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ABSTRACT

This thesis deals with the orthogonality in normed linear spaces. The goal is to investi-

gate and study different notions of orthogonality in normed spaces. By utilizing the 2-HH

norm and bounded linear operators, some notions of orthogonality are introduced and

then, different properties of orthogonality in relation to these orthogonalities are studied.

We generalize the Robert, Birkhoff-James, and a new orthogonality in terms of the 2-

HH norm, and study the main properties of orthogonality. We prove that the Birkoff and

Robert orthogonality in terms of the 2-HH norm are equivalent if the underlying space is

real inner product space. Further, we prove that the isosceles orthogonality is homoge-

neous if and only if it is additive. Additionally, we prove that the orthogonality relation

of type (I) in terms of 2-HH norm satisfies non-degeneracy, simplification, continuity,

and uniqueness properties. Moreover, we prove that the Carlsson orthogonality in terms

of bounded linear operators also satisfies non-degeneracy, simplification, and continuity

properties. In the case of norm attaining bounded linear operator with disjoint support in

a Hilbert space H, we prove that two operators are orthogonal in the sense of Pythagoras

if and only if they are orthogonal in the sense of isosceles. In terms of buonded linear

operators, we prove that the Pythagorean orthogonality and orthogonality relation of type

(I), imply the Birkhoff-James orthogonality, but the converse may not be true. Under the

restriction of an element belonging to the norm attainment set, we prove that the orthog-

onality of images also implies the orthogonality of operators in the Carlsson as well as

Robert’s sense. Finally, as applications, we prove that the Pythagorean orthogonality im-

plies the best approximation, and the best approximation (resp. ε− best approximation)

and Birkhoff orthogonality ( resp. ε− Birkhoff orthogonality) are equivalents.

Keywords: Normed linear spaces, Inner-product space, Birkhoff-James orthogonality,

Pythagorean orthogonality, p-HH norm, Best approximation
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Chapter 1

INTRODUCTION

The natural definition of orthogonality of elements of an inner-product space is that, x ⊥ y

if and only if the inner-product (x, y) = 0. However, in context of a normed linear space,

this definition does not work due to the unavailability of the notion of inner-product. As a

generalization of orthogonality from inner-product space to normed linear space, the first

credit goes to R. C. James in the paper [1] even-though D. B. Robert introduced the first

orthogonality in normed linear space in 1934. Robert’s definition has the weakness that

for some normed linear space at least one of every pair of orthogonal elements would have

to be zero [2]. To avoid this difficulty, G. Birkhoff introduced a new concept of orthogo-

nality in normed linear space by stating that “ if x is a unit vector of a Banach Space X and

y ∈ X , then x is orthogonal to y if and only if the straight line {x+λy : λ ∈ K} is tangent

to the unit ball of X at x”[3]. In 1945, James came up with the notion of the Pythagorean

and isosceles orthogonalities which characterize inner-product space via their homogene-

ity and additivity [1].

S. O. Carlsson in 1962, introduced a generalized concepts of orthogonality in normed

linear space by indicating that “ the isosceles and Pythagorean orthogonality are special

cases”[4]. The open problem related to relationship between the Birkhoff-James orthog-

onality and the Pythagorean orthogonality is discussed in the paper [5]. Motivated by

Carlsson’s results, two new special case of the Carlsson’s orthogonality have been intro-

duced and an attempt has been made to verify some properties of inner-product space in

relation to these orthogonalities[6]. In 2010, E. Kikianty and S. S. Dragomir introduced

the p − HH norm on the cartesian square of normed linear space by generalizing the

previous definition of the Carlsson orthogonality in terms of 2 − HH norm, which also

generalize the Pythagorean and isosceles orthogonality in terms of 2-HH norm[7]. Mo-
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tivated by the results of Kikianty and Dragomir, the Birkhoff and new special cases of

the Carlsson orthogonality in terms of 2-HH norm have been introduced [8]. Besides,

the Robert orthogonality in terms of 2-HH norm has also been introduced in the paper

[9]. Bhatia and Semrl came up with new concept of orthogonality in terms of matrices,

specially in the case of Birkhoff orthogonality [10]. Sain and Paul linked the Bhatia and

Semrl property with norm attaining operators in a finite dimensional normed space which

attains its norm on connected closed subset of the unit sphere of X and proved that “if

two linear operators are orthogonal in the sense of Birkhoff-James, then there exists an

element in the closed connected subset of the unit sphere at which the images of operators

are also orthogonal in the sense of Birkhoff-James [11].

In 2013, Paul et al. introduced a concept of strong Birkhoff-James orthogonality by stat-

ing that x is said to be strongly orthogonal to y in the sense of Birkhff-James if and only

if ‖x‖ < ‖x + λy‖ for all λ 6= 0. The notation x ⊥SB y was used to indicate the orthog-

onality and proved that the strong Birkhoff-James orthogonality implies Birkhoff-James

orthogonality, but the converse may not be true. To illustrate this concept, two elements

(1, 0) and (0, 1) are taken in l∞(R2), showing that (1, 0) and (0, 1) are orthogonal in the

sense of Birkhoff-James but not strongly orthogonal to each other [12]. To study the dif-

ference of orthogonality in the complex case in comparison of real case Paul et al. in

2018 came of with new concept of Birkhoff-James orthogonality introducing new defini-

tions on complex reflexive Banach space [13]. Recently, Bottazzi et al. have introduced a

new generalization of earlier results on orthogonality of bounded linear operators. They

discussed about Birkhoff-James, isosceles and Robert orthogonality in Banach spaces in

terms of bounded linear operators [14].

Motivated by the results of Bottazzi et al., this research is focused on generalizing the

earlier definition of the Carlsson orthogonality in terms of bounded linear operators with

verifying some properties, like non-degeneracy, continuity and homogeneity property of

an inner product space in relation to the Carlsson orthogonality for bounded linear opera-

tors. Kikianty and Dragomir mentioned without proof in their paper that the Pythagorean

and isosceles orthogonality via 2-HH norm satisfies non-degeneracy, symmetry and con-

tinuity property [7]. In this thesis, all these properties have been proved when the norm

on X is induced by an inner product. The equivalence of homogeneity and additivity of

isosceles orthogonality via 2-HH norm has been proved , the proof of which has been

omitted in the paper by Kikianty and Dragomir. This thesis also generalizes the special

case of the Carlsson orthogonality in terms of 2-HH norm in real normed linear space and
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it has been proved that the orthogonality is unique in any normed space X . The Birkhoff

and Robert orthogonality via 2-HH norm are found equivalent, whenever the underlying

space is real inner product space [15].

1.1 Statement of the problem

The statements of problem are as follows:

• To study orthogonality in normed linear space by generalizing the notion of orthog-

onality;

• To study orthogonality in terms of p-HH norm;

• To study orthogonality in terms of bounded linear operators in Banach spaces;

• Use of orthogonality in the theory of best approximation.

1.2 Objective of the study

The objective of this study is

1. To study different types of orthogonality like: Birkhoff-James, Carlsson, Pythagorean,

Robert, and isosceles by using functional and operators in Banach space and Hilbert

spaces,

2. To establish correlation between various orthogonalities,

3. To generalize different orthogonalities via p-HH norm,

4. To generalize the Carlsson orthogonality in terms of operators and study some fa-

mous properties of inner-product space in relation to this orthogonality,

5. To link new two spacial cases of the Carlsson orthogonalityi in terms of p-HH norm

and bounded linear operators,

6. To introduce some different relations between orthogonality and best approximation

in normed linear spaces.

3



1.3 Outline of the thesis

This thesis is devoted to the study of orthogonality in normed linear space with gener-

alization of different orthogonalities in terms of 2-HH norm in a real normed space and

bounded linear space operators in Banach space and Hilbert space. The work begins with

chapter 1 providing introduction of orthogonality as well as its development by different

mathematicians at different span of time, statement of the problem, objectives, and out-

lines of the thesis.

Chapter 2 is written with necessary literature of orthogonality needed to introduce new re-

sult of the thesis. Some generalizations regarding to the Robert, isosceles, Birkhoff-Jame

and new orthogonality in terms of 2-HH norms are introduced and studied. Depending on

the generalized definition of the Carlsson orthogonality, a new generalization in terms of

bounded linear operators is also introduced with verification of some properties of inner

product space. The most important concept introduced in this chapter is the equivalency of

Birkhoff-James orthogonality with isosceles orthogonality, however the Birkhoff- James

orthogonality is not equivalent with the Pythagorean orthogonality in the case of norm

attaining bounded linear operators with disjoint support in Hilbert space.

In chapter 3, the new results of research have been included involving two new partic-

ular cases of the Carlsson orthogonality with verifying some important properties. It

has also been proved that the new particular case of the Carlsson orthogonality implies

the Birkhoff-James orthogonality by taking y = x
1−α , but the converse may not be true.

The most important concept proved in that section is the new orthogonality through the

medium of 2-HH norm that is unique in any normed space with the help of proving

h(µ) :=

∫ 1

0

‖(1− t)y +
µ

2
(tx)‖2dt+

∫ 1

0

‖(1− t)y − µ

2
(tx)‖2dt

is a convex function in R. In the case of new orthogonality in terms of bounded linear

operators in Banach space, it implies the Birkhoff-James orthogonality; however, the con-

verse may not be true. For any element belonging to the norm attainment set of T, if the

images are orthogonal, then the operators are also orthogonal in the sense of isosceles as

well as Birkhoff-James orthogonality.

In chapter 4, as an application of orthogonality in terms of best approximation are in-

volved due to the fact that the problem of best approximation amounts to the problem of

4



minimizing a distance. An attempt has been made to prove some concept related to or-

thogonality (resp. ε−orthogonality) and the best approximation (resp. co-approximation).

The chapter 5 includes the summary, conclusion and recommendation for further work.

Finally, in appendix, the publications and certificates of conferences, seminar and work-

shops have been included.
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Chapter 2

ORTHOGONALITY IN NORMED
LINEAR SPACES

2.1 Introduction

It is well known fact that a norm in a normed linear space does not necessarily arise from

an inner product. Therefore the definition of orthogonality in an inner-product space may

not work for any normed space. Due to this, different orthogonality in normed spaces

have been introduced and studied through the medium of equivalent propositions to the

usual orthogonality, since from 1934. This chapter includes different classical notions of

orthogonality which were introduced by different mathematicians at different time period.

In order to study orthogonality in normed linear spaces, the main properties of orthogo-

nality in an inner-product space are needed. Due to this reason, some important properties

of orthogonality in an inner-product spaces are mentioned as follows:

2.1.1 Main properties of orthogonality in an inner product space:

Let x, y, z ∈ X , where X is an inner-product space. Then the following properties holds

[[1], [16]]:

(i) Non-degeneracy: If x ⊥ x, then x = 0;

(ii) Simplification: If x ⊥ y, then for any λ ∈ R, λx ⊥ λy;

(iii) Continuity: If {xn}, {yn} ⊂ X such that xn ⊥ yn for all n ∈ N, xn → x and

6



yn → y, then x ⊥ y;

(iv) Homogeneity: If x ⊥ y, then λx ⊥ µy for all λ, µ ∈ R;

(v) Symmetry: If x ⊥ y, then y ⊥ x;

(vi) Additivity: If x ⊥ y and x ⊥ z, then x ⊥ y + z;

(vii) If x 6= 0, then there exist α ∈ R such that x ⊥ αx+ y ;

(viii) Uniqueness: The above α is unique.

2.2 Robert Orthogonality

The generalization of orthogonality from inner-product space to normed linear space was

given by D. B. Robert in 1934 with some limitations. The main weakness of this orthogo-

nality was that, for some normed linear spaces, at least one of orthogonal elements would

have to be zero [2]. The definition of orthogonality is as follows:

Definition 1 ([2], [1]). Let X be a normed linear space. A vector x is orthogonal to y in

the sense of Robert if and only if ‖x+ βy‖ = ‖x− βy‖ identically in β.

Properties of Robert orthogonality

For any normed linear space X, the Robert orthogonality satisfies the following properties

[16]:

(i) Robert orthogonality satisfies non-degeneracy, simplification, and continuity;

(ii) Robert orthogonality is homogeneous and symmetric;

(iii) In any normed linear space, the Robert orthogonality is not additive and does not

satisfy the existence property;

(iv) If the norm on X is induced by an inner-product, Robert orthogonality satisfy the

existence property.

R. C. James noted that it is interesting to investigate the properties of orthogonality in an

inner-product space as applied to normed space and he focused mainly on the existence

property in the paper [1] and uniqueness in the paper [17].
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Example 1. [1] Let X be a normed linear space consisting all continuous functions of the

form f = ax+ bx2, where ‖ax+ bx2‖ = maxx∈(0,1) | ax+ bx2 |. Then Two elements of X

are orthogonal in the sense of Roberts if and only if one is zero; i.e; ‖f+βg‖ = ‖f−βg‖
for all β only if f = 0 or g = 0.

Theorem 2.2.1. [16] Let X be a normed space. Then, the Robert orthogonality is equiv-

alent to any other orthogonality if and only if X is an inner product space.

For any (x, y) ∈ X2, Kikianty and Dragomir defined the p- norm on X2 as follows

[7]:

‖(x, y)‖p =





[‖x‖p + ‖y‖p] 1p , 1 ≤ p <∞
max{‖x‖, ‖y‖}, p =∞

(2.1)

From (2.1), it is obvious that ‖(x, y)‖p = ‖(y, x)‖p, and therefore p-norm is symmetric.

Using the concepts of Hermite-Hadamard’s inequality, we have

∫ 1

0

‖(1− t)x+ ty‖pdt ≤ ‖x‖
p + ‖y‖p

2
=
‖(x, y)‖pp

2
<∞ (2.2)

With the help of (2.2), they defined the p-HH norm on X2 in the following ways [26]:

‖(x, y)‖p−HH =





(
∫ 1

0
‖(1− t)x+ ty‖p)1

p
, if 1 ≤ p <∞

supt∈[0,1] ‖(1− t)x+ ty‖, if p =∞
(2.3)

For all x, y ∈ X , it is obvious that ‖(x, y)‖p−HH = ‖(y, x)‖p−HH . Therefore the p-HH

norm is symmetric. They proved that (X2, ‖(., .)‖) is a normed linear space because the

non-degeneracy and homogeneity of the norm can be derived from (2.3) and the triangle

inequality follows from the Minkowski’s inequality. If the norm on X is induced by an

inner product (., .), then as a special case of the p-HH norm, it is denoted by 2-HH norm.

It is defined in the paper [7] as follows:

‖(x, y)‖22−HH =

∫ 1

0

‖(1− t)x+ ty‖2dt. (2.4)

For any p ≥ 1, The p-norm and p-HH norm are equivalent in X2.

Definition 2. A real valued function f defined on a non-empty subset X ⊂ Rn is called

convex if

(i) the domain X of the function is convex.

8



(ii) for any x, y ∈ X and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (2.5)

If the inequality (2.5) is strict whenever x 6= y and 0 < λ < 1, then function f is called

strictly convex function.

Let X be normed space in which the norm is induced by an inner-product. We make

an attempt to generalize the Robert orthogonality via 2-HH norm, which satisfies non-

degeneracy, simplification, continuity, symmetry, and homogeneity property [9].

Definition 3. [9] Let X be a real normed linear space in which the norm is induced by an

inner-product and ‖(1− t)x+λty‖2 = ‖(1− t)x−λty‖2 a. e. on [0, 1]. Then x is said to

be Robert orthogonal to y through the medium of 2-HH norm, denoted by x ⊥2−HH−R y

if and only if ∫ 1

0

‖(1− t)x+ λty‖2dt =

∫ 1

0

‖(1− t)x− λty‖2dt (2.6)

Theorem 2.2.2. [9] Let X be a real normed linear space in which the norm is induced

by an inner-product. Then the Robert orthogonality via 2-HH norm satisfies the non-

degeneracy, simplification and continuity.

Proof. Nondegeneracy: If x⊥HH−Rx. Then

‖(x, x)‖2 =

∫ 1

0

‖(1− t)x+ tλx‖2 dt

=

∫ 1

0

‖(1− t)x− tλx‖2 dt

=

∫ 1

0

〈(1− t)x− tλx, (1− t)x− tλx〉dt

= ‖(x, x)‖2
∫ 1

0

(1− t)2dt+ ‖λ(x, x)‖2
∫ 1

0

t2dt

=
1

3
‖(x, x)‖2 (1 + λ2)

It is clear that ‖(x, x)‖ = 0⇒ x = 0, which gives the non-degeneracy property.

9



Simplification: If x⊥HH−Ry for any λ, µ ∈ R,

∫ 1

0

‖(1− t)µx+ tλµy‖2 dt = |µ|2
∫ 1

0

‖(1− t)x+ tλy‖2 dt

= |µ|2
∫ 1

0

‖(1− t)x− tλy‖2 dt

=

∫ 1

0

‖(1− t)µx− tλµy‖2 dt.

Therefore µx⊥HH−Rµy for any µ ∈ R.

Continuity: If xn ⊥2−HH−R yn with xn → x and yn → y, then

∫ 1

0

‖(1− t)xn + λtyn‖2 dt =

∫ 1

0

‖(1− t)xn + λtyn‖2 dt

⇒ lim
n→∞

∫ 1

0

‖(1− t)xn + λtyn‖2 dt = lim
n→∞

∫ 1

0

‖(1− t)xn + λtyn‖2 dt

⇒
∫ 1

0

‖(1− t)x+ λty‖2 dt =

∫ 1

0

‖(1− t)x+ λty‖2 dt

This shows that x ⊥2−HH−R y.

Theorem 2.2.3. [9] Let X be a real normed linear space in which the norm is induced

by an inner-product. Then the Robert orthogonality via 2-HH norm is homogeneous, but

not symmetric.

Proof. Homogeneity: Let x, y be elements of normed space X , and λ, µ ∈ R

∫ 1

0

‖(1− t)λx+ tµy‖2 dt =

∫ 1

0

〈(1− t)λx+ tµy, (1− t)λx+ tµy〉dt

= ‖λx‖2
∫ 1

0

(1− t)2dt+ ‖µy‖2
∫ 1

0

t2dt (∵ x⊥y)

=
1

3
(‖λx‖2 + ‖µy‖2)
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Again,

∫ 1

0

‖(1− t)λx− tµy‖2 dt =

∫ 1

0

〈(1− t)λx− tµy, (1− t)λx− tµy〉dt

= ‖λx‖2
∫ 1

0

(1− t)2dt+ ‖µy‖2
∫ 1

0

t2dt (∵ x⊥y)

=
1

3
(‖λx‖2 + ‖µy‖2).

Therefore the Robert Orthogonality via 2-HH norm is homogeneous if the normed space

is equipped with an inner-product.

Symmetry: To check the symmetry of 2−HH −R orthogonality,

∫ 1

0

‖(1− t)y + λtx‖2 =
1

3
(‖y‖2 + λ2 ‖x‖2), but

∫ 1

0

‖(1− t)x+ λty‖2 =
1

3
(‖x‖2 + λ2 ‖y‖2)

∴
∫ 1

0
‖(1− t)y + λtx‖2 6=

∫ 1

0
‖(1− t)x+ λty‖2, showing that 2−HH −R orthog-

onality is not symmetric via 2−HH norm.

Lemma 2.2.1. [1] Let X be a normed linear space and x, y ∈ X . Then

lim
µ→∞

[‖(µ+ k)x+ y‖ − ‖µx+ y‖] = k‖x‖

Theorem 2.2.4. [9] Let X be a normed linear space. Then ∀x ∈ X, ∃µ ∈ R : µx +

y⊥HH−Rx,

Proof. Let x, y ∈ X such that x 6= 0( for the case of x=0, the proof is trivial). Let us

define a function g : R× (0, 1)→ R by

g(µ, t) = ‖(1− t)(µx+ y) + λtx‖ − ‖(1− t)(µx+ y)− λtx‖ , where λ ∈ R+, µ ∈ R

= ‖[(1− t)µ+ λt]x+ (1− t)y‖ − ‖[(1− t)µ− λt]x+ (1− t)y‖

and a function G : R→ R by

G(x) =

∫ 1

0

g(µ, t)dt.

11



Now

lim
µ→∞

g(µ, t) = lim
µ→∞

[‖[(1− t)µ+ λt]x+ (1− t)y‖ − ‖[(1− t)µ− λt]x+ (1− t)y‖]

= (1− t) lim
µ→∞

[∥∥∥∥(µ+
λt

1− t)x+ y

∥∥∥∥−
∥∥∥∥(µ− λt

1− t)x+ y

∥∥∥∥
]

Let µ− λt
1−t = ξ so that as µ→∞, ξ →∞. Then µ+ λt

1−t = ξ + 2λt
1−t

∴ lim
µ→∞

g(µ, t) = lim
ξ→∞

[

∥∥∥∥(ξ +
2λt)

1− t)x+ y

∥∥∥∥− ‖ξx+ y‖]

= (1− t) 2λt

1− t ( by using Lemma 1.1)

= 2λt ‖x‖

Hence limµ→∞G(µ) = limµ→∞
∫ 1

0
g(µ, t)dt =

∫ 1

0
limµ→∞ g(µ, t)dt and by continuity of

g,

lim
µ→∞

G(µ) =

∫ 1

0

2λt ‖x‖ dt

= ‖λx‖ > 0

Also for any t ∈ (0, 1),

lim
µ→∞

g(−µ, t) = lim
µ→∞

[‖[(1− t)(−µ) + λt]x+ (1− t)y‖ − ‖[(1− t)(−µ)− λt]x+ (1− t)y‖]

= lim
µ→∞

[‖[(1− t)µ− λt]x− (1− t)y‖ − ‖[(1− t)µ+ λt]x− (1− t)y‖]

= (1− t) lim
µ→∞

[∥∥∥∥(µ− λt

1− t)x− y
∥∥∥∥−

∥∥∥∥(µ+
λt

1− t)x− y
∥∥∥∥
]

Suppose µ+ λt
1−t = ξ so that as µ→∞. ξ →∞ and µ− 2λt

1−t = ξ − 2λt
1−t

∴ lim
µ→∞

g(−µ, t) = (1− t) lim
ξ→∞

[∥∥∥∥(ξ − 2λt

1− t)x− y
∥∥∥∥− ‖ξx− y‖

]

= (1− t)(−2λt)

1− t ‖x‖ ( by using Lemma 2.2.1)

= −2λt ‖x‖

By the continuity of g, we have

lim
µ→∞

G(−µ) = lim
µ→∞

∫ 1

0

g(−µ, t)dt =

∫ 1

0

lim
µ→∞

g(−µ, t)dt =

∫ 1

0

−2λ ‖x‖ dt = −λ ‖x‖ < 0.
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Since G is continuous, so ∃µ0 ∈ R : G(µ0) = 0.

Hence
∫ 1

0

‖(1− t)(µ0x+ y) + λtx‖2 dt =

∫ 1

0

‖(1− t)(µ0x+ y)− λtx‖2 dt.

2.3 Birkhoff Orthogonality

The concept of Birkhoff orthogonality began in 1935 [3]. In the literature of orthogonality

this is known with some other names such as; Birkhoff- James orthogonality and Blaschke

Birkhoff-James orthogonality ( see [18]). In this paper [3, 17], an orthogonality which

satisfies homogeneity but neither symmetric nor additive is defined by x⊥y if and only

if ‖x + λy‖ ≥ ‖x‖ for all λ, is known as Birkhoff orthogonality or Birkhoff-James

orthogonality. The geometrical meaning of Birkhoff orthogonality is that if x is an unit

vector of a Banach space X and y ∈ X , then x is Birkhoff orthogonal to y means that

the straight line {x+ λy : λ ∈ K} is tangent to the unit ball of X at x. This concept is

similar to the statement: suppose two lines l1 and l2 intersect at the point m, then l1⊥l2 if

and only if the distance from a point m of l2 to a given point n of l1 is never less than the

distance from m and n. [17] For any hyper-plane H ⊂ X , x is said to be orthogonal to H

if ∀x ∈ H, x⊥h.

Bhatia and Semrl in [10] generalize the definition of Birkhoff orthogonality in terms of

matrix operators. For any matrices A and B they denote the symbol ‖A‖ for operator

norm of A and A is orthogonal to B in the sense of Birkhoff-James iff for any complex

number z, ‖A + zB‖ ≥ ‖A‖. A matrix A is orthogonal to B iff there exist a unit vector

x ∈ H such that ‖Ax‖ = ‖A‖ and 〈Ax,Bx〉 = 0 [10]. They also introduced Birkhoff-

James orthogonality in [10] as A⊥B if and only if ‖A + zB‖p ≥ ‖A‖p, where ‖A‖p
denotes Schatten p-norm of A defined by ‖A‖p = [

∑n
j=1 Sj(A)p]

1
p for 1 ≤ p < ∞ and

S1(A) ≥ S1(A) ≥ ...... ≥ Sn(A) are singular values of A. Taking the special case for

p = 2, Bhatia and Semrl in [10] also proved that the given orthogonality is equivalent to

usual Hilbert space condition 〈A,B〉 = 0, which defines an inner-product on the space of

matrices as 〈A,B〉 = trace(A∗B). The norm associated to this inner product is ‖.‖2. In

an infinite dimensional case [10], for any bounded operators in a Hilbert space H, A⊥B
if and only if there exist a sequence {xn} of unit vectors such in H that ‖Ax‖ → ‖A‖,
and 〈Axn, Bxn〉 → 0. Benitz et al. [19] proved that X is an inner-product space if

and only if for any linear operators A and C in a finite dimensional normed space X,
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A⊥C ⇔ ∃u ∈ SX : ‖Au‖ = ‖u‖, Au⊥Cu, where SX = {x ∈ X : ‖x‖ = 1} and “⊥′′
denotes the Birkhoff-James orthogonality.

Theorem 2.3.1. [19] If SX is not an ellipse(X is not an inner-product space), then there

exists linear operators A and C in X such that A⊥C, but there does not exists u ∈ SX

such that ‖A‖ = ‖Au‖ and Au⊥Cu.

Theorem 2.3.2 ([19]). A real finite dimensional normed space X is an inner-product space

if and only if , for A,C ∈ L(X), A⊥C ⇔ ∃x ∈ SX : ‖A‖ = ‖Ax‖, Ax⊥Cx.

Theorem 2.3.3. [20] The q-angle has the following properties:

(i) Part of parallelism property: Aq(x, y) = 0 iff x and y are linearly dependent.

(ii) Part of homogeneity property: Aq(Ax,By) = Aq(x, y) for every x, y ∈ X and

A,B ∈ R− {0}.

In [20] Chen Zhi-Zhi et al. have given slightly different definition of Birkhoff or-

thogonality in such a way that; x is Birkhoff orthogonal to y iff Aq(x, y) = π
2

by using

projections of the angles between two vectors x and y in a real two dimensional normed

space X.

Definition 4. [20] The g-angle between two vectors x and y is given by g(x, y) = cos−1 g(x,y)
‖x‖ ‖y‖ ,

where g(x, y) = 1
2
‖x‖[τ+(x, y) + τ−(x, y)] and τ±(x, y) = limt→±0

‖x+ty‖−‖x‖
t

. In that

case x⊥gy if g(x, y) = 0 or Ag(x, y) = π
2
.

For any x = (x1, x2)
T and y = (y1, y2)

T in a two dimensional real normed space X,

q(x, y) =





0 if x and y are linearly dependent

‖Pxy‖−1, if x and y are linearly independent.

Continuity property: If xn → x and yn → y, then Aq(xn, yn)→ Aq(x, y), where Aq(x, y)

is q-angle between x and y defined by Aq(x, y) = sin−1[q(x, y)].

Lemma 2.3.1. [20] If x is Birkhoff orthogonal to y. Then for anym,n ∈ R, ‖mx+ny‖ ≥
‖mx‖.

Theorem 2.3.4. [21] Let x = (x1, x2)
T and y = (y1, y2)

T be two vectors in a two di-

mensional real normed space X with basis {e1, e2} . Then x is Birkhoff-orthogonal to y iff

Aq(x, y) = π
2

i.e. ‖Pxy‖ = 1.
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2.3.1 Orthogonality on C∗-module

Let A be aC∗-algebra and H be a (left) A -module. Suppose that the linear structure given

on A and H are compatible, that is, λ(ax) = a(λx) for every λ ∈ C and a ∈ H . Then

there exists a mapping 〈., .〉 : H ×H → A with the following properties [22]:

(i) 〈x, x〉 ≥ 0 for every x ∈ H ,

(ii) 〈x, x〉 = 0 iff x = 0,

(iii) 〈x, y〉 = 〈y, x〉∗ for every x, y ∈ H ,

(iv) 〈ax, y〉 = a 〈x, y〉 of every a ∈ A and x, y ∈ H ,

(v) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for every x, y, z ∈ H

The pair (H, 〈., .〉) is called a ( left) pre-Hilbert A -module. The map 〈., 〉 is called an

A -valued inner-product. If the pre-Hilbert A -module (H, 〈., .〉) is complete with respect

to the norm ‖x = ‖ = ‖〈x, x〉‖ 1
2 , then it is called A -Hilbert A -module over A . Rajic et

al. in [[22], [21]] introduced a new concept of Birkhoff-James orthogonality in a Hilbert

C∗- modules over C∗-algebra A and proved that such orthogonality with respect to A -

valued inner product coincide if and only if A is isomorphic to C. [22] A mapping

T : V → W between A -modules V and W is called adjointable if there exists mapping

T ∗ : W → V such that 〈Tx, y〉 = 〈x, T ∗y〉 for all v ∈ V, y ∈ W . Such a mapping T is

bounded, linear and satisfies T (xa) = T (x)a for all x ∈ V and a ∈ A . The space of all

adjointable mapping from V into W is denoted by B(V,W ). Let θx,y(z) = x(y, z), where

θx,y ∈ B(V,W ) and K(B, V ) denotes the closed linear subspace of B(V,W ) spanned by

{Qxy : x ∈ W, y ∈ V } is called space of compact operators.

Proposition 1. [22] Let A,B ∈ B(H).Then minλ∈C‖A + λB‖2 = sup‖xi‖=1MA,B(ξ),

where

MA,B(ξ) =




‖Aξ‖2 − |〈Aξ,Bξ〉|2‖Bξ‖2 if, Bξ 6= 0

‖Aξ‖2 if, Bξ = 0

Proposition 2. [22] let A be a C∗-algebra, and a, b ∈ A . Then minλ∈C‖a + λb‖2 =

maxϕ∈S(A)MA,B(ϕ), where

Ma,b(ϕ) =




ϕ(a∗a)− |ϕ(a∗b)2

ϕ(b∗b) if, ϕ(b∗b) 6= 0

ϕ(a∗a) if, ϕ(b∗b) = 0
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Theorem 2.3.5. [22] Le V be a Hilbert C∗-module over a C∗-algebra A and x, y ∈ V .

Then minϕ∈C‖x+ ϕy‖2 = maxϕ∈S(A)Mx,y(ϕ), where Mx,y(ϕ) ∈ A is defined by

Mx,y(ϕ) =




ϕ(〈x, x〉)− |ϕ(〈x,y〉)2

ϕ(〈y,y〉) if, ϕ(〈y, y〉) 6= 0

ϕ(〈x, x〉) if, ϕ(〈y, y〉) = 0

Theorem 2.3.6. [22] Let V be a Hilbert C∗-module over a C∗-algebra A . Let x, y ∈ V .

Then x⊥By ⇔ ∃ϕ ∈ S(A ) : ϕ(〈x, x〉) = ‖x‖2 and ϕ(〈x, y〉) = 0.

Theorem 2.3.7. [22] Let V be a Hilbert C∗-module over a C∗-algebra A and x, y ∈ V .

Then

(i) x⊥By ⇔ 〈x, x〉⊥ 〈x, y〉 ⇔ 〈x, x〉⊥B 〈y, x〉.

(ii) x⊥By ⇒ x⊥Bx 〈x, y〉 and x⊥Bx 〈y, x〉.

Arambasic and Rajic (see in[22]) characterized HilbertC∗-modules where the Birkhoff

orthogonality coincides with the usual orthogonality with respect to inner-product space.

By using the Gelfand-Mazur theorem, it can be proved that A is isomorphic to C and

using this concept, C is only the unital C∗-algebra in which Birkhoff orthogonality x⊥By
coincides with x∗y = 0 for all elements x, y ∈ A .

Theorem 2.3.8. [22] Let V 6= {0} be a full Hilbert A -module. then the following state-

ments are equivalent:

(i) For all x, y ∈ V the condition (x⊥By ⇔ 〈x, y〉 = 0) is always true.

(ii) A is isomorphic to C.

Theorem 2.3.9. [23] Let T be a linear operator on a finite dimensional real normed space

X and MT = {x ∈ SX : ‖Tx‖ = ‖T‖}. If MT can be partitioned into tow non-empty sets

which are contained in complementary subset of X, then there is a linear operator A on X

such that T⊥BA but Tx 6⊥B Ax.

Theorem 2.3.10. [23] Let T be a linear operator on a finite dimensional real smooth

normed space X. If MT = {x ∈ SX : ‖Tx‖ = ‖T‖} is a countable set with more than

2 points. Then for any x ∈ MT there is a linear operator A on X such that T⊥BA but

Tx 6⊥B Ax

Theorem 2.3.11. [23] Let T be a linear operator on a two dimensional real normed space

X, and let MT = {x ∈ SX : ‖Tx‖ = ‖T‖}. If MT has more than two components, then

for any x ∈MT there is a linear operator A on X such that T⊥BA but Tx 6⊥B Ax.
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2.3.2 Strong Birkhoff-James Orthogonality

Definition 5. (Strongly orthogonal set)[12]: A finite set of elements {x1, ......, xk} is said

to be strongly orthogonal set in the sense of Birkhoff-James iff for eachm ∈ {1, 2, ......, k}

‖xm‖ < ‖xm +
k∑

m=1,m 6=n
λnxn‖,

whenever λn 6= 0.

Theorem 2.3.12. [12] Let X be a normed linear space and x0 ∈ Sx. If there exists a

Hamel basis of X containing x0 which is strongly orthogonal relative to x0 in the sense of

Birkhoff-James, then x0 is an extreme point of BX .

Theorem 2.3.13. [12] Let X be a normed linear space and x0 ∈ SX be an exposed point

of BX . Then there exists a Hamel basis of X containing x0 which is strongly orthogonal

relative to x0 in the sense of Birkhoff-James.

Theorem 2.3.14. [12] Let X be a normed linear space and x0 ∈ SX . If there exist a

Hamel basis of X containing x0 which is strongly orthogonal relative to x0 in the sense

of Birkhoff-James, then there exists a bounded invertible linear operator A on X such that

‖A‖ = ‖A0‖ > ‖Ay‖ for all y ∈ SX with y 6= λx0, λ ∈ Sk.

Theorem 2.3.15. [12] For a normed space X and a point x ∈ span(X), the following

are equivalent:

(i) x is an exposed point of BX .

(ii) There is a Hamel basis of X containing x which is strongly orthonormal relative to

x in the sense of Birkhoff-James.

(iii) There exists a bounded linear operator A on X which attains only at the points of

the form λx with λ ∈ Sk.

Theorem 2.3.16. [12] For a normed linear space X, the following are equivalent:

(i) X is strictly convex, and

(ii) For each x ∈ SX , there exists a Hamel basis of X containing x which is strongly

orthonormal relative to x in the sense of Birkhoff-James.
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For any bounded linear operator T,A ∈ L(X), T is said to be Birkhoff-James orthog-

onal to A if ‖T + λA‖ ≥ ‖T‖ for all λ ∈ C and MT = {x ∈ SX : ‖Tx‖ = ‖T‖}. In

the real Banach space X, Sain introduced two sets x+ and x− in his paper [24] by

(i) x+ = {y ∈ X : ‖x+ λy‖ ≥ ‖x‖ for all λ ≥ 0} and

(ii) x− = {y ∈ X : ‖x+ λy‖ ≥ ‖x‖ for all λ ≤ 0}

For the complex Banach space, Paul et al. in 2018 introduced the following notations [13]

depending on Sain’s concept : For any γ ∈ V,

(i) x+γ = {y ∈ X : ‖x+ λy‖ ≥ ‖x‖ for all λ = tr, t ≥ 0}

(ii) x−γ = {y ∈ X : ‖x+ λy‖ ≥ ‖x| for all λ = tr, t ≤ 0}

(iii) x
1
γ = {y ∈ X : ‖x+ λy‖ ≥ ‖x‖ for all λ = tr, t ∈ R}

where V = {γ ∈ C : |γ| = 1, arg(γ) ∈ [0, 2π]}. Also

(iv) If µ = eiπγ, then x+µ = x−γ , x
−
µ = x+γ and x

1
µ = x

1
γ . In the complex Banach space,

(v) x+ = ∩
{
x+γ : γ ∈ V

}
, x− = ∩

{
x−γ : γ ∈ V

}
and x⊥ = ∩

{
x

1
γ : γ ∈ V

}

Proposition 3. [24] Let x, y ∈ X , where X is an complex Banach space and γ ∈ V . Then

following statements are true

(i) Either y ∈ x+γ or y ∈ x−γ .

(ii) x⊥γy ⇔ y ∈ x+γ or y ∈ x−γ .

(iii) y ∈ x+γ ⇒ ηy ∈ (ξx)+γ for all η, ξ > 0.

(iv) y ∈ x+γ ⇒ −y ∈ x−γ and y ∈ (−x)−γ .

(v) y ∈ x−γ ⇒ ηy ∈ (ξx)−γ for all η, ξ > 0.

(vi) y ∈ x−γ ⇒ −y ∈ x+γ and y ∈ (−x)+γ .

(vii) y ∈ x+γ ⇒ µy ∈ (µx)+γ for all µ ∈ C.

(viii) y ∈ x−γ ⇒ µy ∈ (µx)−γ for all µ ∈ C.

Proposition 4. [24] Let x, y ∈ X , where X is a complex Banach space. Then the follow-

ing are true
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(i) x⊥By ⇔ y ∈ x+ and y ∈ x−.

(ii) y ∈ x+ ⇒ ηy(ξx)+ for all η, ξ > 0.

(iii) y ∈ x+ ⇒ −y ∈ x− and y ∈ (−x)−.

(iv) y ∈ x− ⇒ −y ∈ x+ and y ∈ (−x)+.

(v) y ∈ x− ⇒ ηy ∈ (ξx)− for all η, ξ > 0.

Theorem 2.3.17. [24] Let X be a reflexive complex Banach space, and Y be any complex

Banach space. Let T,A ∈ K(x, y). Then T ⊥B A ⇔ ∀γ ∈ V, ∃ x = x(γ), y =

y(γ) ∈MT : Ax ∈ (Tx)+γ and Ty ∈ (Ty)−γ .

Theorem 2.3.18. [24] Let X be a complex Banach Space. Let x, y ∈ X and r = eiθ,

where θ ∈ [0, 2π]. If y ∈ x+γ , then either y ∈ x+µ for all µ with arg µ ∈ [0, θ] or y ∈ x+µ
for all µ with arg µ ∈ [0, π].

Theorem 2.3.19. [24] Let be a linear operator on a finite dimensional complex Banach

space X, such that MT is a closed connected subset of SX . Then for A ∈ L(X), T ⊥B
A⇔ ∀γ ∈ V ∃ x = x(γ) ∈MT : Tx ⊥ℵ Ax.

Theorem 2.3.20. [24] Let T be a linear operator in a finite dimensional complex Banach

space X such that MT is a closed connected subset of the unit sphere of X. Then for

A ∈ L(X), T ⊥B A ⇔ ∃ θ ∈ [0, π] and x, y ∈ MT : Ax ∈ (Tx)+γ for all γ with

arg γ ∈ [θ − π, θ] and Ay ∈ (Ty)+γ for all γ with arg γ ∈ [θ, θ + π].

2.3.3 Norm parallelism and Birkhoff-James orthogonality

Definition 6. [25] Let x, y ∈ X , K ∈ {C,R} and T = {µ ∈ K : |µ| = 1}. Then x is

said to be norm parallel to y if ‖x+ µy‖ = ‖x‖+ ‖y‖ for all µ ∈ T .

Norm parallelism is symmetric as well as homogeneous; whereas, Birkhoff-James

orthogonality is homogeneous but not symmetric in a Banach space. [25] In the case of

Hilbert space, two elements are linearly dependent iff they are norm- parallel; however,

in normed spaces two linearly dependent vectors are norm-parallel, but the converse may

not be true. For instance, (1, 1) and (1, 0) are norm parallel but not linearly dependent.

Depending on the concept of Birkhoff-James orthogonality and strong Birkhoff-James

orthogonality Paul et al.[25] introduce a new geometric notion of semi-rotund point. For

any normed linear space X, β 6= x ∈ X is said the semi-rotund point of X if ∃y ∈ X :
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x ⊥SB y. If for every x 6= 0 ∈ X , x is a semi-rotund point, the normed space X is said to

be semi-rotund space. Dragomir introduced the concept of approximate Birkhoff-James

orthogonality [?] as follows: x is said to be approximate Birkhoff-James orthogonal to y if

‖x+µy‖ ≥ (1−ε)‖x‖ for all µ ∈ K and ε ∈ [0, 1]; however, Chmielinski [25, 27] defined

approximate Birkhoff-James orthogonality as ; x ⊥εD⇔ ‖x + µy‖ ≥
√

1− ε2‖x‖ for all

µ ∈ K. The concept of approximate parallelism was developed by Zamani and Moslehian

[28] by stating that x is approximately parallel to y if inf {‖x+ λy‖ : λ ∈ K} ≤ ε‖x‖ for

all ε ∈ [0, 1].

Proposition 5. [25] let X be a bounded linear operator form a normed space X to normed

space Y and x ∈MT . Then for any ε ∈ [0, 1] and y ∈ X , we have x||εy ⇒ Tx||εTy.

Theorem 2.3.21. [25] Let T and A are compact linear operators form a reflexive Banach

space X to any normed space Y. Then T ||A⇔ ∃ x ∈MT ∩MA : Tx||Ax.

Theorem 2.3.22. [25] If T and A are bounded linear operators form a normed space X

to Y. Then T ||A⇔ ∃{xn} ∈ SX : limn→∞ ‖Txn‖ = ‖T‖, limn→∞ ‖Axn‖ = ‖A‖ and

limn→∞ ‖Txn + µAxn‖ = ‖T‖+ ‖A‖, for some µ ∈ K.

Proposition 6. [25] Let T be a bounded linear operator form a normed space X into

normed space Y and let x ∈ MT . Then Tx ⊥εD Ty ⇒ x ⊥εD y for any ε ∈ [0, 1] and

y ∈ X .

Theorem 2.3.23. [25] let T and A are bounded linear operators from finite dimensional

Banach spaces X to Y. Then T ⊥SB A ⇔ ∀ε > 0,∃µε > 0 : ∀|µ| < µε, ∃yµ ∈
(∪x∈MT

B(x, ε)) ∩ Sx : ‖Tyµ + µAyµ‖ > ‖T‖.

Theorem 2.3.24. [25] Let T and A are compact linear operators fron a reflexive Banach

space X to any normed space Y be such that T ⊥B A but T 6⊥SB A. Then there exists

x ∈MT such that Tx ⊥B Ax.

Theorem 2.3.25. [25] Let T and A are bounded linear operators from a normed space

X to Y. If T ⊥B A but T 6⊥SB A, then there exists a sequence {xn} in SX such that

‖Txn‖ → ‖T‖, Axn → 0 or there exist a sequence {xn} in SX and sequence {εn} in R+

such that ‖Txn‖ → ‖T‖, εn → 0, and Txn ⊥εnD Axn.

2.3.4 Birkhoff-James orthogonality by applying semi-inner product

The concepts of Birkhoff-James orthogonality has been widely used by various researchers

since 1935. The latest research on this topic by Sain, Mal, and Paul [29]have studied
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Birkhoff-James orthogonality of compact linear operators between Hilbert space and Ba-

nach spaces by applying the notion of semi-inner product in normed linear spaces.

Definition 7. [29] For any normed linear space x, A scalar valued function (., .) : X ×
X → K, where K ∈ {C,R} is a semi-inner product if for any ξ, η ∈ K and for any

x, y, z ∈ X , it satisfies the following conditions:

(i) (ξx+ ηy, z) = ξ(x, z) + η(x, z),

(ii) (x, x) > 0, whenever x 6= 0.

(iii) | (x, y) |2≤ (x, x)(y, y),

(iv) (x, ξy) = ξ̄(x, y).

Every semi-inner product space is a normed space with the norm ‖x‖2 = (x, x)

and the norm of any normed space can be generated through a semi-inner product in

infinitely many ways. Sain et al. in [29] characterized the Birkhoff-James orthogo-

nality set of any compact linear operators between a reflexive Banach space any Ba-

nach spaces. They also proved that there is an relationship between the concept of

semi-inner product spaces and the sets x+ = {y ∈ X : ‖x+ γy‖ ≥ ‖x‖forγ ≥ 0} and

x+ = {y ∈ X : ‖x+ γy‖ ≥ ‖x‖forγ ≤ 0}

Theorem 2.3.26. [29] Let T and A be compact linear operators from a reflexive Banach

space X to any Banach space Y. If any one of the following conditions holds;

(i) MT is a connected subset of SX .

(ii) MT is not connected but MT = D ∪ (−D), where D is a non-empty subset of SX .

Then T ⊥B A⇔ ∃x ∈MT : Tx ⊥B Ax.

Theorem 2.3.27. [29] For a finite-dimensional Banach space X, the following statements

are are equivalent.

(i) For any linear operator T on X, MT is the unit sphere of some subspace of X.

(ii) For any linear operator T on X, MT = DT ∪ (−DT ), where DT is connected subset

of X.

(iii) X is an Euclidean space.
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Theorem 2.3.28. [29] Let x, y ∈ X , where X is a normed linear space. Then the follow-

ing are true.

(i) y ∈ x+ iff there exists a semi-inner product (., .) on X with (y, x) ≥ 0.

(ii) y ∈ x− iff there exists a semi-inner product (., .) on X with (y, x) ≤ 0.

Theorem 2.3.29. [29] Let T and A be compact linear operators from a reflexive Banach

space X to any Banach space Y be such that T ⊥B A. let OY denotes the collection of all

semi-inner product on Y. Then

‖T‖ =





sup {(Tx, y) : x ∈ SX , y ∈ SY , (., .) ∈ OY , (Ax, y) ≥ 0}
sup {(Tx, y) : x ∈ SX , y ∈ SY , (., .) ∈ OY , (Ax, y) ≤ 0}

Theorem 2.3.30. [29] Let T and A be bounded linear operators form a normed space X

to Y be such that T ⊥B A. Ley OY denotes the collection of semi-inner product space on

Y. Let ε > 0 be arbitrary but fixed after A choice. Then

(i) ‖T‖ = max {l1(ε), l2(ε)} = max {l1(ε), l3(ε)}, where

(ii) l1(ε) = sup {(Tx, y) : x ∈ SX , y ∈ SY , (., .) ∈ OY , | (Ax, y) |< ε}

(iii) l2(ε) = sup {(Tx, y) : x ∈ SX , y ∈ SY , (., .) ∈ OY , Ax ∈ (y)+ε}

(iv) l3(ε) = sup {(Tx, y) : x ∈ SX , y ∈ SY , (., .) ∈ OY , Ax ∈ (y)−ε}

Theorem 2.3.31. [29] Let X be normed linear space such that X∗ is strictly convex. Let

f, g ∈ X∗ be such that f ⊥B g. then

‖f‖ =





sup {f(x) : x ∈ Sx, g(x) ≥ 0}
sup {f(x) : x ∈ Sx, g(x) ≤ 0} .

Theorem 2.3.32. [29] Let T and A are compact linear operators from a reflexive Banach

space X to any Banach space Y be such that for each λ ∈ R,MT+λA = Dλ ∪ (−Dλ),

where Dλ is a non-empty connected subset of SX . Let OY denotes the collection of all

semi-inner product space on Y. Then

dist(T, span {A}) = sup {(Tx, y) : x ∈ SX , y ∈ SY , (., .) ∈ OY , (Ax, y) = 0} .
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Theorem 2.3.33. [29] Let X be a reflexive Banach space and Y be any Banach space. Let

Z be a finite dimensional subspace of K(X, Y ). Let T ∈ K(X, Y ) \ Z . Let us further

assume that for any λ ∈ R and for any A ∈ Z ,MT+λA = Dλ,A ∪ (−Dλ,A), where Dλ,A

is non-empty connected subset of SX . Then there exist A0 ∈ Z such that

dis(T,Z ) = sup {(Tx, y) : x ∈ SX , y ∈ SY , (A0x, y) = 0} .

Moreover, A0 is the best approximation of T in Z .

2.3.5 Modular Birkhoff orthgonality in Banach modules

We have already mentioned that Rajic et al. in[22] studied Birkhoff-James orthogonality

in a Hilbert C∗-modules over a C∗-algebra. The most current research as generalization

of Birkhoff-James orthogonality from Hilbert space to Banach spaces in [30], Sain and

Tanaka studied the stronger version of modular Birkhoff-James orthogonality in the set of

bounded and compact linear operators. In order to prove their study they introduced the

following notions: X⊥ = {y ∈ X : x ⊥B y} and MA = {x ∈ SX : ‖Ax‖ = ‖A‖}. An

element x 6= 0 ∈ X is said to be smooth point in X if T (x) = {f ∈ S∗X : f(x) = ‖x‖}
is a singleton set. For any Banach space X, an element x ∈ X is said to be left symmetric

in X if for any y ∈ X , x ⊥B y ⇒ y ⊥B x. Similarly x is said to be right symmetric in X

if for any y ∈ X , y ⊥B x ⇒ x ⊥B y. If x is both left as well as right symmetric, then x

is said to be a symmetric point.

Definition 8. [30] A Banach space X is called a right A -module (where A is a Banach

algebra) if there exists a mapping of X × A into X such that for each a, b ∈ A and

x ∈ X , x(ab) = (xa)b and ‖ax‖ ≤ ‖x‖‖a‖.

An element x ∈ X is said to be right-modular Birkhoff-James orthogonal to y ∈ X ,

if x ⊥B ya for all a ∈ A and left-modular Birkhoff-James orthogonal to y if x ⊥B ay

for all a ∈ A .

Theorem 2.3.34. [30] Let T and A be compact linear operators form a reflexive real

Banach space X to any real Banach space Y such that MA = {±x0} for some x0 ∈ SX .

Then A⊥B(X) ⇔ T (X) ⊂ (Ax0)
⊥.

Definition 9. [30] A Banach space X is said to be Kadets-Klee if whenever {xn} is a

sequence in X and x ∈ X is such that {xn} converges weekly to x and lim
n→∞

‖xn‖ = ‖x‖,
then limn→∞ ‖xn − x‖ = 0.
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Theorem 2.3.35. [30] Let A be a compact linear operator from a reflexive Kadets-Klee

real Banach space to any real Banach space be such thatMT = {±x0} for some x0 ∈ SX .

Then given any bounded linear operator T ∈ B(X, Y ), A ⊥B(X) T ⇔ T (X) ⊂ (Ax0)
⊥.

Theorem 2.3.36. [30] Let X, Y be real Banach spaces. Let A ∈ B(X, Y ) be a smooth

point in B(X, Y ) such that MA 6= 0. Then given any T ∈ B(X, Y ), A ⊥B(X) T ⇔
T (X) ⊂ (Ax0)

⊥, where MA = {±x0}.

Theorem 2.3.37. [30] Let T and A are compact linear operators from a reflexive complex

Banach space X to any complex Banach space Y be such that MA =
{
eiθx0 : θ ∈ [0, 2π]

}

for some x0 ∈ SX . Then given any compact linear operator T, A ⊥B(X) T ⇔ T (X) ⊂
(Ax0)

⊥.

Theorem 2.3.38. [30] Let T and A are compact linear operators from a reflexive real

Banach Space X to any real Banach space Y be such thatMA = {±x0} for some x0 ∈ SX .

Then given any compact linear operator T, A ⊥∗B(Y ) T =⇔ Tx0 = 0. Moreover,if X is

Kadets-Klee, then same is true for any T ∈ B(X, Y ).

Theorem 2.3.39. [30] Let T and A are compact linear operators from a reflexive complex

Banach space to any complex Banach space Y be such that MA =
{
eiθx0 : θ ∈ [0, 2π]

}

for some x0 ∈ SX . Then given any T ∈ K(X, Y ), A ⊥∗B(Y ) T ⇔ Tx0 = 0 .

If A is a bounded linear operator from a normed spaces X to Y, then its adjoint A∗ ∈
B(Y ∗, X∗) is defined by (A∗y∗) = y∗Ax for each x ∈ X , y∗ ∈ Y ∗ and ‖A∗‖ = ‖x‖. For

any subsets R and S of a Banach space X, R ⊥B S if x ⊥B y for all x ∈ R and y ∈ S.

Proposition 7. [30] Let T and A are bounded linear operators from a Banach space X to

Y. If A(x) ⊥B T (X), then A ⊥B T.

2.3.6 Birkhoff orthogonality via 2-HH norm

Motivated by various generalizations of Birkhoff orthogonality, we make an attempt to

introduce this most popular orthogonality in terms of 2-HH norm which we denote by

x ⊥2−HH−B y [31].

In the case of 2-HH norm,

∫ 1

0

‖(1− t)x+ λty‖2 =

∫ 1

0

〈(1− t)x+ λty, (1− t)x+ λty〉dt

= ‖x‖2
∫ 1

0

(1− t)2dt+ 2λ〈x, y〉
∫ t

0

t(1− t)dt+ λ2 ‖y‖2
∫ 1

0

t2dt.
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x ⊥ y, then

∫ 1

0

‖(1− t)x+ λty‖2 = ‖x‖2
∫ 1

0

(1− t)2dt+ λ2 ‖y‖2
∫ 1

0

t2dt

=
1

3
(‖x‖2 + ‖λy‖2) (2.7)

But, ∫ 1

0

‖(1− t)x‖2 dt = ‖x‖2
∫ 1

0

(1− t)2dt =
1

3
‖x‖2 . (2.8)

Since ‖λy‖2 is a non-negative quantity, so from relation (2.7) and (2.8), we conclude

that ∫ 1

0

‖(1− t)x+ λty‖2 ≥
∫ 1

0

‖(1− t)x‖2 dt (2.9)

Keeping above result in our mind, we can conclude that x⊥2−HH(B)y if the relation

(2.9) is satisfied.

In the following theorem, 2-HH-R and 2-HH-B denotes the Robert orthogonality and

Birkhoff-James orthogonality via 2-HH norm respectively.

Theorem 2.3.40. [9] Let x, y ∈ X , where X is a real normed linear space equipped

with an inner-product space over the field K = (R or C) and µ = λt. Then 2-HH-R

orthogonality implies 2-HH-B orthogonality and conversely.

Proof. Assume x ⊥2−HH−R y. Then for any µ ∈ R,

∫ 1

0

‖(1− t)x+ µy‖2 dt =

∫ 1

0

‖(1− t)x− µy‖2 dt

=

∫ 1

0

〈(1− t)x− µy, (1− t)x− µy〉dt

=

∫ 1

0

[‖(1− t)x‖2 − (1− t)〈x, y〉 − µ(1− t)〈y, x〉+ ‖µy‖2]dt

=

∫ 1

0

‖(1− t)x‖2 dt+

∫ 1

0

‖µy‖2 dt

≥
∫ 1

0

‖(1− t)x‖2 dt. (2.10)

Therefore x is 2-HH-B orthogonal to y. To prove the converse part, It is enough to show

that x ⊥2−HH−B y ⇒ 〈x, y〉 = 0⇒ x ⊥2−HH−R y.
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Let x ⊥2−HH−B y. Then for any λ ∈ K,

∫ 1

0

‖(1− t)x+ λty‖2dt ≥
∫ 1

0

‖(1− t)x‖2dt

⇒
∫ 1

0

‖(1− t)x‖2dt+ [λ〈y, x〉+ λ〈y, x〉]
∫ 1

0

t(1− t)dt

+ |λ|2‖y‖2
∫ 1

0

t2dt ≥
∫ 1

0

‖(1− t)x‖2dt

⇒ Re[λ〈y, x〉] + |λ|2‖y‖2 ≥ 0 (2.11)

Now, for λ = −〈x,y〉
2‖y‖2 , inequality (2.11) becomes −|〈y,x〉|

2

4‖y‖2 ≥ 0. Therefore, we have

〈x, y〉 = 0.

On the other hand it is easy to show that 〈x, y〉 = 0⇒ x ⊥2−HH−R y.

2.4 Isosceles orthogonality

Definition 10. [1] An element x of a normed linear space X is orthogonal to y ∈ X in the

sense of isosceles if and only if ‖x− y‖ = ‖x+ y‖.

For ordinary Euclidean space, the analogy of this definition is two vectors are perpen-

dicular if and only if their sum and difference can be sides of an isosceles triangle.

Properties of isosceles orthogonality:

(i) Isosceles orthogonality satisfy non-degeneracy, simplification and continuity;

(ii) Isosceles orthogonality is symmetric;

(iii) Isosceles orthogonality is unique if and only if the space is strictly convex;

(iv) If the isosceles orthogonality is homogeneous (additive)in X, then X is an inner-

product space.

Theorem 2.4.1. [1] Let (X, ‖.‖) be a normed space and x, y ∈ X . Then there exists a

number α such that

‖x+ (αx+ y)‖ = ‖x− (αx+ y)‖
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Theorem 2.4.2. [1] If isosceles orthogonality is homogeneous in a normed linear space

X, then X is an abstract Euclidean space.

Theorem 2.4.3. [1] If isosceles orthogonality is additive in a normed linear space X, then

X is an abstract Euclidean space.

Corollary 2.4.1. [1] The properties of homogeneity and additivity of isosceles orthogo-

nality are equivalent for a normed linear space X. If the isosceles orthogonality is homo-

geneous or additive, then for any element x and y there is a unique number α for which

x ⊥ αx+ y.

In the paper [32], Kapoor and Prasad discussed about the unique property of isosce-

les orthogonality and proved that the isosceles orthogonality is unique if and only if the

underlying space is strictly convex. The details of uniqueness property was discussed on

Alonso’s paper [16]. In 1994, Alonso mentioned in the paper [33] that the isosceles or-

thogonality is said to be unique in a normed linear space whose dimension is at least two

if for each two dimensional subspace X1, and x ∈ X1 \ {0}, and each number ξ > 0,

there exist a unique point (except for the sign) y ∈ ξSx1 such that x ⊥I y and it is said

to be λ−unique if for each point x 6= 0 and each point y, there exist a unique number λ

such that x ⊥I λx + y. Ji et al. elaborate the Alonso’s results on uniqueness of isosceles

orthogonality and proved some important relations related to isosceles orthogonality. The

most important concept they proved that, if the isosceles orthogonality is not λ−unique,

then it is not unique and if isosceles orthogonality is not unique, then it is not λ−unique.

Therefore, the uniqueness and λ−uniqueness if isosceles orthogonality is equivalent [34]

Definition 11. [34] A real finite dimensional normed linear space is called Minkowski

space.If the dimension of Minkowski space is two, then it is called a Minkowski plane.

plane.

Theorem 2.4.4. [34] Let X be Minkowski or normed plane. If there exists x1, y1, y2 such

that y1 6= y2, ‖y1‖ = ‖y2‖, x ⊥I y1 and x ⊥I y2, then the following relations hold:

‖x+ y1‖ = ‖x− y1‖ = ‖x+ y2‖ = ‖x− y2‖ = ‖y1‖ = ‖y2‖ (2.12)

[34] For any two distinct points x, y ∈ X , the line segment passes through x and y is

denoted by (x, y) and the segment between x and y by [x, y]. For any point x ∈ X \ {0},
the maximum of the length of non-trivial segment contained in the unit sphere SX and
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parallel to the line (−x, x) is denoted by Mx. i.e

Mx = sup

{
‖a− b‖ : [a, b] ⊆ Sx, a 6= b, and

a− b
‖a− b‖ =

x

‖x‖

}

If there is no non-trivial segment contained in SX and parallel to the line (−x, x), then

Mx = 0 [34].

Theorem 2.4.5. [34] Let X be a Minkowski (or normed plane) and x ∈ X satisfying

‖x‖ > 0. Then for each number s ∈ [0, 2‖x‖
Mx

] (s ∈ [0,+∞ when Mx = 0), then there

exist a unique point yısSx ( except for the sign) such that x ⊥i y.

Corollary 2.4.2. [34] Let X be a Minkowski (or normed) plane and x ∈ X satisfying

‖x‖ > 0. Then for each number 0 ≤ r ≤ ‖x‖, there exists a unique point y ∈ rSX (

except for the sign) such that x ⊥I y.

Corollary 2.4.3. [34] Let X be a strictly convex Minkowski( or normed) plane and x ∈ X
satisfying ‖x‖ > 0. Then for any r ∈ [0,+∞), there exists a unique point y ∈ rSX

(except for the sign) such that x ⊥I y.

Theorem 2.4.6. [34] Let (X, ‖.‖) be a normed linear space with dimX ≥ 2 and x, y ∈
X satisfying ‖x‖ > 0 and 0 ≤ ‖y‖ ≤ 2‖x‖

Mx(y)
(0 ≤ ‖y‖ < +∞ when Mx(y) = 0). Then

there exists a unique real number α such that x ⊥α x+ y.

Ji and Wu introduced a new geometry constant D(X) to give a quantitative character-

ization of the difference between Birkhoff-orthogonality and isosceles orthogonality [35].

They showed that 1 and 2(
√

2− 1) are the upper and lower bound for D(X), respectively,

and characterize the space of which D(X) attains the lower and upper bounds.

Theorem 2.4.7. [35] For any real normed linear space X with dim(X) ≥ 2, 2(
√

2−1) ≤
D(X) ≤ 1 and D(X) = 1 if and only if X is Euclidean.

Theorem 2.4.8. [35] For any real Banach Space X with dim(X) ≥ 2, there exists e1, e2 ∈
S(X) such that e1 ⊥I e2 and infλ∈R{‖e1 + e2‖} = 2(

√
2− 1) if and only if there exists a

two dimensional subspace X0 of X and x0 ∈ S(X0) such that x0 is the common end point

of two segments of which the length are not less than
√

2.

Theorem 2.4.9. [35] Let X be a symmetric Minkowski plane and {e1, e2} be a pair of

axis of X. Then

(i) e1 ⊥R e2,
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(ii) e1 ⊥I e2,

(iii) e1 and e2 is a pair of conjugate diameters of X,

(iv) X∗ is also symmetric Minkowski plane and {e∗1, e∗2} is a pair of axes of X∗, where

e∗1, e
∗
2 is the supporting functional of e1, e2 respectively.

Theorem 2.4.10. [35] Let X be a symmetric Minkowski plane, e1, e2 be a pair of axes of

X, then for all x, y ∈ S(X), x = αe1 + βe2, x ⊥I y if and only if y = ±(−βe1 + αe2).

In 2010, Dragomir and Kikianty came up with new generalization of isosceles orthog-

onality in terms of 2-HH norm. They gave the definition of orthogonality as follows:

Definition 12. [7] Let (X, ‖.‖) be normed space, and x, y ∈ X . Then x is said to be

isosceles orthogonal to y in terms of 2-HH norm if and only if

∫ 1

0

‖(1− t)x+ ty‖2dt =

∫ 1

0

‖(1− t)x− ty‖2dt.

This orthogonality is equivalent to the usual orthogonality, if the space is equipped

with an inner-product.

Theorem 2.4.11. [7] Let X be a normed space. Then the isosceles orthogonality via 2-HH

norm is existent.

Theorem 2.4.12. [7] Let X be a normed space. Then isosceles orthogonality is unique if

and only if X is strictly convex

Theorem 2.4.13. [7] Isosceles orthogonality via 2-HH norm is homogeneous in a normed

space X if and only if X is an inner product space.

Theorem 2.4.14. [36] LetX be a normed linear space with the norm induced by an inner-

product. Then, the isosceles orthogonality via 2−HH norm satisfies the non-degeneracy,

continuity and symmetry property.
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Proof. Non-degeneracy: If x ⊥2−HH−I y, then

∫ 1

0

‖(1− t)x+ tx‖2dt =

∫ 1

0

‖(1− t)x− tx‖2dt

⇒
∫ 1

0

‖x‖2dt =

∫ 1

0

‖x‖2(1− 2t)2dt

⇒ ‖x‖2 =
2

3
‖x‖2

⇒ 1

3
‖x‖2 = 0

⇒ x = 0. (2.13)

Continuity: Let xn → x, yn → y for all n, and xn ⊥2−HH−I yn. Then,

∫ 1

0

‖(1− t)xn + tyn‖2dt =

∫ 1

0

‖(1− t)xn − tyn‖2dt

⇒ lim
n→∞

∫ 1

0

‖(1− t)xn + tyn‖2dt = lim
n→∞

∫ 1

0

‖(1− t)xn − tyn‖2dt

⇒
∫ 1

0

‖(1− t)x+ ty‖2dt =

∫ 1

0

‖(1− t)x− ty‖2dt

⇒ x ⊥2−HH−I y. (2.14)

Symmetry: If x ⊥2−HH−I y, then

∫ 1

0

‖(1− t)x+ ty‖2dt =

∫ 1

0

‖(1− t)x− ty‖2dt

⇒ 1

3
(‖x‖2 + ‖y‖2) =

1

3
(‖x‖2 + ‖y‖2)

⇒ 1

3
(‖y‖2 + ‖x‖2) =

1

3
(‖y‖2 + ‖x‖2)

⇒
∫ 1

0

‖(1− t)y + tx‖2dt =

∫ 1

0

‖(1− t)y − tx‖2dt

⇒ y ⊥2−HH−I x. (2.15)

Kikianty and Dragomir (2010), proved that the homogeneity and additivity of the

Pythagorean orthogonality via 2−HH norm is equivalent; however, they also stated the

similar result about the isosceles orthogonality with respect to 2−HH norm, by omitting

the proof. In the following theorem, we give complete proof regarding the equivalency of
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homogeneity and additivity of the HH − I orthogonality.

Theorem 2.4.15. [36] Let x ⊥2−HH−I y. Then, the following are equivalent:

1. Isosceles orthogonality via 2−HH norm is homogeneous.

2. Isosceles orthogonality via 2−HH norm is additive.

Proof. (1)⇒ (2). Assume that the isosceles orthogonality via 2−HH norm is homoge-

neous. We shall show that it is additive. As 2−HH− I orthogonality is homegeneous in

a normed sapce X if and only if X is an inner product space, and therefore it is additive.

(2) ⇒ (1). Conversely assume that additive property holds and x ⊥2−HH−I y. Since,

2−HH−I orthogonality exists, for any x,−y there exists a β ∈ R : x ⊥2−HH−I βx−y,

and by additivity property, we conclude that x ⊥2−HH−I βx. Hence, β = 0 whenever

x 6= 0 and therefore x ⊥2−HH−I −y. Again by the symmetry and additivity property of

isosceles orthogonality via 2−HH norm, we may conclude that px ⊥2−HH−I qy for all

integers p and q. When p 6= 0,

∫ 1

0

‖(1− t)x+ t(
q

p
)y‖2dt =

1

3
(‖x‖2 +

q2

p2
‖y‖2)

=

∫ 1

0

‖(1− t)x− tq
p
y‖2dt. (2.16)

This shows that x ⊥2−HH−I ky for some k ∈ Q, and by using the continuity of norm,

x ⊥2−HH−I ky for any real k. Again 2 − HH − I orthogonality is symmetric, and

therefore we may conclude that it is homogeneous.

Definition 13. [14] Let H be a real or complex Hilbert space and T1, T2 ∈ B(H). Then

two operators T1 and T2 have disjoint support if and only if T1T ∗2 = T ∗2 T1 = 0.

Bottazi et al. studied the isosceles orthogonality of bounded (positive) linear operators

on Hilbert space with some of the related properties, including operators having disjoint

support. [14] Let T1 and T2 are norm attaining bounded linear operators in a Banach space

X . Then, T1 is said to be isosceles orthogonal to T2 if for every h ∈MT ,

‖(T1 − T2)(h)‖ = ‖(T1 + T2)(h)‖. (2.17)

Also, in the same paper, the Pythagorean orthogonal for operators was defined as follows:

T1 is said to be Pythagorean orthogonal to T2 if for every h ∈MT ,

‖(T1 − T2)(h)‖2 = ‖T1‖2 + ‖T2‖2or‖(T1 + T2)(h)‖2 = ‖T1‖2 + ‖T2‖2. (2.18)
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Theorem 2.4.16. [36] Let T1 and T2 be norm attaining bounded linear operators with

the disjoint support in a Hilbert space H. Then, T1 is isosceles orthogonal to T2 if and

only if T1 is Pythagorean orthogonal to T2.

Proof. Let T1, T2 ∈ B(H). Assume T1 is isosceles orthogonal to T2 and h ∈ MT . Using

the relation (2.21), we have

‖(T1 − T2)(h)‖2 = ‖(T1 + T2)(h)‖2

= ‖T1(h)‖2 + ‖T2(h)‖2 + 2Re〈T1T ∗2 h, h〉
= ‖T1(h)‖2 + ‖T2(h)‖2

= ‖T1‖2 + ‖T2‖2. (2.19)

This shows that T1 is Pythagorean orthogonal to T2. Conversely assume that, for any

h ∈MT ,

‖(T1 − T2)(h)‖2 = ‖T1(h)‖2 + ‖T2(h)|2

= ‖(T1 + T2)(h)‖2.

Therefore,

‖(T1 − T2)(h)‖ = ‖(T1 + T2)(h)‖.

That is,

‖T1 − T2‖ = ‖T1 + T2‖. (2.20)

Proposition 8. [36] Let T1 and T2 be bounded linear operators form a Banach space X

to Y. Then for any x ∈MT1+T2 ∩MT1−T2 , T1(x) ⊥I T2(x)⇒ T1 ⊥I T2.

Proof. Let x ∈MT1+T2 ∩MT1−T2 . Suppose T1(x) ⊥I T2(x). Then,

‖T1(x)− T2(x)‖ = ‖T1(x) + T2(x)‖
⇒ ‖(T1 − T2)x‖ = ‖(T1 + T2)x‖
⇒ ‖T1 − T2‖ = ‖T1 + T2‖

Proposition 9. [36] Let T1 and T2 be bounded linear operators form a Banach space X to
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Y and {xn} be a sequence in X such that lim
n→∞

xn = x. Then for any x ∈MT1+T2∩MT1−T2

T1(xn) ⊥I T2(xn)⇒ T1 ⊥I T2

Proof. Let x ∈MT1+T2 ∩MT1−T2 . Suppose T1(xn) ⊥I T2(xn). Then,

‖T1(xn)− T2(xn)‖ = ‖T1(xn) + T2(xn)‖
⇒ lim

n→∞
‖T1(x)− T2(xn)‖ = lim

n→∞
‖T1(xn) + T2(xn)‖

⇒ ‖T1(xn)− T2(x)‖ = ‖T1(x) + T2(x)‖
⇒ ‖T1 − T2‖ = ‖T1 + T2‖

2.5 Pythagorean Orthogonality

Definition 14. [1] Let (X, ‖.‖) be normed linear space and x, y ∈ X . An element x is

said to be orthogonal to y if and only if

‖x− y‖2 = ‖x‖2 + ‖y‖2.

In ordinary Euclidean space, this is analogous to the fact that two vectors are perpen-

dicular if and only if there is right triangle having two vectors as legs. James mentioned in

the paper [1] that, in case of normed linear space, Pythagorean and isosceles orthogonality

are not equivalent.

Properties of Pythagorean orthogonality [16]

(i) Pythagorean orthogonality is symmetric;

(ii) Pythagorean orthogonality is either homogeneous or additive if and only if the norm

is induced by an inner-product;

(iii) Pythagorean orthogonality is unique;

(iv) Pythagorean orthogonality is α−unique;
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(v) IfX = R2 with a regular octagon as unit sphere then the Pythagorean orthogonality

is S−unique, however it is not S− unique when S is an square.

Definition 15. [16] Let (X, ‖.‖) be a normed space and 0 6= x, y ∈ X . Then the

orthogonality is said to be left (right) unique if there exists only one α such that x ⊥
αx+ y(αx+ y ⊥ x).

In the case of Pythagorean orthogonality, James proved that the left and right uniqueness

are equivalent.

Theorem 2.5.1. [1] Let (X, ‖.‖) be a normed space and x, y ∈ X . Then there exists a

number α such that

‖x− (αx+ y)‖2 = ‖x‖2 + ‖αx+ y‖2.

Corollary 2.5.1. [1] Let (X, ‖.‖) be a normed space and x, y ∈ X . Then there exists a

number α such that

‖x+ (αx+ y)‖2 = ‖x‖2 + ‖αx+ y‖2.

Theorem 2.5.2. [1] If Pythagorean orthogonality is homogeneous in a normed linear

space X, then X is an abstract Euclidean space.

Theorem 2.5.3. [1] The property of homogeneity and additivity of Pythagorean orthog-

onality are equivalent for normed linear space.

Corollary 2.5.2. [1] If Pythagorean orthogonality is additive in a normed linear space

X, then X is an abstract Euclidean space.

Theorem 2.5.4. [1] Let (X, ‖.‖) be a normed linear space and x, y ∈ X . Then the

following are equivalent:

(i) X is an inner product space;

(ii) x is Pythagorean orthogonal to y implies x is isosceles orthogonal to y;

(iii) x is isosceles orthogonal to y implies x is Pythagorean orthogonal to y.

Theorem 2.5.5. [1] Let (X, ‖.‖) be a normed linear space and x, y ∈ X . Then the

following are equivalent:

(i) X is an inner product space;

(ii) x is Pythagorean orthogonal to y implies x is Birkhoff-James orthogonal to y;
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(iii) x is Birkhoff-james orthogonal to y implies x is Pythagorean orthogonal to y.

Dragomir and Kikianty introduced Pythagorean orthogonality in terms of 2 − HH

norm.

Definition 16. [7] Let (X, ‖.‖) be normed linear space. An element x ∈ X is said to be

Pythagorean orthogonal to y in terms of 2−HH norm if and only if

∫ 1

0

‖(1− t)x+ ty‖2dt =
1

3
(‖x‖2 + ‖y‖2).

This orthogonality is equivalent to usual orthogonality, when the space is equipped

with an inner-product.

Proposition 10. [7] Let (X, ‖.‖) be normed linear space and x, y ∈ X such that (1− t)x
is Pythagorean orthogonal to ty for almost every t ∈ [0, 1], then x ⊥HH−P y.

Proposition 11. [7] Let (X, ‖.‖) be a normed space. Then the Pythagorean orthogonality

via 2-HH norm is existent.

Theorem 2.5.6. [7] Pythagorean orthogonality via 2-HH norm is unique in any normed

space X.

Dragomir and Kikianty mentioned the following theorem in the paper [7] without

giving detailed proof. In this thesis we make an attempt to give the detailed proof.

Theorem 2.5.7. [36] Let X be a normed linear space with the norm induced by an

inner-product. Then, the Pythagorean orthogonality via 2−HH norm satisfies the non-

degeneracy, continuity and symmetry property.

Proof. Non-degeneracy: If x ⊥2−HH−p x, then

∫ 1

0

‖(1− t)x+ tx‖2dt =
1

3
(‖x‖2 + ‖x‖2)

⇒ ‖x‖2 =
2

3
‖x‖2

⇒ 1

3
‖x‖2 = 0

⇒ x = 0.
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Continuity: Let xn → x, yn → y and xn ⊥2−HH−p yn. Then,

∫ 1

0

‖(1− t)xn + tyn‖2dt =
1

3
(‖x‖2n + ‖yn‖2)

⇒ lim
n→∞

∫ 1

0

‖(1− t)xn + tyn‖2dt = lim
n→∞

1

3
(‖xn‖2 + ‖yn‖2)

⇒
∫ 1

0

‖(1− t)x+ ty‖2dt =
1

3
(‖x‖2 + ‖y‖2)

⇒ x ⊥2−HH−P y.

Symmetry: If x ⊥2−HH−P y, then

‖(x, y)‖2−HH =
1

3
(‖x‖2 + ‖y‖2)

=
1

3
(‖y‖2 + ‖x‖2)

=

∫ 1

0

‖(1− t)y + tx‖2dt

=‖(y, x)‖2−HH .

In the case of norm attaining bounded linear operators, when the norm is induced

by an inner-product, we introduce a relation between the isosceles and Pythagorean or-

thogonalities by stating that the operator T1 is isosceles orthogonal to T2 if and only if

T1 is Pythagorean orthogonal to T2. Furthermore, we prove an interesting relation that

the Pythagorean orthogonality implies the Birkhoff-James orthogonality, but the converse

may not be true. To disprove this statement, we take two dimensional matrix operators on

a Hilbert space whose norm is obtained by taking trace of the product of the adjoint of an

operator with the operator itself.

Bottazi et al. (2020), studied the isosceles orthogonality of bounded (positive) linear

operators on Hilbert space with some of the related properties, including operators having

disjoint support. Let T1 and T2 are norm attaining bounded linear operators in a Banach

space X . Then, T1 is said to be isosceles orthogonal to T2 if for every h ∈MT ,

‖(T1 − T2)(h)‖ = ‖(T1 + T2)(h)‖. (2.21)

Also, in the same paper, the Pythagorean orthogonal for operators was defined as follows:
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T1 is said to be Pythagorean orthogonal to T2 if for every h ∈MT ,

‖(T1 − T2)(h)‖2 = ‖T1‖2 + ‖T2‖2or‖(T1 + T2)(h)‖2 = ‖T1‖2 + ‖T2‖2. (2.22)

The following theorem gives the characterization of Birkhoff-James orthogonality for

operators.

Theorem 2.5.8. [36] Let T1 and T2 be norm attaining bounded linear operators in a

Hilbert space H . If T1 is Pythagorean orthogonal to T2, then T1 is Birkhoff-James or-

thogonal to T2, but the converse may not be true

Proof. Let T1, T2 ∈ B(H) such that T1 is Pythagorean orthogonal to T2. Then, by using

(2.22) with h ∈MT ,

‖(T1 + λT2)(h)‖2 = ‖T1(h)‖2 + ‖λT2(h)‖2

⇒ ‖(T1 + λT2)(h)‖2 ≥ ‖T1(h)‖2

⇒ ‖(T1 + λT2)(h)‖ ≥ ‖T1(h)‖2

⇒ ‖T1 + λT2‖ ≥ ‖T1‖. (2.23)

This shows that T1 is Birkhoff-James orthogonal to T2.

The following example shows that the converse of above theorem may not be true.

Example 2. Suppose that H is the two dimensional Hilbert space. Consider the Banach

space B(H). Let T1 =

(
4 0

0 3

)
, T2 =

(
1 0

0 1

)
∈ B(H) and λ ∈ [0, 1]. We know that

‖T‖2 = trace(T ∗T ). Then,

T1 + λT2 =

(
4 + λ 0

0 3 + λ

)
,

(T1 + λT2)
∗ =

(
4 + λ 0

0 3 + λ

)
,

(T1 + λT2)
∗(T1 + λT2) =

(
(4 + λ)2 0

0 (3 + λ)2

)
.

Thus,

trace[(T1 + λT2)
∗(T1 + λT2)] = (4 + λ)2 + (3 + λ)2. (2.24)
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Since, λ ∈ [0, 1],

min[trace((T1 + λT2)
∗(T1 + λT2))] ≥ 25

⇒ ‖T1 + λT2‖2 ≥ 25

⇒ ‖T1 + λT2‖ ≥ 5. (2.25)

Similarly we can find ‖T1‖ = 5. Therefore, we may conclude that T1 is Birkhoff-James

orthogonal to T2. On the other hand,

T1 + T2 =

(
5 0

0 4

)
and[(T1 + T2)

∗(T1 + T2)] =

(
25 0

0 16

)
.

It follows that ‖T1 + T2‖2 = 41. However, ‖T1|2 + ‖T2‖2 = 26. Therefore, T1 is not

Pythagorean orthogonal to T2.

2.6 Carlsson Orthogonality

S. O. Carlsson in 1962 introduced a generalized concept of orthogonality in normed space

with indicating that isosceles and Pythagorean orthogonality are special cases [4].

Definition 17. Let (X, ‖.‖) be a normed linear space and ak, bk, ck, k = 1, ......m, a fixed

collection of real numbers satisfying

m∑

k=1

akbkck = 1,
m∑

k=1

akb
2
k =

m∑

k=1

akc
2
k = 0.

An element x ∈ X is said to be orthogonal to y ∈ X if

m∑

k−1
ak‖bkx+ cky‖2 = 0

Theorem 2.6.1. [4] Let (X, ‖.‖) be a normed space and x, y ∈ X . Then there is a

number α such that x is Carlsson orthogonal to αx+ y.

Definition 18. [4] Orthogonality is said to have property (H) in normed linear space X if

x ⊥C y implies that

lim
n→+∞

1

n

m∑

k=1

ak‖nbkx+ cky‖2 = 0 ,where n is a positive integer
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Definition 19. [4] Let (X, ‖.‖) be a normed space. The norm on X is said to be Gateaux

differentiable if, for every pair of elements 0 6= x, y ∈ X , the limit

N(x, y) = lim
h→0

‖x+ hy‖ − ‖x‖
h

exists.

Theorem 2.6.2. [4] If the Carlsson orthogonality has property (H) in X, then the norm of

X is Gateaux differentiable and x ⊥C y holds if and only if N(x, y) = 0.

Definition 20. [4] Let (X, ‖.‖) be a normed space and x, y ∈ X . Then x is said to be

anti-orthogonal to y if y is orthogonal to x or if and only if

m∑

K=1

ak‖ckx+ bky‖2 = 0.

Carlsson proved that if orthogonality has property (H), then it is equivalent to normal-

ity and therefore homogeneous. In this regards, it is better to say that anti-orthogonality

has property (H). If the orthogonality is replaced by anti-orthogonality, then there is a

number α such that x ⊥ Cαx + y and the norm of X is Gateaux differentiable and

x ⊥C y fi and only if N(x, y) = 0.

Theorem 2.6.3. [4] If the Carlsson orthogonality has property (H), then it is symmetric

and equivalent to normality in X.

Corollary 2.6.1. [4] If dimX ≥ 2 and the Carlsson orthogonality is homogeneous or

additive in X, then X is Euclidean space.

Theorem 2.6.4. [4] If X is a normed linear space in which the Carlsson orthogonality

has property has property (H), then X is an Euclidean space.

Corollary 2.6.2. [4] If X is normed linear space in which the Carlsson orthogonality is

homogeneous or additive, then X is Euclidean space.

Theorem 2.6.5. Let ak 6= 0, bk, ck, k = 1, ......,m, be real numbers such that (bk, ck) and

(br, cr) are linearly independent for k 6= r. If (X, ‖.‖) be a normed linear space satisfying

the condition
m∑

k=1

ak‖bkx+ cky‖2 = 0 for all x, y ∈ X.

Then X is an Euclidean space.
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2.6.1 Carlsson Orthogonality in terms of p-HH norm

In 2010, E. Kikianty and S.S. Dragomir played a vital role to introduce p−HH norm on

the Cartesian square of normed spaces by generalizing the previous definition of Carls-

son orthogonality through the medium of 2 − HH norm, which also generalizes the

Pythagorean and isosceles orthogonality through te medium of 2−HH [37].

Definition 21. [37] Let (X, ‖.‖) be a normed linear space and ak, bk, ck, k = 1, 2, 3, ......, m, 
m ∈ N be real numbers. An element x ∈ X is said to be Carlsson orthogonal to y in terms of

2-HH norm if and only if

m∑

k=1

ak

∫ 1

0

‖(1− t)bkx+ tyck‖2dt = 0

with conditions
m∑

k=1

akb
2
k =

m∑

k=1

akc
2
k = 0 and

m∑

k=1

akbkck = 1

In any inner product space, the Carlsson orthogonality via 2-HH norm is equivalent to

the usual orthogonality.

Theorem 2.6.6. [37] Carlsson orthogonality in terms of 2−HH norm satisfies the non-

degeneracy, simplification and continuity.

Theorem 2.6.7. [37] Let (X, ‖.‖) be a normed space. Then the Carlsson orthogonality

via 2-HH norm is existent.

Theorem 2.6.8. [37] Let (X, ‖.‖) be a normed space in which the Carlsson orthogonality

in terms of 2-HH norm is homogeneous (or additive) to the left. Then X is an inner product

space.

Definition 22. [37] The Carlsson orthogonality in terms of 2-HH norm is said to have

property (H) in a normed space X, if x is Carlsson orthogonal to y implies that

lim
n→∞

1

n

∫ 1

0

m∑

k=1

ak‖nbk(1− t)x+ ckty‖2dt = 0

If the Carlsson orthogonality via 2-HH norm is homogeneous (or additive to the left)

in X, then it has property (H) and if X is an inner product space, then the Carlsson orthog-

onality in terms of 2-HH norm is homogeneous (or additive) and therefore it has (H).
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Lemma 2.6.1. [37] Let (X, ‖.‖) be a normed space where the Carlsson orthogonality in

terms of 2-HH norm has property (H). Suppose that for any x, y ∈ X , there exist α ∈ R
such the x ⊥HH−C αx+ y. Then

α =
−1

‖x‖ [
∑

bkck>0

akbkckN+(x, y) +
∑

bkck<0

akbkckN−(x, y)]

Corollary 2.6.3. [37] If the Carlsson orthogonality via 2-HH norm has property (H),

then the norm of X is Gateaux differentiable at x and x ⊥HH−C y holds if and only if

N(x, y) = 0.

Corollary 2.6.4. [37] If the Carlsson orthogonality via 2-HH norm has property (H),

then it is symmetric and equivalent to B-orthogonality.

Bottazzi et al. in the paper [14] discussed about Birkhoff-James, isosceles, and Robert

orthogonality in Banach spaces in terms of bounded linear operators. Motivated by the re-

sults of Bottazzi et al. (2020), we make an attempt to introduce the Carlsson orthogonality

for bounded linear operators in Banach Spaces. Furthermore, we verify some properties,

like non-degeneracy, continuity, and homogeneity property of an inner-product space in

the context of the Carlsson orthogonality in terms of bounded linear operators.

Definition 23. [36] Let T1 and T2 are bounded linear operators onX . Then, the operator

T1 is orthogonal to T2 in the sense of Carlsson (denoted by T1 ⊥OC T2) if for any h ∈MT ,

n∑

k=1

pk‖(qkT1 + rkT2)(h)‖2 = 0, (2.26)

satisfying the conditions

n∑

k=1

pkqkrk = 1,
n∑

k=1

pkq
2
k =

n∑

k=1

pkr
2
k = 0. (2.27)

Theorem 2.6.9. [36] Let T1 and T2 be norm attaining bounded linear operators on a

Banach space X . If T1 = T2 = T , then

n∑

k=1

pk‖(qkT1 + rkT2)(h)‖2 = 0⇔ T = 0.

Proof. Let T1, T2 ∈ B(X) and h ∈MT . Assume(2.26) under the condition (2.27). Since,
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T1 = T2 = T , we have

n∑

k=1

pk‖(qkT + rkT )(h)‖2 = 0

⇒
n∑

k=1

pk|qk + rk|2‖Th‖2 = 0

⇒ ‖Th‖2 = 0

⇒ ‖Th‖ = 0.

As h ∈MT , we can write ‖Th‖ = ‖T‖. Therefore, we may conclude that

‖T‖ = 0⇒ T = 0. (2.28)

The converse part is obvious.

Theorem 2.6.10. [36] Let {Un} and {Vn} be sequences of norm attaining bounded linear

operators on a Banach space X . Then,

Un ⊥OC Vn ⇒ U ⊥OC V.

Proof. In the case of linear operators, boundedness and continuity are equivalent. By the

continuity of the Un’s and Vn’s, we can write

lim
n→∞

Un(h) = U(h) and lim
n→∞

Vn(h) = V (h).

Since, Un is Carlsson orthogonal to Vn and h ∈MT , we have

n∑

k=1

pk‖(qkUn + rkVn)(h)‖2 = 0 (2.29)

under the condition (2.27). It follows that

lim
n→∞

n∑

k=1

pk‖(qkUn + rkVn)(h‖2 = 0

⇒
n∑

k=1

pk‖(qkU + rkV )(h)‖2 = 0.

⇒ U ⊥OC V.
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Therefore, the Carlsson orthogonality satisfies continuity property of an inner-product

space.

Bottazzi et al, (2020) defined the disjoint support as follows: Let H be a real or

complex Hilbert space and T1, T2 ∈ B(H). Then, two operators T1 and T2 have disjoint

support if and only if

T1T
∗
2 = T ∗2 T1 = 0. (2.30)

Theorem 2.6.11. [36] Let T1 and T2 be norm attaining bounded linear operators on a

Hilbert space H with disjoint support. Then, T1 ⊥OC T2 implies that T2 ⊥OC T1.

Proof. Let T1, T2 ∈ B(H) and h ∈ MT . Then, ‖(T1 + T2)(h)‖ = ‖T1 + T2‖. Since, T1
and T2 have disjoint support then, equation (2.30) holds. Suppose T1 ⊥OC T2. Then, for

h ∈MT , Equation (2.26) under Condition (2.27) can be written as

n∑

k=1

pk[〈qkT1h+ rkT2h, qkT1h+ rkT2h〉] = 0.

It follows that

n∑

k=1

ak[‖qkT1‖2 + ‖rkT2h‖2 + qkrk〈T1h, T2h〉+ qkrk〈T2h, T1h〉] = 0

⇒
n∑

k=1

pk[‖qkT1h‖2 + ‖rkT2h‖2 + 2qkrkRe 〈T ∗2 T1h, h〉] = 0

⇒
n∑

k=1

pk[‖qkT1h‖2 + ‖rkT2h‖2 = 0

⇒
n∑

k=1

pkq
2
k‖T1‖2 + akr

2
k‖T2‖2 = 0. (2.31)

Similarly, if T2 ⊥OC T1, then we have

n∑

k=1

pkq
2
k‖T2‖2 + pkr

2
k‖T1‖2 = 0. (2.32)

Replacing the role of constants in equations (2.31) and (2.32), we can conclude that T2 ⊥OC
T1.

Theorem 2.6.12. [36] Let T1 and T2 be bounded linear operators from a Banach space

X to Y. Then for any x ∈ MqkT1+rkT2 , if the images of T1 and T2 are orthogonal in the
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sense of Carlsson orthogonality in terms of bounded linear operator, then the operators

are also orthogonal.

Proof. Let x ∈MqkT1+rkT2 and T1(x) ⊥OC T2(x). Then

n∑

k=1

pk‖qkT1(x) + rkT2(x)‖2 = 0 (2.33)

satisfying the conditions

n∑

k=1

pkqkrk = 1,
n∑

k=1

pkq
2
k =

n∑

k=1

pkr
2
k = 0 (2.34)

Since x ∈ MqkT1+rkT2 , we must have ‖qkT1(x) + rkT2(x)‖ = ‖(qkT1 + rkT2)x‖ =

‖qkT1 + rkT2‖. Therefore from relation (2.33) and (2.34), we may conclude that

n∑

k=1

pk‖qkT1 + rkT2‖2 = 0

Which shows that T1 is Carlsson orthogonal to T2 in terms of operators.
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Chapter 3

ORTHOGONALITY IN TERMS OF
p-HH NORM

3.1 Some special cases of Carlsson’s orthogonality

Pythagorean and isosceles orthogonalities have been generalized by S.O. Carlsson in

1962. These orthogonalities are obtained by assigning particular values of constants in

a generalized Carlssons orthogonality. In this section we will show how isosceles and

Pyhagorean orthogonalities can be obtained from Carlsson orthogonality and introduce

two new orthogonality relations in relation to Carlsson’s orthogonality.

Theorem 3.1.1. [4] Pythagorean and isosceles orthogonalities are special cases of the

Carlsson orthogonality in normed linear space.

Proof. For Pythagorean orthogonality, We have

3∑

k=1

ak||bkx+ cky||2 = 0

⇒ a1 ‖b1x+ c1y‖2 + a2 ‖b2x+ c2y‖2 + a3 ‖b3x+ c3y‖2 = 0

Put a1 = −1, a2 = a3 = 1, b1 = b2 = 1, b3 = 0 and c1 = −1, c2 = 0, c3 = 1. Then

0 = a1 ‖b1x+ c1y‖2 + a2 ‖b2x+ c2y‖2 + a3 ‖b3x+ c3y‖2

= (−1) ‖x− y‖2 + ‖x‖2 + ‖y‖2

⇒ ‖x− y‖2 = ‖x‖2 + ‖y‖2 (3.1)
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Now,

3∑

k=1

akbkck = 1,
3∑

k=1

akb
2
k = 0,

3∑

k=1

akc
2
k = 0.

For isosceles orthogonality,

2∑

k=1

ak||bkx+ cky||2 = 0

⇒ a1 ‖b1x+ c1y‖2 + a2 ‖b2x+ c2y‖2 = 0

Put a1 =
1

2
, a2 =

−1

2
, b1 = b2 = 1, c1 = 1 and c2 = −1. Then

0 = a1 ‖b1x+ c1y‖2 + a2 ‖b2x+ c2y‖2

=
1

2
‖x+ y‖2 +

−1

2
‖x− y‖2

⇒ ‖x+ y‖2 = ‖x− y‖2

∴ ‖x+ y‖ = ‖x− y‖ (3.2)

Now,

2∑

k=1

akbkck = a1b1c1 + a2b2c2

=
1

2
× 1× 1 +

−1

2
× 1×−1

= 1

2∑

k=1

akb
2
k = a1b

2
1 + a2b

2
2

=
1

2
× 1 +

−1

2
× 1

= 0
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2∑

k=1

akC
2
k = a1C

2
1 + a2C

2
2

=
1

2
× 1 +

−1

2
× 1

= 0

Motivated by this theorem, we make an attempt define two new special cases of the

Carlsson orthogonality, which we have mentioned as follows:

Proposition 12. [6] let (X, ‖.‖) be a real normed space in which the norm is induced by

an inner product. Then x ∈ X is orthogonal to y ∈ X if and only if

2‖x+ y‖2 + i‖x+ iy‖2 = 2‖x− y‖2 + i‖x− iy‖2 (3.3)

Proof. Let x, y ∈ X . Assume x ⊥ y. Then

m∑

k=1

ak‖bkx+ ckx‖2 = 0

satisfying
m∑

k=1

akb
2
k =

m∑

k=1

akc
2
k = 0 and

m∑

k=1

akbkck = 1 (3.4)

In particular if n=4, we have

4∑

k=1

ak‖bkx+ ckx‖2 = 0

⇒a1‖b1x+ c1y‖2 + a2‖b2x+ c2y‖2 + a2‖b3x+ c3y‖2 = 0 (3.5)

Taking the values of constants in equation (3.5) as: a1 = b1 = c1 = b2 = b3 = 1, a2 =
i
2
, c3 = i, a3 = c3 = −1 satisfying condition (3.4) with n = 4 leads to the desired result.

The converse part is obvious.

Corollary 3.1.1. [6] The orthogonality relation (3.3) satisfies the non-degeneracy, sim-

plification and continuity.
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Proof. Non-degeneracy: If x ⊥ y, then

2‖x+ x‖2 + i‖x+ ix‖2 = 2‖x− x‖2 + i‖x− ix‖
⇒ 8‖x‖2 = 0

⇒ x = 0

Simplification: If x ⊥ y, then

2‖x+ y‖2 + i‖x+ iy‖2 = 2‖x− y‖2 + i‖x− iy‖2

⇒ 2‖λx+ λy‖2 + i‖λx+ iλy‖2 = 2‖λx− λy‖2 + i‖λx− iλy‖2

⇒λx ⊥ λy.

Let {xn} and {yn} be sequence in X such that xn → x and yn → y and xn ⊥ yn. Then

2‖xn + yn‖2 + i‖xn + iyn‖2 = 2‖xn − yn‖2 + i‖xn − iyn‖2

⇒ lim
n→∞

2‖xn + yn‖2 + i‖xn + iyn‖2 = lim
n→∞

2‖xn − yn‖2 + i‖xn − iyn‖2

⇒ 2‖x+ y‖2 + i‖x+ iy‖2 = 2‖x− y‖2 + i‖x− iy‖2

⇒ x ⊥y.

Proposition 13. [6] let (X, ‖.‖) be a real normed space in which the norm is induced by

an inner product. Then x ∈ X is orthogonal to y ∈ X if and only if

‖x+
y

2
‖2 + ‖x− y

2
‖2 =

1

2
‖
√

2x+ y‖2 + ‖x‖2 (3.6)

Proof. Let x, y ∈ X . Assume x ⊥ y. Then

m∑

k=1

ak‖bkx+ ckx‖2 = 0

satisfying
m∑

k=1

akb
2
k =

m∑

k=1

akc
2
k = 0 and

m∑

k=1

akbkck = 1 (3.7)
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In particular if n=4, we have

4∑

k=1

ak‖bkx+ ckx‖2 = 0

⇒a1‖b1x+ c1y‖2 + a2‖b2x+ c2y‖2 + a2‖b3x+ c3y‖2 = 0 (3.8)

Taking the values of constants in equation (3.8) as: a1 = a2 = b1 = b2 = c3 = 1, a3 =

a4 = c2 = −1
2
, c1 = 1

2
, b3 = b4 =

√
2, c4 = 0 satisfying condition (3.7) with n = 4 leads

to the desired result. Conversely assume (3.6) holds and it can be easily shown that x is

orthogonal to y.

Corollary 3.1.2. [6] Orthogonality relation (3.6) satisfy the non-degeneracy, simplifica-

tion and continuity.

Proof. Non-degeneracy: If x ⊥ x, then

‖x+
x

2
‖2 + ‖x− x

2
‖2 =

1

2
‖
√

2x+ x‖2 + ‖x‖2

⇒‖x‖ = 0

⇒x = 0

Simplication: If x ⊥ y, then

‖x+
y

2
‖2 + ‖x− y

2
‖2 =

1

2
‖
√

2x+ y‖2 + ‖x‖2

⇒‖λx+
λy

2
‖2 + ‖λx− λy

2
‖2 =

1

2
‖
√

2λx+ λy‖2 + ‖λx‖2

⇒λx ⊥ λy

Continuity: Let {xn} and {yn} be sequence in X such that xn → x and yn → y for all

n ∈ N and xn ⊥ yn, then

‖xn +
yn
2
‖2 + ‖xn −

yn
2
‖2 =

1

2
‖
√

2xn + yn‖2 + ‖xn‖2

⇒ lim
n→∞

‖xn +
yn
2
‖2 + ‖xn −

yn
2
‖2 = lim

n→∞
1

2
‖
√

2xn + yn‖2 + ‖xn‖2

⇒‖x+
y

2
‖2 + ‖x− y

2
‖2 =

1

2
‖
√

2x+ y‖2 + ‖x‖2

⇒x ⊥ y.
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Lemma 3.1.1. [6] Let X be a normed linear space, in which the norm on X is induced by

an inner product. Then the orthogonality relation (3.6) is homogeneous.

Proof. If x⊥y, then we have,

∥∥∥∥x+
1

2
y

∥∥∥∥
2

+

∥∥∥∥x−
1

2
y

∥∥∥∥
2

=
1

2

∥∥∥
√

2x+ y
∥∥∥
2

+ ‖x‖2

Now,

∥∥∥∥λx+
1

2
µy

∥∥∥∥
2

+

∥∥∥∥λx−
1

2
µy

∥∥∥∥
2

− 1

2

∥∥∥
√

2λx+ µy
∥∥∥
2

− ‖λx‖2 = 0

⇒ 〈λx+
1

2
µy, λx+

1

2
µy〉+ 〈λx− 1

2
µy, λx− 1

2
µy〉

− 1

2
〈
√

2λx+ µy,
√

2λx+ µy〉 − 〈λx, λx〉 = 0

⇒ −2
√

2λµ〈x, y〉 = 0

Therefore the given orthogonality is homogeneous if and only if the space is inner prod-

uct space.

Lemma 3.1.2. [8] Let (X, ‖.‖) be a real normed space in which the norm on X is induced

by an inner- product. Then orthogonality relation (3.6) implies Birkhoff orthogonality if

y = x
1−α , but the converse may not be true.

Proof. Suppose x⊥y. Then by definition,

∥∥∥∥x+
1

2
y

∥∥∥∥
2

+

∥∥∥∥x−
1

2
y

∥∥∥∥
2

=
1

2

∥∥∥
√

2x+ y
∥∥∥
2

+ ‖x‖2

⇒
∥∥∥∥x+

1

2
y

∥∥∥∥
2

+

∥∥∥∥x−
1

2
y

∥∥∥∥
2

≥ ‖x‖2

⇒
∥∥∥∥x+

1

2
y − x+

1

2
y

∥∥∥∥
2

≥ ‖x‖2

⇒ ‖y‖2 ≥ ‖x‖2 ....... (1)
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Since y = x
1−α so that y = x+ αy. Therefore form the relation (1)

‖x+ αy‖2 ≥ ‖x‖2

⇒ ‖x+ αy‖ ≥ ‖x‖
⇒ x⊥By.

To disprove the converse part, consider X = (R2, ‖.‖1), where ‖.‖1 =
∑2

k=1 |xk| for

some x = (x1, x2) ∈ X . Let x = (−2, 1), y = (2, 2). and α ∈ R we have

‖x+ αy‖1 = ‖(2, 1) + α(2, 2)‖1
= ‖−2 + 2α, 1 + 2α‖1
= | − 2 + 2α|+ |1 + 2α|
≥ 3

= ‖x‖1

But

∥∥∥∥x+
1

2
y

∥∥∥∥
2

+

∥∥∥∥x−
1

2
y

∥∥∥∥
2

=

∥∥∥∥(−2, 1) +
1

2
(2, 2)

∥∥∥∥
2

+

∥∥∥∥(−2, 1)− 1

2
(2, 2)

∥∥∥∥
2

= ‖(−2, 1) + (1, 1)‖2 + ‖(−2, 1)− (1, 1)‖2

= 18

1

2

∥∥∥
√

2x+ y
∥∥∥
2

+ ‖x‖2 =
1

2

∥∥∥
√

2(−2, 1) + (2, 2)
∥∥∥
2

+ ‖(−2, 1)‖2

=
1

2

∥∥∥(−2
√

2 + 2,
√

2 + 2)
∥∥∥
2

+ 9

=
1

2
(0.828 + 3.4142)2 + 9

= 17.99

which shows that x is not orthogonal to y in the sense of orthogonality relation (3.6).

If the underlying space X is a real inner product space and the relation (3.6) holds a.

e on [0, 1]. Then using the concept of 2-HH norm, can define orthogonality relation (3.6)
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in terms of 2-HH norm as follows:

Definition 24. Let (X.‖.‖) be a real normed space and x, y ∈ X . Then x is said to be

orthogonal to y in the sense of 2−HH norm if and only if

∫ 1

0

‖(1−t)x+
1

2
ty‖2dt+

∫ 1

0

‖(1−t)x−1

2
ty‖2dt =

1

2

∫ 1

0

‖
√

2(1−t)x+ty‖2dt+
∫ 1

0

‖(1−t)x‖2dt
(3.9)

To verify the this, we have the following relations:

∫ 1

0

‖(1− t)x+
1

2
ty‖2dt+

∫ 1

0

‖(1− t)x− 1

2
ty‖2dt =

1

3
‖x‖2 +

1

12
‖y‖2 +

1

3
‖x‖2 +

1

12
‖y‖2

=
2

3
‖x‖2 +

1

6
‖y‖2.

And

1

2

∫ 1

0

‖
√

2(1− t)x+ ty‖2dt+

∫ 1

0

‖(1− t)x‖2dt =
1

2
(
2

3
‖x‖2 +

1

3
‖y‖2) +

1

3
‖x‖2

=
2

3
‖x‖2 +

1

6
‖y‖2.

3.2 Results on new orthogonality

Definition 25. [15] Let (X.‖.‖) be a normed linear space. A vector x ∈ X is said to be

2-HH-N orthogonal to y ∈ X (denoted by x ⊥2−HH−N y) if and only if

∫ 1

0

‖(1− t)x+
1

2
ty‖2dt+

∫ 1

0

‖(1− t)x− 1

2
ty‖2dt =

2

3
‖x‖2 +

1

6
‖y‖2 (3.10)

E. Kikianty and S.S. Dragomir in [7] proved that “ the Pythagorean orthogonality

via 2-HH norm is unique in any normed space X”. To prove this, they use the following

Lemma by omitting the proof. We give a detailed proof of Lemma as they stated the paper

[7].

Lemma 3.2.1. [15] Let x, y ∈ X , where X is normed liner space. Let h be a function on

R defined by

h(µ) :=

∫ 1

0

‖(1− t)y + µ(tx)‖2dt.
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Then h is a convex function on R, and for any r ∈ (0, 1) and µ1, µ2 ∈ R where h(µ1) 6=
h(µ2), we have

h[rµ1 + (1− r)µ2] < rh(µ1) + (1− r)h(µ2).

Proof. Let r ∈ (0, 1) and µ1, µ2 ∈ R such that h(µ1) 6= h(µ2). Then

h[rµ1 + (1− r)µ2]

=

∫ 1

0

‖(1− t)y + [rµ1 + (1− r)µ2](tx)‖2dt

=

∫ 1

0

‖(1− t)y + rµ1(tx) + µ2(tx)− rµ2(tx)‖2dt

=

∫ 1

0

‖(1− t)y + rµ1(tx) + µ2(tx)− rµ2(tx)− r(1− t)y + r(1− t)y‖2dt

=

∫ 1

0

‖r[(1− t)y + µ1(tx)] + (1− r)[(1− t)y + µ2(tx)]‖2dt

≤
∫ 1

0

r2‖(1− t)y + µ1(tx)‖2dt+ (1− r)2
∫ 1

0

‖(1− t)y + µ2(tx)‖2dt

+ 2r(1− r)
∫ 1

0

‖(1− t)y + µ1(tx)‖ ‖(1− t)y + µ2(tx)‖dt

=

∫ 1

0

r‖(1− t)y + µ1(tx)‖2dt+ (1− r)
∫ 1

0

‖(1− t)y + µ2(tx)‖2dt

+ (r2 − r)
∫ 1

0

[‖(1− t)y + µ1(tx)‖2 + ‖(1− t)y + µ2(tx)‖2

− 2‖(1− t)y + µ1(tx)‖ ‖(1− t)y + µ2(tx)‖]dt

= rh(µ1) + (1− r)h(µ2)− r(1− r)
∫ 1

0

[‖(1− t)y + µ1(tx)‖ − ‖(1− t)y + µ2(tx)‖]2dt

≤ rh(µ1) + (1− r)h(µ2)

Which shows that h is a convex function. Since h(µ1) 6= h(µ2), then the inequality will

be strict and therefore

h[rµ1 + (1− r)µ2] < rh(µ1) + (1− r)h(µ2).

As a similar concept of Lemma 3.2.1, we also prove the following Lemma which is

useful to prove the uniqueness property of new orthogonality via 2-HH norm.
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Lemma 3.2.2. [15] Let (X.‖.‖) be a normed space and x, y ∈ X . Let h be a function

defined on R by

h(µ) :=

∫ 1

0

‖(1− t)y +
µ

2
(tx)‖2dt+

∫ 1

0

‖(1− t)y − µ

2
(tx)‖2dt

Then h is a convex function on R and for any r ∈ (0, 1), and µ1, µ2 ∈ R where h(µ1) 6=
h(µ2), we have

h[rµ1 + (1− r)µ2] < rh(µ1) + (1− r)h(µ2).

Proof. Suppose h(µ)=f(µ)+g(µ), where

f(µ) =

∫ 1

0

‖(1− t)y +
µ

2
(tx)‖2dt and

g(µ) =

∫ 1

0

‖(1− t)y − µ

2
(tx)‖2dt

First we show that f(k) is a convex function. Let r ∈ (0, 1) and µ1, µ2 ∈ R such that
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h(µ1) 6= h(µ2).

f [rµ1 + (1− r)µ2]

=

∫ 1

0

‖(1− t)y +
1

2
[[rµ1 + (1− r)µ2](tx)‖2dt

=

∫ 1

0

‖(1− t)y +
1

2
rµ1(tx) +

1

2
µ2(tx)− 1

2
rµ2(tx)‖2dt

=

∫ 1

0

‖(1− t)y +
rµ1

2
(tx) +

µ2

2
(tx)− rµ2

2
(tx) + r(1− t)y − r(1− t)y‖2dt

=

∫ 1

0

‖r[(1− t)y +
µ1

2
(tx)] + (1− r)[(1− t)y +

µ2

2
(tx)]‖2dt

≤ r2
∫ 1

0

‖(1− t)y +
µ1

2
(tx)‖2dt+ (1− r)2

∫ 1

0

‖(1− t)y +
µ2

2
(tx)‖2dt

+ 2r(1− r)
∫ 1

0

‖(1− t)y +
µ1

2
(tx)‖ ‖(1− t)y +

µ2

2
(tx)‖dt

= r

∫ 1

0

‖(1− t)y +
µ1

2
(tx)‖2dt+ (1− r)

∫ 1

0

‖(1− t)y +
µ2

2
(tx)‖2dt

+ r2
∫ 1

0

‖(1− t)y +
µ1

2
(tx)‖2dt+ (1− r)2

∫ 1

0

‖(1− t)y +
µ2

2
(tx)‖2dt

− r
∫ 1

0

‖(1− t)y +
µ1

2
(tx)‖2dt− (1− r)

∫ 1

0

‖(1− t)y +
µ2

2
(tx)‖2dt

+ 2r(1− r)
∫ 1

0

‖(1− t)y +
µ1

2
(tx)‖ ‖(1− t)y +

µ2

2
(tx)‖dt

= rf(µ1) + (1− r)f(µ2) + (r2 − r)
∫ 1

0

[‖(1− t)y +
µ1

2
(tx)‖ − ‖(1− t)y +

µ1

2
(tx)‖]2dt

= rf(µ1) + (1− r)f(µ2)− (r − r2)
∫ 1

0

[‖(1− t)y +
µ1

2
(tx)‖ − ‖(1− t)y +

µ1

2
(tx)‖]2dt

≤ rf(µ1) + (1− r)f(µ2)

Which shows that f is a convex function. Similarly, for the function

g(µ) =

∫ 1

0

‖(1− t)t− µ

2
(tx)‖2dt,

we can show that

g[rµ1 + (1− r)µ2] ≤ rg(µ1) + (1− r)g(µ2)

and we conclude that g is also a convex function. Also, we know that the sum of two

convex functions is also convex. Then h(µ) = f(µ) + g(µ) is convex. Since h(µ1) 6=
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h(µ2), then the inequality will be strict and therefore

h[rµ1 + (1− r)µ2] < rh(µ1) + (1− r)h(µ2)

Theorem 3.2.1. [15] 2-HH-N orthogonality is unique in any normed space X.

Proof. The proof has a similar idea to that of Kapoor and Prasad [ pp. 406] and Kikianty

and Dragomir [pp. 41]. Suppose 2-HH-N orthogonality is not unique. Then we must have

elements x 6= 0 and y ∈ X , and a λ > 0 such that x ⊥2−HH−N y and x ⊥2−HH−N λx+y.

Define a convex function

h(µ) =

∫ 1

0

‖(1− t)y +
µ

2
(tx)‖2dt+

∫ 1

0

‖(1− t)y − µ

2
(tx)‖2dt.

Now,

h(1) =

∫ 1

0

‖(1− t)y +
1

2
(tx)‖2dt+

∫ 1

0

‖(1− t)y − 1

2
(tx)‖2dt

=
2

3
‖y‖2 +

1

6
‖x‖2

= h(0) +
1

6
‖x‖2 (3.11)

Setting β = 2(1−t)λ
t

and note that

h(β) =

∫ 1

0

‖(1− t)y +
1

2
.
2(1− t)λ

t
(tx)‖2dt+

∫ 1

0

‖(1− t)y − 1

2
.
2(1− t)λ

t
(tx)‖2d

=

∫ 1

0

‖(1− t)y + (1− t)λx‖2dt+

∫ 1

0

‖(1− t)y − (1− t)λx‖2dt

=

∫ 1

0

‖(1− t)(y + λx)‖2dt+

∫ 1

0

‖(1− t)(y − λx)‖2dt

=
‖y + λx‖2

3
+
‖y − λx‖2

3
(3.12)

and,

h(β + 1) =

∫ 1

0

‖(1− t)(y + λx) +
tx

2
‖2dt+

∫ 1

0

‖(1− t)(y − λx)− tx

2
‖2dt

=
‖y + λx‖2

3
+
‖y − λx‖2

3
+
‖x‖2

6

= h(β) +
‖x‖2

6
(3.13)
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Now, suppose that 0 < β < 1 and note that h(1) 6= h(0) (since x 6= 0), Lemma 3.2.2

gives

h(β) < βh(1) + (1− β)h(0) (3.14)

Also h(β + 1) 6= h(β) (since x 6= 0) and with the help of Lemma 3.2.2

h(1) < βh(β) + (1− β)h(β + 1)

= βh(β) + (1− β)[h(β) +
‖x‖2

6
]

= βh(β) + (1− β)[h(β) + h(1)− h(0)]

⇒ h(β) > βh(1) + (1− β)h(0),

which contradicts (3.14). Now consider the case β > 1, we have

h(1) ≤ β − 1

β
h(0) +

1

β
h(β)

= h(0) +
1

β
[h(β)− h(0)]

⇒ h(1)− h(0) ≤ 1

β
[h(β)− h(0)]

⇒ ‖x‖
2

6
≤ 1

β
[h(β)− h(0)]

Since x 6= 0, then, h(β) 6= h(0), and using the Lemma 3.2.2, we have

h(1) <
β − 1

β
h(0) +

1

β
h(β) (3.15)

Also h(1) 6= h(β + 1) and Lemma 3.2.2 gives us

h(β) <
1

β
h(1) +

β − 1

β
h(β + 1)

=
1

β
h(1) +

β − 1

β
[h(β) + h(1)− h(0)]

⇒ h(1) >
1

β
h(β) +

β − 1

β
h(0),

which contradicts the relation (3.15). For the case β = 1, we have

h(2) = h(1) +
‖x‖2

6

= h(0) +
‖x‖2

3
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This shows that h(2) 6= h(0) (since x 6= 0). Then we have

h(1) <
1

2
h(0) +

1

2
h(2)

=
1

2
[h(0) + h(0) +

‖x‖2
3

]

⇒ h(1) < h(0) +
‖x‖2

6
,

which contradicts (3.11). Thus in all cases we get a contradiction. Hence 2-HH-N orthog-

onality is unique in any normed space.

Definition 26. Let T1 and T2 be norm attaining bounded linear operators in a Banach

space X . An operator T1 ∈ B(X) is said to be orthogonal to T2 ∈ B(X) if and only if

for any h ∈MT ,

‖(T1 +
1

2
T2)(h)‖2 + ‖(T1 −

1

2
T2)(h)‖2 =

1

2
‖(
√

2T1 + T2)(h)‖2 + ‖T1(h)‖2. (3.16)

Theorem 3.2.2. Let T1 and T2 be bounded linear operators in a real Hilbert space H .

Then, orthogonality relation (3.16) implies the Birkhoff-James orthogonality, but the con-

verse may not be true.

Proof. Let T1, T2 ∈ B(H) and h ∈ MT . Assume that T1 is orthogonal to T2. Then, we

have

‖(T1 +
1

2
T2)(h)‖2 + ‖(T1 −

1

2
T2)(h)‖2 =

1

2
‖(
√

2T1 + T2)(h)‖2 + ‖T1(h)‖2

⇒ ‖T2(h)‖2 ≥ ‖T1(h)‖2.

Setting T2 = T1
1−α , so that T2 = T1 + αT2 and we get

‖(T1 + αT2)(h)‖2 ≥ ‖T1(h)‖2.

This implies that

‖(T1 + αT2)(h)‖ ≥ ‖T1(h). (3.17)

Hence, T1 is Birkhoff-James orthogonal to T2. To disprove the above statement, we

can take operators T1, T2 ∈ B(H) as described in the example of (Theorem. 2.5.8),
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showing that T1 is Birkhoff-James orthogonal to T2. On the other hand,

‖(T1 +
1

2
T2)‖2 + ‖(T1 −

1

2
T2)‖2 = 51. (3.18)

However,
1

2
‖(
√

2T1 + T2)‖2 + ‖T 2
1 ‖ = 27 + 7

√
2, (3.19)

showing that T1 is not orthogonal to T2.

Theorem 3.2.3. Let T1, T2 ∈ B(X). Then for any x ∈ MT1+T2 ∩MT1−T2 and T1(x) +

T2(x) ⊥B T2(x) and T1(x)− T2(x) ⊥B T2(x) implies T1 ⊥I T2.

Proof. Since T1(x)+T2(x) ⊥B T2(x), then we have ‖T1(x)+T2(x)‖ ≤ ‖T1(x)+T2(x)+

λT2(x)‖ for all λ ∈ K. Taking β = 1 + λ, we have

‖T1(x) + T2(x)‖ ≤ ‖T1(x) + T2(x) + (β − 1)T2(x)‖
= ‖T1(x) + T2(x) + βT2(x)− T2(x)‖
= ‖T1(x) + βT2(x)‖

⇒ ‖(T1 + T2)x‖ ≤ ‖(T1 + βT2)x‖

In particular for β = −1, we have ‖(T1 + T2)x‖ ≤ ‖(T1 − T2)x‖. Since x ∈ MT1+T2 ∩
MT1(x)+T2(x), then we must have ‖(T1+T2)‖ ≤ ‖(T1−T2)‖. Similarly if T1(x)−T2(x) ⊥B
T2(x), we obtain ‖T1 − T2‖ ≤ ‖T1 + T2‖ and therefore by combining these inequalities

we get the desired result.

Corollary 3.2.1. Let T1, T2 ∈ B(X) and assume that T1 +T2 ⊥B T2 and T1−T2 ⊥B T2.

Then T1 ⊥I T2.

Proof. Since T1 + T2 ⊥B T2, then we have ‖T1 + T2‖ ≤ ‖T1 + T2 + λT2‖ for all λ ∈ K.

Taking β = 1 + λ, we have

‖T1 + T2‖ ≤ ‖T1 + T2 + (β − 1)T2‖
= ‖T1 + T2 + βT2 − T2‖
= ‖T1 + βT2‖

In particular for β = −1, we have ‖T1 + T2‖ ≤ ‖T1 − T2‖. Similarly if T1 − T2 ⊥B T2,

we obtain ‖T1 − T2‖ ≤ ‖T1 + T2‖ and therefore by combining these inequalities we get

the desired result.
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Proposition 14. Let T be a bounded linear operator from a normed linear space X to Y

and {xn} , {yn} be sequence in X and x ∈ MT such that xn → x, yn → y, Txn → Tx,.

Then for any y ∈ X and ε ∈ [0, 1), Txn ⊥εB Tyn ⇒ x ⊥εB y.

Proof. Let x ∈MT and ε ∈ [0, 1). Since Txn ⊥εB Tyn, then we have for any λ ∈ K,

(1− ε)‖Txn‖ ≤ ‖Txn + λTyn‖
⇒ (1− ε)‖Txn‖ ≤ ‖T‖‖xn + λyn‖

⇒ (1− ε) lim
n→∞

‖Txn‖ ≤ ‖T‖ lim
n→∞

‖xn + λyn‖

⇒ (1− ε)‖Tx‖ ≤ ‖T‖‖x+ λy‖ (3.20)

Since x ∈ MT , then we must have ‖Tx‖ = ‖T‖‖x‖, and therefore the inequality (3.20)

can be written as (1− ε)‖T‖‖x‖ ≤ ‖T‖‖x+ λy‖. Hence ‖(1− ε)‖x‖ ≤ ‖x+ λy‖ is the

desired result.
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Chapter 4

BEST APPROXIMATION IN
NORMED LINEAR SPACES

4.1 Introduction

In the case of normed linear space, the concept of best approximation was developed by

M. Nicolescu in 1938 [38] and the more detail were discussed in the paper by M. K. Krein

[39]. Within the framework of normed linear spaces the problem of best approximation

amounts to the problem of minimizing a distance, hence it is geometrized, and thus in its

study one can use arguments based on geometric intuition [38].

Definition 27 ( [40], [41]). Let G be a subset of a normed linear space X. A point g0 ∈ G
is said to be best approximation for f ∈ X , if and only if for all g ∈ G,

‖f − g0‖ ≤ ‖f − g‖

and is said to be best co-approximation

‖g0 − g‖ ≤ ‖f − g‖

The set of all best approximation of f ∈ X in G is denoted by PG(f) and best co-

approximation by RG(f). For a subspace G of X, Mazaheri and Modarres in the paper
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[42] define Ĝ and G̃ as follows:

Ĝ = P−1G (0) = {f ∈ X : ‖f‖ = d(f,G)} = {f ∈ X : x ⊥ G} and

G̃ = R−1G (0) = {f ∈ X : ‖g‖ ≤ ‖f − g‖ ∀g ∈ G} = {f ∈ X : G ⊥ f}

Lemma 4.1.1 ([42],[43]). Let G be a linear subspace of normed space X. Then

(i) G is Chebychev subspace if and only if X = G⊕ Ĝ,

(ii) G is proximal subspace if and only if X = G+ Ĝ.

Lemma 4.1.2 ([42],[43]). Let G be a linear subspace of a normed space X and x ∈ X\G.

Then for any element g0 ∈ G, the following statements are equivalent:

(i) g0 ∈ RG(x),

(ii) For each g ∈ G there exist a functional f g ∈ X∗ such that ‖f g‖ = 1, f g(x) =

f g(g0) and f g(g) = ‖g‖.

Lemma 4.1.3 ([42], [44]). Let X be a real Banach space and G be proximinal subset of

X. Suppose PG : X → G is the best approximation operator on G. Then for all x ∈ X
and g ∈ G, the following inequality holds:

‖z − g‖ ≤ ‖x− g‖z ∈ PG(x) (4.1)

If the inequality (4.1) is true, then PG(x) ⊆ RG(x) for every x ∈ X .

Proposition 15. [42] Let X be a Banach space and G be linear subspace of X. Then G̃ is

a linear closed subspace of X.

Theorem 4.1.1. [42] Let X be a smooth Banach space and G be a co-proximinal subspace

of X, then G̃ is a proximinal subspace of X.

Theorem 4.1.2. [42] Let X be a smooth Banach space and G be a co-Chebychev subspace

of X, then G̃ is a Chebychev subspace of X.

Definition 28. [40] Let G be a subset of a normed linear space X and ε > 0, then a point

g0 ∈ G is said to be ε−best approximation for f ∈ X if

‖f − g0‖ ≤ ‖f − g‖+ ε ( for all g ∈ G)
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and g0 ∈ G is said to be ε−co-approximation for f ∈ X if

‖g0 − g‖ ≤ ‖f − g‖+ ε ( for all g ∈ G) (4.2)

The set of all ε−approximation of f in G is denoted by PG(f, ε) and the set of all

ε−co-approximation of f in G is denoted by RG(f, ε).

Definition 29. [40] Let (X, ‖.‖) be a normed space, f, g ∈ X and ε > 0. Then f is said

to be ε−orthogonal to g if and only if

‖f‖ ≤ ‖f + αg‖+ ε for all scalar α with | α |≤ 1.

If G1 and G2 are subsets of X, then G1 ⊥ε G2 if and only if g1 ⊥ε g2 for all g1 ∈ G and

g2 ∈ G.

Theorem 4.1.3. [40] Let G be a subspace of a normed space X and ε > 0. Then for all

f ∈ X ,

g0 ∈ PG(f, ε)⇔ f − g0 ⊥ε G
g0 ∈ RG(f, ε)⇔ G ⊥ε f − g0

Lemma 4.1.4. [40] Let G be a subspace of a normed space X, then

(i) If ε > 0, f, g ∈ X and f ⊥ε g, then f ⊥δ g for all δ ≥ ε.

(ii) If f, g ∈ X and f ⊥ g, then f ⊥ε g for all ε > 0.

(iii) If f ∈ X and ε > 0, then 0 ⊥ε f and f ⊥ε 0.

(iv) If f ⊥ε g and | β |< 1, then βf ⊥ε βg.

(v) If f ∈ X, ε > 0 and δ ≥ ε, then

g0 ∈ PG(f, ε)⇒ g0 ∈ PG(f, δ)

g0 ∈ RG(f, ε)⇒ g0 ∈ RG(f, δ).

Mazaheri and Zadeh proved in the paper [45] that the isometric operators on normed

linear space preserves all approximation property. They proved that every linear operator

preserving approximation is an isometry multiplied by a constant.
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Definition 30. [45] Let(X, ‖.‖) and (Y, ‖.‖) be two normed linear spaces. A mapping

T : X → Y is called preserving approximation if and only if for all subspace G of X and

all x ∈ X ,

T (PG(x)) = PT (G)(T (x)) (4.3)

Similarly T is called preserving co-approximation if and only if for app subspace G of X

and all x ∈ X ,

T (RG(x)) = RT (G)(T (x)) (4.4)

Lemma 4.1.5. [45] Let T : X → X is an isometry operator, where X be a normed linear

space, then for all subspace G of X and x ∈ X ,

T (PG(x)) = PT (G)(T (x)) and

T (RG(x)) = RT (G)(T (x))

Corollary 4.1.1. [45] Let (X, ‖.‖) be a normed space. Every isometry operator T : X →
X is preserving approximation (resp. Co-approximation).

Theorem 4.1.4. [45] Suppose T : X → Y be a linear map from a normed space X into

Y preserving approximation (resp. Co-approximation).

(i) Suppose G is a subspace of X, then G is proximinal (resp. co-proximinal)of X if and

only if T (G) is proximinal (resp. co-proximinal).

(ii) Suppose G is a subspace of X, then G is Chebyshev (resp. co-Chevyshev)of X if and

only if T (G) is Chebyshev (resp. co-Chevyshev).

(iii) If T is linear, then for all x, y ∈ X , x ⊥ y ⇒ T (x) ⊥ T (y).

(iv) For all subset G of X, T (Ĝ) = T̂ (G), (res. T (G̃) = T̃ (G)).

(v) Suppose G is a subspace of X, then G is orthogonality complement in X if and only

if T (G) is orthogonality complement in Y.

(vi) Suppose G is a subspace of X, if T is a continuous and onto preserve approximation

map, then G is quasi Chebyshev if and only if T (G) is quasi Chebyshev.

Definition 31. [45] Let (X, ‖.‖) and (Y, ‖.‖) be a normed linear spaces and ε > 0. A

mapping T : X → Y is called ε−preserving approximation if and only if for all subspaces

G of X and all x ∈ X ,

T (PG,ε(x)) = PT (G),ε(T (x)). (4.5)

64



where PG,ε(x) = {g0 ∈ G : ‖x− g0‖ ≤ ‖x− g‖ for all g ∈ G}
Theorem 4.1.5. [45] Let T : X → X be preserving approximation, where X is a normed

space, then T = kU such that k ∈ R and U is an isometry.

Lemma 4.1.6. [45] Let X be a normed linear space and ε > 0. Then every isometry

operator T : X → X is ε−preserving approximation.

Theorem 4.1.6. [45] Suppose (X, ‖.‖) and (Y, ‖.‖) be two normed linear spaces, ε > 0

and T : X → Y is onto preserving ε−approximation.

(i) If T is linear, then

∀x, y ∈ X, x ⊥ε y ⇒ T (x) ⊥ε T (y)

(ii) For a subspace G of X, T (Ĝε) = T̂ (G)ε.

4.2 Some results on best approximation

Theorem 4.2.1. Let (X, ‖.‖) be a normed linear space and if ∀f ∈ X∃g0 ∈ G : f−g0 ⊥P
G, then g0 ∈ PG(f).

Proof. Let f ∈ X and g ∈ G and f − g0 is Pythagorean orthogonal to g. Then

‖f − g0 − g‖2 = ‖f − g0‖2 + ‖g‖2

⇒‖f − g0‖2 ≤ ‖f − g0 − g‖2

⇒‖f − g0‖ ≤ ‖f − g0 − g‖

Setting g + g0 = h, we get

‖f − g0‖ ≤ ‖f − h‖ ⇒ g0 ∈ PG(f).

Theorem 4.2.2. Let (X, ‖.‖) be a normed linear space and T : X → X is an isometry

operator. Then T (g0) ∈ T (PG(x)) if and only if T (x)− T (g0) ⊥B T (G).

Proof. The proof has a similar idea to that of Mazaheri and Zadeh [45]. Assume T (g0) ∈
T (PG(x)) and T (g1) ∈ T (G). Then

‖T (x)− T (g0)‖ ≤ ‖T (x)− T (g1)‖
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Put T (g1) = T (g0)− αT (g) for any fixed T (g) ∈ T (G) and α ∈ R. Then we have,

‖T (x)− T (g0)‖ ≤ ‖T (x)− (T (g0)− αT (g))‖
= ‖(T (x)− T (g0) + αT (g))‖

This shows that T (x)− T (g0) is Birkhoff orthogonal to T (G).

Conversely assume T (x)− T (g0) ⊥B T (G). Then for all α ∈ R and T (g0) ∈ T (G), we

have

‖t(x)− T (g0)| ≤ ‖T (x)− T (g0) + αT (g1)‖ (4.6)

Let T (g) ∈ T (G) be arbitrary and fixed and taking T (g1) = T (g0)− T (g) and α = 1 in

the inequality (4.6), we get

‖T (x)− T (g0)‖ ≤ ‖T (x)− T (g)‖
⇒ T (g0) ∈ T (PG(x))

Theorem 4.2.3. Let (X, ‖.‖) be a normed linear space and T : X → X is an isometry

operator. Then T (g0) ∈ T (PG(x, ε)) if and only if T (x)− T (g0) ⊥εB T (G).

Proof. The proof has a similar idea to that of Mazaheri and Zadeh [45]. Assume T (g0) ∈
T (PG(x, ε)) and T (g1) ∈ T (G). Then

‖T (x)− T (g0)‖ ≤ ‖T (x)− T (g1)‖+ ε

Put T (g1) = T (g0)− αT (g) for any fixed T (g) ∈ T (G) and | α |≤ 1. Then we have,

‖T (x)− T (g0)‖ ≤ ‖T (x)− (T (g0)− αT (g))‖+ ε

= ‖(T (x)− T (g0) + αT (g))‖+ ε

This shows that T (x)− T (g0) is approximate Birkhoff orthogonal to T (G).
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Conversely assume T (x) − T (g0) ⊥εB T (G). Then for all α with | α |≤ 1 and T (g0) ∈
T (G), we have

‖t(x)− T (g0)| ≤ ‖T (x)− T (g0) + αT (g1)‖+ ε (4.7)

Let T (g) ∈ T (G) be arbitrary and fixed and taking T (g1) = T (g0)− T (g) and α = 1 in

the inequality (4.7), we get

‖T (x)− T (g0)‖ ≤ ‖T (x)− T (g)‖+ ε

⇒ T (g0) ∈ T (PG(x, ε))

Recall that

RG(x) = {g∈G : ‖g0 − g‖ ≤ ‖x− g‖ for all g ∈ G} and

RG(x, ε) = {g∈G : ‖g0 − g‖ ≤ ‖x− g‖+ ε for all g ∈ G}

are the set of all co-approximation and ε−co-approximation of x in G. If T : X → X

is an isometry operator, then for all subspace G of X and all x ∈ X , we have ‖T (x)‖ =

‖x‖. Keeping this in mind and using the similar concepts of (Theorem 4.2.2 and Theo-

rem4.2.3), we prove the following lemma.

Lemma 4.2.1. Let (X, ‖.‖) be a normed linear space and T : X → X is an isometry

operator.. Then T (g0) ∈ T (RG(x, ε)) if and only if T (g) ⊥ε T (x)− T (g0).

Proof. Assume T (g0) ∈ T (RG(x, ε)). Then

‖T (g0)− T (g
′
)‖ ≤ ‖T (x)− T (g

′
)‖+ ε (4.8)

For | β |≤ 1 and β 6= 0, put T (g
′
) = T (g0)− 1

β
T (g). Then the inequality (4.8) becomes

‖T (g0)− T (g0) +
1

β
T (g)‖ ≤ ‖T (x)− T (g0) +

1

β
T (g)‖+ ε

⇒ ‖ 1

β
T (g)‖ ≤ ‖T (g) + β(T (x)− T (g0))‖+ εβ

⇒ ‖T (g)‖ ≤ ‖T (g) + β(T (x)− T (g0))‖+ ε

⇒ T (g) ⊥ε T (x)− T (g0)
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Conversely assume that T (g) ⊥ε T (x)− T (g0), then for all | β |≤ 1 and T (g
′
) ∈ T (G),

we have

‖T (g
′
)‖ ≤ ‖β(T (x)− T (g0)) + T (g

′
)‖+ ε (4.9)

Letting T (g) ∈ T (G) and putting T (g
′
) = T (g0) − T (g) and β = 1 in (4.9) to get the

desired result showing that T (g0) ∈ T (RG(x, ε)).
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Chapter 5

SMMARY AND CONCLUSION

5.1 Summary

The main part of the thesis begins from chapter 2 and ends with chapter 4. In chap-

ter 2, the classical definition of orthogonality by Roberts has been generalized in terms

of p-HH norm by proving (Theorem:2.2.2) and (Theorem:2.2.3). Using the concept of

Lemma 2.2.1, an important concept in relation to the Robert and Birkhoff-James orthog-

onality has been proved in Theorem 2.2.4 and Theorem 2.3.40. A relation in regard to

the equivalency of homogeneity and additivity of the isosceles orthogonality have been

proved in the Throrem 2.4.15. In the case of bounded linear operators on Hilbert space H,

Theorem 2.4.16, Proposition 8 and Proposition 9 have been proved as a new result. As a

generalized concept of the isosceles and Pythagorean orthogonality, Carlsson played the

central role to introduce new concept of orthogonality. After that, Kikianty and Dragomir

generalized the concept of Carlsson’s orthogonality in terms of p-HH norm. Motivated

by both concepts, an attempt was made to introduce the Carlsson’s orthogonality in terms

of bounded linear operators and proved Theorem 2.6.9, Theorem 2.6.10, Theorem 2.6.11

and Theorem 2.6.12 in relation to this orthogonality.

Chapter 3 is significant in this research work due to the fact that some new concepts

of orthogonality have been introduced with the help of the Carlsson orthogonality; and

different properties of inner-product space in relation to these orthogonalities are also ver-

ified. Motivated by this concept, two new particular cases of the Carlsson orthogonality

were introduced by taking real and complex constants, and Proposition 12 with Corollary

3.1.1, Proposition 13 with corollary 3.1.2, Lemma 3.1.1 and Lemma 3.1.2 were proved.

69



Furthermore, the orthogonality relation 3.6 in terms of 2-HH norm were introduced and

2-HH-N orthogonality via 2-HH norm as unique in any normed space has been proved.

The orthogonality relation 3.6 in terms of bounded linear operators was also introduced

and it has been proved that such orthogonality implies the Birkhoff-James orthogonality,

however, the converse may not be true in the Theorem 3.2.2. For the norm attainment set

of T (i. e. for any x ∈MT ), the Theorem 3.2.3 with Corollary 14, and Proposition 14 has

been proved.

The application part of orthogonality, which can be linked with the best approxima-

tion in normed linear space is included in chapter 4.The concept of best approximation

amounts to the problem of minimizing distance. The Theorem 4.2.1, Theorem 4.2.2,

Theorem 4.2.3, and Lemma 4.2.1 have been proved in the set of approximation (resp.

co-approximation) and ε−approximation (resp. ε−co-approximation ) .

5.2 Conclusion

It is concluded that the Pythagorean and the isosceles orthogonalities via 2 − HH norm

on a normed linear space satisfies the non-degeneracy, continuity and symmetry property;

moreover, the homogeneity and additivity of the isosceles orthogonality with respect to

2−HH norm are equivalent. It is found that the Carlsson orthogonality for norm attain-

ing bounded linear operators is continuous. In addition, the Pythagorean orthogonality

implies the Birkhoff-James orthogonality. In the case of norm attaining bounded lin-

ear operators on a Hilbert space H with disjoint support, the Carlsson orthogonality is

symmetric and the isosceles orthogonality is equivalent to the Pythagorean orthogonality.

Finally, the orthogonality of bounded linear operators in a real Hilbert space H implies

Birkhoff-James orthogonality, but the converse may not be true. Regarding the unique-

ness property, 2-HH-N orthogonality through the medium of 2-HH norm is unique in any

normed space. Furthermore, the 2-HH-N orthogonality in terms of bounded linear oper-

ators implies the Birkhoff-James orthogonality, but the converse may not be true. In the

case of isometry operator T : X → X , the best approximation (resp. ε−best approx-

imation) of an element T (g0) is equivalent to orthogonality (resp. ε−orthogonality) of

images.
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5.3 Recommendation for the future work

First of all, there are some properties of orthogonality still remained to check in the case

of new special case of the Carlssion orthogonality in terms of of 2-HH norm and bounded

linear operators. Secondly, the properties like: existence, uniqueness, additivity etc. are

also not studied for the generalized Carlsson orthogonality in terms of operators. Finally,

on the basis of this research, there may have several chances of connecting orthogonality

in the theory of best approximation. Some of the possibilities are as follows:

• Study of existence and uniqueness property of new orthogonality in normed linear

space;

• Use of orthogonalities like: isosceles, Pythagorean, Carlsson and new orthogonali-

ties in the theory of best approximation;

• Study of homogeneity property of new new orthogonality through the medium of

2-HH norm and bounded linear operators;

• Study of existence and uniqueness property of Birkhoff-James orthogonality in

terms bounded linear operators.
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This paper generalizes the special case of the Carlsson orthogonality in terms of the 2-HH norm in real normed linear space.
Dragomir and Kikianty (2010) proved in their paper that the Pythagorean orthogonality is unique in any normed linear space,
and isosceles orthogonality is unique if and only if the space is strictly convex. This paper deals with the complete proof of the
uniqueness of the new orthogonality through the medium of the 2-HH norm. We also proved that the Birkhoff and Robert
orthogonality via the 2-HH norm are equivalent, whenever the underlying space is a real inner-product space.

1. Introduction

Different notions of orthogonality in normed linear spaces
have been developed by various mathematicians. As a gen-
eralization of orthogonality from inner product space to
normed linear space “x is orthogonal to y if and only if
∥x + λy∥ = ∥x − λy∥ identically in λ” was suggested by
Robert ([1, 2]). However, it has the weakness that for
some normed linear space, at least one of every pair of
orthogonal elements would have to be zero, i.e., ∥x + λy∥
= ∥x − λy∥ for all λ only if x = 0 or y = 0. This difficulty
is not experienced in the isosceles, Pythagorean, and
Birkhoff orthogonalities.

To study the difference of orthogonality in the complex
case in comparison with the real case, Paul et al. in 2018 came
with a new concept of Birkhoff-James orthogonality by intro-
ducing new definitions on complex reflexive Banach spaces
and introduced more than one equivalent characterization
of Birkhoff-James orthogonality of compact linear operators
in the complex case [3]. In 1945, James came with the con-
cept of the Pythagorean and isosceles orthogonalities, which
characterize inner product space via their homogeneity and
additivity [4]. James also discussed the existence property of

isosceles orthogonality type. The property of the uniqueness
of isosceles orthogonality was not discussed until Kapoor
and Prasad’s paper was published. They proved that the
Pythagorean orthogonality is unique in any normed linear
space; however, the isosceles orthogonality is unique if and
only if the space is strictly convex [5].

Carlsson introduced a more general type of orthogonality
treating the isosceles and Pythagorean orthogonalities are
special cases [6]. Martini and Wu showed many interesting
connections between the Birkhoff and isosceles orthogonal-
ity. They proved that if a linear map preserves the Birkhoff
orthogonality, then it also preserves the isosceles orthogonal-
ity [7]. In 2007, Alsina and Tomas gave a different character-
ization of the inner product space with the help of weaker
linearity axioms of the scalar product and Pythagoras/isos-
celes orthogonality [8].

Using the concept of the p-HH norm as described in the
paper [9], Kikianty and Dragomir came up with a new notion
of orthogonality with the help of the 2-HH norm, which is
closely related to the Pythagorean and isosceles orthogonal-
ities [10]. They proved that the Pythagorean orthogonality
via 2-HH norm satisfies the nondegeneracy, continuity, and
symmetry properties; however, it is neither additive nor
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A GLIMPSE ON BIRKHOFF-JAMES ORTHOGONALITY IN

BANACH SPACES

B. P. OJHA AND P. M. BAJRACHARYA

Abstrat. This paper is an overview of various results on Birkho�-James orthogo-

nality of operators in Hilbert spae and Banah spaes. We mainly fous on Birkho�

orthogonality of linear(bounded and ompat) operators in terms of matries, proje-

tion angles, Hilbert C∗
-modules as well as on Banah modules. The artile onludes

with some open problems regarding possible orrelation between Birkho�-James or-

thogonality and Carlsson orthogonality, partiularly in the ase of Pythagorean or-

thogonality.

Äàíî îãëÿä ðiçíîìàíiòíèõ ðåçóëüòàòiâ ùîäî îðòîãîíàëüíîñòi â ñåíñi Áiðêãî�à-

Äæåéìñà îïåðàòîðiâ ó ãiëüáåðòîâèõ i áàíàõîâèõ ïðîñòîðàõ. Ïåðåâàæíî ðîçãëÿ-

äà¹òüñÿ îðòîãîíàëüíiñòü çà Áiðêãî�îì ëiíiéíèõ (îáìåæåíèõ i êîìïàêòíèõ)

îïåðàòîðiâ ó òåðìiíàõ ìàòðèöü, êóòiâ, ãiëüáåðòîâèõ Ñ*-ìîäóëiâ, à òàêîæ

áàíàõîâèõ ìîäóëiâ. Íàâåäåíi äåÿêi âiäêðèòi ïèòàííÿ ñòîñîâíî ñïiââiäíîøåíü

îðòîãîíàëüíiñòþ Áiðêãî�à-Äæåéìñà òà îðòîãîíàëüíiñòþ Êàðëññîíà, çîêðåìà

äëÿ âèïàäêó ïi�àãîðîâî¨ îðòîãîíàëüíîñòi.

1. Introdution

The onept of Birkho� orthogonality began in 1935 [1℄. In the literature of orthogo-

nality this is known with some other names suh as; Birkho�- James orthogonality and

Blashke Birkho�-James orthogonality ( see [2℄). In this paper [1, 3℄, an orthogonality

whih satis�es homogeneity but neither symmetri nor additive is de�ned by x⊥y if and

only if ‖x + λy‖ ≥ ‖x‖ for all λ, is known as Birkho� orthogonality or Birkho�-James

orthogonality. The geometrial meaning of Birkho� orthogonality is that if x is an unit

vetor of a Banah spae X and y ∈ X , then x is Birkho� orthogonal to y means that

the straight line {x+ λy : λ ∈ K} is tangent to the unit ball of X at x. This onept is

similar to the statement: suppose two lines l1 and l2 interset at the point m, then l1⊥l2
if and only if the distane from a point of l2 to a given point n of l1 is never less than

the distane from m and n. [3℄ For any hyper-plane H ⊂ X , x is said to be orthogonal

to H if ∀x ∈ H,x⊥h.
Bhatia and Semrl in [4℄ generalize the de�nition of Birkho� orthogonality in terms of

matries. For any matries A and B they denote the symbol ‖A‖ for operator norm of

A and A is orthogonal to B in the sense of Birkho�-James i� for any omplex number

z, ‖A + zB‖ ≥ ‖A‖. A matrix A is orthogonal to B i� there exist a unit vetor x ∈ H
suh that ‖Ax‖ = ‖A‖ and 〈Ax,Bx〉 = 0 [4℄. They also introdued Birkho�- James

orthogonality in [4℄ as A⊥B if and only if ‖A + zB‖p ≥ ‖A‖p, where ‖A‖p denotes

Shatten p-norm of A de�ned by ‖A‖p = [
∑n

j=1 Sj(A)
p]

1
p
for 1 ≤ p < ∞ and S1(A) ≥

......Sn(A) are singular values of A. Taking the speial ase for p = 2, Bhatia and Semrl in

[4℄ also proved that the given orthogonality is equivalent to usual Hilbert spae ondition

〈A,B〉 = 0, whih de�nes an inner-produt on the spae of matries as 〈A,B〉 = tr(A∗B).
The norm assoiated to this inner produt is ‖.‖2. In an in�nite dimensional ase [4℄, for

2020 Mathematis Subjet Classi�ation. 45E15, 46J10.

Keywords. Birkho�-James orthogonality, Banah modules, Carlsson orthogonality, Robert

orthogonality.
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Abstract: Let x, y  X, where X is an inner-product space. We say x is 

orthogonal to y if x, y = 0. When we move to general normed spaces there 

are many possibilities of extending the notion of orthogonality. Since 1934, 

different types of orthogonality relations in normed spaces have been 

introduced and studied. In this study, we enlist some properties of Birkhoff's 

orthogonality and Carlsson's orthogonality along with it we introduce two 

new particular cases of Carlsson's orthogonality and check some properties of 

othogonality in relation to these particular cases in normed spaces. 
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Introduction 

Let X * be dual space of a normed space X and SX 

denotes the unit sphere of X given by SX = {x  X: ||x|| =

1}. The Hermite-Hadamard's inequality defined in 

(Mihai et al., 2018) is given by: 

     
   

.
2 2

b

a

f a f ba b
b a f f t dt b a

 
    

 


We briefly describe the content of this paper: Section 

1 contains the review of various properties and 
characterizations of Birkhoff orthogonality in normed 
linear spaces. Section 2 contains Carlsson orthogonality 
in classical sense and in HH-sense with the help of p-HH 
norm. Section 3 includes the main results of our research 
by introducing new cases of Carlsson orthogonality 

verifying some properties of the inner-product space in 
relation of these orthogonalities. 

There are different orthogonality relations studied in 

the general normed linear space since from 1934. The

Robert orthogonality condition which was introduced by 

Robert in 1934 is known as the first orthogonality 

defined in general normed spaces (Birkhoff, 1935). 

Robert orthogonality implies both Birkhoff orthogonality 

introduced by (Birkhoff, 1935) and isosceles 

orthogonality introduced by (James, 1945). Generalizing 

the Isosceles, Robert and Pythagorean orthogonalities in 

the normed space, (Carlsson, 1962) introduced a new 

type of orthogonality. After that numerous notions of 

orthogonality have been introduced. Kikianty and 

Dragomir (2010) introduced p-HH-norms (1  p <) and 

some notions of orthogonality have been introduced by 

utilizing 2-HH-norm, which are closely related to the 

classical Pythagorean orthogonality and isosceles 

orthogonality. Kapoor and Prasad (1978) proved 

uniqueness property of isosceles orthogonality. 

Mizuguchi (2017) let (X, ||||) be a real normed space. 

For any vector x, y  X, we say that x is orthogonal to y 

(xBy) in the sense of Birkhoff if: 

x x y for all     

James was the first who did a comprehensive study of 

the properties of Birkhoff orthogonality and therefore 

Birkhoff orthogonality is also known to as Birkhoff-

James orthogonality. James (1945) introduced Isosceles 

and Pythagorean orthogonality proved that if for every x 

it is possible to find a vector y in a two dimensional 

subspace containing x such that xBy; then the space is 

necessarily an inner product space (Dragomir and 

Kikianty, 2010). If X is an inner product Space, then B 

coincide with the standard orthogonality in inner product 

space. It is obvious that Birkhoff orthogonality is 

homogeneous; however, it is in general, neither 

symmetric nor additive. 

Definition (Martini and Spirova, 2010) 

A hyperplane of a normed linear space X is any 

proper closed linear subset H which is not properly 

contained in a proper linear subset of X, or any 

translation x + H of such a linear subset H. 

If {yn} is a sequence converging to y, x is 

orthogonal to {yn}, then xy. Hence for any x, the set 
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INTRODUCTION

Motivated by the Hermite-Hadamard inequality, Kikianty and Dragomir (2008) introduced p-HH norm by giving their 
2equivalence to p-norms in X . Even though the equivalence of p-norms and p-HH norms are known, they are different due to

the fact that p-HH norms not only depend on the size of vectors, but they depend on the relative position of the original
nvectors. Furthermore, these norms have been extended to X  of a normed space X. To illustrate the quantitative comparison 

between p-norms and p-HH norms, Kikianty, in his thesis used the inequality                                                                         for a 

real valued function h(x) which is continuous and differentiable on (a, b) satisfying the condition h(x)  M, where M is a real 

number.

Dragomir and Kikianty (2010), mentioned that the extension of sequence spaces also gives the fundamental difference of 

p-norms and p-HH norms. Kikianty and Dragomir (2008) mentioned in their paper that the classical norms can be extended 

from means on (0, ) to normed space X in different ways; one calculates the norm of n vectors in X and then calculates the 

mean of resulting numbers and therefore these norms depend on the original vectors only through their norms which
n

process is highly helpful to calculate the norm of X . The weighted arithmetic means are exponential in this case because of

the fact that, one first computes a fixed linear combination of the original vectors and then gives the X-norm of the result 
nwhich maintains the more of the structure of X , but a weighted arithmetic mean of non-zero vectors does not give the norm

n
of X  because its arithmetic mean may be zero. The p-HH norms keeps the responsiveness of the arithmetic means to the

ngeometry of X  due to the fact that their dependency not only depends on the size of vectors, also they depend on the

relative position of the n original vectors in the space X.

In the paper of Kikianty and Sinnamon (2009), the p-norm is defined as follows: Let X be a normed space and for any positive
ninteger n, x = (x ,…, x )  X . Under the usual addition and scalar multiplication, it becomes a normed space when equipped1 n

with any of the following norms:

| |£

¥

Î

2-HH NORM AND BIRKHOFF-JAMES ORTHOGONALITY IN
NORMED SPACES

By

BHUWAN PRASAD OJHA * PRAKASH MUNI BAJRACHARYA **

ABSTRACT

2For any normed space X, the p-HH norms X were introduced by Kikianty and Dragomir on X  = X  X of normed spaces. p-

norms and p-HH norms induce the same topology, so they are equivalent, but are geometrically different. Besides that, 

E. Kikianty and S. S. Dragimor introduced HH-P orthogonality and HH-I orthogonality by using 2-HH norm and discussed

main properties of these orthogonalities. The main purpose of this paper is to focus on the concept of 2-HH norm to 

Birkhoff and a new orthogonality in normed spaces, and we discuss some properties of these orthogonalities. It is proved

that Robert orthogonality via 2-HH norm implies Birkhoff-James orthogonality via 2-HH norm; however, it is not necessary

for the converse part.

Keywords: Birkhoff Orthogonality, Robert Orthogonality, p-HH Norm.
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1

a
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2(x -         )a+b

2
2(b-a)

[                     ]
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Robert Orthogonality in Normed Linear Spaces
Via 2-HH Norm

Bhuwan Prasad Ojha, Prakash Muni Bajracharya

Abstract

The p-HH norms on X2 were introduced by Kikianty and Dragomir in 2008. Besides that,
E. Kikianty and S.S. Dragimor introduced HH-P orthogonality and HH-I orthogonality by using
2-HH norm and discussed main properties of these orthogonalities. In this paper, we test the
concept of 2-HH norm to Robert orthogonality in normed spaces and discuss some properties of
this orthogonality.

Keywords: Robert orthogonality, p-HH norm, Isosceles orthogonality, Pythagorean orthogonality,
Hermite-Hadamards inequality .

1 Introduction

The p-HH norms are equivalent to p-norms on X2, as they induce the same topology, but geometri-
cally they are different. The p-HH norm is an extension of the generalized logarithmic mean which
is connected by the Hermite-Hadamards inequality to p-norm. The definition of the generalized
logarithmic mean and Hermite-Hadamards inequality are as follows:

Definition. [6, 9] For any convex function f : [a, b] → R([a, b] ⊂ R, the Hermite-Hadamard’s
inequality is defined as

(b− a)f(
a+ b

2
) ≤

∫ b

a

f(t)dt ≤ (b− a)

[
f(a) + f(b)

2

]

. This inequality has been extended (see-12) for convex function f : [x, y] → R, where [x, y] =
{(1− t)x+ ty, t ∈ [0, 1]} . In that case Hermite-Hadamards integral inequality becomes

f(
x+ y

2)
≤
∫ 1

0

f [(1− t)x+ ty] dt ≤ f(x) + f(y)

2
......(1).

Using the convexity of f(x) = ‖x‖p (x ∈ X, p ≥ 1) and relation (1) we have

∥∥∥∥
x+ y

2

∥∥∥∥ ≤
[∫ 1

0

‖(1− t)x+ ty‖p dt
] 1

p

≤ 1

2
1
p

(‖x‖p + ‖y‖p) 1
p .

1
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Birkhoff and New Orthogonality in
Normed Linear Spaces Via 2-HH Norm

Bhuwan Prasad Ojha , Prakash Muni Bajracharya

Abstract

The p-HH norms were introduced by Kikianty and Dragomir on the Cartesian square of normed
spaces . P-norms and p-HH norms induces the same topology, so they are equivalent, but geometri-
cally they are different. Besides that, E. Kikianty and S.S. Dragimor introduced HH-P orthogonality
and HH-I orthogonality by using 2-HH norm and discussed main properties of these orthogonalities.
In this paper, we test the concept of 2-HH norm to Birkhoff and a new orthogonality in normed
spaces and discuss some properties of these orthogonalities.

Keywords: Birkhoff orthogonality,Hermite-Hadamard’s inequality, Pythagorean orthogonality, p-HH
norm, Logarithmic mean

1 Introduction

An inner-product on X defines a norm on X by ‖x‖2 = 〈x, x〉. Every innerproduct spaces are
normed spaces, but the converse may not be true. A best example of normed space which is not an
inner-product space is lp = {(xn), xn ∈ R :

∑ |xn| <∞} for p 6= 2.

Definition. The p−HH norm on X2 = X ×X is defined by

‖(x, y)‖p−HH = (

∫ 1

0

‖(1− t)x+ ty‖p dt) 1
p

for any x, y ∈ X2 and 1 ≤ p <∞.

The 2-HH norm is defined as follows:

‖(x, y)‖22−HH =

∫ 1

0

‖(1− t)x+ ty‖2 dt

=
1

3
[‖x‖2 + 〈x, y〉+ ‖y‖2

The p-HH norms are equivalent to p-norms on X2, as they induce the same topology, but geometri-
cally they are different. The p-HH norm is an extension of the generalized logarithmic mean which
is connected by the Hermite-Hadamards inequality to p-norm. The definition of the generalized
logarithmic mean and Hermite-Hadamards inequality are as follows:

1

International Journal of Scientific & Engineering Research Volume 11, Issue 2, February-2020 
ISSN 2229-5518  

225

IJSER © 2020 
http://www.ijser.org 

IJSER

90



91



Relation of Pythagorean and Isosceles Orthogonality with Best approximation in
Normed Linear Space 

Bhuwan Prasad Ojha, Prakash Muni Bajrayacharya 
Central Department of Mathematics, Tribhuvan University, Kritipur 

E-mail: bhuwanp.ojha@apexcollege.edu.np 

Abstract 
In an arbitrary normed space, though the norm not necessarily coming from the inner 

product space, the notion of orthogonality may be introduced in various ways as suggested
by the mathematicians like R.C. James, B. D.  Roberts, G. Birkhoff and S.O. Carlsson. We
aim to explore the application of orthogonality in normed linear spaces in the best 
approximation. Hence it has already been proved that Birkhoff orthogonality implies best 
approximation and best approximation implies Birkhoff orthogonality. Additionally, it has 
also been proved that in the case of 𝜀𝜀 −orthogonality, 𝜀𝜀 −best approximation implies 
𝜀𝜀 −orthogonality and vice-versa.  In this article we established relation between
Pythagorean orthogonality and best approximation as well as isosceles orthogonality 
and 𝜀𝜀 −best approximation in norned space.  

Key words: Best approximation, Birkhoff orthogonality, Pythagorean orthogonality, 𝜀𝜀 −best
approximation, Isosceles orthogonality. 

Introduction 
For any non-empty subset M of X, where X is a normed space, an element 𝑚𝑚0 ∈ M is

called best best approximation to x ∈ X from M if ∀ m ∈ M, ||x-𝑚𝑚0||≤||x-𝑚𝑚||. The collection of 
all such elements 𝑚𝑚0 ∈ M which are best approximation to x∈ X is denoted by 𝑃𝑃𝑀𝑀(x). If 𝑃𝑃𝑀𝑀(x)
contains at least one element, then the subset M is called a proximal set. If for each x ∈ X has a 
unique best approximation in M, in that case the set M is called Chebychev set of X. In another
word the set M is called Chebychev if 𝑃𝑃𝑀𝑀(x) is singleton (Akramm, 2010). 
Theorem 1.1. Let M be a subspace of a normed space X,  
(i) If x ∈ M, then 𝑃𝑃𝑀𝑀(x) ={x}       (ii) If x ∈ cl(M)\ M, then 𝑃𝑃𝑀𝑀(x) = ∅( Akramm 2010) 
( Singer 1974) 

Proof. (i) Let x ∈ M, then d(x, x) = 0 which implies that d(x, M) = 0.  
Therefore 𝑃𝑃𝑀𝑀(x) = { x ∈ M : ||x-y||= d(x, M)} = { x ∈ M : ||x-y||= 0}={x} 
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