C : |fn(z)| ≥Mn(R, f) for all f ∈ S and n ∈ N} (8.1.1)

where M(r, f) = max|z|=r |f(z)| and Mn(r, f) denotes the nth iterates of M(r, f).
R > 0 can be taken any value such that M(r, f) > r for r ≥ R. If r is sufficiently
large, then Mn(r, f) → ∞ as n → ∞. The set AR(S) is well defined in semigroup
S because for any f ∈ S, fn ∈ S for all n ∈ N. From the condition |fn(z)| ≥
Mn(R, f) for all f ∈ S and n ∈ N of the set AR(S), we can also say that a point
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z ∈ C is in AR(S) if every sequence (gn)n∈N in S has a subsequence (gnk)nk∈N which
increases without bound at least as fast as the n-iterates of the maximum modulus of
each gnk .

Definition 8.1.1 (Fast escaping set). The fast escaping set A(S) of a transcendental

semigroup S consists the setAR(S) and all its pre-images. In other words, fast escaping

set is a set of the form

A(S) =
⋃

n≥0

f−n(AR(S)) (8.1.2)

where f−n(AR(S)) = {z ∈ C : fn(z) ∈ AR(S)} for all f ∈ S and n ∈ N.

We can do certain stratification of a fast escaping set which helps to make it more
visible, and provides a significant new understanding of the structure and properties of
this set. We can write fast escaping set as a countable union of all its labels as we define
below.

Definition 8.1.2 (Lth label of fast escaping set). Let A(S) be a fast escaping set of a

transcendental semigroup S. For L ∈ Z, the set of the form

ALR(S) = {z ∈ C : |fn(z)| ≥Mn+L(R)

for all f ∈ S, n ∈ N and n+ L ≥ 0} (8.1.3)

is called Lth level of fast escaping set A(S).

It is noted that the set AR(S) as defined as above in (8.1.1) is the 0th level of A(S).
As Mn+1(R, f) > Mn(R, f) for all n ≥ 0, so from (8.1.3), we get the following chain
of relation

. . . ⊂ ALR(S) ⊂ AL−1
R (S) ⊂ . . . ⊂ A1

R(S) ⊂ AR(S) ⊂

A−1
R (S) ⊂ A−2

R (S) ⊂ . . . ⊂ A
−(L−1)
R (S) ⊂ A−LR (S) ⊂ . . . (8.1.4)

From (8.1.2) and (8.1.4), the fast escaping set can also be written as an expanding union
of its labels.

A(S) =
⋃

L∈N
A−LR (S). (8.1.5)

Again, from Definition 8.1.1, that is, from (8.1.2), if any z0 ∈ A(S), then z0 ∈ f−n(AR(S))

for some n ≥ 0. It gives fn(z0) ∈ AR(S) for all f ∈ S. From (8.1.1), there is L ∈ N
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such that |fL(fn(z0))| = |fn+L(z0)| ≥ Mn(R, f). With this clause, the fast escaping
set of a transcendental semigroup S can now be written as

A(S) = {z ∈ C : there exists L ∈ N such that

|fn+L(z)| ≥Mn(R) for all f ∈ S, and n ∈ N}. (8.1.6)

We can use any one of the form (8.1.2) or (8.1.5) or (8.1.6) as a definition of a fast
escaping set. Note that by definition, the fast escaping set A(S) of any transcendental
semigroup S is a subset of escaping set I(S). By Theorem 4.1.3(3), we can say that
I(S) may be empty. For any transcendental semigroup S, if I(S) = ∅, then we must
have A(S) = ∅. It is not known whether there is a transcendental semigroup S such
that I(S) 6= ∅ but A(S) = ∅. It is noted that in classical transcendental dynamics, both
of these sets are non-empty.

Example 8.1.1 ([114, Example 3.1]). Let S be a transcendental semigroup generated

by the functions f(z) = ez and g(z) = e−z. The function h = g ◦ fn ∈ S is iteratively

bounded at any z ∈ C. Therefore, I(S) = ∅ and A(S) = ∅.

Like escaping set I(S), fast escaping set A(S) is also neither an open nor a closed
set if it is non-empty. Similar to Theorem 4.1.3(3), the following assertion is also clear
from the definition of fast escaping set.

Theorem 8.1.1 ([114, Theorem 3.1]). Let S be a transcendental semigroup. Then

A(S) ⊂ A(f) for all f ∈ S, and hence A(S) ⊂ ⋂f∈S A(f).

8.2 Elementary properties of fast escaping set

In this section, we check how far basic properties of a fast escaping set of the classi-
cal transcendental dynamics can be generalized to fast escaping set of transcendental
semigroup dynamics. In Chapter 4, we examined the contrast between classical and
semigroup holomorphic dynamics in the invariant features of Fatou, Julia and escaping
sets. In this section, we see the same type of contrast in the fast escaping set. It is noted
that in classical transcendental dynamics, the fast escaping set is completely invariant.

We prove the following elementary results that are important regarding the structure
of fast escaping set A(S). These results may also have more chances of leading further
results concerning the properties and structure of A(S). Indeed, it shows certain con-
nection and contrast between classical and semigroup dynamics, and it is also a nice
generalization of classical transcendental dynamics to semigroup dynamics.
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Theorem 8.2.1 ([114, Theorem 4.1]). Let S is a transcendental semigroup such that

A(S) 6= ∅. Then the following are hold.

1. A(S) is S-forward invariant.

2. A(S) is independent of R.

3. J(S) = ∂A(S).

4. J(S) ⊂ A(S).

5. A(S) ∩ J(S) 6= ∅.

Proof. (1). By Definition 8.1.2, we can write ALR(S) ⊂ {z ∈ C : |z| ≥ ML(R), L ≥
0}. Therefore, for any z0 ∈ ALR(S), f(z0) ∈ {z ∈ C : |f(z)| ≥ ML+1(R), L ≥
0} = AL+1

R (S) for all f ∈ S, and n ∈ N. This shows that f(ALR(S)) ⊂ AL+1
R (S)

for all f ∈ S. However from relation (8.1.4), AL+1
R (S) ⊂ ALR(S). Hence, we have

f(ALR(S)) ⊂ ALR(S). This fact together with equation (8.1.5), we can say that A(S) is
S-forward invariant.

(2) Choose R0 > R, then from (8.1.4), we have ALR0
(S) ⊂ ALR(S) for all L ∈ Z,

and so
⋃
L∈NA

−L
R0

(S) ⊂ ⋃L∈NA
−L
R (S). Since there is m ∈ N such that Mm(R) > R0,

and so ⋃

L∈N
A−LR (S) ⊂

⋃

L∈N
Am−LR (S) =

⋃

L∈N
A−LMm(R)(S) ⊂

⋃

L∈N
A−LR0

(S).

From above two inequality, we have

⋃

L∈N
A−LR0

(S) =
⋃

L∈N
A−LR (S) = A(S).

This proves A(S) is independent of R.

(3) We prove this statement by showing Int.(A(S)) ⊂ F (S) and Ext.(A(S)) ⊂
F (S) where Int. and Ext. are respectively represent interior and exterior of A(S).
A(S) is S-forward invariant, so fn(A(S)) ⊂ A(S) for all f ∈ S, and n ∈ N. Suppose
z ∈ Int.(A(S)), then there is a neighborhood V of z such that z ∈ V ⊂ A(S). Since
A(S) contains no periodic points, so |fn+L(z)| ≥ Mn(R) for all f ∈ S, and n ∈ N,
and hence (fn)n∈N is normal on V by Montel’s theorem. Thus z ∈ F (S). This proves
Int.(A(S)) ⊂ F (S).

By Theorem 3.2.3 of [15], the closure and complement of A(S) are also forward
invariant. Therefore, from fn(A(S)) ⊂ A(S), we can write fn(C−A(S)) ⊂ C−A(S).

for all n ∈ N. C− A(S) = Ext.(A(S)). By the assumption of non-empty A(S), A(S)
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is also a non-empty closed set. By definition, F (S) is a largest open set on which S is
normal family, so we must C− A(S) = Ext.(A(S)) ⊂ F (S).

(4) The proof follows from (3).

(5) By Theorem 8.1.1, A(S) ⊂ A(f) for all f ∈ S. A Fatou component U ⊂ F (S)

is also a component of F (f) for each f ∈ S.
Case (i): If U is a multiply connected component of F (S), then by [85, Theorem 2
(a)], U ⊂ A(f) for all f ∈ S. Again, by Theorem 8.1.1, U ⊂ A(S). This shows that
∂U ⊂ A(S). ∂U ⊂ J(f) for all f ∈ S. By [75, Theorem 4.2], we write ∂U ⊂ J(S).
This proves A(S) ∩ J(S) 6= ∅.
case (ii): If U is simply connected component of F (S) that meets A(S), then by [89,
Theorem 1.2 (b)], U ⊂ A(f) for all f ∈ S. Therefore, as in case (i), U ⊂ A(S). By [89,
Corollary 4.6], if F (S) has only simply connected components, then ∂ALR(S) ⊂ J(S)

where ∂ALR(S) is L-th label of F (S). From (8.1.5), we conclude that A(S) ∩ J(S) 6=
∅.

There are many classes of functions from which we get I(f) ⊂ J(f), and for such
functions, we must have A(f) ⊂ J(f). Kumar and Kumar [61, Theorem 4.5] prove that
I(S) ⊂ J(S) if transcendental semigroup S is of finite or bounded type. We prove the
following similar result.

Theorem 8.2.2 ([114, Theorem 4.2]). Let S be a bounded or finite type transcendental

semigroup. Then A(S) ⊂ J(S) and J(S) = A(S).

Proof. For each f ∈ S, Eremenko and Lyubich [34] proved that I(f) ⊂ J(f). Poon
[75, Theorem 4.2] proved that J(S) =

⋃
f∈S J(f). Therefore, for any f ∈ S, we have

A(S) ⊂ A(f) ⊂ J(f) ⊂ J(S). The second part follows from A(S) ⊂ J(S) together
with Theorem 8.2.1 (4).

There are many functions in the class B, the escaping set I(f) consists of uncount-
able family of curves tending to infinity. For example, function λ sin z+γ with λ, γ ∈ C
belongs to the class S ⊂ B, and its escaping set is an uncountable union of curves tend-
ing to infinity, the so-called Cantor bouquet. For the function f(z) = λez, 0 < λ < 1/e,
the Fatou set is completely invariant attracting basin and Julia set is a Cantor bouquet
consisting of uncountably many disjoint simple curves, each of which has finite end
point and other endpoint is ∞. The escaping set of such a function consists of open
curves (without endpoints) together with some of their end points. It is noted that for
such a function, each point in the escaping set can be connected to∞ by a curve in the
escaping set. For such functions, every point in such a curve belongs to fast escaping
set except possibly a finite endpoint. More generally, let f be a finite composition of
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functions of finite order in the class B and let z0 ∈ I(f). Then z0 can be connected
to ∞ by a simple curve Γ ⊂ I(f) such that Γ \ {z0} ⊂ A(f) (see, for instance, [83,
Theorem 1.2]).

There is a chance of similar result in semigroup dynamics if semigroup S is gen-
erated by the transcendental functions of finite order in the class B. If so, then every
f ∈ S is a finite composition of the functions of finite order in the class B, and for each
of such function f , A(f) consists of curves Γ \ {z0} with exception of some of the end
points. Since A(S) ⊂ A(f) for each f ∈ S, then A(S) may consist of curves Γ \ {z0}
with exception of some of the end points.

8.3 On the Lth labels of A(S)

In this section, we concentrate on L-th label ALR(S) of fast escaping set A(S). Fast
escaping set can be written as expanding union of L-th labels, so, we hope that certain
structure and properties of each L-th label may determine structure and properties of
fast escaping set. Analogous to classical transcendental dynamics [89], unlike the set
A(S), each of its label is a closed set.

Theorem 8.3.1 ([114, Theorem 5.1]). Let L ∈ Z, and let S be a transcendental semi-

group such that A(S) 6= ∅. Then the set ALR(S) is closed and unbounded for each

L ∈ Z.

Proof. By Definition 8.1.2, we can write ALR(S) ⊂ ALR(f) for all f ∈ S. This implies
that ALR(S) ⊂ ⋂f∈S A

L
R(f). For each L ∈ Z, ALR(f) is a closed and unbounded set

and also by [89, Theorem 1.1] each component of ALR(f) is closed and unbounded for
all f ∈ S. Therefore,

⋂
f∈S A

L
R(f) is also a closed and unbounded set, and each of its

component is closed and unbounded. ALR(S) is a component of
⋂
f∈S A

L
R(f), so, it must

be closed and unbounded.

On the light of Theorem 8.3.1, and equation (8.1.5), we obtained a new structure
of the fast escaping set A(S), a countable union of closed and unbounded sets ALR(S).
This result also provides a solution of Eremenko’s Conjecture 2.4.1 in transcendental
semigroup dynamics. This generalizes the result of classical transcendental dynamics
to transcendental semigroup dynamics.

Labels of fast escaping set A(S) can be used to show if U is a Fatou component
in A(S), then boundary of U is also in A(S). There are variety of results on simply
connected and multiply connected Fatou components. Each of the Fatou component
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of transcendental semigroup is either a stable (periodic) or unstable (wandering (non-
periodic)) domain. For any Fatou component U , we prove the following result which is
analogous to [89, Theorem 1.2] of classical transcendental dynamics.

Theorem 8.3.2 ([114, Theorem 5.2]). Let U be a Fatou component of transcendental

semigroup S that meets ALR(S), where R > 0 be such that M(r, f) > r for r ≥ R for

all f ∈ S and L ∈ N. Then

1. U ⊂ AL−1
R (S);

2. if U is simply connected, then U ⊂ ALR(S)

Proof. Since U ∩ ALR(S) 6= ∅. The fact ALR(S) ⊂ ALR(f) for all f ∈ S implies that
U ∩ ALR(f) 6= ∅ for all f ∈ S. Therefore, from [89, Theorem 1.2 (a)], we always have
U ⊂ AL−1

R (f) for all f ∈ S. Hence, U ⊂ AL−1
R (S). The second part also follows

similarly by using [89, Theorem 1.2 (b)].

By part (2) of Theorem 8.1.1, we can conclude that U ⊂ ALR(S) for all simply
connected component U of F (S). Therefore, if all components of F (S) are simply
connected, then we must ∂ALR(S) ⊂ J(S) and hence interior of ALR(S) is contained
in F (S). This theorem also generalizes the result of classical transcendental dynamics
to transcendental semigroup dynamics. That is, whatever Fatou component (simply or
multiply connected) U of F (S) intersecting A(S), there is always U ⊂ A(S). Again,
another question may raise. Such a Fatou component U is periodic or wandering? Note
that in classical transcendental dynamics, such a Fatou component is always wandering
([89, Corollary 4.2]). For transcendental semigroup dynamics, such a Fatou component
is again wandering domain. For, if U ∩A(S) 6= ∅, then U ∩A(f) 6= ∅ for all f ∈ S. In
this case, U is wandering domain of each f ∈ S, so it is wandering domain of S.
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Chapter 9

SUMMARY AND CONCLUSIONS

In this chapter, we give a brief summary, and a conclusion of this research. At the
last section, we give an outline on further ideas and open questions related to the in-
vestigation of Fatou, Julia, escaping and fast escaping sets, and other related ideas of
holomorphic semigroups.

9.1 Summary

This thesis belongs to the area of holomorphic semigroup dynamics, where semigroups
are generated by the holomorphic functions of a complex variable. It is a study of the
behavior of the compositions of a finite set of holomorphic functions in the complex
plane. In the study, we restricted holomorphic functions either to rational functions or
to (transcendental) entire functions. By nature, we focus on the structure and properties
of Fatou, Julia, escaping and fast escaping sets of holomorphic semigroups generated
by transcendental entire functions. As mentioned in the objective section, we examined
to what extent, structure and properties of the Fatou, Julia, escaping and fast escaping
sets of classical holomorphic dynamics are generalized and preserved, and what new
phenomena occurred.

The techniques of getting goals of the objectives that we developed in this thesis are
comparisons of the Fatou, Julia and escaping sets of a holomorphic semigroup and its
proper subsemigroups. The general comperison is Theorem 4.1.3, and Lemmas 6.1.1
and 6.1.3. We studied certain holomorphic semigroups, whose Fatou, Julia and escap-
ing sets coincide with its every cyclic subsemigroups (Theorems 4.1.6, 4.2.6 and 4.2.7).
On the basis of index of the subsemigroup, we also studied certain holomorphic semi-
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groups, whose Fatou, Julia and escaping sets coincide with its every proper subsemi-
groups (Theorems 6.1.3 and 6.2.1). We generalized the notion of abelian holomorphic
semigroups to the notion of nearly abelian holomorphic semigroups, and then we in-
vestigated identical dynamical results of abelian semigroups (Theorems 5.1.2). We also
studied some dynamical relation between a holomorphic semigroup and its conjugate
semigroups (Theorems 5.2.1, 5.2.2 and 5.2.3). By definition, Fatou and escaping sets of
a holomorphic semigroup might be empty. In Chapter-7, we developed some examples
of holomorphic semigroups, whose Fatou and escaping sets are non-empty (Theorems
7.1.1 and 7.2.1) by using approximation theory. Finally, we defined fast escaping set of
a transcendental semigroup, and then we studied some fundamental structure and prop-
erties of a fast escaping set (Theorems 8.1.1, 8.2.1, 8.2.2, 8.3.1, and 8.3.2). This is all,
mainly, we did in this research.

9.2 Conclusions

We studied holomorphic dynamics by the tools and techniques of semigroup theory. We
also observed that much more could be done by using such kind of algebraic approach.
There are few studies that establish a relationship between holomorphic dynamics and
certain kind of algebraic structures. Nekrashevych [66, 67] studied such type connec-
tion between classical holomorphic dynamics and self-similar groups by using tools and
techniques from group theory. Chacon et al. [28] studied holomorphic semigroup dy-
namics via combinatorial method, and they significantly improve the result of Hinkka-
nen and Martin [46, Theorem 3.1] by giving a tree structure to the backward orbit and
show that almost every path of the tree is dense in Julia set of the rational semigroup.
We can also rethink that how these tools and techniques naturally generalize further to
the study of the dynamics of holomorphic semigroups.

Almost results discussed in this thesis are quite classical in the sense that we have
not studied any applications. In fact, it is quite new area of mathematical research,
and even yet there is no intensive research in the field of applications of holomorphic
semigroup dynamics. For further research, we have also plan to see some applications
of this research study to other field of pure and applied mathematics.
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9.3 Recommendations for further work

In this section, we briefly consider six areas of further study, which arise from or are
closely related to the work in this thesis. Some of the ideas, open questions and con-
jectures introduced in this chapter are already work in progress, and there are already
existing partial results. We present them in the sense that we made unsuccessful at-
tempts in their proofs. It does not mean that they are complete list of open problems
in the field of holomorphic semigroup dynamics. We have made a plane to work on
the following open problems. It is not necessary that we should find solution of every
question, but we will try as far as possible.

9.3.1 For an alternative definition of an escaping set

For a transcendental semigroup S, we defined escaping set (see, for instance, Definition
4.1.1) by

I(S) = {z ∈ C : S is iteratively divergent at z}

Kumar and Kumar [61, Definition 2.1] defined it by

I(S) = {z ∈ C : every sequence in S has a subsequence which diverges to infinity at z}

These two definitions can not be logically equivalent. Example 4.1.1 is a powerful
evident. However, if we could prove the following slightly modified assertion, then
above two definitions of escaping sets of a transcendental semigroup can be equivalent
in a certain sense, and in our case, this can be an alternative definition of an escaping
set of a transcendental semigroup.

Open Problem 9.3.1. Let S be a holomorphic semigroup and z ∈ C. Then z ∈ I(S)

if and only if every non-convergent sequence in S has a subsequence which diverges to

∞ at z.

We only need to prove only if part, and if part of this assertion is proved in Theorem
4.1.2.

9.3.2 Eremenko’s conjecture for a non-cyclic holomorphic semigroup

The following assertion can be the Eremenko’s conjecture for a non cyclic holomorphic
semigroup.
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Conjecture 9.3.1. Let S be a transcendental semigroup, and let I(S) be its escaping

set such that I(S) 6= ∅. Then every component of I(S) is unbounded.

Theorem 4.1.6 is a partial solution to Conjecture 9.3.1. In this theorem, escaping
set of a semigroup S coincide with escaping set of its every cyclic subsemigroup, that
is, escaping set I(f) for every f ∈ S. It is noted that the semigroup in this theorem is
generated by such types transcendental entire functions whose escaping sets satisfy the
Eremenko’s conjecture 2.4.1, and hence for such a transcendental semigroup, Conjec-
ture 9.3.1 holds trivially.

For a general transcendental semigroup S, Conjecture 9.3.1 can be settled down if
we could prove the following assertions:

Open Problem 9.3.2. Let S be a transcendental semigroup, and A(S) be a fast escap-

ing set such that A(S) 6= ∅. Then every component of A(S) is unbounded.

Open Problem 9.3.3. Let S be a transcendental semigroup, and I(S) be an escaping

set such that I(S) 6= ∅. Then I(S) ⊂ A(f) for all f ∈ S.

9.3.3 Baker’s conjecture for a non-cyclic holomorphic semigroup

The following assertion can be the Baker’s conjecture for a non cyclic holomorphic
semigroup.

Conjecture 9.3.2. If a semigroup S generated by transcendental entire functions of

order less than 1/2, or has order at most 1/2, minimal type, then all components of the

Fatou set F (S) are bounded.

We have not made any attempt for this Conjecture 9.3.2 in this thesis, but we men-
tioned Baker Conjecture of classical holomorphic dynamics (Conjecture 4.2.2), and
some attempts of its proof at the end of Chapter 2.3. This conjecture in holomorphic
semigroup dynamics can be proved if we could prove the following assertions:

Open Problem 9.3.4. Let S be a semigroup generated by transcendental entire func-

tions of order less than 1/2, or has order at most 1/2, minimal type. Let D be a com-

ponent of F (S) such that all limit functions of convergent subsequences of composition

sequencees of S are finite in D. Then D is bounded.

Open Problem 9.3.5. Let S be a semigroup generated by transcendental entire func-

tions of order less than 1/2, or has order at most 1/2, minimal type. Let D be a com-

ponent of F (S) such that there is a component U of F (S) such that f(U) ⊂ U and

fn(D) ⊂ U for all f ∈ S for some n ∈ N. Furthermore, fm(z) → ∞ as m → ∞,

locally uniformly for all z ∈ U . Then D is bounded.

111



As described in Section 2.5, there is also a recent investigation that shows a kind of
connection between Eremenko’s Conjecture 2.4.1 and Baker’s Conjecture 2.3.1 in clas-
sical transcendental dynamics (for example, Proposition 2.5.4 of this thesis). We have
also a plan to see how far that connection can be generalized in semigroup dynamics,
and what new phenomena can occur.

9.3.4 Generalization of Lemmas 7.2.1, 7.2.2 and 7.2.3

We proved Lemmas 7.2.1, 7.2.2 and 7.2.3) for three transcendental entire functions. The
following assertion can be a generalization of these lemmas.

Open Problem 9.3.6. For any n ∈ N, there exist n different transcendental entire

functions and infinitely many domains which lie in different wandering (or pre-periodic

or periodic) components of individual functions and their different compositions.

9.3.5 Example of non-cyclic transcendental semigroup with multi-

ply connected Fatou components

Bergweiler [20, Theorem 1] proved that there exists an entire function which has both
a simply and a multiply connected wandering domains. In [117, Theorem1] (Theorem
7.2.1, in this thesis), we generalized this result of Bergweiler, in a certain sense, to a
semigroup generated by three transcendental entire functions. In particular, we proved
that there exists a non-cyclic transcendental semigroup which has a simply connected
wandering (pre-periodic, priodic) Fatou component. The Bergweiler’s result of classi-
cal transcendental dynamics should be generalized to semigroup dynamics if we could
prove the following assertions:

Open Problem 9.3.7. There is a non trivial transcendental semigroup S such that the

Fatou set F (S) has at least a multiply connected component.

Open Problem 9.3.8. There is a non trivial transcendental semigroup S such that the

Fatou set F (S) has both a simply and a multiply connected component.
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9.3.6 Connection of (partial) fundamental sets with Fatou compo-

nents

In Theorem 7.1.1, we proved that partial fundamental set is in the Fatou set, and Fun-
damental set is in the escaping set of a holomorphic semigroup. There may certain
connection of these sets with Fatou components. We purpose the connection in the
following assertions:

Open Problem 9.3.9. Let U be a fundamental set for a transcendental semigroup S.

Then it is contained in either a Baker domain or in a multiply connected component of

the Fatou set F (S).

Open Problem 9.3.10. Let U be a partial fundamental set for a transcendental semi-

group S. Then it is contained in either a wandering domain or in a pre-periodic domain

of the Fatou set F (S).
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Abstract: We investigate under what conditions the Fatou, Julia, and escaping sets of a transcendental semigroup are
respectively equal to the Fatou, Julia, and escaping sets of their subsemigroups. We define the partial fundamental set
and fundamental set of a holomorphic semigroup, and on the basis of these sets, we prove that the Fatou and escaping
sets of a transcendental semigroup S are nonempty.
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1. Introduction
We confine our study to the Fatou, Julia, and escaping sets of a holomorphic semigroup and its subsemigroup.
A semigroup S is a very classical algebraic structure with a binary composition that satisfies the associative
law. Semigroups arose naturally from the general mappings of a set into itself. Hence, a set of holomorphic
functions on complex plane C or Riemann sphere C∞ naturally forms a semigroup. Here, we take a set A

of holomorphic functions and construct a semigroup S that consists of all elements that can be expressed as
a finite composition of elements in A . We call such a semigroup S the holomorphic semigroup generated by
the set A . A nonempty subset T of a holomorphic semigroup S is a subsemigroup of S if f ◦ g ∈ T for all
f, g ∈ T .

For simplicity, we denote the class of all rational functions on C∞ by R and the class of all transcendental
entire functions on C by E . Let F = {fα : α ∈ ∆} ⊆ R or E . The holomorphic semigroup generated by F

is denoted by
S = ⟨fα⟩.

The index set ∆ is allowed to be infinite in general unless otherwise stated. It is easy to see that S is a collection
of holomorphic functions, and is closed under functional composition. S is called a rational semigroup or a
transcendental semigroup depending on whether F ⊆ R or F ⊆ E . A holomorphic semigroup S is abelian if
fα ◦ fβ = fβ ◦ fα for all generators fα and fβ of S .

A semigroup generated by finitely many holomorphic functions fi, (i = 1, 2, . . . , n) is called a finitely
generated holomorphic semigroup, and we write S = ⟨f1, f2, . . . , fn⟩ . If S is generated by only one holomorphic
function f , then S is called a cyclic semigroup, and we write S = ⟨f⟩ . In this case, each g ∈ S can be written
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as g = fn , where fn is the nth iterate of f with itself. We say that S = ⟨f⟩ is a trivial semigroup. By the
definition of holomorphic semigroup, we at once get the following result.

Proposition 1.1 Let S = ⟨fα⟩ be a holomorphic semigroup. Then for every f ∈ S , fm (for all m ∈ N) can
be written as fm = fα1

◦ fα2
◦ fα3

◦ · · · ◦ fαp
, where αi ∈ {α : α ∈ ∆} , for some p ∈ N .

A family F of holomorphic functions forms a normal family in a domain D if every sequence (fα) ⊆ F

has a subsequence (fαk
) which is uniformly convergent or divergent on all compact subsets of D . If there is a

neighborhood U of a point z ∈ C such that F is a normal family in U , then we say that F is normal at z .
We say that a holomorphic function f is iteratively divergent at z ∈ C if

fn(z) → ∞ as n → ∞.

A semigroup S is iteratively divergent at z if every f ∈ S is iteratively divergent at z . A semigroup S is said
to be iteratively bounded at z if there is an element f ∈ S which is not iteratively divergent at z .

Like in classical complex dynamics (that is, based on the Fatou-Julia-Eremenko theory of a holomorphic
function), the Fatou, Julia, and escaping sets in the settings of a holomorphic semigroup are defined as follows:

Definition 1.1 (Fatou, Julia, and escaping sets) The Fatou set of the holomorphic semigroup S is defined
by

F (S) = {z ∈ C : S is normal at z} ,
and the Julia set J(S) of S is the complement of F (S) . If S is a transcendental semigroup, the escaping set
of S is defined by

I(S) = {z ∈ C : S is iteratively divergent at z}.
We call each point of the set I(S) an escaping point.

It is obvious that F (S) is the largest open subset (of C or C∞ ) on which the semigroup S is normal. And
its complement J(S) is a closed set for any semigroup S . However, the escaping set I(S) is neither an open
nor a closed set (if it is nonempty) for any transcendental semigroup S . Any maximally connected subset U

of the Fatou set F (S) is called a Fatou component. If S = ⟨f⟩ , then the Fatou, Julia, and escaping sets are
respectively denoted by F (f), J(f) , and I(f) .

It is possible that the Fatou, Julia, or escaping set of a holomorphic semigroup may be equal, respectively,
to the Fatou, Julia, or escaping set of a proper subsemigroup.

Definition 1.2 (Finite index and cofinite index) A subsemigroup T of a holomorphic semigroup S is said
to be of finite index if there exists a finite collection {f1, f2, . . . , fn} of elements of S1 , where S1 = S∪{Identity} ,
such that

S = (f1 ◦ T ) ∪ (f2 ◦ T ) ∪ . . . ∪ (fn ◦ T ). (1.1)

The smallest n that satisfies 1.1 is called the index of T in S . Similarly, a subsemigroup T of a holomorphic
semigroup S is said to be of cofinite index if there exists finite collection {f1, f2, . . . , fn} of elements of S1 such
that for any f ∈ S , there is i ∈ {1, 2, . . . , n} such that

fi ◦ f ∈ T. (1.2)

The smallest n that satisfies 1.2 is called the cofinite index of T in S .
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Note that the size of a subsemigroup T of a semigroup S is measured in terms of index. If a subsemigroup T

has a finite index or cofinite index in the semigroup S , then we say T is a finite indexed subsemigroup or a
cofinite indexed subsemigroup, respectively.

For any holomorphic function f ,

CV (f) = {w ∈ C : w = f(z) for some z such that f ′(z) = 0}

(where f
′ represents derivative of f with respect to z ) is the set of critical values of f . The set AV (f)

consisting of all w ∈ C such that there exists a curve Γ : [0,∞) → C so that Γ(t) → ∞ and f(Γ(t)) → w as
t → ∞ is the set of asymptotic values of f and

SV (f) = (CV (f) ∪AV (f))

is the set of singular values of f . If SV (f) is finite, then f is said to be of finite type. If SV (f) is bounded,
then f is said to be of bounded type. The sets

S = {f : f is of finite type}

and
B = {f : f is of bounded type}

are respectively known as Speiser class and Eremenko-Lyubich class.
In [8, Theorem 5.1], Poon proved that the Fatou and Julia sets of a finitely generated abelian transcen-

dental semigroup S is the same as the Fatou and Julia sets of each of its particular functions if the semigroup S

is generated by finite type transcendental entire functions. In [13, Theorems 3.3], we proved that the escaping
set of a transcendental semigroup S is the same as the escaping set of each of its particular functions if the
semigroup S is generated by finite type transcendental entire functions. In this paper, we prove the following
assertion:

Theorem 1.1 If a subsemigroup T has finite index or cofinite index in an abelian transcendental semigroup
S , then I(S) = I(T ), J(S) = J(T ) and F (S) = F (T ) .

In Section 2, we define Rees index in semigroups. We then prove Theorem 1.1 for a subsemigroup T having
finite Rees index.

From [11, Theorem 3.1 (1) and (3)], we can say that Fatou and escaping sets of holomorphic semigroup
may be empty. The result [8, Theorem 5.1] is one of the case of nonempty Fatou set and that of [13, Theorem
3.3] is a case of the nonempty escaping set of transcendental semigroup. We obtain another case of nonempty
Fatou and escaping sets on the basis of the following definition.

Definition 1.3 (Partial fundamental set and fundamental set) A set U is called a partial fundamental
set for the semigroup S if

1. U ̸= ∅ ,

2. U ⊂ R(S) ,

3. f(U) ∩ U = ∅ for all f ∈ S .
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If in addition to (1) , (2) , and (3), U satisfies the property

4.
∪

f∈S f(U) = R(S) ,

then U is called a fundamental set for S .

The set R(S) is defined and discussed in Remark 4.1 of Section 4. On the basis of Definition 1.3, we obtain the
following result.

Theorem 1.2 Let S be a holomorphic semigroup and U a partial fundamental set for S . Then U ⊂ F (S) .
If, in addition, S is a transcendental semigroup and U is a fundamental set, then U ⊂ I(S) .

The organization of this paper is as follows: In Section 2, we briefly review the notion of finite index sub-
semigroups and cofinite index subsemigroups with suitable examples, we review some results from rational
(sub)semigroup dynamics, and we extend the same in transcendental (sub)semigroup dynamics. We introduce
the Rees index of a subsemigroup, and we prove the dynamical similarity of a holomorphic semigroup and its
subsemigroup. In Section 3, we prove Theorem 1.1, and we also prove it without the abelian condition for the
subsemigroup having finite Rees index. In Section 4, we define discontinuous semigroups, and on the basis of
this notion, we discuss partial fundamental sets and fundamental sets, and then we prove Theorem 1.2.

2. Results from general holomorphic (sub)semigroup dynamics

There are various notions of how large a substructure is inside of an algebraic object in order that the two
structures share certain properties. One such a notion is index, and it plays an important role in general group
theory and semigroup theory. It is used to measure the difference between a group (semigroup) and a subgroup
(subsemigroup). It occurs in many important theorems of the group theory and semigroup theory. The notions
of finite index, cofinite index and Rees index of subsemigroup have been used to gauge the size of subsemigroup.
If the subsemigroup T is big enough in semigroup S , then S and T share many properties. In this context,
Theorem 1.1 states that if T has finite index or cofinte index in S , then both S and T share the same Fatou,
Julia, and escaping sets. In the semigroup theory, the cofinite index is also known as Grigorochuk index, and
this index was introduced by Grigorochuk [3] in 1988. Maltcev and Ruskuc [7, Theorem 3.1] proved that for
every element f of a finitely generated semigroup S and every proper cofinite indexed subsemigroup T , one
has f ◦ T ̸= S . Note that if the semigroup is a group, the notion of finite index and cofinite index coincide.
The subsemigroup T of a finitely generated semigroup S consisting of all words of finite length (compositions
of a finite number of holomorphic functions) has a finite index and a cofinite index in S .

From Definition 1.2, the finite index and cofinite index of subsemigroups of the following examples will
be clear.

Example 2.1 A subsemigroup

T = ⟨sin sin z, cos cos z, sin cos z, cos sin z⟩

of the transcendental semigroup S = ⟨sin z, cos z⟩ has finite index 3 and cofinite index 2.

Example 2.2 A subset T = {words (compositions) begining with f} of a holomorphic semigroup S = ⟨f, g⟩ is
clearly a subsemigroup of S . Then T has an infinite index but cofinite index 1 in S .
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Note that in Example 2.2, S is finitely generated but T is not. Since any generating set of T must
contain {f ◦ gn : n ≥ 1} . The only cofinite subsemigroup of T is T itself. Hence, T has cofinite index 1 in S .

Example 2.3 Let S = ⟨f⟩ where f is a holomorphic function. Then the subsemigroup T = ⟨fn : n ∈ N⟩ . has
finite index n in S and cofinite index 1 in S .

Note that in Example 2.3, the subsemigroup T has n different translates in S , which are T, f ◦
T, . . . , fn−1 ◦ T . Here, the only cofinite subsemigroup of T is T itself. If we choose the subsemigroup of
S to be S itself, then there are infinitely many translates of S , namely, h ◦ S = h ◦ ⟨f⟩ for all h ∈ S . So S

has an infinite index in itself. Again, it has cofinite index 1 in itself.
Using Theorem 3.1 of [11], we can prove the following assertion:

Lemma 2.1 For any subsemigroup T of a holomorphic semigroup S , we have F (S) ⊂ F (T ), J(S) ⊃ J(T ) .

Proof We prove that F (S) ⊂ F (T ) . The next inclusion follows taking the complements. By Theorem 3.1
of [11], F (S) ⊂ ∩f∈SF (f) , and F (T ) ⊂ ∩g∈TF (g) for any subsemigroup T of the semigroup S . Since any
g ∈ T is also in S ; thus, by the same Theorem 3.1 of [11], we also have F (S) ⊂ F (g) for all g ∈ T and hence,
F (S) ⊂ ∩g∈TF (g) . Now for any z ∈ F (S) , we have z ∈ ∩g∈TF (g) for all g ∈ T . This implies that z ∈ F (g)

for all g ∈ T . This proves z ∈ F (T ) and hence, F (S) ⊂ F (T ) . 2

Hinkannen and Martin [4, Theorem 2.4] proved that if a subsemigroup T has a finite index or a cofinite
index in the rational semigroup S , then F (S) = F (T ) and J(S) = J(T ) . In the following theorem, we prove
the same result in the case of a general holomorphic semigroup. Note that by a general holomorphic semigroup,
we mean either a rational semigroup or a transcendental semigroup.

Theorem 2.1 If a subsemigroup T has a finite index or a cofinite index in the holomorphic semigroup S , then
F (S) = F (T ) and J(S) = J(T ) .

Proof From Lemma 2.1, F (S) ⊂ F (T ) for any holomorphic semigroup S . If S is a rational semigroup, the
result follows from [4, Theorem 2.4]. We prove the reverse inclusion, if S is a transcendental semigroup.

Let the subsemigroup T of a semigroup S has finite index n . Then by Definition 1.2, there exists a
finite collection {f1, f2, . . . , fn} of elements of S1 such that

S = f1 ◦ T ∪ f2 ◦ T ∪ . . . ∪ fn ◦ T.

Then for any g ∈ S , there is an h ∈ T such that g = fi ◦ h . Choose a sequence (gj)j∈N in S . Then each gj

is of the form gj = fi ◦ hj , where hj ∈ T and 1 ≤ i ≤ n . Here, we may assume the same i for all j . Hence,
without loss of generality, we may choose a subsequence (gjk) of (gj) such that gjk = fi ◦hjk for particular fi ,
where (hjk) is a subsequence of (hj) in T . Since on F (T ) , the sequence (hjk) has a convergent subsequence
so do the sequences (gjk) and (gj) in F (S) . This proves that F (T ) ⊂ F (S) .

Let the subsemigroup T of a semigroup S have cofinite index n . Then by Definition 1.2, there exists
a finite collection {f1, f2, . . . , fn} of elements of S1 such that for every f ∈ S , there is i ∈ {1, 2, . . . , n} such
that fi ◦ f ∈ T . Let us choose a sequence (gj)j∈N in S . Then, for each j , there is an i with 1 ≤ i ≤ n such
that fi ◦ gj = hj ∈ T . Let z ∈ F (T ) . Then the sequence (hj) has a convergent subsequence in T , and hence
so does the sequence (gj) in F (S) . This proves that F (T ) ⊂ F (S) . 2
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Next, we see a special subsemigroup of a holomorphic semigroup that yields a cofinite index.

Definition 2.1 (Stablizer, wandering component and stable domains) For a holomorphic semigroup
S , let U be a component of the Fatou set F (S) and Uf be a component of the Fatou set containing f(U)

for some f ∈ S . The set of the form
SU = {f ∈ S : Uf = U}

is called the stabilizer of U on S . If SU is nonempty, we say that a component U satisfying Uf = U is a stable
basin for S . The component U of F (S) is said to be wandering if the set {Uf : f ∈ S} contains infinitely many
elements. That is, U is a wandering domain if there is sequence (fi)i∈N of elements of S such that Ufi ̸= Ufj

for i ̸= j .

Note that for any rational function f , we always have Uf = U . So US is nonempty for a rational
semigroup S . However, if f is transcendental, it is possible that Uf ̸= U . Hence, SU may be empty for a
transcendental semigroup S . Bergweiler and Rohde [1] proved that Uf − U contains at most one point which
is an asymptotic value of f if f is an entire function.

Lemma 2.2 Let S be a holomorphic semigroup. Then the stabilizer SU (if it is nonempty) is a subsemigroup
of S and F (S) ⊂ F (SU ), J(S) ⊃ J(SU ) .

Proof Let f, g ∈ SU . Then by Definition 2.1, Uf = U and Ug = U , where Uf and Ug are components
of the Fatou sets containing f(U) and g(U) , respectively. Then f(U) ⊆ Uf = U and g(U) ⊆ Ug = U =⇒
(f ◦ g)(U) = f(g(U)) ⊆ f(Ug) = f(U) ⊆ Uf = U . Since (f ◦ g)(U) ⊆ Uf◦g , so either Uf◦g ⊆ U or U ⊆ Uf◦g .
The only possibility in this case is Uf◦g = U . Hence, f ◦ g ∈ SU , which proves that SU is a subsemigroup of
S . The proofs of F (S) ⊂ F (SU ), J(S) ⊃ J(SU ) follow from Lemma 2.1. 2

There may be a connection between having no wandering domains and the stable basins of cofinite index.
We have established the connection in the following theorem for a general holomorphic semigroup S .

Theorem 2.2 Let S be a holomorphic semigroup with no wandering domains. Let U be any component of the
Fatou set. Then the forward orbit {Uf : f ∈ S} of U under S contains a stabilizer of U of cofinite index.

Proof If S is a rational semigroup, see, for instance, the proof of [4, Theorem 6.1]. If S is a transcendental
semigroup, we sketch our proof in the following way.

We are given that U is a nonwandering component of the Fatou set F (S) . So U has a finite forward
orbit U1, U2, . . . , Un (say) with U1 = U .
Case (i): If for every i = 1, 2, . . . n , there is fi ∈ S such that fi(Ui) ⊆ U1 , then by Lemma 2.2 the stabilizer
SU1

= {f ∈ S : U1f = U1} is a subsemigroup of S . For any f ∈ S , there is fi for each i = 1, 2, . . . , n such that
U1fi◦f

= U1 . This shows that fi ◦ f ∈ SU1 . Therefore, U1 is a required stable basin such that the stabilizer
SU1 has a cofinite index in S .
Case (ii): If, for every j = 2, . . . n , there is fj ∈ S such that fj(Uj) ⊆ V , where V = Uj such that j ≥ 2 , then
the number of components of forward orbits of V is strictly less than that of U . In this way, we can find a
component W = Ui for some i ≤ n whose forward orbit has fewest components. For every component Wg of
the forward orbit of W , there is f ∈ S such that f(Wg) ⊆ W . That is, Wg◦f = W , and it follows that W is
a required stable basin such that the stabilizer SW has a cofinite index. 2
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Let S be a holomorphic semigroup and f ∈ S . Then S ◦ f and f ◦ S are subsemigroups of S . Note
that S ◦ f and f ◦ S may not be finitely generated even if the semigroup S is. If S ◦ f = ⟨f1, f2, . . . , fn⟩
where fi ∈ S for i = 1, 2, . . . n , then fi = gi ◦ f , where gi ∈ S . For any g ∈ S , we have gn ◦ f ∈ S ◦ f for
all n ≥ 1 but not every gn ◦ f ∈ ⟨f1, f2, . . . , fn⟩ . From this fact, we came to know that the notion of cofinite
index fails to preserve the basic finiteness (finitely generated) condition of a subsemigroup. That is, if T is a
subsemigroup of cofinite index in semigroup S , then S being finitely generated may not always imply that T is
finitely generated. There is another notion of index which preserves the finiteness condition of a subsemigroup.

Definition 2.2 (Rees index) Let S be a semigroup and T be a subsemigroup. The Rees index of T in S is
defined as |S−T |+1 , where |S−T | represents the cardinality of S−T . In this case, T is a large subsemigroup
of S , and S is a small extension of T .

The Rees index was first introduced by Jura [5] in the case where T is an ideal of the semigroup S . In
such a case, the Rees index of T in S is the cardinality of factor semigroup S/T . From Definition 2.2, it is
clear that the Rees index of T in S is the size of the complement S − T . For a subsemigroup to have finite
Rees index in its parent semigroup is a fairly restrictive property, and it occurs naturally in semigroups (for
instance, all ideals in the additive semigroup of positive integers are of finite Rees index). Note that Rees index
does not generalize group index, and even the notion of finite Rees index does not generalize finite group index.
That is, if G is an infinite group and H is a proper subgroup, the group index of H in G may be finite even
though the Rees index is infinite. In fact, let G be an infinite group and H is a subgroup of G . Then H has
finite Rees index in G if and only if H = G .

Next, we investigate how similar a semigroup S and its large subsemigroup T are. One basic similarity
(proved first by Jura [5]) is the following result.

Lemma 2.3 Let T be a large subsemigroup of a semigroup S . Then S is finitely generated if and only if T is
finitely generated.

Proof See for instance [10, Theorem 1.1]. 2

On the basis of Lemma 2.3, we obtain the following dynamical similarity of a holomorphic semigroup and its
subsemigroup.

Theorem 2.3 Let T be a large subsemigroup of a finitely generated holomorphic semigroup S . Then F (S) =

F (T ) and J(S) = J(T ).

Proof We prove that F (S) = F (T ) . The other equality follows by taking complements. By Lemma 2.1,
it is clear that F (S) ⊂ F (T ) . Hence, it is sufficient to prove that F (T ) ⊂ F (S) . By Lemma 2.3, T is
finitely generated. Let X = {f1, f2, . . . , fn} ⊂ S be a generating set of T . Clearly, S is generated by the
set Y = X ∪ (S − T ) . Every sequence (fi) in F (T ) (where fi = fi1 ◦ fi2 ◦ . . . ◦ fin , and in ∈ {1, 2, . . . , n})
has a convergent subsequence. Now each element gm of a sequence (gm) in S can be written as gm =

fi1 ◦fi2 ◦ . . .◦fin ◦hj1 ◦hj2 ◦ . . .◦hjk , where S−T = {h1, h2, . . . , hk} ⊂ S and jk ∈ {1, 2, . . . , k} . Since S−T is
finite, a convergent sequence in F (T ) can be extended to a convergent sequence in F (S) . Thus, every sequence
(gm) in F (S) has a convergent subsequence. Hence F (T ) ⊂ F (S) . 2
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3. Proof of Theorem 1.1
We now prove a result analogous to Lemma 2.1 in the case of an escaping set of a transcendental semigroup.

Lemma 3.1 For any subsemigroup T of a transcendental semigroup S , we have I(S) ⊂ I(T ) .

Proof By Theorem 3.1 of [11], I(S) ⊂ ∩f∈SI(f) and I(T ) ⊂ ∩g∈T I(g) for any subsemigroup T of S . Since
T ⊂ S , the same theorem implies that I(S) ⊂ I(g) for all g ∈ T . Hence, I(S) ⊂ ∩g∈T I(g) . Now for any
z ∈ I(S) , we have z ∈ ∩g∈T I(g) for all g ∈ T . This implies that z ∈ I(g) for all g ∈ T . By Definition 1.1, we
have gn(z) → ∞ as n → ∞ for all g ∈ T . This proves that z ∈ I(T ) and hence, I(S) ⊂ I(T ) . 2

Lemma 3.2 Let S be a transcendental semigroup. Then

1. int.(I(S)) ⊂ F (S) and ext.(I(S)) ⊂ F (S) , where int. and ext. respectively denote the interior and
exterior of I(S) .

2. ∂I(S) = J(S) , where ∂I(S) denotes the boundary of I(S) .

Proof We refer to Lemma 4.2 and Theorem 4.3 of [6]. 2

Note that Lemma 3.2 is an extension of Eremenko’s result [2], ∂I(f) = J(f) , of classical transcendental
dynamics to more general semigroup dynamics. We prove the following assertion which can be an alternative
definition of escaping set.

Lemma 3.3 If z ∈ C is an escaping point of a transcendental semigroup S , then every nonconvergent sequence
in S has a divergent subsequence at z .

Proof Let z ∈ C be an escaping point of a transcendental semigroup S . Let f ∈ S . Then by Definition 1.1,
there is a sequence (gn)n∈N in S representing g1 = f, g2 = f2, . . . , gn = fn, . . .(say) such that gn(z) → ∞ as
n → ∞ or there is a sequence in S which contains (gn)n∈N as a subsequence such that gn(z) → ∞ as n → ∞ .
More generally, every nonconvergent sequence in S has a subsequence which diverges infinity at z . 2

We are now ready to prove Theorem 1.1.

Proof [Proof of Theorem 1.1] We prove I(S) = I(T ) . The fact that J(S) = J(T ) is obvious from Lemma 3.2
(2). That F (S) = F (T ) is also obvious. By Lemma 2.1, we always have I(S) ⊂ I(T ) for any subsemigroup T

of S . For proving this theorem, it is enough to show the reverse inclusion I(T ) ⊂ I(S) .
Let a subsemigroup T of a semigroup S have finite index n . Then, by Definition 1.2, there exists a finite

collection {f1, f2, . . . , fn} of elements of S1 such that

S = f1 ◦ T ∪ f2 ◦ T ∪ . . . ∪ fn ◦ T.

Then, for any g ∈ S , there is h ∈ T such that g = fi ◦ h . Choose a sequence (gj)j∈N in S . Then each gj is
of the form gj = fi ◦ hj , where hj ∈ T , 1 ≤ i ≤ n . Here, we may assume the same i for all j . Let z ∈ I(T ) .
Then by Lemma 3.3, every nonconvergent sequence (hj)j∈N in T has a divergent subsequence (hjk)jk∈N at
the point z . That is, hn

jk
(z) → ∞ as n → ∞ for all jk . In this case, every sequence (gj)j∈N in S has a

subsequence (gjk)k∈N , where gjk = fi ◦ hjk with hn
jk
(z) → ∞ as n → ∞ . Since S is an abelian transcendental
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semigroup, gjk = fi ◦hjk = hjk ◦ fi . Thus, we may write gnjk(z) = hn
jk
(fi(z)) → ∞ as n → ∞ . This shows that

fi(z) ∈ I(S) . If fi = identity for a particular i , we are done. If fi is not identity, then it is an element of an
abelian transcendental semigroup S , and in this case I(S) is backward invariant by [12, Theorem 2.6]. Thus,
we must have z ∈ I(S) . Therefore, I(T ) ⊂ I(S) .

Let a subsemigroup T of a semigroup S have cofinite index n . Then by Definition 1.2, there exists a
finite collection {f1, f2, . . . , fn} of elements of S1 such that for every f ∈ S , there is i ∈ {1, 2, . . . , n} such
that fi ◦ f ∈ T . Let us choose a sequence (gj)j∈N in S . Then for each j , there is a i with 1 ≤ i ≤ n such
that fi ◦ gj = hj ∈ T . Let z ∈ I(T ) . Then by Lemma 3.3, every nonconvergent sequence (hj)j∈N in T has a
divergent subsequence (hjk)jk∈N at the point z . This follows that sequence (fi◦gj) has a divergent subsequence
(fi◦gjk) (say) at z . Since S is abelian, we can write that (fi◦gjk)(z) = (gjk ◦fi)(z) = gjk(fi(z)) = hjk(z) . Now
for any z ∈ I(T ) , hjk ∈ T , we must have hn

jk
(z) = gnjk(fi(z)) → ∞ as n → ∞ . This implies that fi(z) ∈ I(S) .

If fi = identity for a particular i , we are done. If fi is not the identity, then of it is an element of abelian
transcendental semigroup S . Then as in the first part, we write that I(T ) ⊂ I(S) . 2

The abelian hypothesis can be deleted from Theorem 1.1 if we use the Rees index. Thus, we have the
following generalization of Theorem 1.1.

Theorem 3.1 If a subsemigroup T of a finitely generated transcendental semigroup S has a finite Rees index,
then I(S) = I(T ), J(S) = J(T ) and F (S) = F (T ) .

Proof If we prove I(S) = I(T ) , then the equality J(S) = J(T ) will follow from Lemma 3.2 (2). The inclusion
I(S) ⊂ I(T ) follows from Lemma 3.1. Thus, we prove I(T ) ⊂ I(S) .

By Theorem 2.3, T is finitely generated. Let X = {f1, f2, . . . , fn} ⊂ S be a generating set of T . Clearly,
S is generated by the set Y = X ∪ (S − T ) . By Lemma 3.3, every nonconvergent sequence (fi) in T (where
fi = fi1 ◦ fi2 ◦ · · · ◦ fin , and in ∈ {1, 2, . . . , n}) has a divergence subsequence (fnk

) at each point of I(T ) . Now
each element gm of the sequence (gm) in S can be written as gm = fi1 ◦ fi2 ◦ · · · ◦ fin ◦ hj1 ◦ hj2 ◦ · · · ◦ hjk ,
where S − T = {h1, h2, . . . , hk} ⊂ S is a finite set and jk ∈ {1, 2, . . . , k} . This shows that a divergent sequence
in I(T ) can be extended to a divergent sequence in I(S) . Thus, every sequence (gm) in I(S) has a divergent
subsequence. Hence I(T ) ⊂ I(S) . 2

4. Proof of Theorem 1.2
It is known that for certain holomorphic semigroups, the Fatou sets and the escaping sets might be empty. In
this section, we discuss the notion of discontinuous semigroup. This notion yields a partial fundamental set and
a fundamental set. We prove Theorem 1.2 by showing that a partial fundamental set is in the Fatou set F (S)

and that a fundamental set is in the escaping set I(S) .

Definition 4.1 (Discontinuous semigroup) A semigroup S is said to be discontinuous at a point z ∈ C if
there is a neighborhood U of z such that f(U)∩U = ∅ for all f ∈ S or equivalently, translates of U by distinct
elements of S (S -translates) are disjoint. The neighborhood U of z is also called a nice neighborhood of z .

Remark 4.1 Given a holomorphic semigroup S , there are two natural subsets associated with S .

1. The regular set R(S) that consists of points z ∈ C at which S is discontinuous.
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2. The limit set L(S) that consists of points z ∈ C for which there is a point z0 , and a sequence (fn) of
distinct elements of S such that fn(z0) → z as n → ∞ .

A set X ⊂ C is S-invariant or invariant under S if f(X) = X for all f ∈ S . It is clear that both of the sets
R(S) and L(S) are S-invariant. If U is a nice neighborhood, then U ⊂ R(S) . Thus, R(S) is an open set,
whereas the set L(S) a closed set, and R(S) ∩ L(S) = ∅ . Recall that a set U is a partial fundamental set for
the semigroup S if (1) U ̸= ∅ , (2) U ⊂ R(S) , (3) f(U) ∩ U = ∅ for all f ∈ S . If in addition to (1) , (2) , and
(3), U satisfies the property (4)

∪
f∈S f(U) = R(S) , then U is called a fundamental set for S . We say that

x, y ∈ C are S - equivalent if there is an f ∈ S such that f(x) = y . Condition (3) asserts that no two points
of U are S -equivalent under semigroup S , and condition (4) asserts that every point of R(S) is equivalent
to some point of U . Note that if we replace (3) by f−1(U) ∩ U = ∅ for all f ∈ S , we say U is a backward
partial fundamental set for S ; if, in addition, U satisfies

∪
f∈S f−1(U) = R(S) , then we say U is a backward

fundamental set. Note that Theorems 1.2 and 4.1 hold if we have given (partial) backward fundamental set
in the statements. Similar to the results of Hinkkanen and Martin [4, Lemma 2.2] in the case of a rational
semigroup, we prove the following in the case of transcendental semigroup S .

Proof [Proof of Theorem 1.2] Let S be a holomorphic semigroup. The set U is a nonempty open set, and
f(U) ∩ U = ∅ for all f ∈ S by Definition 4.1. The statement f(U) ∩ U = ∅ for all f ∈ S implies that S omits
U on U . Since U is open, it contains more than two points. Then by Montel’s theorem, S is normal on U .
Therefore, U ⊂ F (S) .

Let S be a transcendental semigroup. To prove U ⊂ I(S) , we have to show that fn(z) → ∞ as n → ∞
for all f ∈ S and for all z ∈ U . The condition f(U) ∩ U = ∅ for all f ∈ S implies that fn(U) ∩ U = ∅ , since
f ∈ S implies fn ∈ S . Also, U is a fundamental set, so by Definition 1.3 (4), we have

∪
f∈S f(U) = R(S) .

By Remark 4.1(2), there are no points in U which appear as the limit points under distinct (fm)m∈N in S .
That is, (fm) has a divergent subsequence (fmk

) at each point of U . Thus, by [11, Theorem 2.2], for any
z ∈ U, fn(z) → ∞ as n → ∞ for any f ∈ (fm) . This shows that U ⊆ I(S) . 2

Finally, we generalize Theorem 1.2 in the following form. We give a short sketch of the proof. For a more
detailed proof, we refer to [9, Theorem 2.1].

Theorem 4.1 Let U1 and U2 be two (partial) fundamental sets for transcendental semigroups S1 and S2 ,
respectively. Suppose furthermore that C \ U1 ⊂ U2 and C \ U2 ⊂ U1 . Then the semigroup S = ⟨S1, S2⟩ is
discontinuous, and U = U1 ∩ U2 is a (partial) fundamental set for the semigroup S .

Proof [Sketch of the proof] Let U1 , U2 and S1 , S2 be as given in the theorem. It is clear from Theorem 1.2
that F (S1) ̸= ∅, F (S2) ̸= ∅ ; also I(S1) ̸= ∅ and I(S2) ̸= ∅ if U1 and U2 are fundamental sets of S1 and S2

respectively. Note that U ̸= ∅ by the assumption. Clearly, f(U) ∩ U = ∅ for every f ∈ S . This proves S is
discontinuous and that U is a (partial) fundamental set for S . 2
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We prove that there exist three transcendental entire functions
that can have infinite number of domains which lie in the wan-
dering component of the Fatou set of each of these functions and
their compositions. This result is a generalization of a result of
[5].

1. Introduction

We denote the complex plane by C, extended complex plane

by C∞ and set of integers greater than zero by N. We assume the

function f : C −→ C is an entire function unless stated otherwise.

For any n ∈ N, fn always denotes the nth iterate of f . If fn(z) = z

for some smallest n ∈ N, then we say that z is a periodic point of

period n. In particular, if f(z) = z, then z is a fixed point of f . If

|(fn)
′
(z)| < 1, where ′ represents complex differentiation of fn with

respect to z, then z is called an attracting periodic point. A family

F = {f : f is meromorphic on some domain X of C∞} forms normal

family if every sequence (fi)i∈N of functions contains a subsequence

which converges uniformly to a finite limit or converges to∞ on every

compact subset D of X.

The Fatou set of f, denoted by F (f), is the set of points z ∈ C
such that sequence (fn)n∈N forms a normal family in some neigh-

borhood of z. By definition, Fatou set is open and may or may not

2010 Mathematics Subject Classification: 37F10, 30D05.

Key words and phrases: Fatou set; wandering domain; Carleman set.

c© 2019 Allahabad Mathematical Society
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be empty. Fatou set is non-empty for every entire function with at-

tracting periodic points. A connected component of the Fatou set is

called a Fatou component. The complement of F (f) denoted by J(f)

is called a Julia set.

If U ⊂ F (f) (a Fatou component), then f(U) lies in some

component V of F (f) and V − f(U) is a set which contains at most

one point (see for instance [4]). Let U ⊂ F (f) such that fn(U)

for some n ∈ N, is contained in some component of F (f), which is

usually denoted by Un. A Fatou component U is called a pre-periodic

if there exist integers n,m with n > m ≥ 0 such that Un = Um. In

particular, if Un = U0 = U (that is, fn(U) ⊂ U) for some smallest

positive integer n ≥ 1, then U is called a periodic Fatou component

of period n and {U0, U1, . . . , Un−1} is called the periodic cycle of U .

A component of Fatou set F (f) which is not pre-periodic is called

an wandering domain. That is, a Fatou component U is a wandering

domain if Um 6= Un, for all positive integers m 6= n.

Our particular interest of this paper is that whether there are

more than two transcendental entire functions that can have simi-

larity between the dynamics of their compositions and dynamics of

each of these individual functions. Dynamics of two transcendental

entire functions and their compositions were studied by Singh [7]. He

constructed some examples of transcendental entire functions, where

dynamics of individual functions is similar to the dynamics of their

compositions. In particular, Singh proved that there exist two tran-

scendental entire functions and a domain which lies in the wandering

component of individual functions and also lies in the wandering com-

ponent of their compositions (Theorem 2). Later, Dinesh Kumar et

al. [5] extended this result to the possibility of having infinitely many

domains satisfying the condition in Singh’s result. In this paper, we

investigate three transcendental entire functions such that each of

individual functions as well as their every composition consists of in-

finite number of domains which lie in the wandering component of

each of functions and their compositions. In particular, we prove the

following result.
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THEOREM 1.1. There exist three different transcendental en-

tire functions f , g and h and infinitely many domains which lie in

different wandering components of F (f), F (g), F (h), F (f ◦ g), F (g ◦
f), F (f ◦h), F (g ◦h), F (h◦f), F (h◦g), F (f ◦g ◦h), F (f ◦h◦g), F (g ◦
f ◦ h), F (g ◦ h ◦ f), F (h ◦ f ◦ g) and F (h ◦ g ◦ f).

2. Carleman Set

To work out a proof of Theorem 1.1, we need a notion in ap-

proximation theory of entire functions. In our case, we can use the

notion of Carleman set from which we obtain approximation of any

holomorphic function by entire functions.

DEFINITION 2.1 (Carleman set). Let F be a closed subset of

C and C(F ) = {f : F −→ C : f is continuous on F and holomorphic

in the interior F ◦ofF}. Then F is called a Carleman set (for C) if

for any g ∈ C(F ) and any positive continuous function ε on F , there

exists entire function h such that |g(z)− h(z)| < ε, for all z ∈ F .

The following important characterization of Carleman set was

proved by Nersesjan in 1971, but we cite this from ([3], Theorem 4,

p. 157).

THEOREM 2.1. Let F be a closed proper subset of C. Then

F is a Carleman set for C if and only if F satisfies the following

conditions:

(1) C∞ − F is connected ;

(2) C∞ − F is locally connected at ∞;

(3) for every compact subset K of C, there is a neighborhood

V of ∞ in C∞ such that no component of F ◦, where F ◦ represents

interior of F , intersects both K and V .

Note that the space C∞ − F is connected if and only if each

component Z of open set C − F is unbounded. This fact together

with Theorem 2.1 can be a nice tool for checking whether a set is

a Carleman set for C. The sets given in the following examples are

Carlemen sets for C.
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EXAMPLE 2.1 ([3], Example page 133). The set E = {z ∈ C :

|z| = 1,Rez ≥ 0} ∪ {z = x : x > 1} ∪
(⋃∞

n=3{z = reiθ : r > 1, θ =

π/n}
)

is a Carleman set for C by Theorem 2.1.

EXAMPLE 2.2 ([7], Set S, page 131). The set E = G0∪
(⋃∞

k=1

(Gk ∪BK ∪ Lk ∪Mk)
)
, where

G0 = {z ∈ C : |z − 2| ≤ 1};

Gk = {z ∈ C : |z − (4k + 2)| ≤ 1} ∪ {z ∈ C : Rez = 4k + 2, Imz ≥ 1}
∪ {z ∈ C : Rez = 4k + 2, Imz ≤ −1}, (k = 1, 2, 3, . . .);

Bk = {z ∈ C : |z + (4k + 2)| ≤ 1}
∪ {z ∈ C : Rez = −(4k + 2), Imz ≥ 1}
∪ {z ∈ C : Rez = −(4k + 2), Imz ≤ −1}, (k = 1, 2, 3, . . .);

Lk = {z ∈ C : Rez = 4k}, (k = 1, 2, 3, . . .);

and

Mk = {z ∈ C : Rez = −4k}, (k = 1, 2, 3, . . .)

is a Carleman set for C by Theorem 2.1.

3. Proof of the Main Result (Theorem 1.1)

For a given transcendental entire function, we can find an entire

function such that their composition can have a wandering domain

as shown in the following result by Baker and Singh ([1], Theorem

3).

PROPOSITION 3.1. Let g be a transcendental entire function

having at least one fixed point. Then there exists an entire function

f such that g ◦ f has a wandering domain.

The dynamics of one composition may help in the study of the

dynamics of the other composition. In particular, if one composition

has wandering domain, then so has the other composition. In this

regard, Bergweiler and Wang [2] proved the following result which is

a kind of generalization of Proposition 3.1.
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PROPOSITION 3.2. Let f and g be entire functions. Then f◦g
has wandering domains if and only if g ◦ f has wandering domains.

It is also to be noted that certain classes of entire functions

do not have wandering domains (see for instance [2], Theorem 3). It

is known that the dynamics of f ◦ g are very similar to the dynam-

ics of g ◦ f . Singh [7] interested to know whether there is similarity

between dynamics of individual entire functions and their composi-

tions. However, in reality, it does not hold in general. With the help

of Carleman set of Example 2.2, Singh ([7], Theorem 2) proved the

following result which shows that certain amount of similarity might

hold.

PROPOSITION 3.3. There exists two transcendental entire

functions f and g and a domain U such that U lies in the wandering

component of the F (f), F (g), F (f ◦ g) and F (g ◦ f).

In fact, Singh also proved other results regarding the dynamics

of two individual functions and their compositions (see for instance

[7], Theorems 1, 3 and 4). Tomar [8] extended the result of Singh

(Proposition 3.3) to the following results.

PROPOSITION 3.4. There exist two transcendental entire func-

tions f and g and infinitely many domains in the angular region

which lie in the wandering component of the F (f), F (g), F (f ◦g) and

F (g ◦ f).

Note that Singh ([6], Theorems 3.2.1-3.2.6) studied different

components of the Fatou set of a transcendental entire function in an

angular region by using approximation theory of entire functions, in

particular, with the help of Carleman set.

Dinesh Kumar et al. ([5], Theorem 2.2) extended these results

to the following assertion.

PROPOSITION 3.5. There exist two different transcendental

entire functions f and g and infinitely many domains which lie in dif-

ferent wandering component of the F (f), F (g), F (f ◦g) and F (g ◦f).
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Theorem 1.1 is an extension of Propositions (3.3), (3.4), and

(3.5). These propositions can be extended to the existence of more

than two different transcendental entire functions such that each in-

dividual functions and their compositions may have infinitely many

domains which lie in different wandering component of each of the

functions and their compositions. We proceed for the following long

proof of Theorem 1.1.

Proof of Theorem 1.1. Let

E = G0 ∪
( ∞⋃

k=1

(Gk ∪BK ∪ Lk ∪Mk)
)
,

where G0, Gk, Bk, Lk and Mk are sets as defined in Example 2.2.

Then E is a Carleman set for C. By the continuity of exponential

function, for given ε > 0, there exists δ > 0, may depend on a given

point w0, such that

|w − w0| < δ =⇒ |ew − ew0 | < ε.

Let us choose ε = 1
2 . Then there exist sufficiently small δk > 0, δ

′
k > 0

and δ
′′
k > 0 such that

|w− (πi+log(4k+6))| < δk =⇒ |ew+(4k+6)| < 1

2
, (k = 1, 2, 3, . . .);

|w − log(4k − 2)| < δ
′
k =⇒ |ew − (4k + 6)| < 1

2
, (k = 1, 2, 3, . . .);

and

|w − log(4k − 6)| < δ
′′
k =⇒ |ew − (4k − 6)| < 1

2
, (k = 3, 4, 5, . . .);

In particular, let us choose sufficiently small δ0 > 0, λ1 > 0 and

λ2 > 0 such that

|w − log 2| < δ0 =⇒ |ew − 2| < 1

2
;

|w − (πi+ log 6)| < λ1 =⇒ |ew + 6| < 1

2
;

and

|w − (πi+ log 10)| < λ2 =⇒ |ew + 10| < 1

2
.
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Next, let us define the following functions:

α(z) =





log 2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

πi+ log 6, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

πi+ log(4k + 6), ∀z ∈ Bk, k = 1, 2, 3, . . . ;

β(z) =





log 2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

log(4k − 2), ∀z ∈ Gk, k = 2, 3, 4, . . . ;

πi+ log 6, ∀z ∈ G1;

πi+ log(4k + 6), ∀z ∈ Bk, k = 1, 2, 3, . . . ;

γ(z) =





log 2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

log(4k − 6), ∀z ∈ Gk, k = 3, 4, 5, . . . ;

πi+ log 6, ∀z ∈ G2;

πi+ log 10, ∀z ∈ G1;

πi+ log(4k + 6), ∀z ∈ Bk, k = 1, 2, 3, . . . ;

Let us define the following functions:

ε1(z) =





δ0, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

λ1, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

δk, ∀z ∈ Bk, k = 1, 2, 3, . . . ;

ε2(z) =





δ0, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

δ
′
k, ∀z ∈ Gk, k = 2, 3, 4, . . . ;

λ1, ∀z ∈ G1;

δk, ∀z ∈ Bk, k = 1, 2, 3, . . . ;

and

ε3(z) =





δ0, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

δ
′′
k , ∀z ∈ Gk, k = 3, 4, 5, . . . ;

λ1, ∀z ∈ G2;

λ2, ∀z ∈ G1;

δk, ∀z ∈ Bk, k = 1, 2, 3, . . . ;

Clearly, the functions α(z), β(z) and γ(z) are piecewise constant

functions, so they are continuous on the set E and holomorphic in

E◦. Also, since E is a Carleman set, so there exist entire functions

f1(z), g1(z) and h1(z) such that, for all z ∈ E, |f1(z) − α(z)| ≤
ε1(z), |g1(z)− β(z)| ≤ ε2(z) and |h1(z)− γ(z)| ≤ ε3(z).
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Consequently, we get transcendental entire functions f(z) =

ef1(z), g(z) = eg1(z) and h(z) = eh1(z) which respectively satisfy the

following:

|f(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|f(z) + 6| < 1
2 , ∀z ∈ Gk, k = 1, 2, 3, . . . ;

|f(z) + (4k + 6)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.1)

|g(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|g(z)− (4k − 2)| < 1
2 , ∀z ∈ Gk, k = 2, 3, 4, . . . ;

|g(z) + 6| < 1
2 , ∀z ∈ G1;

|g(z) + (4k + 6)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.2)

and

|h(z)− 2| < 1
2 , ∀z ∈ G0 ∪

⋃∞
k=1(Lk ∪Mk);

|h(z)− (4k − 6)| < 1
2 , ∀z ∈ Gk, k = 3, 4, 5, . . . ;

|h(z) + 6| < 1
2 , ∀z ∈ G2;

|h(z) + 10| < 1
2 , ∀z ∈ G1;

|h(z) + (4k + 6)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.3)

From (3.1), (3.2) and (3.3), we can say that each of the functions

f , g and h map G0 ∪
⋃∞
k=1(Lk ∪Mk) into smaller disk |z − 2| < 1

2

contained in G0 and each of these function is a contracting mapping.

So, G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)

contains fixed points z1, z2 and z3 (say)

such that

fn(G0 ∪
∞⋃

k=1

(Lk ∪Mk)) −→ z1, as n −→∞;

gn(G0 ∪
∞⋃

k=1

(Lk ∪Mk)) −→ z2, as n −→∞;

hn(G0 ∪
∞⋃

k=1

(Lk ∪Mk)) −→ z3, as n −→∞.

The fixed points z1, z2 and z3 are respectively the attracting fixed

points for the functions f , g and h, so G0 ∪
(⋃∞

k=1(Lk ∪Mk)) lies in

attracting cycle and hence G0 ∪
(⋃∞

k=1(Lk ∪Mk)) is a subset of each

of the Fatou set F (f), F (g) and F (h). Also, J(f) 6= C, J(g) 6= C and
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J(h) 6= C and so Julia set of each of the function f , g and h does not

contain interior point and hence Fatou set of each of these function

contains all interior points. Fatou set of each of the function f , g and

h contains Carleman set E.

Also from (3.1), we can say that function f maps each Gk into

smaller disk contained in B1 and each Bk into smaller disk contained

in Bk+1. In fact, Gk and Bk are contained in the wandering compo-

nents of Fatou set F (f). Again from (3.2), we can say that function

g maps each of the domains Gk into the smaller disk contained in

Gk−1, (k = 2, 3, 4, . . .), G1 into smaller disk contained in B1 and

Bk, (k = 1, 2, 3, . . .) into the smaller disks contained in Bk+1. In

fact, Gk and Bk are contained in the wandering components of the

Fatou set F (g). Likewise, from (3.3), we can say that domains Gk
and Bk, (k = 1, 2, 3, . . .) are contained in the wandering components

of F (h).

Next, we examine the dynamical behavior of compositions of

the functions f , g and h. The composite of any two and all of three

of these functions satisfy the following.

Dynamical behavior of f ◦ g:

|(f ◦ g)(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|(f ◦ g)(z) + 6| < 1
2 , ∀z ∈ Gk, k = 2, 3, 4, . . . ;

|(f ◦ g)(z) + 10| < 1
2 , ∀z ∈ G1;

|(f ◦ g)(z)− (4k + 10)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.4)

The composition rule (3.4) shows that the domains G0∪
(⋃∞

k=1(Lk ∪
Mk)

)
, Gk and Bk, (k = 1, 2, 3, . . .) belong to F (f ◦g) and in fact, each

Gk and Bk is contained in the wandering components of F (f ◦ g).

Dynamical behavior of g ◦ f :

|(g ◦ f)(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|(g ◦ f)(z) + 10| < 1
2 , ∀z ∈ Gk, k = 1, 2, 3, . . . ;

|(g ◦ f)(z) + (4k + 10)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.5)

159



338 Bishnu Hari Subedi

From the composition rule (3.5), we can say that the domains G0 ∪(⋃∞
k=1(Lk ∪Mk)

)
, Gk and Bk, (k = 1, 2, 3, . . .) belong to F (g ◦ f)

and in fact, each Gk and Bk belongs to the wandering component of

F (g ◦ f).

Dynamical behavior of f ◦ h:

|(f ◦ h)(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|(f ◦ h)(z) + 14| < 1
2 , ∀z ∈ G1;

|(f ◦ h)(z) + 10| < 1
2 , ∀z ∈ G2;

|(f ◦ h)(z) + 6| < 1
2 , ∀z ∈ Gk, k = 4, 5, 6, . . . ;

|(f ◦ h)(z) + (4k + 10)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.6)

As defined in above composition rule (3.6), the domains G0 ∪
(⋃∞

k=1

(Lk ∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .) belong to F (f ◦ h) and in

fact, each Gk and Bk, for all k = 1, 2, 3, . . . belongs to the wandering

components of F (f ◦ h).

Dynamical behavior of h ◦ f :

|(h ◦ f)(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|(h ◦ f)(z) + 10| < 1
2 , ∀z ∈ Gk, k = 1, 2, 3, . . . ;

|(h ◦ f)(z) + (4k + 10)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.7)

From the composition rule (3.7), we can say that the domains G0 ∪(⋃∞
k=1(Lk∪Mk)

)
, Gk and Bk, for all k = 1, 2, 3, . . . belong to F (h◦f)

and in fact, each Gk and Bk, for all k = 1, 2, 3, . . . is contained in the

wandering components of F (h ◦ f).

Dynamical behavior of g ◦ h:

|(g ◦ h)(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|(g ◦ h)(z) + 14| < 1
2 , ∀z ∈ G1;

|(g ◦ h)(z) + 10| < 1
2 , ∀z ∈ G2;

|(g ◦ h)(z) + 6| < 1
2 , ∀z ∈ Gk; k = 3, 4, 5, . . . ;

|(g ◦ h)(z) + (4k + 10)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.8)

As defined in the above composition rule (3.8), the domains G0 ∪(⋃∞
k=1(Lk ∪Mk)

)
, Gk and Bk, (k = 1, 2, 3, . . .) belong to F (g ◦ h)
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and in fact, each Gk and Bk, for all k = 1, 2, 3, . . . is contained in

wandering components of F (g ◦ h).

Dynamical behavior of h ◦ g:

|(h ◦ g)(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|(h ◦ g)(z) + 10| < 1
2 , ∀z ∈ Gk, k = 1, 2;

|(h ◦ g)(z) + 6| < 1
2 , ∀z ∈ G3, ;

|(h ◦ g)(z)− (4k − 10)| < 1
2 , ∀z ∈ Gk, k = 4, 5, 6, . . . ;

|(h ◦ g)(z) + (4k + 10)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.9)

As defined in the above composition rule (3.9), the domains G0 ∪(⋃∞
k=1(Lk ∪Mk)

)
, Gk and Bk, (k = 1, 2, 3, . . .) belong to F (h ◦ g)

and in fact, each Gk and Bk, for all k = 1, 2, 3, . . . is contained in

wandering components of F (h ◦ g).

Dynamical behavior of f ◦ g ◦ h:

|(f ◦ g ◦ h)(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|(f ◦ g ◦ h)(z) + 18| < 1
2 , ∀z ∈ G1;

|(f ◦ g ◦ h)(z) + 14| < 1
2 , ∀z ∈ G2;

|(f ◦ g ◦ h)(z) + 10| < 1
2 , ∀z ∈ G3;

|(f ◦ g ◦ h)(z) + 6| < 1
2 , ∀z ∈ Gk, k = 4, 5, 6, . . . ;

|(f ◦ g ◦ h)(z) + (4k + 10)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.10)

The composition rule (3.10) assigned above tells us that domains

G0∪
(⋃∞

k=1(Lk∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .) lie in F (f ◦g ◦h)

and in fact, each Gk and Bk, for all k = 1, 2, 3, . . . is contained in the

wandering component of F (f ◦ g ◦ h).

Dynamical behavior of f ◦ h ◦ g:

|(f ◦ h ◦ g)(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|(f ◦ h ◦ g)(z) + 14| < 1
2 , ∀z ∈ Gk, for k = 1, 2;

|(f ◦ h ◦ g)(z) + 10| < 1
2 , ∀z ∈ G3, for k = 1, 2;

|(f ◦ h ◦ g)(z) + 6| < 1
2 , ∀z ∈ Gk, k = 4, 5, 6, . . . ;

|(f ◦ h ◦ g)(z) + (4k + 10)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.11)
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The composition rule (3.11) assigned above tells us that domains

G0∪
(⋃∞

k=1(Lk∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .) lie in F (f ◦g ◦h)

and in fact, each Gk and Bk, for all k = 1, 2, 3, . . . is contained in the

wandering component of F (f ◦ h ◦ g).

Dynamical behavior of g ◦ f ◦ h:

|(g ◦ f ◦ h)(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|(g ◦ f ◦ h)(z) + 18| < 1
2 , ∀z ∈ G1;

|(g ◦ f ◦ h)(z) + 14| < 1
2 , ∀z ∈ G2;

|(g ◦ f ◦ h)(z) + 10| < 1
2 , ∀z ∈ Gk, k = 3, 4, 5, . . . ;

|(g ◦ f ◦ h)(z) + (4k + 10)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.12)

The composition rule (3.12) assigned above tells us that domains

G0∪
(⋃∞

k=1(Lk∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .) lie in F (g ◦f ◦h)

and in fact, each Gk and Bk, for all k = 1, 2, 3, . . . is contained in the

wandering component of F (g ◦ f ◦ h).

Dynamical behavior of g ◦ h ◦ f :

|(g ◦ h ◦ f)(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|(g ◦ h ◦ f)(z) + 14| < 1
2 , ∀z ∈ Gk, k = 1, 2, 3, . . . ;

|(g ◦ h ◦ f)(z) + (4k + 10)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.13)

The composition rule (3.13) assigned above tells us that domains

G0∪
(⋃∞

k=1(Lk∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .) lie in F (g ◦h◦f)

and in fact, each Gk and Bk, for all k = 1, 2, 3, . . . is contained in the

wandering component of F (g ◦ h ◦ f).

Dynamical behavior of h ◦ f ◦ g:

|(h ◦ f ◦ g)(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|(h ◦ f ◦ g)(z) + 14| < 1
2 , ∀z ∈ G1;

|(h ◦ f ◦ g)(z) + 10| < 1
2 , ∀z ∈ Gk, k = 2, 3, 4, . . . ;

|(h ◦ f ◦ g)(z) + (4k + 10)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.14)

The composition rule (3.14) assigned above tells us that domains

G0∪
(⋃∞

k=1(Lk∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .) lie in F (h◦f ◦g)
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and in fact, each Gk and Bk, for all k = 1, 2, 3, . . . is contained in the

wandering component of F (h ◦ f ◦ g).

Dynamical behavior of h ◦ g ◦ f :

|(h ◦ g ◦ f)(z)− 2| < 1
2 , ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|(h ◦ g ◦ f)(z) + 14| < 1
2 , ∀z ∈ Gk, k = 1, 2, 3, . . . ;

|(h ◦ g ◦ f)(z) + (4k + 10)| < 1
2 , ∀z ∈ Bk, k = 1, 2, 3, . . . ;

(3.15)

The composition rule (3.15) assigned above tells us that domains

G0∪
(⋃∞

k=1(Lk∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .) lie in F (h◦g ◦f)

and in fact, each Gk and Bk, for all k = 1, 2, 3, . . . is contained in the

wandering component of F (h ◦ g ◦ f).

From all of the above discussion, we found that the domains Gk
and Bk, for all k = 1, 2, 3, . . . are contained in the wandering domains

of the functions f, g, h and their compositions. �
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1. Introduction

Throughout this paper, we denote the complex plane by C and the set of integers greater

than zero by N. We assume the function f : C → C is transcendental entire function unless

otherwise stated. For any n ∈ N, fn always denotes the nth iterates of f . The escaping

set of f is defined by

I(f) = {z ∈ C : fn(z) → ∞ as n → ∞}

and any point z ∈ I(S) is called an escaping point. For a transcendental entire function f ,

the escaping set I(f) was first studied by A. Eremenko [2]. He showed that

(1) I(f) 6= ∅,

(2) the boundary of this set is a Julia set J(f) (that is, J(f) = ∂I(f)),

(3) I(f) ∩ J(f) 6= ∅, and

(4) I(f) has no bounded component.

Furthermore,

5. I(fn) = I(f) for all n ∈ N.

6. I(f) is completely invariant under f .

This research work of the first author is supported by a PhD faculty fellowship of the

University Grants Commission, Nepal.
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In view of the statement (4), he posed a question:

Is every component of I(f) unbounded ?

This question is considered as an important open problem of transcendental dynamics, and

nowadays, it is famous as Eremenko’s conjecture. Note that the complement of the Julia

set J(f) in C is the Fatou set F (f). A connected maximal open subset of F (f) is called

Fatou component.

For any holomorphic function f , we call

C(f) = {z ∈ C : f ′(z) = 0}

(where f ′ represents derivative of f with respect to z) by the set of critical points and

CV (f) = {w ∈ C : w = f(z) such that f ′(z) = 0 for some z}

by the set of critical values. The set AV (f) consisting of all w ∈ C such that there exists a

curve Γ : [0,∞) → C so that Γ(t) → ∞ and f(Γ(t)) → w as t → ∞ is the set of asymptotic

values of f and

SV (f) = (CV (f) ∪AV (f))

is the set of singular values of f . If SV (f) is finite, then f is said to be of finite type. If

SV (f) is bounded, then f is said to be of bounded type. The sets

S = {f : f is of finite type}

and

B = {f : f is of bounded type}

are respectively known as Speiser class and Eremenko-Lyubich class.

The main concern of this paper is to study of escaping sets of transcendental semigroups.

So, we start our formal study from the notion of transcendental semigroups. The set Hol(C)

denotes a set of all holomorphic functions of C. If f ∈ Hol(C), then f is either a polynomial

or a transcendental entire function. The composite of two entire functions is an entire

function. So, this fact makes the set Hol(C) a semigroup with semigroup operation being

the functional composition.

Definition 1.1 (Transcendental semigroup). Let A = {fi : i ∈ N} ⊂ Hol(C) be a set of

transcendental entire functions fi : C → C. A transcendental semigroup S is a semigroup

generated by the set A with semigroup operation being the functional composition. We

denote this semigroup by

S = 〈f1, f2, f3, · · · , fn, · · · 〉 or simply by S = 〈fi〉.

Here, each f ∈ S is a transcendental entire function and S is closed under functional

composition. Thus f ∈ S is constructed through a composition of the finite number of

functions fik , (where ik ∈ {1, 2, 3, . . . ,m} for some m ∈ N). That is,

f = fi1 ◦ fi2 ◦ fi3 ◦ · · · ◦ fim .
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A semigroup S generated by finitely many functions fi, (i = 1, 2, 3, . . . , n) is called

finitely generated transcendental semigroup and write

S = 〈f1, f2, . . . , fn〉.

If S is generated by only one transcendental entire function f , then S is calledcyclic or

trivial transcendental semigroup and write

S = 〈f〉

In this case, each g ∈ S can be written as g = fn, where fn is the nth iterates of f with

itself. The transcendental semigroup S is abelian if

fi ◦ fj = fj ◦ fi

for all generators fi and fj of S.

We say that a family F of holomorphic functions is a normal family in C if every

sequence (fi) ⊆ F has a subsequence (fik) which is uniformly convergent or divergent on

all compact subsets of C. If there is a neighborhood U of a point z ∈ C such that F is a

normal family in U , then we say that F is normal at z. If F is a semigroup S such that it

is normal family in a neighborhood U of a point z ∈ C, we say S is normal at z. We say

that a function f is iteratively divergent at z ∈ C if fn(z) → ∞ as n → ∞. A semigroup S

is iteratively divergent at z if

fn(z) → ∞ as n → ∞

for all f ∈ S. A semigroup S is said to be iteratively bounded at z if there is an element

f ∈ S which is not iteratively divergent at z.

Like in iteration theory of a single transcendental entire function, the Fatou set, Julia

set and escaping set in the settings of transcendental semigroups are defined as follows:

Definition 1.2 (Fatou set, Julia set and escaping set). Let S be a transcendental

semigroup. The Fatou set of S is defined by

F (S) = {z ∈ C : S is normal at z} ,

and the Julia set J(S) of S is the complement of F (S). The escaping set of S is defined by

I(S) = {z ∈ C : S is iteratively divergent at z}

We call each point of the set I(S) by an escaping point.

If S = 〈f〉, then the Fatou set, Julia set and escaping set are respectively denoted by

F (f), J(f) and I(f). So, Definition 1.2 generalizes the Fatou set, Julia set and escaping set

of a single transcendental entire function. For simplicity, we call the dynamics of S = 〈f〉

by classical transcendental dynamics and the dynamics of S = 〈fi〉 for at least i = 1, 2 by

transcendental semigroup dynamics.
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2. Some Fundamental Features of Escaping Set

The following immediate relation between I(S) and I(f) for any f ∈ S will be clear

from the Definition 1.2 of escaping sets.

Theorem 2.1. I(S) ⊂ I(f) for all f ∈ S and hence I(S) ⊂
⋂

f∈S I(f).

Proof. Let z ∈ I(S), then fn(z) → ∞ as n → ∞ for all f ∈ S. By which we mean z ∈ I(f)

for any f ∈ S. This immediately follows the second inclusion. �

We dealt this Theorem 2.1 in the case of a transcendental semigroup S even though it

holds for polynomial semigroups. Note that the above same type of relation (Theorem 2.1)

holds between F (S) and F (f). However opposite relation holds between the sets J(S) and

J(f). Poon [9, Theorem 4.1, Theorem 4.2] proved that the Julia set J(S) is perfect and

J(S) =
⋃

f∈S J(f) for any transcendental semigroup S. From Theorem 2.1, we can say that

the escaping set may be empty. For example, the escaping set of the semigroup S = 〈f, g〉

generated by functions f(z) = ez and g(z) = e−z is empty (that is, the particular function

h = g ◦ fk ∈ S (say) is iteratively bounded at any z ∈ I(f)). Note that I(f) 6= ∅ in classical

iteration theory ([2, Theorem 1]). Dinesh Kumar and Sanjay Kumar [5, Theorem 2.5] have

also mentioned the following transcendental semigroup S, where I(S) is an empty set.

Proposition 2.1. The transcendental entire semigroup S = 〈f1, f2〉 generated by two

functions f1 and f2 from respectively two parameter families {e−z+γ + c where γ, c ∈

C and Re(γ) < 0, Re(c) ≥ 1} and {ez+µ + d, where µ, d ∈ C and Re(µ) < 0, Re(d) ≤ −1}

of functions has empty escaping set I(S).

There are several classes transcendental semigroups whose escaping sets are non-empty.

The following examples [8, Examples 3.2 and 3.3] and [5, Examples 2.6 and 2.7] are evident.

Example 2.1. Let S = 〈f, g〉, where f(z) = ez+λ and g(z) = ez+λ+2πi for all λ ∈ C−{0}.

Then I(S) = I(f) 6= ∅.

Example 2.2. Let S = 〈f, g〉, where f(z) = λ sin z and g(z) = λ sin z+2π for all 0 < |λ| <

1. Then I(S) = I(f) 6= ∅.

Example 2.3. Let S = 〈f, g〉, where f(z) = eλz and g(z) = esλz+2πi/λ for all λ ∈ C−{0}

and s ∈ N. Then I(S) = I(f) 6= ∅.

Example 2.4. Let S = 〈f, g〉, where f(z) = λ sin z for all λ ∈ C− {0} and g(z) = fn + 2π

for all n ∈ N. Then I(S) = I(f) 6= ∅.

From all of these examples, we can get non-empty escaping sets. Dinesh Kumar and

Sanjay Kumar [5, Theorem 3.4] generalized these examples to the following result.

Proposition 2.2. Let S = 〈f, g〉 be a transcendental semigroup generated by periodic func-

tion f with period p and another function g defined by g = fn+p, n ∈ N. Then I(S) = I(f).
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In the case of non-empty escaping set I(S), Eremenko’s result [2], ∂I(f) = J(f) of

classical transcendental dynamics can be generalized to semigroup dynamics. The following

results is due to Dinesh Kumar and Sanjay Kumar [5, Lemma 4.2 and Theorem 4.3] which

gives the generalized answer in semigroup settings.

Proposition 2.3. Let S be a transcendental entire semigroup such that I(S) 6= ∅. Then

(1) int(I(S)) ⊂ F (S) and ext(I(S)) ⊂ F (S), where int and ext respectively denote

the interior and exterior of I(S).

(2) ∂I(S) = J(S), where ∂I(S) denotes the boundary of I(S).

This last statement is equivalent to J(S) ⊂ I(S). If I(S) 6= ∅, then we [11, Theorem

4.6] proved the following result which is a generalization of Eremenko’s result I(f)∩J(f) 6= ∅

[2, Theorem 2] of classical transcendental dynamics to holomorphic semigroup dynamics.

Theorem 2.2. Let S be a transcendental semigroup such that F (S) has a multiply connected

component. Then I(S) ∩ J(S) 6= ∅

Eremenko and Lyubich [3] proved that if transcendental function f ∈ B, then I(f) ⊂

J(f), and J(f) = I(f). Dinesh Kumar and Sanjay Kumar [5, Theorem 4.5] generalized

these results to a finitely generated transcendental semigroup of bounded type as shown

below.

Proposition 2.4. For every finitely generated transcendental semigroup S = 〈f1, f2, . . . , fn〉

in which each generator fi is of bounded type, then I(S) ⊂ J(S) and J(S) = I(S).

Proof. Eremenko and Lyubich’s result [3] shows that I(f) ⊂ J(f) for each f ∈ S of bounded

type. Poon’s result shows [9, Theorem 4.2] that J(S) =
⋃

f∈S J(f). Therefore, (from

Definition 1.2 of escaping set and theorem 2.1) for every f ∈ S, we can write,

I(S) ⊂ I(f) ⊂ J(f) ⊂ J(S).

The next part follows from the facts J(S) ⊂ I(S) and I(S) ⊂ J(S). �

3. Escaping sets of Hyperbolic Semigroups

The definitions of critical values, asymptotic values and singular values as well as post

singularities of transcendental entire functions can be generalized to arbitrary setting of

transcendental semigroups.

Definition 3.1 (Critical point, critical value, asymptotic value and singular value).

A point z ∈ C is called critical point of S if it is a critical point of some g ∈ S. A point

w ∈ C is called a critical value of S if it is a critical value of some g ∈ S. A point w ∈ C is

called an asymptotic value of S if it is an asymptotic value of some g ∈ S. A point w ∈ C is

called a singular value of S if it is a singular value of some g ∈ S. For a semigroup S, if all

g ∈ S belongs to S or B, we call S a semigroup of class S or B ( finite or bounded type).
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Definition 3.2 (Post singularly bounded (or finite) semigroup). A transcendental

semigroup S is said to be post-singularly bounded (post-singularly finite) if each g ∈ S

is post-singularly bounded (or post-singularly finite). Post singular set of post singularly

bounded semigroup S is the set

P (S) =
⋃

f∈S

fn(SV (f))

Definition 3.3 (Hyperbolic semigroup). An transcendental entire function f is said to

be hyperbolic if the post-singular set P (f) is a compact subset of F (f). A transcendental

semigroup S is said to be hyperbolic if each g ∈ S is hyperbolic (that is, if P (S) is a compact

subset of F (S)).

Note that if transcendental semigroup S is hyperbolic, then each f ∈ S is hyperbolic.

However, the converse may not true. The fact P (fk) = P (f) for all k ∈ N shows that fk is

hyperbolic if f is hyperbolic. The following result has been shown by Dinesh Kumar and

Sanjay Kumar [5, Theorem 3.16] where Eremenko’s conjecture holds.

Proposition 3.1. Let f ∈ B periodic with period p and hyperbolic. Let g = fn+ p, n ∈ N.

Then S = 〈f, g〉 is hyperbolic and all components of I(S) are unbounded.

Example 3.1. f(z) = eλz is hyperbolic entire function for each λ ∈ (0, 1
e
). The semigroup

S = 〈f, g〉 where g = fm + p, and p = 2πi
λ

is hyperbolic transcendental semigroup.

We generalize Proposition 3.1 to finitely generated hyperbolic semigroups by adding

some extra conditions. This result will be the good source of non-empty escaping set

transcendental semigroup where, the Eremenko’s conjecture holds in semigroup setting.

Theorem 3.1. Let S = 〈f1, f2, . . . , fn〉 is an abelian bounded type transcendental semigroup

in which each fi is hyperbolic for i = 1, 2, . . . , n. Then semigroup S is hyperbolic and all

components of I(S) are unbounded.

Lemma 3.1. Let f and g be transcendental entire functions. Then SV (f ◦ g) ⊂ SV (f) ∪

f(SV (g)).

Proof. See for instance [1, Lemma 2]. �

Lemma 3.2. Let f and g are permutable transcendental entire functions. Then fm(SV (g)) ⊂

SV (g) and gm(SV (f)) ⊂ SV (f) for all m ∈ N.

Proof. We first prove that f(SV (g)) ⊂ SV (g). Then we use induction to prove fm(SV (g)) ⊂

SV (g).

Let w ∈ f(SV (g)). Then w = f(z) for some z ∈ SV (g). In this case, z is either a

critical value or an asymptotic value of function g.

First let us suppose that z is a critical value of g. Then z = g(u) with g
′

(u) = 0. Since

f and g are permutable functions, so

w = f(z) = f(g(u)) = (f ◦ g)(u) = (g ◦ f)(u).
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Also,

(f ◦ g)
′

(u) = f
′

(g(u))g
′

(u) = 0.

This shows that u is a critical point of f ◦ g = g ◦ f and w is a critical value of f ◦ g = g ◦ f .

By permutability of f and g, we can write

f
′

(g(u))g
′

(u) = g
′

(f(u))f
′

(u) = 0

for any critical point u of f ◦ g. Since g
′

(u) = 0, then either f
′

(u) = 0 ⇒ u is a critical

point of f or g
′

(f(u)) = 0 ⇒ f(u) is a critical point of g. This shows that w = g(f(u)) is a

critical value of g. Therefore, w ∈ SV (g).

Next, suppose that z is an asymptotic value of function g. We have to prove that

w = f(z) is also asymptotic value of g. Then there exists a curve γ : [0,∞) → C such

that γ(t) → ∞ and g(γ(t)) → z. So, f(g(γ(t))) → f(z) = w as t → ∞ along γ. Since

f ◦ g = g ◦ f , so

f(g(γ(t))) → f(z) = w ⇒ g(f(γ(t))) → f(z) = w

as t → ∞ along γ. This shows w is an asymptotic value of g. This proves our assertion.

Assume that fk(SV (g)) ⊂ SV (g) for some k ∈ N with k ≤ m. Then

fk+1(SV (g)) = f(fk(SV (g))) ⊂ f(SV (g)) ⊂ SV (g)

Therefore, by induction, for all m ∈ N, we must have fm(SV (g)) ⊂ SV (g). The next part

gm(SV (f)) ⊂ SV (f) can be proved similarly as above.

�

Lemma 3.3. Let f and g are two permutable hyperbolic transcendental entire functions.

Then f ◦ g is also hyperbolic.

Proof. We have to prove that P (f ◦ g) is a compact subset of the Fatou set F (f ◦ g). From

[7, Lemma 3.2], we can write F (f ◦ g) ⊂ F (f) ∩ F (g). This shows that F (f ◦ g) is a subset

of F (f) and F (g). So this Lemma will be proved if we prove P (f ◦ g) is a compact subset

of F (f) ∪ F (g). By the definition of post singular set of transcendental entire function, we

can write

P (f ◦ g) =
⋃

m≥0

(f ◦ g)m(SV (f ◦ g))

=
⋃

m≥0

fm(gm(SV (f ◦ g))) (by using permutabilty of f and g)

⊂
⋃

m≥0

fm(gm(SV (f) ∪ f(SV (g))) (by Lemma 3.1)

=
⋃

m≥0

fm(gm(SV (f))) ∪ gm(fm+1(SV (g)))

⊂
⋃

m≥0

fm(SV (f))) ∪
⋃

m≥0

gm(SV (g))) (by Lemma 3.2)

= P (f) ∪ P (g)
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Since f and g are hyperbolic, so P (f) and P (g) are compact subset of F (f) and F (g).

Therefore, the set P (f) ∪ P (g) must be compact subset of F (f) ∪ F (g). �

Proof of the Theorem 3.1. Any f ∈ S can be written as

f = fi1 ◦ fi2 ◦ fi3 ◦ · · · ◦ fim .

By permutability of each fi, we can rearrange fij and ultimately represented by

f = f t1
1 ◦ f t2

2 ◦ . . . ◦ f tn
n

where each tk ≥ 0 is an integer for k = 1, 2, . . . , n. Lemma 3.3 can be applied repeatably to

show each of f t1
1 , f t2

2 , . . . , f tn
n is hyperbolic. Again by repeated application of same lemma,

we can say that

f = f t1
1 ◦ f t2

2 ◦ . . . ◦ f tn
n

is itself hyperbolic and so the semigroup S is hyperbolic. Next part follows from [12,

Theorem 3.3] by the assumption of this theorem. �
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