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ABSTRACT

This thesis deals with the orthogonality in normed linear spaces. The goal is to investi-
gate and study different notions of orthogonality in normed spaces. By utilizing the 2-HH
norm and bounded linear operators, some notions of orthogonality are introduced and
then, different properties of orthogonality in relation to these orthogonalities are studied.
We generalize the Robert, Birkhoff-James, and a new orthogonality in terms of the 2-
HH norm, and study the main properties of orthogonality. We prove that the Birkoff and
Robert orthogonality in terms of the 2-HH norm are equivalent if the underlying space is
real inner product space. Further, we prove that the isosceles orthogonality is homoge-
neous if and only if it is additive. Additionally, we prove that the orthogonality relation
of type (I) in terms of 2-HH norm satisfies non-degeneracy, simplification, continuity,
and uniqueness properties. Moreover, we prove that the Carlsson orthogonality in terms
of bounded linear operators also satisfies non-degeneracy, simplification, and continuity
properties. In the case of norm attaining bounded linear operator with disjoint support in
a Hilbert space H, we prove that two operators are orthogonal in the sense of Pythagoras
if and only if they are orthogonal in the sense of isosceles. In terms of buonded linear
operators, we prove that the Pythagorean orthogonality and orthogonality relation of type
(I), imply the Birkhoff-James orthogonality, but the converse may not be true. Under the
restriction of an element belonging to the norm attainment set, we prove that the orthog-
onality of images also implies the orthogonality of operators in the Carlsson as well as
Robert’s sense. Finally, as applications, we prove that the Pythagorean orthogonality im-
plies the best approximation, and the best approximation (resp. e— best approximation)

and Birkhoff orthogonality ( resp. e— Birkhoff orthogonality) are equivalents.

Keywords: Normed linear spaces, Inner-product space, Birkhoff-James orthogonality,

Pythagorean orthogonality, p-HH norm, Best approximation
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Chapter 1

INTRODUCTION

The natural definition of orthogonality of elements of an inner-product space is that, z | y
if and only if the inner-product (x,y) = 0. However, in context of a normed linear space,
this definition does not work due to the unavailability of the notion of inner-product. As a
generalization of orthogonality from inner-product space to normed linear space, the first
credit goes to R. C. James in the paper [1] even-though D. B. Robert introduced the first
orthogonality in normed linear space in 1934. Robert’s definition has the weakness that
for some normed linear space at least one of every pair of orthogonal elements would have
to be zero [2]]. To avoid this difficulty, G. Birkhoff introduced a new concept of orthogo-
nality in normed linear space by stating that ““ if x is a unit vector of a Banach Space X and
y € X, then x is orthogonal to y if and only if the straight line {x + Ay : A € K} is tangent
to the unit ball of X at x”[3]]. In 1945, James came up with the notion of the Pythagorean
and isosceles orthogonalities which characterize inner-product space via their homogene-

ity and additivity [1].

S. O. Carlsson in 1962, introduced a generalized concepts of orthogonality in normed
linear space by indicating that ““ the isosceles and Pythagorean orthogonality are special
cases”’[4]. The open problem related to relationship between the Birkhoff-James orthog-
onality and the Pythagorean orthogonality is discussed in the paper [S]. Motivated by
Carlsson’s results, two new special case of the Carlsson’s orthogonality have been intro-
duced and an attempt has been made to verify some properties of inner-product space in
relation to these orthogonalities[6]]. In 2010, E. Kikianty and S. S. Dragomir introduced
the p — H H norm on the cartesian square of normed linear space by generalizing the
previous definition of the Carlsson orthogonality in terms of 2 — H H norm, which also

generalize the Pythagorean and isosceles orthogonality in terms of 2-HH norm([7]. Mo-



tivated by the results of Kikianty and Dragomir, the Birkhoff and new special cases of
the Carlsson orthogonality in terms of 2-HH norm have been introduced [8]]. Besides,
the Robert orthogonality in terms of 2-HH norm has also been introduced in the paper
[9]. Bhatia and Semrl came up with new concept of orthogonality in terms of matrices,
specially in the case of Birkhoff orthogonality [10]. Sain and Paul linked the Bhatia and
Semrl property with norm attaining operators in a finite dimensional normed space which
attains its norm on connected closed subset of the unit sphere of X and proved that “if
two linear operators are orthogonal in the sense of Birkhoff-James, then there exists an
element in the closed connected subset of the unit sphere at which the images of operators

are also orthogonal in the sense of Birkhoff-James [[11].

In 2013, Paul et al. introduced a concept of strong Birkhoff-James orthogonality by stat-
ing that x is said to be strongly orthogonal to y in the sense of Birkhff-James if and only
if ||z|| < ||z + Ay|| for all A # 0. The notation x L ¢gp y was used to indicate the orthog-
onality and proved that the strong Birkhoff-James orthogonality implies Birkhoff-James
orthogonality, but the converse may not be true. To illustrate this concept, two elements
(1,0) and (0, 1) are taken in [, (R?), showing that (1,0) and (0, 1) are orthogonal in the
sense of Birkhoff-James but not strongly orthogonal to each other [[12]]. To study the dif-
ference of orthogonality in the complex case in comparison of real case Paul et al. in
2018 came of with new concept of Birkhoff-James orthogonality introducing new defini-
tions on complex reflexive Banach space [[13]]. Recently, Bottazzi et al. have introduced a
new generalization of earlier results on orthogonality of bounded linear operators. They
discussed about Birkhoff-James, isosceles and Robert orthogonality in Banach spaces in

terms of bounded linear operators [14]].

Motivated by the results of Bottazzi et al., this research is focused on generalizing the
earlier definition of the Carlsson orthogonality in terms of bounded linear operators with
verifying some properties, like non-degeneracy, continuity and homogeneity property of
an inner product space in relation to the Carlsson orthogonality for bounded linear opera-
tors. Kikianty and Dragomir mentioned without proof in their paper that the Pythagorean
and isosceles orthogonality via 2-HH norm satisfies non-degeneracy, symmetry and con-
tinuity property [[7]. In this thesis, all these properties have been proved when the norm
on X is induced by an inner product. The equivalence of homogeneity and additivity of
isosceles orthogonality via 2-HH norm has been proved , the proof of which has been
omitted in the paper by Kikianty and Dragomir. This thesis also generalizes the special

case of the Carlsson orthogonality in terms of 2-HH norm in real normed linear space and



it has been proved that the orthogonality is unique in any normed space X . The Birkhoff
and Robert orthogonality via 2-HH norm are found equivalent, whenever the underlying

space is real inner product space [15].

1.1 Statement of the problem

The statements of problem are as follows:

To study orthogonality in normed linear space by generalizing the notion of orthog-

onality;

To study orthogonality in terms of p-HH norm;

To study orthogonality in terms of bounded linear operators in Banach spaces;

Use of orthogonality in the theory of best approximation.

1.2 Objective of the study

The objective of this study is

1. To study different types of orthogonality like: Birkhoff-James, Carlsson, Pythagorean,
Robert, and isosceles by using functional and operators in Banach space and Hilbert

spaces,
2. To establish correlation between various orthogonalities,
3. To generalize different orthogonalities via p-HH norm,

4. To generalize the Carlsson orthogonality in terms of operators and study some fa-

mous properties of inner-product space in relation to this orthogonality,

5. To link new two spacial cases of the Carlsson orthogonalityi in terms of p-HH norm

and bounded linear operators,

6. To introduce some different relations between orthogonality and best approximation

in normed linear spaces.



1.3 Outline of the thesis

This thesis is devoted to the study of orthogonality in normed linear space with gener-
alization of different orthogonalities in terms of 2-HH norm in a real normed space and
bounded linear space operators in Banach space and Hilbert space. The work begins with
chapter 1 providing introduction of orthogonality as well as its development by different
mathematicians at different span of time, statement of the problem, objectives, and out-

lines of the thesis.

Chapter 2 is written with necessary literature of orthogonality needed to introduce new re-
sult of the thesis. Some generalizations regarding to the Robert, isosceles, Birkhoff-Jame
and new orthogonality in terms of 2-HH norms are introduced and studied. Depending on
the generalized definition of the Carlsson orthogonality, a new generalization in terms of
bounded linear operators is also introduced with verification of some properties of inner
product space. The most important concept introduced in this chapter is the equivalency of
Birkhoff-James orthogonality with isosceles orthogonality, however the Birkhoff- James
orthogonality is not equivalent with the Pythagorean orthogonality in the case of norm

attaining bounded linear operators with disjoint support in Hilbert space.

In chapter 3, the new results of research have been included involving two new partic-
ular cases of the Carlsson orthogonality with verifying some important properties. It
has also been proved that the new particular case of the Carlsson orthogonality implies
the Birkhoff-James orthogonality by taking y = =, but the converse may not be true.

The most important concept proved in that section is the new orthogonality through the

medium of 2-HH norm that is unique in any normed space with the help of proving

) = [ 10 =0+ S P+ [ 0=y = GelPa

is a convex function in R. In the case of new orthogonality in terms of bounded linear
operators in Banach space, it implies the Birkhoff-James orthogonality; however, the con-
verse may not be true. For any element belonging to the norm attainment set of T, if the
images are orthogonal, then the operators are also orthogonal in the sense of isosceles as

well as Birkhoff-James orthogonality.

In chapter 4, as an application of orthogonality in terms of best approximation are in-

volved due to the fact that the problem of best approximation amounts to the problem of



minimizing a distance. An attempt has been made to prove some concept related to or-

thogonality (resp. e—orthogonality) and the best approximation (resp. co-approximation).

The chapter 5 includes the summary, conclusion and recommendation for further work.
Finally, in appendix, the publications and certificates of conferences, seminar and work-

shops have been included.



Chapter 2

ORTHOGONALITY IN NORMED
LINEAR SPACES

2.1 Introduction

It is well known fact that a norm in a normed linear space does not necessarily arise from
an inner product. Therefore the definition of orthogonality in an inner-product space may
not work for any normed space. Due to this, different orthogonality in normed spaces
have been introduced and studied through the medium of equivalent propositions to the
usual orthogonality, since from 1934. This chapter includes different classical notions of
orthogonality which were introduced by different mathematicians at different time period.
In order to study orthogonality in normed linear spaces, the main properties of orthogo-
nality in an inner-product space are needed. Due to this reason, some important properties

of orthogonality in an inner-product spaces are mentioned as follows:

2.1.1 Main properties of orthogonality in an inner product space:

Let x,y, 2 € X, where X is an inner-product space. Then the following properties holds

(L], [16]]:

(1) Non-degeneracy: If z L z, then x = 0;
(i) Simplification: If x L y, then for any A € R, Az L \y;
(iii) Continuity: If {z,},{y,} C X such that z, L y, foralln € N, z, — x and

6



Yn — Yy, thenz L y;
(iv) Homogeneity: If = L y, then Ax L py for all A\, u € R;
(v) Symmetry: If z 1 y, theny L z;
(vi) Additivity: If x L yandx L z,thenx L y+ z;
(vii) If = # 0, then there exist « € R such that x | az + vy ;

(viii) Uniqueness: The above « is unique.

2.2 Robert Orthogonality

The generalization of orthogonality from inner-product space to normed linear space was
given by D. B. Robert in 1934 with some limitations. The main weakness of this orthogo-
nality was that, for some normed linear spaces, at least one of orthogonal elements would

have to be zero [2]]. The definition of orthogonality is as follows:

Definition 1 ([2], [1]]). Let X be a normed linear space. A vector x is orthogonal to y in
the sense of Robert if and only if ||x + By|| = ||x — By|| identically in S.

Properties of Robert orthogonality

For any normed linear space X, the Robert orthogonality satisfies the following properties
[16]:

(i) Robert orthogonality satisfies non-degeneracy, simplification, and continuity;

(i1) Robert orthogonality is homogeneous and symmetric;

(iii) In any normed linear space, the Robert orthogonality is not additive and does not

satisfy the existence property;

(iv) If the norm on X is induced by an inner-product, Robert orthogonality satisfy the

existence property.

R. C. James noted that it is interesting to investigate the properties of orthogonality in an
inner-product space as applied to normed space and he focused mainly on the existence

property in the paper [1] and uniqueness in the paper [l17]].

7



Example 1. [/|] Let X be a normed linear space consisting all continuous functions of the

form f = ax + bx?, where ||ax + ba®|| = max,e(o,1) | ax + bz? |. Then Two elements of X

f+Bgll = lf -8Byl

are orthogonal in the sense of Roberts if and only if one is zero; i.e;
forall Bonlyif f =00rg=0.

Theorem 2.2.1. [/6l] Let X be a normed space. Then, the Robert orthogonality is equiv-

alent to any other orthogonality if and only if X is an inner product space.

For any (z,y) € X?, Kikianty and Dragomir defined the p- norm on X? as follows
[7]:

1
P+ llyl*]7, 1 <p<oo
1z, )l = 2.1
max{||z[|, [lyll}, p=o0

From (2.1)), it is obvious that ||(z,y)|l, = ||(y, x)]|,, and therefore p-norm is symmetric.

Using the concepts of Hermite-Hadamard’s inequality, we have

l” + llylP Ny
2

S <00 (2.2)

1
/ |(1—t)z + ty||Pdt <

0
With the help of (2.2)), they defined the p-HH norm on X2 in the following ways [26]]:

(Jy It =ty +ty|7)3, if1<p <o

(@, ) |lp-rm = (2.3)

SUD¢eo,1] [(1—t)z +tyl|, ifp=o0

For all z,y € X, itis obvious that ||(z,y)|,—zx = ||(y,®)||p—gu. Therefore the p-HH
norm is symmetric. They proved that (X2, ||(.,.)||) is a normed linear space because the
non-degeneracy and homogeneity of the norm can be derived from (2.3)) and the triangle
inequality follows from the Minkowski’s inequality. If the norm on X is induced by an
inner product (., .), then as a special case of the p-HH norm, it is denoted by 2-HH norm.

It is defined in the paper [[/] as follows:

1
TCx]a—— / 11—ty + ty]Pdt. 2.4

For any p > 1, The p-norm and p-HH norm are equivalent in X2,

Definition 2. A real valued function f defined on a non-empty subset X C R" is called

convex if

(i) the domain X of the function is convex.

8



(ii) forany z,y € X and X € [0,1],
fOz+ (1 =Ny) <Af(2)+ (1= Nf(y) (2.5)

If the inequality is strict whenever v # y and 0 < \ < 1, then function fis called

strictly convex function.

Let X be normed space in which the norm is induced by an inner-product. We make
an attempt to generalize the Robert orthogonality via 2-HH norm, which satisfies non-

degeneracy, simplification, continuity, symmetry, and homogeneity property [9]].

Definition 3. /9] Let X be a real normed linear space in which the norm is induced by an
inner-product and ||(1 — t)x + Mty||> = ||(1 — t)x — My|* a. e. on [0, 1]. Then x is said to
be Robert orthogonal to y through the medium of 2-HH norm, denoted by x 1o gy _ry
if and only if

1 1
/H(l—t)x—l—)\tyHth:/ (1 = )z — Ay|2dt 2.6)
0 0

Theorem 2.2.2. [9] Let X be a real normed linear space in which the norm is induced
by an inner-product. Then the Robert orthogonality via 2-HH norm satisfies the non-

degeneracy, simplification and continuity.
Proof. Nondegeneracy: If x|y gx. Then
1
o)l = [ 10— 0+ el

1
:/1m1—wx—ﬂﬂfﬁ
0

/ (1—t)z —thx, (1 —t)x — tAx)dt

—HxxH/ dt+H)\$xH/t2dt

=3 H(x o)l (1+2%)

It is clear that ||(x, x)|| = 0 = = = 0, which gives the non-degeneracy property.



Simplification: If v 1 55 gy forany A\, u € R,

1 1
/ 11—tz + thay | dt = |p? / 11— t) + thg]? dt
0 0
! 2
e / 11— )z — tg|2 dt
0
! 2
- / 11— Bz — tay .
0
Therefore px L gy gupy for any p € R.
Continuity: If z, 1o gy gy, with z,, — x and y,, — y, then
1 1
/H(l—t)a:nJrAtynHth:/ (1 = £ + My |2 dt
0 0
1 1
N lim/ (1 = £y + My dt = 1Lm/ (L = ) + Aty dt
0 n=oo Jo
1 1
:>/ ||(1—t)x+/\ty|]2dt:/ (1 = )z + tyl|* dt
0 0

This shows that x 1o gy g y.

]

Theorem 2.2.3. /9] Let X be a real normed linear space in which the norm is induced
by an inner-product. Then the Robert orthogonality via 2-HH norm is homogeneous, but

not symmetric.
Proof. Homogeneity: Let x,y be elements of normed space X, and A, u € R
1 1
/ (1 = t) Az + tuy|® dt = / (1 —=t)Ax + tuy, (1 — ) Az + tpy)dt
0 0

1 1
=l [ = o2 gl [ e ooty
0 0

1
= g(HMCII2 + lyl?)

10



Again,

1
/ (1 — )z — tuy||* dt = /<(1—t)/\x—tuy,(l—t))\x—tpy)dt
= al? [ -0 ? [ P oty

= g(IIM“H + ).

Therefore the Robert Orthogonality via 2-HH norm is homogeneous if the normed space

is equipped with an inner-product.

Symmetry: To check the symmetry of 2 — H H — R orthogonality,

1
1
/ 11 = )y + Mz* = g(HyH2 + A% |z]*),  but
0

1
1
/0 11 =)z + My[l* = S(l2l” + X y])

[ =)y + Mtx|)* # fi [I(1 — )z + Myl|*, showing that 2 — HH — R orthog-

onality is not symmetric via 2 — H H norm.
Lemma 2.2.1. [lI|] Let X be a normed linear space and x,y € X. Then

Jim [[|(i + k) + yll = lluz + yll] = Kll]

Theorem 2.2.4. [9] Let X be a normed linear space. ThenVxr € X, du € R : ux +

Yyl yn-grx,

Proof. Let x,y € X such that x # 0( for the case of x=0, the proof is trivial). Let us
define a function g : R x (0,1) — R by

g(p,t) = [[(1 = t)(ux +y) + Mzl — ||(1 — t)(uz + y) — Mz||, where A e RT, p € R
= [ =p+ Mz + L=yl = [ —)p— Mz + (1 =)yl

and a function G : R — R by

G(z) = / g(p. ).

11



Now

lim g(p,t) = lim [J((1 = O+ M + (L= 0yl = [[(L = = Mz + (1 = )y]]

At Mt
=(1—1) lim H‘M+ )a:+yH—H(u—1 x+y’H

HU—>00 t

Let 11 — 25 = £ so thatas 1 — 00, § — co. Then pu + 724 = € + 22

. . 27t)
Jim gp,t) = Elggo[H(f + 1
2t

= 2Xt ||z]]

)x+4w—Mx+MH

( by using Lemma 1.1)

Hence lim,,_,o G(p) = lim,,_,o fol g(p, t)dt = fol lim,,_, g(4,t)dt and by continuity of
g,

U—>00

1
lim G(u) :/ 2Mt ||x|| dt
0

= ||Az]| >0
Also forany ¢ € (0, 1),

lim g(—p,t) = lim [[[[(1 = #)(=p) + Al + (1 = t)yll = [[(1 = )(=p) = Atlz + (1 = )yl

=00 U—00

= lim [[[(A = )p = Atle = (1 = t)yll = [[(A = D)p+ Atz — (1 = t)y]l]

oo o 2]
Suppose 1 + L = ¢ so thatas  — 00. § — oo and pp — 2L = ¢ — 241
Jm g(=p.t) = (1 =1) lim [H w) yH - ||§x—y||}
=(1- t)( 2)\t) || ( by using Lemmal[2.2.1)
e

By the continuity of g, we have

1 1 1
lim G(—p) = lim [ g(—p,t)dt = / lim g(—p,t)dt = / =2 ||z|| dt = =X ]|z]| < 0.
0 0

=00 p—oo Jq U—+00

12



Since G is continuous, so Jup € R : G(ug) = 0.

1 1
Hence/ H(l—t)(u0x+y)+)\txH2dt—/ (1 = ) (o + ) — M| dt.
0 0

2.3 Birkhoff Orthogonality

The concept of Birkhoff orthogonality began in 1935 [3]]. In the literature of orthogonality
this is known with some other names such as; Birkhoft- James orthogonality and Blaschke
Birkhoff-James orthogonality ( see [18]). In this paper [3}17], an orthogonality which
satisfies homogeneity but neither symmetric nor additive is defined by x_Ly if and only
if ||z + Ay|| > ||=| for all A, is known as Birkhoff orthogonality or Birkhoff-James
orthogonality. The geometrical meaning of Birkhoff orthogonality is that if X is an unit
vector of a Banach space X and y € X, then x is Birkhoff orthogonal to y means that
the straight line {x + Ay : A € K} is tangent to the unit ball of X at x. This concept is
similar to the statement: suppose two lines /; and [ intersect at the point m, then [y L[5 if
and only if the distance from a point m of /; to a given point n of /; is never less than the
distance from m and n. [[17] For any hyper-plane H C X, x is said to be orthogonal to H
ifVe e H,z Lh.

Bhatia and Semrl in [10] generalize the definition of Birkhoff orthogonality in terms of
matrix operators. For any matrices A and B they denote the symbol ||A|| for operator
norm of A and A is orthogonal to B in the sense of Birkhoff-James iff for any complex
number z, ||A + zB|| > ||A||. A matrix A is orthogonal to B iff there exist a unit vector
x € H such that ||Az|| = ||A|| and (Az, Bx) = 0 [10]. They also introduced Birkhoft-
James orthogonality in [10] as AL B if and only if |A + 2B||, > ||A||,, where ||A]],
denotes Schatten p-norm of A defined by [|Al, = [>_7_, Sj(A)p]% for 1 < p < oo and
S1(A) > S1(A) > ... > S, (A) are singular values of A. Taking the special case for
p = 2, Bhatia and Semrl in [[10] also proved that the given orthogonality is equivalent to
usual Hilbert space condition (A, B) = 0, which defines an inner-product on the space of
matrices as (A, B) = trace(A*B). The norm associated to this inner product is ||.||2. In
an infinite dimensional case [[10], for any bounded operators in a Hilbert space H, AL B
if and only if there exist a sequence {x,} of unit vectors such in H that ||Az| — ||4],
and (Az,, Bx,) — 0. Benitz et al. [19] proved that X is an inner-product space if

and only if for any linear operators A and C in a finite dimensional normed space X,
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ALC & Ju € Sx @ ||Au|| = ||u||, AuLCu, where Sx = {x € X : ||z|| =1} and “L”
denotes the Birkhoff-James orthogonality.

Theorem 2.3.1. [l/9] If Sx is not an ellipse(X is not an inner-product space), then there
exists linear operators A and C in X such that A1 C, but there does not exists u € Sx
such that ||A|| = || Aul| and AuLlCu.

Theorem 2.3.2 ([19]). A real finite dimensional normed space X is an inner-product space
ifand only if , for A,C € L(X), ALC & 3z € Sx : ||A|| = ||Az||, Az LCx.

Theorem 2.3.3. [20] The g-angle has the following properties:

(i) Part of parallelism property: A,(x,y) = 0 iff x and y are linearly dependent.

(ii) Part of homogeneity property: A,(Ax,By) = A,(z,y) for every x,y € X and
A,BeR—-{0}.

In [20] Chen Zhi-Zhi et al. have given slightly different definition of Birkhoff or-
thogonality in such a way that; x is Birkhoff orthogonal to y iff A,(x,y) = 7 by using
projections of the angles between two vectors x and y in a real two dimensional normed

space X.

-1 g(z,y)
Il Nyl

where g(z,y) = Ya|[r(2,y) + 7—(2,y)] and Ta(z,y) = limy o 2= 1y phay

Definition 4. [20] The g-angle between two vectors x and y is given by g(z,y) = cos
case x Ly if g(x,y) = 0 or Ag(x,y) = 5.
For any 2 = (z1,72)" and y = (y1, y2)” in a two dimensional real normed space X,

0 if x and y are linearly dependent
q(z,y) = B
| Poyll ", if x and y are linearly independent.

Continuity property: If z,, — z and y,, — y, then A,(z,,, y,) = A,(x,y), where A (x,y)
is g-angle between x and y defined by A4,(z,y) = sin~*[q(x, y)].

Lemma 2.3.1. [20] If x is Birkhoff orthogonal to y. Then for any m,n € R, ||mz+ny|| >

[[maz]].

Theorem 2.3.4. [2]] Let x = (z1,72)" and y = (y1,y2)T be two vectors in a two di-

mensional real normed space X with basis {e, es} . Then x is Birkhoff-orthogonal to 'y iff
Ag(w,y) = Fie ||Ppyl =1
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2.3.1 Orthogonality on C*-module

Let A be a C*-algebra and H be a (left) <7-module. Suppose that the linear structure given
on &7 and H are compatible, that is, A(ax) = a(\x) for every A € C and a € H. Then
there exists a mapping (.,.) : H x H — o with the following properties [22]:

(i) (z,z) > 0foreveryz € H,
(ii) (z,z) =0iffz =0,
(iii) (z,y) = (y,z)" forevery z,y € H,
(iv) (azx,y) = a{x,y) ofeverya € & and z,y € H,

V) (x+y,z)=(x,2)+ (y, z) forevery z,y,z € H

The pair (H, (., .)) is called a ( left) pre-Hilbert .<7-module. The map (., ) is called an
<f -valued inner-product. If the pre-Hilbert </-module (H, (., .)) is complete with respect
to the norm ||z = || = ||(z, z)||2, then it is called .«7-Hilbert .«/-module over <7. Rajic et
al. in [[22], [21]]] introduced a new concept of Birkhoff-James orthogonality in a Hilbert
C'x- modules over C'x-algebra <7 and proved that such orthogonality with respect to .o7-
valued inner product coincide if and only if 7 is isomorphic to C. [22] A mapping
T :V — W between «/-modules V and W is called adjointable if there exists mapping
T* : W — V such that (Tz,y) = (x,T*y) forallv € V,y € W. Such a mapping T is
bounded, linear and satisfies T'(za) = T'(x)a for all z € V and a € 7. The space of all
adjointable mapping from V into W is denoted by B(V, W). Let 0, ,(z) = z(y, z), where
6., € B(V,W)and K (B, V) denotes the closed linear subspace of B(V, W) spanned by
{Quy : © € W,y € V'} is called space of compact operators.

Proposition 1. [22] Let A, B € B(H).Then minyec||A + AB||* = supjzij=1Ma,g(§),

where

2 [(ALBYI2 .
Map(§) = [AEI® = Spgp— i BEF#0

IA]1? if, ~ BE=0

Proposition 2. [22]] let o/ be a C*-algebra, and a,b € /. Then minycclla + \b||> =

mazeesa)Ma, (@), where

ah2 . .
plata) — EOIEif o(bD) # 0
p(a*a) if, @) =0
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Theorem 2.3.5. [22]] Le V be a Hilbert C*-module over a C*-algebra </ and x,y € V.
Then mingec||z + ©y||* = mazes(a) My (@), where M, ,(p) € < is defined by

Theorem 2.3.6. [22|] Let V be a Hilbert C*-module over a C*-algebra <7. Let x,y € V.
Then v Lpy < Jp € S() : p((z, 7)) = [|z||* and o ((z,y)) = 0.

Theorem 2.3.7. [22] Let V be a Hilbert C*-module over a C*-algebra </ and x,y € V.
Then

(l) QTJ—B?/ = <.Z',.T> 1 <$ay> ~ <l’,.f13> J—B <yax>
(ii) vLpy = xlpx(x,y) and v Lz (y, ).

Arambasic and Rajic (see in[22]) characterized Hilbert C*-modules where the Birkhoff
orthogonality coincides with the usual orthogonality with respect to inner-product space.
By using the Gelfand-Mazur theorem, it can be proved that <7 is isomorphic to C and
using this concept, C is only the unital C*-algebra in which Birkhoff orthogonality x 1 gy

coincides with x*y = 0 for all elements =,y € 7.

Theorem 2.3.8. [22|] Let V' # {0} be a full Hilbert </ -module. then the following state-

ments are equivalent:

(i) Forall x,y € V the condition (x Lpy < (x,y) = 0) is always true.

(ii) <f is isomorphic to C.

Theorem 2.3.9. [23] Let T be a linear operator on a finite dimensional real normed space
Xand My = {x € Sx : ||Tz|| = |T||}. If M7 can be partitioned into tow non-empty sets
which are contained in complementary subset of X, then there is a linear operator A on X
suchthat T 1 g Abut Tx [ p Ax.

Theorem 2.3.10. /23] Let T be a linear operator on a finite dimensional real smooth
normed space X. If My = {x € Sx : |Tx| = ||T||} is a countable set with more than
2 points. Then for any x € My there is a linear operator A on X such that T' 1 g A but
Ty [p Ax

Theorem 2.3.11. [23]] Let T be a linear operator on a two dimensional real normed space
X, and let My = {x € Sx : ||Tz|| = ||T||}. If Mt has more than two components, then
for any x € Mry there is a linear operator A on X such that T L g A but Tx [ g Ax.
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2.3.2 Strong Birkhoff-James Orthogonality

Definition 5. (Strongly orthogonal set)[12]: A finite set of elements {x1, ...... , Xy} Is said
to be strongly orthogonal set in the sense of Birkhoff-James iff for eachm € {1,2, ...... k}

k
|Zm |l < |2 + Z Ann ],

m=1m#n
whenever \,, # 0.

Theorem 2.3.12. [[12|] Let X be a normed linear space and xq € S,. If there exists a
Hamel basis of X containing xo which is strongly orthogonal relative to x in the sense of

Birkhoff-James, then x is an extreme point of Bx.

Theorem 2.3.13. [I2] Let X be a normed linear space and xy € Sx be an exposed point
of Bx. Then there exists a Hamel basis of X containing x, which is strongly orthogonal

relative to x in the sense of Birkhoff-James.

Theorem 2.3.14. [l/2|] Let X be a normed linear space and xo € Sx. If there exist a
Hamel basis of X containing xo which is strongly orthogonal relative to x in the sense

of Birkhoff-James, then there exists a bounded invertible linear operator A on X such that
|All = | Aol| > ||Ay|| for all y € Sx with y # Axg, X € S.

Theorem 2.3.15. [[[2|] For a normed space X and a point v € span(X), the following

are equivalent:

(i) x is an exposed point of Bx.

(ii) There is a Hamel basis of X containing x which is strongly orthonormal relative to

X in the sense of Birkhoff-James.

(iii) There exists a bounded linear operator A on X which attains only at the points of
the form \x with \ € Sy.

Theorem 2.3.16. [|/2] For a normed linear space X, the following are equivalent:

(i) X is strictly convex, and

(ii) For each x € Sk, there exists a Hamel basis of X containing x which is strongly

orthonormal relative to x in the sense of Birkhoff-James.
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For any bounded linear operator 7', A € L(X), T is said to be Birkhoff-James orthog-
onal to Aif ||T+ MNA|| > |T|| forall A € Cand My = {z € Sx : || Tz| = ||T||}. In

the real Banach space X, Sain introduced two sets ™ and =~ in his paper [24] by

() 2zt ={ye X :|lr+ M| > |z| forall >0} and
() = ={ye X :|lz+ My|| > ||z|| forall X <0}

For the complex Banach space, Paul et al. in 2018 introduced the following notations [[13]

depending on Sain’s concept : For any v € V,

() o7 ={ye X :|lz+ M| > [|=|| forall \=tr,t>0}
(i) 7 ={y € X : [z + Ay|| > ||lz| forall A=tr,t <0}

(iii) 27 = {y € X : ||z + \y|| > ||z forall \=tr,teR}
where V ={y € C: |y| =1,arg(y) € [0,27]}. Also

(iv) If u = €™y, then a::[ =z, = ch and z# =27, Inthe complex Banach space,

v

v) x*zﬂ{xj:”yGV},x_:ﬂ{x;:PyGV}ande:ﬂ{x%:’yEV}

Proposition 3. [24)] Let x,y € X, where X is an complex Banach space and v € V. Then

following statements are true

(i) Eithery € x7 ory € x7.
(ii) xlyy &y €xlory € x.

(iii) y € 5 = ny € (§x)Tforalln,§ > 0.

(iv) y €l = —y€aandy € (—);.
(v) y €z = ny € (&x); foralln,§ > 0.
(vi) y €x; = —y €xlandy € (—x)7.

(vii) y € 23 = py € (px)7 forall p € C.

(viii) y € v = py € (ux); forall p € C.

Proposition 4. [24] Let ©,y € X, where X is a complex Banach space. Then the follow-

ing are true
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(i) xlpy s yextandy € .

(ii) y € T = ny(x)*t foralln, & > 0.
(iii) yext = —y€xandy € (—x)".
(ivyex = —yecxtandy € (—x)*.

(v) y€x =ny € ({x)” foralln,& > 0.

Theorem 2.3.17. [24)] Let X be a reflexive complex Banach space, and Y be any complex
Banach space. Let T)A € K(z,y). ThenT Llp A & Vy eV, I z=z(y),y =
y(v) € My : Av € (Tx)T and Ty € (Ty);.

Theorem 2.3.18. [24] Let X be a complex Banach Space. Let x,y € X and r = €%,
where 0 € [0,27]. If y € x7, then either y € x for all p with arg i € [0,0] ory € x}
for all pwith arg p € [0, 7).

Theorem 2.3.19. [24|] Let be a linear operator on a finite dimensional complex Banach
space X, such that Mr is a closed connected subset of Sx. Then for A € L(X), T Lp
AsVyeV I aw=ua(y) € Mp:Tx Ly Ax.

Theorem 2.3.20. [24|] Let T be a linear operator in a finite dimensional complex Banach
space X such that Mt is a closed connected subset of the unit sphere of X. Then for
Ae L(X), T 1lp A3 0¢€l0,n]and v,y € My : Av € (Tx)T for all v with
argy € [0 — 7,0] and Ay € (Ty)7 for all y with arg~y € [0, 0 + 7.

2.3.3 Norm parallelism and Birkhoff-James orthogonality

Definition 6. [25] Let v,y € X, K € {C,R} and T = {pu € K : |u| = 1}. Then x is
said to be norm parallel to y if ||z + pyl|| = ||z|| + ||ly|| for all p € T.

Norm parallelism is symmetric as well as homogeneous; whereas, Birkhoff-James
orthogonality is homogeneous but not symmetric in a Banach space. [25] In the case of
Hilbert space, two elements are linearly dependent iff they are norm- parallel; however,
in normed spaces two linearly dependent vectors are norm-parallel, but the converse may
not be true. For instance, (1, 1) and (1,0) are norm parallel but not linearly dependent.
Depending on the concept of Birkhoff-James orthogonality and strong Birkhoff-James
orthogonality Paul et al.[25] introduce a new geometric notion of semi-rotund point. For

any normed linear space X, § # x € X is said the semi-rotund point of X if Jy € X :

19



x Lgpy. If forevery z £ 0 € X, x is a semi-rotund point, the normed space X is said to
be semi-rotund space. Dragomir introduced the concept of approximate Birkhoff-James
orthogonality [?] as follows: x is said to be approximate Birkhoff-James orthogonal to y if
|lz+py|| > (1—e)||x| forall u € K and € € [0, 1]; however, Chmielinski [25,27] defined
approximate Birkhoff-James orthogonality as ; z L« || + py|| > V1 — €2||z|| for all
i € K. The concept of approximate parallelism was developed by Zamani and Moslehian
[28]] by stating that x is approximately parallel to y if inf {||z + A\y|| : A € K} < ¢||z]| for
alle € [0, 1].

Proposition 5. [25]] let X be a bounded linear operator form a normed space X to normed

space Y and x € My. Then for any e € [0,1] and y € X, we have x|, = T'z||"T'y.

Theorem 2.3.21. [25|] Let T and A are compact linear operators form a reflexive Banach

space X to any normed space Y. Then T||A < 3 x € Mr N My : Tx||Ax.

Theorem 2.3.22. [25] If T and A are bounded linear operators form a normed space X
toY. ThenT||A < F{z,} € Sx : im0 [T || = ||T]], im0 || Ay || = [|A|| and
iy soq | T2, + pAz, || = [T + || A

, for some 11 € K.

Proposition 6. [25]] Let T be a bounded linear operator form a normed space X into
normed space Y and let v € My. Then Tx 15 Ty = x L% y for any € € [0,1] and
y € X.

Theorem 2.3.23. [25]] let T and A are bounded linear operators from finite dimensional
Banach spaces X to Y. Then T Lgp A < Ve > 0,3p. > 0 @ V|u| < pe, 3y, €
(Uzenry B(x,€)) NS : (| Ty + pAyull > 1T

Theorem 2.3.24. [25] Let T and A are compact linear operators fron a reflexive Banach
space X to any normed space Y be such that' T 1g A butT Jsp A. Then there exists
x € Mr such that Tx 1 g Ax.

Theorem 2.3.25. [25]] Let T and A are bounded linear operators from a normed space
XtoY.IfT Lgp AbutT [fsp A, then there exists a sequence {x,} in Sx such that
|Tx,|| — |T||, Az, — O or there exist a sequence {x,} in Sx and sequence {e,} in RT

such that || Tz, || — || T||, €n — 0, and Tx,, L7 Axy,.

2.3.4 Birkhoff-James orthogonality by applying semi-inner product

The concepts of Birkhoff-James orthogonality has been widely used by various researchers
since 1935. The latest research on this topic by Sain, Mal, and Paul [29]have studied
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Birkhoff-James orthogonality of compact linear operators between Hilbert space and Ba-

nach spaces by applying the notion of semi-inner product in normed linear spaces.

Definition 7. [29] For any normed linear space x, A scalar valued function (.,.) : X X
X — K, where K € {C,R} is a semi-inner product if for any £,n € K and for any
x,y, 2 € X, it satisfies the following conditions:
(i) (x+ny,2) =&z, 2) +n(z, 2),
(ii) (x,x) > 0, whenever x # 0.
(iii) | (z,y) < (z,2)(y,y),

(iv) (z,&y) = &(z,y).

Every semi-inner product space is a normed space with the norm [|z|?* = (z,7)
and the norm of any normed space can be generated through a semi-inner product in
infinitely many ways. Sain et al. in [29] characterized the Birkhoff-James orthogo-
nality set of any compact linear operators between a reflexive Banach space any Ba-
nach spaces. They also proved that there is an relationship between the concept of
semi-inner product spaces and the sets 2+ = {y € X : ||z + yy|| > ||z|fory > 0} and
rt ={y e X:|lz+yl = |z[ffory < 0}

Theorem 2.3.26. [29] Let T and A be compact linear operators from a reflexive Banach
space X to any Banach space Y. If any one of the following conditions holds;

(i) My is a connected subset of Sx.

(ii)) My is not connected but My = D U (—D), where D is a non-empty subset of Sx.

ThenT 1lg A< dx e My :Tx 1 Ax.

Theorem 2.3.27. [29] For a finite-dimensional Banach space X, the following statements

are are equivalent.

(i) For any linear operator T on X, My is the unit sphere of some subspace of X.

(ii) For any linear operator T on X, My = Dy U (—Dr), where Dy is connected subset
of X.

(iii) X is an Euclidean space.
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Theorem 2.3.28. [29] Let x,y € X, where X is a normed linear space. Then the follow-

ing are true.

(i) y € x iff there exists a semi-inner product (., .) on X with (y,x) > 0.
(ii) y € =~ iff there exists a semi-inner product (.,.) on X with (y,z) < 0.

Theorem 2.3.29. [29] Let T and A be compact linear operators from a reflexive Banach
space X to any Banach space Y be such that T 1 g A. let Oy denotes the collection of all

semi-inner product on Y. Then

sup{(Tz,y) : x € Sx,y € Sy, (.,.) € Oy, (Az,y) > 0}
Sup{(Tx,y) 1T e Sva S SY> ('7 ) S ﬁY’ (A$7y) S 0}

1T =

Theorem 2.3.30. [29] Let T and A be bounded linear operators form a normed space X
to Y be such that T 1 g A. Ley Oy denotes the collection of semi-inner product space on

Y. Let € > 0 be arbitrary but fixed after A choice. Then

(i) |7 = max {11(e), la(€)} = max {l1(e), ls(€)}, where

(ii) 11(e) = sup {(Tz,y) : w € Sx,y € Sy, (.,.) € Oy, | (Az,y) |< €}
(iii) ly(€) =sup{(T'z,y) : v € Sx,y € Sy, (.,.) € Oy, Az € (y)™}
(iv) l3(e) = sup {(Tz,y) : * € Sx,y € Sy, (.,.) € Oy, Az € (y)~ ¢}

Theorem 2.3.31. [29] Let X be normed linear space such that X* is strictly convex. Let
fy9 € X* be suchthat f 1 g g. then

sup {f(x):x € Sz, g(x) >0}
sup {f(x):x € Sz, g(x) <0}.

11l =

Theorem 2.3.32. [29] Let T and A are compact linear operators from a reflexive Banach
space X to any Banach space Y be such that for each A\ € R, My, o = Dy U (—D,),
where D) is a non-empty connected subset of Sx. Let Oy denotes the collection of all

semi-inner product space on Y. Then

dist(T, span {A}) = sup{(Tz,y) : x € Sx,y € Sy, (.,.) € Oy, (Ax,y) =0}.
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Theorem 2.3.33. [29] Let X be a reflexive Banach space and Y be any Banach space. Let
Z be a finite dimensional subspace of K(X,Y). Let T € K(X,Y)\ Z. Let us further
assume that for any X € R and for any A € 2, Mriya = Dy a U (—Dy ), where D 4
is non-empty connected subset of Sx. Then there exist Ay € Z such that

dis(T, %) =sup{(Tx,y) : x € Sx,y € Sy, (Apz,y) = 0}.

Moreover, Ay is the best approximation of T in Z.

2.3.5 Modular Birkhoff orthgonality in Banach modules

We have already mentioned that Rajic et al. in[22]] studied Birkhoff-James orthogonality
in a Hilbert C*-modules over a C*-algebra. The most current research as generalization
of Birkhoff-James orthogonality from Hilbert space to Banach spaces in [30], Sain and
Tanaka studied the stronger version of modular Birkhoff-James orthogonality in the set of
bounded and compact linear operators. In order to prove their study they introduced the
following notions: X+ = {y € X : 2z L gy} and My = {x € Sx : || Az| = ||A]|}. An
element z # 0 € X is said to be smooth point in X if 7 (x) = {f € S% : f(x) = ||z||}
is a singleton set. For any Banach space X, an element = € X is said to be left symmetric
in X ifforanyy € X,z L gy =y Lp x. Similarly x is said to be right symmetric in X
ifforanyy € X,y Lp oz = o Lp y. If xis both left as well as right symmetric, then x

is said to be a symmetric point.

Definition 8. /30] A Banach space X is called a right o/ -module (where <7 is a Banach
algebra) if there exists a mapping of X X </ into X such that for each a,b € < and
r € X, z(ab) = (xa)b and ||az|| < ||z||||al|-

An element x € X is said to be right-modular Birkhoff-James orthogonal to y € X,
if v Lp ya for all « € & and left-modular Birkhoff-James orthogonal to y if z L g ay
foralla € &7.

Theorem 2.3.34. [530] Let T and A be compact linear operators form a reflexive real
Banach space X to any real Banach space Y such that My = {£xo} for some zy € Sx.
Then Aé(x) & T(X) C (Azo)™*.

Definition 9. [30] A Banach space X is said to be Kadets-Klee if whenever {x,} is a

sequence in X and x € X is such that {x,} converges weekly to x and lim ||z, || = ||z
n—r00

’

then lim,,_,« ||z, — x| = 0.
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Theorem 2.3.35. [30] Let A be a compact linear operator from a reflexive Kadets-Klee
real Banach space to any real Banach space be such that My = {+xq} for some xy € Sx.
Then given any bounded linear operator T € B(X,Y),A Lpx) T < T(X) C (Azp)™.

Theorem 2.3.36. [30] Let X, Y be real Banach spaces. Let A € B(X,Y) be a smooth
point in B(X,Y') such that My # 0. Then given any T € B(X,Y), A lgx) T &
T(X) C (Axg)™*, where M = {+x,}.

Theorem 2.3.37. [30] Let T and A are compact linear operators from a reflexive complex
Banach space X to any complex Banach space Y be such that M 4 = {ew:vo 0 €10, 27r]}

or some xq € Sx. Then given any compact linear operator T, A 1 gxy T < T(X) C
(X)
(Axg)t.

Theorem 2.3.38. [30] Let T and A are compact linear operators from a reflexive real
Banach Space X to any real Banach space Y be such that My = {+x} for some x¢ € Sx.
Then given any compact linear operator T, A J_j‘g(y) T =& Txy = 0. Moreoverif X is
Kadets-Klee, then same is true for any T € B(X,Y).

Theorem 2.3.39. [30] Let T and A are compact linear operators from a reflexive complex
Banach space to any complex Banach space Y be such that M, = {ewxo 0 €10, 27r]}
for some xy € Sx. Then givenany T € K(X,Y), A Lo T Tzg=0.

If A is a bounded linear operator from a normed spaces X to Y, then its adjoint A* €
B(Y*, X*) is defined by (A*y*) = y*Ax foreach z € X, y* € Y* and || A*|| = ||z||. For
any subsets R and S of a Banach space X, R L g Sifx Lgyforallz € Randy € S.

Proposition 7. [50] Let T and A are bounded linear operators from a Banach space X to
YIfA(x) Lp T(X), then A Lp T.
2.3.6 Birkhoff orthogonality via 2-HH norm

Motivated by various generalizations of Birkhoff orthogonality, we make an attempt to

introduce this most popular orthogonality in terms of 2-HH norm which we denote by

T Lo_pgr—py 31l

In the case of 2-HH norm,

/01 (1 =)z + My|* = /01<(1 — )z + My, (1 — )z + My)dt

1 t 1
_ ||x|\2/0 (1—t)2dt—|—2)\(x,y)/0 {1 — t)dt + X2 Hy||2/0 £2dt.
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r L y, then

/|| (1= D)z + Myl —||x||/ P2dt + A2 |y / 24t

= (el + I2wll) @)

[1a=tea=e [(a-opa=ger. @

Since || Ay|” is a non-negative quantity, so from relation (2.7) and (2.8, we conclude
that

But,

1 1
/ 11— ) + Ayl > / 11—t dt 2.9)
0 0

Keeping above result in our mind, we can conclude that x L, g5 (B)y if the relation
(2.9) is satisfied.

In the following theorem, 2-HH-R and 2-HH-B denotes the Robert orthogonality and
Birkhoff-James orthogonality via 2-HH norm respectively.

Theorem 2.3.40. [9] Let x,y € X, where X is a real normed linear space equipped
with an inner-product space over the field K = (R or C) and n = At. Then 2-HH-R
orthogonality implies 2-HH-B orthogonality and conversely.

Proof. Assume x 1o gy g y. Then for any i € R,

/0 10— ) + ] dt = / 11— ) — ] dt
= [0 =0 — (1= 02—

0

_ / (1L = D)zl = (1= t)(z,y) — (L — t){y, ) + ||py|*)dt

1 1
- / 11— b)) dt + / iyl dt
0 0

1
> / (1 = )z dt. (2.10)
0

Therefore x is 2-HH-B orthogonal to y. To prove the converse part, It is enough to show

thatz 1o _gH_B Yy = <$,y> =0=xlo_gr_nr Y.
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Letx 1o pp_py. Then for any A € K,

1 1
/||(1—t):17+)\ty||2dt2/ (1 — t)z||?dt
0 0
1 1

= [ 1= vlPa+ )+ Nz [ ea - oy

0 0

1 1
FNPIl? [ ez [0 - el
0 0

= Re[My, 2)] + [M*[ly]* > 0 (2.11)
Now, for A = ﬁ, inequality (2.11) becomes %’ﬁy? > 0. Therefore, we have

<$7y> = 0.

On the other hand it is easy to show that (x,y) = 0=z Lo yu_rv.

2.4 Isosceles orthogonality

Definition 10. /l/|] An element x of a normed linear space X is orthogonal to y € X in the

sense of isosceles if and only if ||x — y|| = ||z + y||-

For ordinary Euclidean space, the analogy of this definition is two vectors are perpen-

dicular if and only if their sum and difference can be sides of an isosceles triangle.

Properties of isosceles orthogonality:

(i) Isosceles orthogonality satisfy non-degeneracy, simplification and continuity;
(i1) Isosceles orthogonality is symmetric;
(111) Isosceles orthogonality is unique if and only if the space is strictly convex;

(iv) If the isosceles orthogonality is homogeneous (additive)in X, then X is an inner-

product space.

Theorem 2.4.1. [I]] Let (X, ||.||) be a normed space and x,y € X. Then there exists a

number « such that

[z + (ax + y)l| = lz = (ez +y)||
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Theorem 2.4.2. [1|] If isosceles orthogonality is homogeneous in a normed linear space

X, then X is an abstract Euclidean space.

Theorem 2.4.3. [|/|] If isosceles orthogonality is additive in a normed linear space X, then

X is an abstract Euclidean space.

Corollary 2.4.1. [I|] The properties of homogeneity and additivity of isosceles orthogo-
nality are equivalent for a normed linear space X. If the isosceles orthogonality is homo-
geneous or additive, then for any element x and y there is a unique number o for which

r 1L ax+y.

In the paper [32], Kapoor and Prasad discussed about the unique property of isosce-
les orthogonality and proved that the isosceles orthogonality is unique if and only if the
underlying space is strictly convex. The details of uniqueness property was discussed on
Alonso’s paper [16]. In 1994, Alonso mentioned in the paper [33]] that the isosceles or-
thogonality is said to be unique in a normed linear space whose dimension is at least two
if for each two dimensional subspace X, and z € X; \ {0}, and each number ¢ > 0,
there exist a unique point (except for the sign) y € £S,, such that x L ; y and it is said
to be A—unique if for each point z # 0 and each point y, there exist a unique number A
such that z L ; Az + y. Ji et al. elaborate the Alonso’s results on uniqueness of isosceles
orthogonality and proved some important relations related to isosceles orthogonality. The
most important concept they proved that, if the isosceles orthogonality is not A—unique,
then it is not unique and if isosceles orthogonality is not unique, then it is not A—unique.

Therefore, the uniqueness and A—uniqueness if isosceles orthogonality is equivalent [34]

Definition 11. /34)] A real finite dimensional normed linear space is called Minkowski
space.lf the dimension of Minkowski space is two, then it is called a Minkowski plane.

plane.

Theorem 2.4.4. [34|] Let X be Minkowski or normed plane. If there exists x1, vy, Yo such
that yy # o,

yill = lly2ll, * L; y1 and x L ys, then the following relations hold:

2+ w1l = llz — vl = Iz + ol = [l = w2l = llsll = llyell (2.12)

[34] For any two distinct points z,y € X, the line segment passes through x and y is
denoted by (x,y) and the segment between x and y by [z, y|. For any point x € X \ {0},

the maximum of the length of non-trivial segment contained in the unit sphere Sx and
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parallel to the line (—x, =) is denoted by M,. i.e

M, = sup { o = £[0,8] € S0 # and 2 = L)
fa=d ~ Tzl

If there is no non-trivial segment contained in Sy and parallel to the line (—z, x), then
M, = 0 [34].

Theorem 2.4.5. [34] Let X be a Minkowski (or normed plane) and x € X satisfying
|z|| > 0. Then for each number s € |0, %ﬁ“] (s € [0,+00 when M, = 0), then there
exist a unique point 11sS,. ( except for the sign) such that x 1; y.

Corollary 2.4.2. [34] Let X be a Minkowski (or normed) plane and x € X satisfying
|lz|| > 0. Then for each number 0 < r < ||z

, there exists a unique point y € rSx (

except for the sign) such that x L y.

Corollary 2.4.3. [34|] Let X be a strictly convex Minkowski( or normed) plane and x € X
satisfying ||z|| > 0. Then for any r € [0,+00), there exists a unique point y € rSx
(except for the sign) such that x 1| y.

Theorem 2.4.6. [34)] Let (X, ||.||) be a normed linear space with diim X > 2 and x,y €
X satisfying ||z]] > 0and 0 < ||ly|| < % (0 < |ly|| < +o0 when M,(y) = 0). Then
there exists a unique real number o such that x 1, x + y.

Ji and Wu introduced a new geometry constant D(X) to give a quantitative character-
ization of the difference between Birkhoff-orthogonality and isosceles orthogonality [35]].
They showed that 1 and 2(\/§ — 1) are the upper and lower bound for D(X), respectively,

and characterize the space of which D(X) attains the lower and upper bounds.

Theorem 2.4.7. [35]] For any real normed linear space X with diim(X) > 2, 2(v/2—1) <
D(X) <1land D(X) = 1ifand only if X is Euclidean.

Theorem 2.4.8. [35|] For any real Banach Space X with dim(X) > 2, there exists ey, es €
S(X) such that e, L e; and infycg{||ey + es||} = 2(v/2 — 1) if and only if there exists a
two dimensional subspace X, of X and xo € S(Xy) such that x is the common end point

of two segments of which the length are not less than /2.

Theorem 2.4.9. [35] Let X be a symmetric Minkowski plane and {ey, ex} be a pair of
axis of X. Then

(i) e1 LR ey,

28



(ii) €1 Lp e,
(iii) ey and es is a pair of conjugate diameters of X,

(iv) X* is also symmetric Minkowski plane and {e%, e} is a pair of axes of X*, where

e}, e5 is the supporting functional of e1, es respectively.
Theorem 2.4.10. [35] Let X be a symmetric Minkowski plane, eq, e5 be a pair of axes of
X, then forall v,y € S(X), © = awey + Beq, x Ly yifand only if y = +(—fe; + aes).
In 2010, Dragomir and Kikianty came up with new generalization of isosceles orthog-

onality in terms of 2-HH norm. They gave the definition of orthogonality as follows:

Definition 12. [7] Let (X, ||.||) be normed space, and x,y € X. Then x is said to be

isosceles orthogonal to y in terms of 2-HH norm if and only if
1 1
/ (1 = t)z + ty||*dt = / (1 — )z — ty||*dt.
0 0

This orthogonality is equivalent to the usual orthogonality, if the space is equipped

with an inner-product.

Theorem 2.4.11. [7] Let X be a normed space. Then the isosceles orthogonality via 2-HH

norm is existent.

Theorem 2.4.12. [/] Let X be a normed space. Then isosceles orthogonality is unique if

and only if X is strictly convex

Theorem 2.4.13. [7)] Isosceles orthogonality via 2-HH norm is homogeneous in a normed

space X if and only if X is an inner product space.

Theorem 2.4.14. [36] Let X be a normed linear space with the norm induced by an inner-
product. Then, the isosceles orthogonality via 2— H H norm satisfies the non-degeneracy,

continuity and symmetry property.
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Proof. Non-degeneracy: If v 1o gy 7y, then
1 1
/ (1 —t)x + tz||*dt = / (1 = t)x — tz||®dt
0 0

1 1
N /||x]|2dt:/ l2l|2(1 = 26)2dt
0 0

2
2 2
= = —
lz]” = 3l
1 2
= — :O
e

= =0 (2.13)

Continuity: Letx, — x,y, — y foralln,and z,, 1o gg_; .. Then,
1 1
[ 1= 0t = [0 = )z — by P
0 0
1 1
= lim / (1 = ) + tya|2dt = lim / (1 = ), — tya | 2dt
1 1
= / (1 —t)a:+ty\|2dt=/ (1 —t)x — ty||*dt
0 0

= T Lo gu_g1 Y. (2.14)

Symmetry: If v 15 gy _; vy, then

[0 nesupa= 10—
0 0

= Sl +Il?) = S0kl + ol

= 2l + el = Sl + )

- 101 )y o+t = / 0= 2y — ol

= Yy Lo gm-rx. (2.15)

]

Kikianty and Dragomir (2010), proved that the homogeneity and additivity of the
Pythagorean orthogonality via 2 — H H norm is equivalent; however, they also stated the
similar result about the isosceles orthogonality with respect to 2 — H H norm, by omitting

the proof. In the following theorem, we give complete proof regarding the equivalency of
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homogeneity and additivity of the / H — I orthogonality.

Theorem 2.4.15. [36] Let v 15 1 y. Then, the following are equivalent:

1. Isosceles orthogonality via 2 — H H norm is homogeneous.

2. Isosceles orthogonality via 2 — H H norm is additive.

Proof. (1) = (2). Assume that the isosceles orthogonality via 2 — H H norm is homoge-
neous. We shall show that it is additive. As 2 — H H — I orthogonality is homegeneous in
a normed sapce X if and only if X is an inner product space, and therefore it is additive.

(2) = (1). Conversely assume that additive property holds and = Ly gy _; y. Since,
2— H H — I orthogonality exists, for any x, —y thereexistsa S € R: x 1o gy ;1 fx—v,
and by additivity property, we conclude that x 15 gzy ; Sz. Hence, § = 0 whenever
x # 0 and therefore x 15 gy ; —y. Again by the symmetry and additivity property of
1sosceles orthogonality via 2 — H H norm, we may conclude that px 15 gy qy for all

integers p and ¢. When p # 0,

! q, 2 1 2, ¢ 2
1=tz +t(=)y||"dt = =(||=]|” + = ||y
/0 11 —1) (p) | 5 (ll] p2|| 1)
! q
:/ (1 —t)z — t=y||*dt. (2.16)
0 p

This shows that + 15 gy ; ky for some k£ € Q, and by using the continuity of norm,
x Lo pgp_1 ky for any real k. Again 2 — HH — [ orthogonality is symmetric, and

therefore we may conclude that it is homogeneous. [

Definition 13. [/4|] Let H be a real or complex Hilbert space and T\, Ty € B(H). Then
two operators Ty and Ts have disjoint support if and only if T\ Ty = T5T) = Q.

Bottazi et al. studied the isosceles orthogonality of bounded (positive) linear operators
on Hilbert space with some of the related properties, including operators having disjoint
support. [14] Let 7} and 75 are norm attaining bounded linear operators in a Banach space

X. Then, 77 is said to be isosceles orthogonal to 75 if for every h € M,
[(Ty = T2) ()| = (71 + T2) (R) |- (2.17)

Also, in the same paper, the Pythagorean orthogonal for operators was defined as follows:

T is said to be Pythagorean orthogonal to 75 if for every h € Mr,
(T = To)(W)II* = 1T * + | TelPor[(Ty + To) (W) * = | Thl* + | T2)7. (2.18)
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Theorem 2.4.16. [36] Let T and T, be norm attaining bounded linear operators with
the disjoint support in a Hilbert space H. Then, T} is isosceles orthogonal to 'T; if and
only if Ty is Pythagorean orthogonal to T.

Proof. LetT), T, € B(H). Assume T is isosceles orthogonal to 7, and h € Mp. Using
the relation (2.21]), we have

(T = T2)(M)II” = [Ty + T2) (M) |I?
= [Ty (M) |* + | To(h)||* + 2Re(T\ T h, h)
= [T (M) |* + | Ta(h)|”
= |Th|* + || 72> (2.19)

This shows that 77 is Pythagorean orthogonal to 75. Conversely assume that, for any
h e My,

(11 = Ta)(R)||? = [ Ta(h)|]* + || T2(h)[?
= |[(Ty + T2)(B)[|>.

Therefore,
[(Ty = T2) ()| = (71 + T2)(R) |-

That is,
|Ty — T = ||Ty + T (2.20)

]

Proposition 8. [36] Let T and T, be bounded linear operators form a Banach space X
to Y. Then for any x € My, ., " Mq,_1,, Ty (z) L; To(x) = Ty L1 To.

Proof. Letx € My, 17, N My, _,. Suppose T (x) Ly To(x). Then,

1T (z) — Ta(2)|| = |Ti(x) + To(z)||
= |[(Th = Ty)z|| = [[(T1 + T2)z||
= |Th =T = [T\ + 13|

]

Proposition 9. [36l] Let T and T5 be bounded linear operators form a Banach space X to
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Yand {x,} be a sequence in X such that lim x,, = x. Then for any x € My, 7, M, 7,
n—oo

Tl(xn) s TQ({En) = Tl i TQ
Proof. Letx € My, 1, N My, _1,. Suppose T’ (x,,) L; T5(z,). Then,

T3 (20) — Ta(@n) || = T3 (zn) + Ta(zy)|]
= lim [T (2) = To(z,)|| = lim [ Ta(zn) + To(z)|
= |[Ti(zn) — Ta(2)]| = | T7(z) + To(2)|
= [T =T = [Th + 2|

2.5 Pythagorean Orthogonality

Definition 14. [[I]] Let (X, ||.||) be normed linear space and x,y € X. An element x is
said to be orthogonal to y if and only if

lz = ylI* = ll2l* + Iyl

In ordinary Euclidean space, this is analogous to the fact that two vectors are perpen-
dicular if and only if there is right triangle having two vectors as legs. James mentioned in
the paper [1] that, in case of normed linear space, Pythagorean and isosceles orthogonality

are not equivalent.
Properties of Pythagorean orthogonality [16]

(i) Pythagorean orthogonality is symmetric;

(i1) Pythagorean orthogonality is either homogeneous or additive if and only if the norm

is induced by an inner-product;
(iii)) Pythagorean orthogonality is unique;

(iv) Pythagorean orthogonality is a—unique;
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(v) If X = R? with a regular octagon as unit sphere then the Pythagorean orthogonality

is S—unique, however it is not S— unique when S is an square.

Definition 15. [16] Let (X, ||.||) be a normed space and 0 # x,y € X. Then the
orthogonality is said to be left (right) unique if there exists only one o such that r 1
ar +ylaxr +y L z).

In the case of Pythagorean orthogonality, James proved that the left and right uniqueness
are equivalent.

Theorem 2.5.1. [I]] Let (X, ||.||) be a normed space and x,y € X. Then there exists a
number o such that

lz = (ax +p)II* = [l=]* + oz + y[I*.

Corollary 2.5.1. [[I|] Let (X, ||.||) be a normed space and x,y € X. Then there exists a
number o such that

Iz + (ez + )I* = l|2[I* + [laz + y]*

Theorem 2.5.2. [lI\] If Pythagorean orthogonality is homogeneous in a normed linear

space X, then X is an abstract Euclidean space.

Theorem 2.5.3. [lI|] The property of homogeneity and additivity of Pythagorean orthog-

onality are equivalent for normed linear space.

Corollary 2.5.2. [1|] If Pythagorean orthogonality is additive in a normed linear space

X, then X is an abstract Euclidean space.

Theorem 2.5.4. [[]] Let (X, ||.||) be a normed linear space and x,y € X. Then the

following are equivalent:

(i) X is an inner product space;
(ii) x is Pythagorean orthogonal to y implies x is isosceles orthogonal to y;
(iii) x is isosceles orthogonal to y implies x is Pythagorean orthogonal to y.

Theorem 2.5.5. [[I]] Let (X, ||.||) be a normed linear space and x,y € X. Then the

following are equivalent:

(i) X is an inner product space;
(ii) x is Pythagorean orthogonal to y implies x is Birkhoff-James orthogonal to y;
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(iii) x is Birkhoff-james orthogonal to y implies x is Pythagorean orthogonal to y.

Dragomir and Kikianty introduced Pythagorean orthogonality in terms of 2 — HH

norm.

Definition 16. [7] Let (X, ||.||) be normed linear space. An element v € X is said to be
Pythagorean orthogonal to y in terms of 2 — H H norm if and only if

1
1
/0 It =)+ tyl*de = S (ll=]* + [lyl®).

This orthogonality is equivalent to usual orthogonality, when the space is equipped

with an inner-product.

Proposition 10. [[7] Let (X, ||.||) be normed linear space and x,y € X such that (1 —t)x
is Pythagorean orthogonal to ty for almost every t € [0,1], then x Lyy_p y.

Proposition 11. [7] Let (X, ||.||) be a normed space. Then the Pythagorean orthogonality

via 2-HH norm is existent.
Theorem 2.5.6. [7] Pythagorean orthogonality via 2-HH norm is unique in any normed
space X.

Dragomir and Kikianty mentioned the following theorem in the paper [7] without

giving detailed proof. In this thesis we make an attempt to give the detailed proof.

Theorem 2.5.7. [56] Let X be a normed linear space with the norm induced by an
inner-product. Then, the Pythagorean orthogonality via 2 — H H norm satisfies the non-

degeneracy, continuity and symmetry property.

Proof. Non-degeneracy: If z Loy, x, then

1
1
|10 = 0+ talfat = (el + ol
2
=l = Sl
1 2
= Zz)r=0
el

= z = 0.
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Continuity: Letz, — z,y, = yand x, Lo gy, yn. Then,

1
1
1= B+ Pt = 5l + o)
0

1
o1
(1 = ) + tyalPdt = Tim = (P + 1)

= lim

n—oo 0

1
1
> [ Ia=0r = Gl + i)

= T Llo_gr-pPY.

Symmetry: If x 1o gy py, then

1
1)l =5 el + )
1
=2l + l21?)
1
- / 11— t)y + tadt
0

=y, z)llo-rH.

]

In the case of norm attaining bounded linear operators, when the norm is induced
by an inner-product, we introduce a relation between the isosceles and Pythagorean or-
thogonalities by stating that the operator 77 is isosceles orthogonal to 75 if and only if
T7 is Pythagorean orthogonal to 75. Furthermore, we prove an interesting relation that
the Pythagorean orthogonality implies the Birkhoff-James orthogonality, but the converse
may not be true. To disprove this statement, we take two dimensional matrix operators on
a Hilbert space whose norm is obtained by taking trace of the product of the adjoint of an

operator with the operator itself.

Bottazi et al. (2020), studied the isosceles orthogonality of bounded (positive) linear
operators on Hilbert space with some of the related properties, including operators having
disjoint support. Let 7} and 75 are norm attaining bounded linear operators in a Banach

space X. Then, T} is said to be isosceles orthogonal to 75 if for every h € M,
(T = T2)(R)|| = I(T7 + T2)(h) . (2.21)

Also, in the same paper, the Pythagorean orthogonal for operators was defined as follows:
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T} is said to be Pythagorean orthogonal to 75 if for every h € My,

(T = T)WIP = IT1]1* + I TalPor | (T3 + T)(M)I* = | Tl* + 127, (222)

The following theorem gives the characterization of Birkhoff-James orthogonality for

operators.

Theorem 2.5.8. [36] Let T} and T, be norm attaining bounded linear operators in a
Hilbert space H. If T is Pythagorean orthogonal to Ts, then T is Birkhoff-James or-

thogonal to Ts, but the converse may not be true

Proof. Let Ty, T» € B(H) such that T} is Pythagorean orthogonal to 75. Then, by using
[022) with h € My,

(T2 + ATR)(W)I* = 1 Tu()[1” + T2 ()]
= (T + X)) (W)|P > I3 ()1
= (T + AT)(B)[| > | (R)|I?

= T+ AT = T3] (2.23)

This shows that 7 is Birkhoff-James orthogonal to 75. [

The following example shows that the converse of above theorem may not be true.

Example 2. Suppose that H is the two dimensional Hilbert space. Consider the Banach

4 0 10
space B(H). Let T} = (O 3), T, = (0 1) € B(H) and X € [0,1]. We know that

|T||? = trace(T*T). Then,

44X 0
Tl + )\TQ - i )
0 34X
44X 0
T+ \Ty)* = ,
i +2T) 0 3+>\>
(4+N)? 0
T) + XT)*(Ty + \Ty) = .
(i + AT + T3 0 (3+1)?
Thus,
trace[(T) + ATy)*(Ty + MTo)] = (4 + A)* + (3 + ). (2.24)
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Since, A € [0,1],

min[trace((T) + \1»)* (11 + N13))] > 25
= |+ 2T > 5. (2.25)

Similarly we can find ||T1|| = 5. Therefore, we may conclude that T} is Birkhoff-James
orthogonal to 'T,. On the other hand,

50 . (25 0

It follows that | T} + Ty||> = 41. However,
Pythagorean orthogonal to T5.

Ti|? + ||T»||* = 26. Therefore, T} is not

2.6 Carlsson Orthogonality

S. O. Carlsson in 1962 introduced a generalized concept of orthogonality in normed space

with indicating that isosceles and Pythagorean orthogonality are special cases [4].

Definition 17. Let (X, ||.||) be a normed linear space and ay,, by, cx, k = 1, ......m, a fixed

collection of real numbers satisfying

m m m
E akbkck = 1, E akb,% = E akcz = 0.
k=1 k=1 k=1

An element x € X is said to be orthogonal to y € X if

m

Z ax||brz + cryl|* =0
k-1

Theorem 2.6.1. [4] Let (X, ||.||) be a normed space and x,y € X. Then there is a

number o such that x is Carlsson orthogonal to ax + .

Definition 18. [4)] Orthogonality is said to have property (H) in normed linear space X if
r Lo yimplies that

m

lim — g al|nbrz + cryl|* =0, where n is a positive integer
n—-+oco N,
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Definition 19. [4] Let (X, ||.||) be a normed space. The norm on X is said to be Gateaux
differentiable if, for every pair of elements 0 # x,y € X, the limit
[z + hyll — =]

N(z,y) = }lg% ? exists.

Theorem 2.6.2. [4|] If the Carlsson orthogonality has property (H) in X, then the norm of
X is Gateaux differentiable and x | ¢ y holds if and only if N(x,y) = 0.

Definition 20. /4] Let (X, ||.||) be a normed space and x,y € X. Then x is said to be
anti-orthogonal to y if y is orthogonal to x or if and only if

m

Z akHckm + bky||2 = 0.

K=1

Carlsson proved that if orthogonality has property (H), then it is equivalent to normal-
ity and therefore homogeneous. In this regards, it is better to say that anti-orthogonality
has property (H). If the orthogonality is replaced by anti-orthogonality, then there is a
number « such that x+ | Caz + y and the norm of X is Gateaux differentiable and
xz Loy fiand only if N(z,y) = 0.

Theorem 2.6.3. [4)] If the Carlsson orthogonality has property (H), then it is symmetric

and equivalent to normality in X.

Corollary 2.6.1. [4] If dim X > 2 and the Carlsson orthogonality is homogeneous or
additive in X, then X is Euclidean space.

Theorem 2.6.4. [4] If X is a normed linear space in which the Carlsson orthogonality
has property has property (H), then X is an Euclidean space.

Corollary 2.6.2. [4|] If X is normed linear space in which the Carlsson orthogonality is

homogeneous or additive, then X is Euclidean space.

Theorem 2.6.5. Let ap # 0,bg,ci, k=1,...... ,m, be real numbers such that (by, cx,) and
(by, ¢, ) are linearly independent for k % r. If (X, ||.||) be a normed linear space satisfying

the condition
m

Zakkux +eylP=0 forallz,y € X.
k=1

Then X is an Euclidean space.
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2.6.1 Carlsson Orthogonality in terms of p-HH norm

In 2010, E. Kikianty and S.S. Dragomir played a vital role to introduce p — H/ H norm on
the Cartesian square of normed spaces by generalizing the previous definition of Carls-
son orthogonality through the medium of 2 — H H norm, which also generalizes the

Pythagorean and isosceles orthogonality through te medium of 2 — H H [37].

Definition 21. [37] Let (X, ||.||) be a normed linear space and ay, by, ¢, k=1,2,3, ...... ,m,

m € N be real numbers. An element x € X is said to be Carlsson orthogonal to y in terms of

2-HH norm if and only if

m 1
S [ 1= b+ tyeulPat =0
0

k=1

with conditions

m m m
E akbi = E akci = 0and E apbrer = 1
k=1 k=1 k=1

In any inner product space, the Carlsson orthogonality via 2-HH norm is equivalent to

the usual orthogonality.

Theorem 2.6.6. [37] Carlsson orthogonality in terms of 2 — H H norm satisfies the non-

degeneracy, simplification and continuity.

Theorem 2.6.7. [37] Let (X, ||.||) be a normed space. Then the Carlsson orthogonality

via 2-HH norm is existent.

Theorem 2.6.8. [37] Let (X, ||.||) be a normed space in which the Carlsson orthogonality
in terms of 2-HH norm is homogeneous (or additive) to the left. Then X is an inner product

space.

Definition 22. [37] The Carlsson orthogonality in terms of 2-HH norm is said to have
property (H) in a normed space X, if x is Carlsson orthogonal to y implies that
1T )
lim — Zaanbk(l —t)x + cxty||°dt =0

If the Carlsson orthogonality via 2-HH norm is homogeneous (or additive to the left)

in X, then it has property (H) and if X is an inner product space, then the Carlsson orthog-

onality in terms of 2-HH norm is homogeneous (or additive) and therefore it has (H).
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Lemma 2.6.1. [37] Let (X, |.||) be a normed space where the Carlsson orthogonality in
terms of 2-HH norm has property (H). Suppose that for any x,y € X, there exist « € R
suchthe x L yy o ax +vy. Then

-1
o= W[ > abeeNo(z,y) + > axbeeN-(2,y)]
v brcp>0 brcr <0
Corollary 2.6.3. [37] If the Carlsson orthogonality via 2-HH norm has property (H),

then the norm of X is Gateaux differentiable at x and x 1 o y holds if and only if
N(z,y) =0.

Corollary 2.6.4. [37] If the Carlsson orthogonality via 2-HH norm has property (H),

then it is symmetric and equivalent to B-orthogonality.

Bottazzi et al. in the paper [14] discussed about Birkhoff-James, isosceles, and Robert
orthogonality in Banach spaces in terms of bounded linear operators. Motivated by the re-
sults of Bottazzi et al. (2020), we make an attempt to introduce the Carlsson orthogonality
for bounded linear operators in Banach Spaces. Furthermore, we verify some properties,
like non-degeneracy, continuity, and homogeneity property of an inner-product space in

the context of the Carlsson orthogonality in terms of bounded linear operators.

Definition 23. [36] Let Ty and T, are bounded linear operators on X. Then, the operator
T, is orthogonal to Ty in the sense of Carlsson (denoted by Ty 19 Ty) if for any h € Mr,

S el Ty + r ) (W)])? = 0, (2.26)

k=1

satisfying the conditions

n n

> marre =1,) oy = Y prri = 0. (2.27)

k=1 k=1 k=1

Theorem 2.6.9. [36] Let T and T, be norm attaining bounded linear operators on a
Banach space X. If Ty =T5 =T, then

S ol (@i + o) (W))> =0e T =0.
k=1

Proof. Let Ty, T, € B(X)and h € My. Assume(2.26) under the condition (2.27). Since,
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T, =T, =T, we have

S pell (@ T + )R =0

k=1
= Y mla+nlPITRIP =0
k=1
= Th| =0
= |Th|| = 0.
As h € My, we can write | Th|| = ||T||. Therefore, we may conclude that
T =0=T=0. (2.28)
The converse part is obvious. O

Theorem 2.6.10. [36] Let {U,,} and {V,,} be sequences of norm attaining bounded linear

operators on a Banach space X. Then,
U, L9V, =U 19V

Proof. In the case of linear operators, boundedness and continuity are equivalent. By the

continuity of the U,,’s and V/,’s, we can write

lim U,(h) =U(h) and lim V,(h) = V(h).

n—o0 n—oo

Since, U, is Carlsson orthogonal to V,, and h € My, we have
> pell(grUn + reVa) (W)[J* = 0 (2.29)
k=1

under the condition (2.27)). It follows that

nh—>nolo ZpkH(QkUn + Vo) (B> =0
k=1

n

= > pell(@U + V)R = 0.

k=1
= U1V
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Therefore, the Carlsson orthogonality satisfies continuity property of an inner-product

space. [

Bottazzi et al, (2020) defined the disjoint support as follows: Let H be a real or
complex Hilbert space and 77,7, € B(H). Then, two operators 7 and 75 have disjoint
support if and only if

Ty =TTy =0. (2.30)

Theorem 2.6.11. [36] Let T and T, be norm attaining bounded linear operators on a

Hilbert space H with disjoint support. Then, Ty 1.9 Ty implies that Ty 1.9 T;.

Proof Let Tl,TQ < B(H) and h € MT- Then, H<T1 —+ T2>(h>H = HT1 + T2H Sil’lCC, T1
and T have disjoint support then, equation (2.30) holds. Suppose T; L9 T5. Then, for
h € My, Equation (2.26]) under Condition (2.27) can be written as

Zpk[(qleh + rToh, g Tyh + riToh)] = 0.
k=1
It follows that

n

> arllaeThll® + I Tahll” + qeri(Tih, Toh) + qeri(Tah, Tyh)] = 0
k=1

= S pilllaeTuh|)? + lrToh||? + 2qir Re (T3 Tih, b)) = 0
k=1

= Y pella Tl + e Teh|* =0
k=1

= Y Gl T + | 2] = 0. (2.31)
k=1

Similarly, if 5 19 T}, then we have
> oGl Tl + peri | Thl* = 0. (2.32)
k=1

Replacing the role of constants in equations (2.31) and (2.32)), we can conclude that T, 19
Ti. 0

Theorem 2.6.12. [36l] Let T and T, be bounded linear operators from a Banach space
X to Y. Then for any x € Mgy, 1, tr,1,, if the images of T\ and I3 are orthogonal in the
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sense of Carlsson orthogonality in terms of bounded linear operator, then the operators

are also orthogonal.

Proof. Letx € My 1, .1, and Ty (z) L& Ty(x). Then

> pellaTi(@) + riTa(z)|* =0 (2.33)
k=1
satisfying the conditions
S omare=1, Y _pai =Y pri =0 (2.34)
k=1 k=1 k=1
Since x € My, 1 1r,15, We must have ||¢.T1(z) + rTa(x)|| = [[(gT1 + riT2)z|| =

|lgx Ty + 715 ]|. Therefore from relation (2.33) and (2.34), we may conclude that

> pellanTi + Lol =0
k=1

Which shows that 7} is Carlsson orthogonal to 75 in terms of operators. [
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Chapter 3

ORTHOGONALITY IN TERMS OF
p-HH NORM

3.1 Some special cases of Carlsson’s orthogonality

Pythagorean and isosceles orthogonalities have been generalized by S.O. Carlsson in
1962. These orthogonalities are obtained by assigning particular values of constants in
a generalized Carlssons orthogonality. In this section we will show how isosceles and
Pyhagorean orthogonalities can be obtained from Carlsson orthogonality and introduce

two new orthogonality relations in relation to Carlsson’s orthogonality.

Theorem 3.1.1. [4)] Pythagorean and isosceles orthogonalities are special cases of the

Carlsson orthogonality in normed linear space.

Proof. For Pythagorean orthogonality, We have

3
Zakkux +eayll> =0
k=1

=  a ||+ clyH2 + as ||bax + czyH2 + as ||bsx + C3yH2 =0
Puta1 = —1,(12 = a3 = 1, b1 :b2 = ]_,b3 :0and01 = —1,02 :0,03 = 1. Then

0=ay||bix+ cly||2 + ag ||bax + czy||2 + as ||bsx + 03y|\2
2 2 2
= (=1 lz =yl + llz[” + llyl
2 2 2
= |lz—yll” = [l=]]" + ||yl (3.1
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Now,

k=1

3 3 3
Z akbkck = 1, Zakbi = 0, Zakcz =0.
k=1 k=1

For isosceles orthogonality,

2
Zakkux +ayl=0

k=1

= ay ||biz + 01y||2 + ay ||byr + CQCUH2 =0

1

—1
Putal = 5,@2 = 7, b1 = b2 = 1,C1 = 1and02 = —1. Then

0=al|bz+ Cly”2 + ay ||baz + C2y“2
1 —1
R e
2 2
= |lz +yl|” = |lz — ]

eyl = e =y (3.2)

Now,

2

E akbkck = alblcl + CLQbQCQ
k=1

-1
><1><1+7><1><—1

=N e

2
Z akbi = albf + agbg

k=1
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2
§ 2 2 2
k=1

—1><1+_1><1
N 2

2
=0

]

Motivated by this theorem, we make an attempt define two new special cases of the

Carlsson orthogonality, which we have mentioned as follows:

Proposition 12. [6] let (X, ||.||) be a real normed space in which the norm is induced by

an inner product. Then x € X is orthogonal to y € X if and only if
20z +ylI* +ille +iyl* = 2llz — yl* + ille — iy|? (3.3)

Proof. Letx,y € X. Assume = | y. Then

> allbir + cl? = 0
k=1
satisfying
Zakbi = Zakci =0 and Zakbkck =1 (34)
k=1 k=1 k=1

In particular if n=4, we have

4
> agllbrr + cxz)* =0

k=1

=ay||b1x + c1y|]® + az||baz + coy||® + aa||bsr + csy||* =0 (3.5)

Taking the values of constants in equation (3.5) as: a; = by = ¢ = by = b3 = 1,09 =
%, cs = i,a3 = c3 = —1 satisfying condition || with n = 4 leads to the desired result.
The converse part is obvious. 0
Corollary 3.1.1. [6]] The orthogonality relation satisfies the non-degeneracy, sim-

plification and continuity.
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Proof. Non-degeneracy: If z L y, then

2|z + .7:”2 + iz + w:H2 =2z — :113H2 +i|lx — iz
= 8l|lz||* =0

=x=0

Simplification: If z L y, then

2l +ylI? +illz + iyl|* = 2|l — y||* + |z — dy|]?
= 2| Az + \y||? + Q|| Az + idy||? = 2| Az — Ay||2 + || Az — iy
=Ar L \y.

Let {z,} and {y, } be sequence in X such that z,, — x and y,, — y and x,, L y,,. Then

2]l + yull* + illzn + iyall* = 2]lzn — yall* + illzn — iyal®

I* = I*

= lim 27y + yull? +il|2n, + iy lim 2\|zn — yull? + il s — iyn

= 2/l +yl* +illz + iyl* = 2]z — yl* + illz — iy]®
=z ly.

]

Proposition 13. [6] let (X, ||.||) be a real normed space in which the norm is induced by
an inner product. Then v € X is orthogonal to y € X if and only if

y y 1
o+ SIP +lle = SI? = 512z + yII* + I (3.6)

Proof. Letx,y € X. Assume x L y. Then

Z ar||bpr + cpz|]* = 0
k=1
satisfying
Zakbz = Zakcz =0 and Zakbkck =1 (37)
k=1 k=1 k=1
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In particular if n=4, we have

4
Zakkux +epz|* =0
k=1

=ay||biz + c1y||* + az||bor + coyl|® + azl|bsx + csy|* =0 (3.8)

Taking the values of constants in equation (3.8) as: a1 = as = by = by = c3 = 1,a3 =
Ay = Cg = _71, = %, by = by = \/§, ¢y = 0 satisfying condition ll with n = 4 leads
to the desired result. Conversely assume (3.6) holds and it can be easily shown that x is

orthogonal to y. [

Corollary 3.1.2. [l6] Orthogonality relation (3.6)) satisfy the non-degeneracy, simplifica-

tion and continuity.
Proof. Non-degeneracy: If x L x, then

T x 1
lz+ )+ |z = SI1° = s [IV2z + f|* + [|2?
2 2 2
=|lz[| =0

=zr=0

Simplication: If z L y, then

Y y 1
e+ SIP +lle = SI? = S1V2z + yII* + ol

Ay

A 1
Slae+ 222+ he = I = SIVRre + gl + e

=Ar L \y

Continuity: Let {z,,} and {y,} be sequence in X such that z,, — z and y,, — y for all
n € Nand z,, L y,, then

Yn Un 1
v+ 2112 + llzn = 21 = 51V220 + il + o
o lim [+ 2P 1 — 202 = tim SV 4 gl +
Sl 212 e = 22 = L g a2
- yl? + [l
2 2 2
=z Ly.
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]

Lemma 3.1.1. [l6] Let X be a normed linear space, in which the norm on X is induced by

an inner product. Then the orthogonality relation ([3.6)) is homogeneous.

Proof. 1If x_1ly, then we have,

1| 1P 1 2
et oyl + eS| =5 [V2e ] + D2
2 2 2
Now,
1P 1
‘Ax+§uyH +‘)\x—§,uyH - = ‘\/_A:c—kuyH — ||A\z])* =
1 1 1 1
= Azt uy, A guy) + A — Spy, A = Suy)

1
— 5 (V2hw - py, V22 + py) = (A ) = 0
= —2V2\u(r,y) =0

Therefore the given orthogonality is homogeneous if and only if the space is inner prod-
uct space.
]

Lemma 3.1.2. [8] Let (X, ||.||) be a real normed space in which the norm on X is induced

by an inner- product. Then orthogonality relation (3.6) implies Birkhoff orthogonality if

Yy = 1, but the converse may not be true.

Proof. Suppose x_Ly. Then by definition,

1 2
w+§yH + x——yH = H\/_x—iryH + |||
L o= Sl = e
X — Xr — — a
Qy 29 =
e 41 2>|| [
x 2y T 2y = ||z
2 2
= lyll” > =] ... (1)
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Since y = £ so that y = = + ay. Therefore form the relation (1)

lz + ayl* > |||
= [lz + oyl = [l]]

= zlpy.
[

To disprove the converse part, consider X = (R?, ||.||,), where ||.||, = S>2_, || for

some x = (x1,22) € X. Letx = (=2,1),y = (2,2). and o € R we have

I+ all, = 12,1) + a2, ),
=||-2+20,1+2¢f,
=|—2+42a|+ |1+ 2¢q]
>3

= [lll

But

2
+

2 2 2

_|__1
T
2y

1

+ H(—2,1) - %(2,2)

=[1(=2.1) + (L DI+ [[(=2,1) = (L, D’
=18

= H(—2,1)+%(2,2)

1 2 1 2
5 |[V2e+ o] + 12l = 5 |[vVa-2. ) + @2 + l-2 01
1 2
:§H(—2\/§+2,\/§+2)H +9
1
= 5(0.828+3.4142)2+9

=17.99

which shows that x is not orthogonal to y in the sense of orthogonality relation (3.6).

If the underlying space X is a real inner product space and the relation (3.6) holds a.
e on [0, 1]. Then using the concept of 2-HH norm, can define orthogonality relation (3.6)
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in terms of 2-HH norm as follows:

Definition 24. Ler (X.||.||) be a real normed space and x,y € X. Then x is said to be
orthogonal to y in the sense of 2 — H H norm if and only if

1
|

1 1 1 1 1 /!
/ \|(1—t):c+§ty\|2dt+/ H(l—t):c—?y”%t = 5/ H\/i(l—t)a:thyHthJr/ (1—t)x||*dt
0 0 0 0

(3.9)
To verify the this, we have the following relations:
/1 11— ) + =t ||2dt+/1 11— ) — sty = <l + = [yl + 2] + - [y
; Tl ; ¢ Qe =gl g i gl g
2 2 1 2
== 4= _
2 el + Lo
And

1 [t ! 1.2 1 1
3 [ VR =t it + [ 10 talPdt = SNl + o) + g ol
2 Jo 0 2'3 3 3

2 2 1 2

3.2 Results on new orthogonality

Definition 25. [15] Let (X.||.||) be a normed linear space. A vector x € X is said to be
2-HH-N orthogonal to y € X (denoted by x Lo _py_n vy) if and only if

! 1 ! 1 2 1
/ (1 —t)z + —ty\|2dt+/ I(1—t)x — <ty|*dt = ||z]* + =[ly|>  (3.10)
0 2 0 2 3 6

E. Kikianty and S.S. Dragomir in [7] proved that *“ the Pythagorean orthogonality
via 2-HH norm is unique in any normed space X”. To prove this, they use the following

Lemma by omitting the proof. We give a detailed proof of Lemma as they stated the paper
[Z].

Lemma 3.2.1. [lI5|] Let z,y € X, where X is normed liner space. Let h be a function on
R defined by

h(u) = / 11— ey + pulta) .
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Then h is a convex function on R, and for any r € (0,1) and j1, 2 € R where h(j;) #
h(us2), we have
hlrpn + (1 = r)pe] < rh(pu) + (1 = r)h(us2).

Proof. Letr € (0,1) and 1, ji2 € R such that h(p;) # h(us). Then

Wl + (1= )

= [ 10t (= Pl

=Aﬂmf¢w+wmaw+uxw%wwﬁwWw

= [ 10~ 0+ ) + patta) = ratea) = (1 =+ (1= P

= [t = 0w e+ (0= 10— 0+ patea) e

sAﬁwu—wy+m@@Wﬁ+a—waWu—wy+ma@Wﬁ
w2 =0) [0 = 0+ )] 10 = 0y + e

ZAzﬂﬂ—ﬂy+m@@Wﬁ+U—WfAWO—ﬂy+m@@Wﬁ

+v%w)Amu—wy+m@wW+uu—wy+m@mw
(1= by + g (t2) | (11— £y + pn(tz) [t
=rme+a—rmmg—M1—mA[mr4m+wxmm—uu—wy+ma@mwt

< rh(pn) + (1= r)h(ps)

Which shows that h is a convex function. Since h(u;) # h(use), then the inequality will

be strict and therefore
hlrpn + (1 = 7)pe] < rh(un) + (1 = r)h(u2).
OJ

As a similar concept of Lemma [3.2.1] we also prove the following Lemma which is

useful to prove the uniqueness property of new orthogonality via 2-HH norm.
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Lemma 3.2.2. [15] Let (X.||.||) be a normed space and x,y € X. Let h be a function
defined on R by

h(u) = / 0=ty + 2 e P+ / 0~ 1)y~ B i) P

Then h is a convex function on R and for any r € (0,1), and 1, o € R where h(uy) #
h(pz), we have

hlrpn + (1= 7r)po] < rh(p) + (1 = r)h(ps2).

Proof. Suppose h(u)=f(u)+g(i), where

£ = [ 10 =ty + Seliar and
o) = [ 0=ty = G e P

First we show that f(k) is a convex function. Let » € (0,1) and 1, o € R such that
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h(p1) # h(pz).

flrin + (1 —17)pe]

= [ 1= Sl + 1 = e P

! 1 1 1
= [ 10 = 0y Gt + Gpatea) = Grietie)Far

/ (1= t)y + —(taz) + %(m) - r%(tfﬂ) +r(1 =ty —r(1—t)y|*dt

= [ i =t B+ (- 00 - 0+ P
/Hl—ty—i— (t)|2dt + (1 = 1) /||1—t 2 1) P
+or(1—7) / (0= 1)y + L)l 10— 1)y + 2 1)
= [0 0+ B (=) [0 0+ P
2 [0 =ty B (-0 [ 10 - 0y B Par
—7"/ 10—y + 2 )~ 1—r/|y1—t)y+’“;(tx)u it
(1 - 1) / ||1—t)y+/;1(tx)|| (1= t)y + 2 1)

1

11 = )y + Bt = 11 = )y + B e e

=)y + u21 (t)ll = 11 = t)y + = Lt |2t

=)+ (=) ) + 07 =) [
=)+ (0= ) ) — (=) |
<rf(u) + (1 =7)f(pe2)

Which shows that f is a convex function. Similarly, for the function
' u
= [l o= S Par
0

we can show that

glrpm + (1 =7r)ps] <rg(pa) + (1 —7)g(u2)

and we conclude that g is also a convex function. Also, we know that the sum of two

convex functions is also convex. Then h(u) = f(u) + g(p) is convex. Since h(py) #
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h(p2), then the inequality will be strict and therefore

hlrpy + (1 = r)pe] < rh(ua) + (1 —r)h(uz)

Theorem 3.2.1. [15] 2-HH-N orthogonality is unique in any normed space X.

Proof. The proof has a similar idea to that of Kapoor and Prasad [ pp. 406] and Kikianty
and Dragomir [pp. 41]. Suppose 2-HH-N orthogonality is not unique. Then we must have
elementsz # Oandy € X,anda A > Osuchthatx 1o gy yyandz 1o gy n Az+y.

Define a convex function
/‘Hl—ty+ tm”%ﬁ%/)ﬂl—t @mndt
Now,

= [ 1=y + 5Pa+ [ 1=ty e

_ 2 2 1 2
= Syl + 2z

1
= h(0) + Zlll” (3.11)

Setting 5 = 2(1;” and note that

/Hl—ter— 20 - A tx|| dt+/||1—ty—— 201 - >)\(tx)||2d
—/0 H(l—t)y—l—(l—t))\tzdtJr/o (1 —t)y — (1 —t) |t

- / 1L = )y + o) 2dE + / 10— 6)(y — Aa)|dt

_ Ny A2l lly = defl®
3 3

(3.12)

and,

b3+ = [ 10 =00+ a0+ SR+ [ 10= 00— - S

My x|y = xl? |lz]|?
n 3 * 3 + 6

(3.13)
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Now, suppose that 0 < 3 < 1 and note that h(1) # h(0) (since z # 0), Lemma [3.2.2]
gives

h(B) < Bh(1) + (1 = B)R(0) (3.14)

Also h( + 1) # h(B3) (since z # 0) and with the help of Lemma[3.2.2]

h(1) < Bh(B) + (1 = B)h(B+1)

= a(8) + (1 - plh(s) + 1210
= 8(8)+ (1 = B[A(H) + h(1) — h(0)]

= h(B) > Bh(1) + (1 = B)h(0)

)

which contradicts (3.14). Now consider the case > 1, we have

(1) < P h(0) + $h(5)

=M®+%Wm—h@]
:»Mn—mms%wwwwmn
- B < Z0s) - nio)

Since x # 0, then, h(3) # h(0), and using the Lemma |3.2.2| we have

p-1 1
h(l) < 5 h(0)+ﬁh(ﬂ) (3.15)

Also h(1) # k(B + 1) and Lemma[3.2.2] gives us

1 -1

_1 p-1 _

= 510+ L2 0(8) + (1) — b(O)
= (1) > $h(8) + S h(0),

which contradicts the relation (3.15)). For the case 5 = 1, we have
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This shows that h(2) # h(0) (since z # 0). Then we have

B(1) < Sh(0) + 2h(2)

2 2 ,
— 210 + n(0) + 1405
:hﬂ)<M®+H@K

which contradicts (3.11)). Thus in all cases we get a contradiction. Hence 2-HH-N orthog-

onality is unique in any normed space. [

Definition 26. Let T and T> be norm attaining bounded linear operators in a Banach
space X. An operator Ty € B(X) is said to be orthogonal to Ty € B(X) if and only if
for any h € Mr,

(T3 + STWIP + (T~ ST = SV + TP+ TR G16)

Theorem 3.2.2. Let T and T, be bounded linear operators in a real Hilbert space H.
Then, orthogonality relation implies the Birkhoff-James orthogonality, but the con-

verse may not be true.

Proof. LetTy,T, € B(H) and h € Mp. Assume that 77 is orthogonal to 75. Then, we
have

T+ ST + 1T = ST = SIVET + BB + 1T ()

= M = 170

Setting 75 = i 5o that T, = Ty + o7 and we get

1—a’

(T + aT)(W)|1* = ITa(h)]]*.

This implies that
(T + oTa)(R)|| = ([T (R). (3.17)

Hence, T is Birkhoff-James orthogonal to 7. To disprove the above statement, we
can take operators 77,7, € B(H) as described in the example of (Theorem. [2.5.8),
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showing that 7} is Birkhoff-James orthogonal to 75. On the other hand,

1 1
(T3 + ST+ (T = 5To)? = 51. (3.18)
Howeyver,
1
SNV2T + D) + |[T7]| = 27+ 7V2, (3.19)
showing that 77 is not orthogonal to 75. 0

Theorem 3.2.3. Let 11,1, € B(X). Then for any x € My, 7, N My, 1, and T\ (x) +
To(x) Lp To(x) and Ty (z) — To(x) L To(x) implies Ty L To.

Proof. Since Ty (x)+T5(x) L Tyh(x), then we have |7 (x)+T5(x)|| < ||T1(z)+To(z)+
ATy (z)|| for all A € K. Taking 5 = 1 + A, we have

1T (2) + Ta(o) | < [ Ta(x) + Ta(z) + (B — DTa(2)]
= [Th(z) + Ta(x) + BT(x) — Ta(x)]]
= [Ti(z) + BT (x)||

= [[(Ty + Ta)z]| < [[(T1 + 5T3) ]|

In particular for 5 = —1, we have [|(T7 + T3)z|| < ||[(T} — T%)x||. Since x € My +p, N
M7, ()15 (x)> then we must have || (T7+713)|| < ||(T77—1%)||. Similarly if T3 (x) —T5(x) Lp
Ty(x), we obtain ||T} — Ts|| < |7} + T»|| and therefore by combining these inequalities

we get the desired result. [

Corollary 3.2.1. Let T, T; € B(X) and assume that Ty + Ty Lg Toand Ty — Ty Lg To.
Then T1 J_[ TQ.

Proof Since T1 -+ T2 J—B TQ, then we have HT1 + TQH < HT1 + T2 + /\TQ” for all \ € K.
Taking § = 1 + A, we have

Ty + Tl < || Ty + T + (B — 1)Th|
= ||Ty + Tz + 8T — Ty
= |1} + P13

In particular for ﬂ = —1, we have ||T1 + T2|| < ||T1 — TQH Slmllarly if Tl — TQ J—B TQ,
we obtain ||T} — T5|| < ||T} + Tz|| and therefore by combining these inequalities we get

the desired result. O]
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Proposition 14. Let T be a bounded linear operator from a normed linear space X to Y
and {z,} , {yn} be sequence in X and x € Mr such that x,, — x,y, — y, Tz, — Tz,
Thenforanyy € X ande € [0,1), Tx,, LG Ty, =z L5 y.

Proof. Letx € My and € € [0, 1). Since T'z,, LG Ty, then we have for any A € K,

(1= Tzn| < (| Txp + NTyn|
= (1= )| Tz || < T[] + Aynll
= (1 —¢) lim ||Tx,|| < ||T| lim ||z, + Ay, ||

= (L=o)||Tz| < |7l + Ayl (3.20)

Since x € My, then we must have ||Tz|| = ||T||||x||, and therefore the inequality (3.20)
can be written as (1 — €)||T||||z|| < [|T]|||z + Ay||. Hence ||(1 —€)||z|| < ||z + Ay]| is the

desired result. O]
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Chapter 4

BEST APPROXIMATION IN
NORMED LINEAR SPACES

4.1 Introduction

In the case of normed linear space, the concept of best approximation was developed by
M. Nicolescu in 1938 [38] and the more detail were discussed in the paper by M. K. Krein
[39]. Within the framework of normed linear spaces the problem of best approximation
amounts to the problem of minimizing a distance, hence it is geometrized, and thus in its

study one can use arguments based on geometric intuition [38]].

Definition 27 ( [40], [41]]). Let G be a subset of a normed linear space X. A point gy € G
is said to be best approximation for f € X, if and only if for all g € G,

1f = goll < 1If =gl

and is said to be best co-approximation

g0 = gll < lf — 9l

The set of all best approximation of f € X in G is denoted by Pg(f) and best co-
approximation by Rq(f). For a subspace G of X, Mazaheri and Modarres in the paper
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[42] define G and G as follows:

G=P;'(0)={feX:|fl=df.G)} ={f€X:2 LG} and
G=R;0)={feX:|gl<|f—gll Y9eG}={feX :GLf}

Lemma 4.1.1 ([42],[43]]). Let G be a linear subspace of normed space X. Then

(i) G is Chebychev subspace if and only if X = G @ c?,

(i) G is proximal subspace if and only if X = G + G.
Lemma 4.1.2 ([42]],[43]]). Let G be a linear subspace of a normed space X and x € X \ G.
Then for any element gy € G, the following statements are equivalent:

(i) 9o € Rg(x),

(ii) For each g € G there exist a functional f9 € X* such that ||f9| = 1, f9(x) =
f9(go) and f*(g) = llg]l-

Lemma 4.1.3 ([42], [44]). Let X be a real Banach space and G be proximinal subset of
X. Suppose Py : X — G is the best approximation operator on G. Then for all x € X
and g € G, the following inequality holds:

Iz = gll < [l = gl|z € Pa(x) (4.1)

If the inequality is true, then Pg(x) C Rg(x) for every x € X.

Proposition 15. [42] Let X be a Banach space and G be linear subspace of X. Then G is

a linear closed subspace of X.

Theorem 4.1.1. [42|] Let X be a smooth Banach space and G be a co-proximinal subspace

of X, then Gisa proximinal subspace of X.

Theorem 4.1.2. [42|]] Let X be a smooth Banach space and G be a co-Chebychev subspace
of X, then Gisa Chebychev subspace of X.

Definition 28. [40] Let G be a subset of a normed linear space X and € > 0, then a point
go € G is said to be e—best approximation for f € X if

If =gl < |If —gll+€ (forallge G)
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and gy € G is said to be e—co-approximation for f € X if

lgo—gll < |If —gll+e (forallg e G) (4.2)

The set of all e—approximation of f in G is denoted by Py(f,¢€) and the set of all
e—co-approximation of f in G is denoted by Rg(f, €).

Definition 29. [40] Let (X, ||.||) be a normed space, f,g € X and € > 0. Then f is said
to be e—orthogonal to g if and only if

Wl < IIf +agl +€ forall scalar o with | o |< 1.

If G1 and G are subsets of X, then G, L. G5 if and only if g1 L. go for all g, € G and
g2 € G.

Theorem 4.1.3. [40] Let G be a subspace of a normed space X and ¢ > 0. Then for all
feX,

9o € Pa(fe) & f—g0 LG
go € Ra(f.e) & G L f— g0

Lemma 4.1.4. [40] Let G be a subspace of a normed space X, then

(i) Ife>0,f,ge Xand f L. g, then f Ls g forall ) > e.
(ii) If f,g e X and f L g, then f 1. gforalle > 0.

(iii) If f € X and e > 0, then 0 L, fand f L. 0.

(iv) If f Legand | B|< 1, then Bf L. Bg.

(v) If f € X, e >0and ) > ¢, then

Jo € Pg(f,ﬁ) = go € PG(fa(S)
go € Rg(f, 6) = go € Rg(f, 5)

Mazaheri and Zadeh proved in the paper [45] that the isometric operators on normed
linear space preserves all approximation property. They proved that every linear operator

preserving approximation is an isometry multiplied by a constant.
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Definition 30. [45] Let( X, ||.||) and (Y,|.||) be two normed linear spaces. A mapping

T : X — Y is called preserving approximation if and only if for all subspace G of X and
allx € X,

T(Pg(x)) = Pre)(T(x)) (4.3)
Similarly T is called preserving co-approximation if and only if for app subspace G of X
and all x € X,

T(Rg(z)) = Rrc)(T(x)) (4.4)

Lemma 4.1.5. [45] Let T : X — X is an isometry operator, where X be a normed linear
space, then for all subspace G of X and x € X,

T(Pa(x)) = Pr)(T(x)) and
T(Ra(x)) = Rre)(T'(x))

Corollary 4.1.1. [45] Let (X, ||.||) be a normed space. Every isometry operator T : X —

X is preserving approximation (resp. Co-approximation).

Theorem 4.1.4. [45]] Suppose T' : X — Y be a linear map from a normed space X into

Y preserving approximation (resp. Co-approximation).

(i) Suppose G is a subspace of X, then G is proximinal (resp. co-proximinal)of X if and

only if T(G) is proximinal (resp. co-proximinal).

(ii) Suppose G is a subspace of X, then G is Chebyshev (resp. co-Chevyshev)of X if and
only if T(G) is Chebyshev (resp. co-Chevyshev).

(iii) If T is linear, then forall x,y € X, v L y = T(z) L T(y).

o~ —~—

(iv) For all subset G of X, T(G) = T(G), (res. T(G) = T(G)).

(v) Suppose G is a subspace of X, then G is orthogonality complement in X if and only
if T'(Q) is orthogonality complement in Y.

(vi) Suppose G is a subspace of X, if T is a continuous and onto preserve approximation

map, then G is quasi Chebyshev if and only if T'(G) is quasi Chebyshev.

Definition 31. [45)] Let (X, ||.||) and (Y, ||.||) be a normed linear spaces and ¢ > 0. A
mapping T’ : X — Y is called e—preserving approximation if and only if for all subspaces
GofXandall x € X,

T(Pa.(z)) = Pr),(T(z)). 4.5)
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where Pg (x) = {g0 € G : || — go|| < ||z —g|| forall g € G}

Theorem 4.1.5. [45] Let T' : X — X be preserving approximation, where X is a normed
space, then ' = kU such that k € R and U is an isometry.

Lemma 4.1.6. [45] Let X be a normed linear space and ¢ > 0. Then every isometry

operator T : X — X is e—preserving approximation.

Theorem 4.1.6. [45)] Suppose (X, ||.||) and (Y, ||.||) be two normed linear spaces, ¢ > 0

andT : X — Y is onto preserving e—approximation.

(i) If T is linear, then
Ve,ye X,x Loy =T(z) L T(y)

—

(ii) For a subspace G of X, T(é\e) =T(G)..

4.2 Some results on best approximation

Theorem 4.2.1. Let (X, ||.||) be a normed linear space and if Vf € X3go € G : f—go Lp
G, then gy € Ps(f).

Proof. Let f € X and g € G and f — g is Pythagorean orthogonal to g. Then

1f =90 —gl> = Ilf — goll* + llglI?
=\f =gl < If — 90— glI?
=f—=goll <||f—g90—9l

Setting g + go = h, we get

If =goll < lf = Al = g0 € Pa(f).

]

Theorem 4.2.2. Let (X, |.||) be a normed linear space and T : X — X is an isometry
operator. Then T'(go) € T(Pg(x)) if and only if T'(x) — T(g0) L T(G).

Proof. The proof has a similar idea to that of Mazaheri and Zadeh [45]]. Assume T'(gy) €
T(Pg(z))and T'(g1) € T(G). Then

1T(x) = T(go)[| < [|T(2) — T(g1)l
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Put T'(g1) = T(go) — aT'(g) for any fixed T'(g) € T(G) and o € R. Then we have,

1T () = T(go)ll < [IT(2) = (T'(g90) — T (9))ll
= [[(T'(x) = T(g0) + aT(9))|

This shows that 7'(x) — T(¢go) is Birkhoff orthogonal to T'(G).

Conversely assume 7'(z) — T'(go) Lp T(G). Then for all &« € R and T'(go) € T(G), we
have
[(x) = T(g0)| < [|T(x) = T(g0) + aT (g1 (4.6)

Let T'(g) € T(G) be arbitrary and fixed and taking 7'(g1) = T(go) — T'(g) and @« = 1 in
the inequality (4.06), we get

1T'(x) = T(go)|l < |T(x) —T(g)l
= T(g0) € T(P(x))

]

Theorem 4.2.3. Let (X, |.||) be a normed linear space and T : X — X is an isometry
operator. Then T'(gy) € T'(Pg(z,€)) if and only if T'(x) — T'(go) LG T(G).

Proof. The proof has a similar idea to that of Mazaheri and Zadeh [45]]. Assume T'(go) €
T(Pg(x,€)) and T'(g1) € T(G). Then

1T (z) = T(g0)ll < IT(x) = T(g1)]| + ¢

Put T'(g1) = T(g0) — aT'(g) for any fixed T'(g) € T(G) and | a |< 1. Then we have,

IT(2) = T(go)l| < [IT(x) = (T(g0) — T(g))]| + €
= [(T(z) — T(g0) + aT(g))|| + €

This shows that 7'(x) — T'(go) is approximate Birkhoff orthogonal to 7'(G).
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Conversely assume 7'(z) — T(go) L% T(G). Then for all o with | o |[< 1 and T'(go) €
T(G), we have

1) = T(go)| < | T(x) = T(go) + T (g1)l| + € 4.7)
Let T'(g) € T(G) be arbitrary and fixed and taking 7'(g1) = T(go) — T'(g) and o« = 1 in
the inequality (4.7, we get

IT'(x) = T(go)|| < I1T(x) = T(g)|l + e
= T(g0) € T(Pa(x,€))

Recall that

Re(x) ={9eG < [lgo — gl < llw —gl| forallg € G} and
Re(w,€) ={9¢G  [lgo — gll < [lo — gl + ¢ forallg € G}

are the set of all co-approximation and e—co-approximation of x in G. If 7" : X — X
is an isometry operator, then for all subspace G of X and all z € X, we have ||T'(z)|| =
||z||. Keeping this in mind and using the similar concepts of (Theorem and Theo-
remi4.2.3), we prove the following lemma.

Lemma 4.2.1. Let (X, ||.||) be a normed linear space and T : X — X is an isometry
operator.. Then T (gy) € T(Rg(x,€)) ifand only if T(g) L. T(x) — T(go).

Proof. Assume T'(go) € T'(R¢g(x,€)). Then
IT(90) = T(g)l| < | T(x) = T(g)l| + e (4.8)
For | f|<1land B # 0,putT(g) = T(go) — %T(g). Then the inequality 1| becomes

IT(g0) — T(g0) + %T(g) | < IT(x) - T(g0) + %T@) |+

= H%T(Q)H < |T(9) + BT(x) - T(go))|| + B
= |T(9)] < IT(g) + B(T() — T(g0)) | + ¢
~ T(g) L. T(x) = T(g0)
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Conversely assume that T'(g) L. T'(x) — T(go), then for all | 5 |< 1and T(g') € T(G),

we have
1T (9Ol < IB(T () = T(g0)) + T(g)| + € (4.9)

Letting T'(g) € T(G) and putting T(g') = T(go) — T'(g) and B = 1 in (4.9) to get the
desired result showing that 7'(gg) € T'(Rg(x,¢€)).
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Chapter 5

SMMARY AND CONCLUSION

5.1 Summary

The main part of the thesis begins from chapter 2 and ends with chapter 4. In chap-
ter 2, the classical definition of orthogonality by Roberts has been generalized in terms
of p-HH norm by proving (Theorem{2.2.2) and (Theorem{2.2.3)). Using the concept of
Lemma [2.2.1] an important concept in relation to the Robert and Birkhoff-James orthog-
onality has been proved in Theorem [2.2.4] and Theorem [2.3.40] A relation in regard to
the equivalency of homogeneity and additivity of the isosceles orthogonality have been
proved in the Throrem [2.4.15] In the case of bounded linear operators on Hilbert space H,
Theorem Proposition [§] and Proposition [9) have been proved as a new result. As a
generalized concept of the isosceles and Pythagorean orthogonality, Carlsson played the
central role to introduce new concept of orthogonality. After that, Kikianty and Dragomir
generalized the concept of Carlsson’s orthogonality in terms of p-HH norm. Motivated
by both concepts, an attempt was made to introduce the Carlsson’s orthogonality in terms
of bounded linear operators and proved Theorem [2.6.9] Theorem [2.6.10] Theorem [2.6.11]
and Theorem [2.6.12]in relation to this orthogonality.

Chapter 3 is significant in this research work due to the fact that some new concepts
of orthogonality have been introduced with the help of the Carlsson orthogonality; and
different properties of inner-product space in relation to these orthogonalities are also ver-
ified. Motivated by this concept, two new particular cases of the Carlsson orthogonality
were introduced by taking real and complex constants, and Proposition 12| with Corollary
Proposition [13] with corollary Lemma [3.1.1) and Lemma [3.1.2] were proved.

69



Furthermore, the orthogonality relation [3.6]in terms of 2-HH norm were introduced and
2-HH-N orthogonality via 2-HH norm as unique in any normed space has been proved.
The orthogonality relation in terms of bounded linear operators was also introduced
and it has been proved that such orthogonality implies the Birkhoff-James orthogonality,
however, the converse may not be true in the Theorem [3.2.2] For the norm attainment set
of T (i. e. for any x € M), the Theorem [3.2.3| with Corollary [14] and Proposition T4 has

been proved.

The application part of orthogonality, which can be linked with the best approxima-
tion in normed linear space is included in chapter 4. The concept of best approximation
amounts to the problem of minimizing distance. The Theorem {.2.1] Theorem 4.2.2]
Theorem and Lemma have been proved in the set of approximation (resp.

co-approximation) and e—approximation (resp. e—co-approximation ) .

5.2 Conclusion

It is concluded that the Pythagorean and the isosceles orthogonalities via 2 — H H norm
on a normed linear space satisfies the non-degeneracy, continuity and symmetry property;
moreover, the homogeneity and additivity of the isosceles orthogonality with respect to
2 — H H norm are equivalent. It is found that the Carlsson orthogonality for norm attain-
ing bounded linear operators is continuous. In addition, the Pythagorean orthogonality
implies the Birkhoff-James orthogonality. In the case of norm attaining bounded lin-
ear operators on a Hilbert space H with disjoint support, the Carlsson orthogonality is
symmetric and the isosceles orthogonality is equivalent to the Pythagorean orthogonality.
Finally, the orthogonality of bounded linear operators in a real Hilbert space H implies
Birkhoff-James orthogonality, but the converse may not be true. Regarding the unique-
ness property, 2-HH-N orthogonality through the medium of 2-HH norm is unique in any
normed space. Furthermore, the 2-HH-N orthogonality in terms of bounded linear oper-
ators implies the Birkhoff-James orthogonality, but the converse may not be true. In the
case of isometry operator 7' : X — X, the best approximation (resp. e—best approx-
imation) of an element 7'(g) is equivalent to orthogonality (resp. e—orthogonality) of

images.
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5.3 Recommendation for the future work

First of all, there are some properties of orthogonality still remained to check in the case
of new special case of the Carlssion orthogonality in terms of of 2-HH norm and bounded
linear operators. Secondly, the properties like: existence, uniqueness, additivity etc. are
also not studied for the generalized Carlsson orthogonality in terms of operators. Finally,
on the basis of this research, there may have several chances of connecting orthogonality

in the theory of best approximation. Some of the possibilities are as follows:

e Study of existence and uniqueness property of new orthogonality in normed linear

space;

e Use of orthogonalities like: isosceles, Pythagorean, Carlsson and new orthogonali-

ties in the theory of best approximation;

e Study of homogeneity property of new new orthogonality through the medium of

2-HH norm and bounded linear operators;

e Study of existence and uniqueness property of Birkhoff-James orthogonality in

terms bounded linear operators.
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This paper generalizes the special case of the Carlsson orthogonality in terms of the 2-HH norm in real normed linear space.
Dragomir and Kikianty (2010) proved in their paper that the Pythagorean orthogonality is unique in any normed linear space,
and isosceles orthogonality is unique if and only if the space is strictly convex. This paper deals with the complete proof of the
uniqueness of the new orthogonality through the medium of the 2-HH norm. We also proved that the Birkhoff and Robert

orthogonality via the 2-HH norm are equivalent, whenever the underlying space is a real inner-product space.

1. Introduction

Different notions of orthogonality in normed linear spaces
have been developed by various mathematicians. As a gen-
eralization of orthogonality from inner product space to
normed linear space “x is orthogonal to y if and only if
llx+ Ayl = llx — Ayl identically in A” was suggested by
Robert ([1, 2]). However, it has the weakness that for
some normed linear space, at least one of every pair of
orthogonal elements would have to be zero, ie., [x+ Ayl
=[x - Ayl for all A only if x=0 or y=0. This difficulty
is not experienced in the isosceles, Pythagorean, and
Birkhoff orthogonalities.

To study the difference of orthogonality in the complex
case in comparison with the real case, Paul et al. in 2018 came
with a new concept of Birkhoff-James orthogonality by intro-
ducing new definitions on complex reflexive Banach spaces
and introduced more than one equivalent characterization
of Birkhoff-James orthogonality of compact linear operators
in the complex case [3]. In 1945, James came with the con-
cept of the Pythagorean and isosceles orthogonalities, which
characterize inner product space via their homogeneity and
additivity [4]. James also discussed the existence property of

80

isosceles orthogonality type. The property of the uniqueness
of isosceles orthogonality was not discussed until Kapoor
and Prasad’s paper was published. They proved that the
Pythagorean orthogonality is unique in any normed linear
space; however, the isosceles orthogonality is unique if and
only if the space is strictly convex [5].

Carlsson introduced a more general type of orthogonality
treating the isosceles and Pythagorean orthogonalities are
special cases [6]. Martini and Wu showed many interesting
connections between the Birkhoff and isosceles orthogonal-
ity. They proved that if a linear map preserves the Birkhoff
orthogonality, then it also preserves the isosceles orthogonal-
ity [7]. In 2007, Alsina and Tomas gave a different character-
ization of the inner product space with the help of weaker
linearity axioms of the scalar product and Pythagoras/isos-
celes orthogonality [8].

Using the concept of the p-HH norm as described in the
paper [9], Kikianty and Dragomir came up with a new notion
of orthogonality with the help of the 2-HH norm, which is
closely related to the Pythagorean and isosceles orthogonal-
ities [10]. They proved that the Pythagorean orthogonality
via 2-HH norm satisfies the nondegeneracy, continuity, and
symmetry properties; however, it is neither additive nor



@ On Uniqueness of New Orthogo X + (+] — X

< C @ hindawi.com/journals/jfs/2020/8835492/ a % » 0O
B Apps M Gmail @B YouTube B¥ Maps BE Microsoft Office Ho.. Reading list
@ Hindawi Journals Publish with us Publishing partnerships About us Blog Q

Journal of Function Spaces

Journal overview For editors

Show citation

Q Order printed copies -
On Uniqueness of New Orthogonality via 2-
On this pagde : : Vi Citati
pag HH Norm in Normed Linear Space o fations
Abstract
0
- Bhuwan Prasad Ojha (9,1 Prakash Muni Bajracharya(®,% and Vishnu Narayan Mishra Dnileaes \
Introduction
2 200
Conclusion Show more
Academic Editor: Syed Abdul Mohiuddine
Data Availability v 0 m 0 L) &
. Received Revised Accepted Published
Conflicts of Interest 29 Aug 2020 23 Oct 2020 02 Nov 2020 21 Nov 2020
Related articles
References
Copyright Abstract On Norm-Attainable Operators in
This paper generalizes the special case of the Carlsson orthogonality in terms of the 2- Banach Spaces
HH norm in real normed linear space. Dragomir and Kikianty (2010) proved in their el
paper that the Pythagorean orthogonality is unique in any normed linear space, and N. B. Okelo
isosceles orthogonality is unique if and only if the space is strictly convex. This paper . . . -
: ) % - & 1:17 PM
H L Type here to search ) 6/11/2021
Q@ jfs - Abstracting and indexing | X 4+ (+] - X
< C @ hindawicom/journals/jfs/ai/ a x » 0O
Apps M Gmail @B YouTube ¥ Maps =' Microsoft Office Ho... [E] Reading list
Aerospace Database Sign up for content alerts

«  Civil Engineering Abstracts
CNKI Scholar

. . si
On this page = Computer and Information Systems Abstracts ignup
= Current Contents - Physical, Chemical and Earth Sciences
Discoverability - Directory of Open Access Journals (DOAJ)

EBSCO Discovery Service
EBSCOhost Connection
+ EBSCOhost Research Databases
Engineering Research Database
Google Scholar
+  J-Gate Portal
Journal Citation Reports - Science Edition
Mathematical Reviews (MathSciNet)
Mechanical and Transportation Engineering Abstracts
Open Access Journals Integrated Service System Project (GoOA)
Primo Central Index
ProQuest Engineering Collection
«  ProQuest Environmental Science Collection
ProQuest Natural Science Collection
ProQuest SciTech Premium Collection
ProQuest Technology Collection
Science Citation Index Expanded
Scopus
Technology Research Database
The Summon Service
WorldCat Discovery Services
Zentralblatt MATH Database (zbMATH)

] y _ o @ ) 1:20 PM
ﬂ L Type here to search L w o 6/11/2021 EZ

Full list of databases and services

Archiving

81



Methods of Functional Analysis and Topology METHODS
Vol. 26 (2020), no. 4, pp. 373 383 M FA I OF FUNCTIONAL ANALYSIS

https://doi.org/10.31392/ MFAT-npu26_4.2020.08 AND TOPOLOGY

A GLIMPSE ON BIRKHOFF-JAMES ORTHOGONALITY IN
BANACH SPACES

B. P. OJHA AND P. M. BAJRACHARYA

ABsTrACT. This paper is an overview of various results on Birkhoff-James orthogo-
nality of operators in Hilbert space and Banach spaces. We mainly focus on Birkhoff
orthogonality of linear(bounded and ompact) operators in terms of matrices, projec-
tion angles, Hilbert C*-modules as well as on Banach modules. The article concludes
with some open problems regarding possible correlation between Birkhoff-James or-
thogonality and Carlsson orthogonality, particularly in the case of Pythagorean or-
thogonality.

JlaHo oruisiz] pi3sHOMAHITHUX Pe3yJIbTATIB 1[0/[0 OPTOrOHAJIBHOCTI B ceHci Bipkroda-
Jlxeiimca onepartopie y rinpbeproBux i 6aHaXOBUX mpocTOpax. llepeBazKHO pO3riisi-
Jla€ThCS  OPTOrOHAMBHICTH 3a Bipkrodom miniiianx (o6MekeHHX 1 KOMIAKTHHX)
omepaTopiB y TepMiHAX MaTpHUIlb, KyTiB, riapbeproBux C*-moaynis, a Takoxk
Ganaxosux mozynis. Hasesjeni jesiki Bijgkpuri nmraHHst CrOCOBHO CIIBBi/IHOLIEHB
oproronasieuicTio Bipkroda- Ixxeiivca ta oproronansmictio Kapsccona, 30kpema
JUIs BUNAJAKY 1iharopoBoi OpTOrOHaJIbHOCTI.

1. INTRODUCTION

The concept of Birkhoff orthogonality began in 1935 [1]. In the literature of orthogo-
nality this is known with some other names such as; Birkhoff- James orthogonality and
Blaschke Birkhoff-James orthogonality ( see [2]). In this paper [1, 3], an orthogonality
which satisfies homogeneity but neither symmetric nor additive is defined by z Ly if and
only if ||z + Ay|| > ||z|| for all ), is known as Birkhoff orthogonality or Birkhoff-James
orthogonality. The geometrical meaning of Birkhoff orthogonality is that if x is an unit
vector of a Banach space X and y € X, then x is Birkhoff orthogonal to y means that
the straight line {z + Ay : A € K} is tangent to the unit ball of X at x. This concept is
similar to the statement: suppose two lines [; and [s intersect at the point m, then [y 117y
if and only if the distance from a point of /3 to a given point n of /; is never less than
the distance from m and n. [3] For any hyper-plane H C X, x is said to be orthogonal
to Hif Vo € H,zLh.

Bhatia and Semrl in [4] generalize the definition of Birkhoff orthogonality in terms of
matrices. For any matrices A and B they denote the symbol ||A|| for operator norm of
A and A is orthogonal to B in the sense of Birkhoff-James iff for any complex number
z, ||A+ zB| > ||A]|. A matrix A is orthogonal to B iff there exist a unit vector x € H
such that ||Az|| = ||A| and (Az, Bx) = 0 |4]. They also introduced Birkhoff- James
orthogonality in [4] as ALB if and only if |A + zB||, > | Al|,, where ||A]|, denotes
Schatten p-norm of A defined by ||A|, = [Z;;l S]-(A)p]% for 1 < p < oo and S1(A) >
...... Sp(A) are singular values of A. Taking the special case for p = 2, Bhatia and Semrl in
[4] also proved that the given orthogonality is equivalent to usual Hilbert space condition
(A, B) = 0, which defines an inner-product on the space of matrices as (A, B) = tr(A*B).
The norm associated to this inner product is ||.||2. In an infinite dimensional case [4], for

2020 Mathematics Subject Classification. 45E15, 46J10.
Keywords. Birkhoff-James orthogonality, Banach modules, Carlsson orthogonality, Robert
orthogonality.
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Introduction

Let X ™ be dual space of a normed space X and Sx
denotes the unit sphere of X given by Sx = {x e X: ||X|| =
1}. The Hermite-Hadamard's inequality defined in
(Mihai et al., 2018) is given by:

a+b f(a)+f(b).

(b—a)f[T)sj:f(t)dts(b—a) .

We briefly describe the content of this paper: Section
1 contains the review of various properties and
characterizations of Birkhoff orthogonality in normed
linear spaces. Section 2 contains Carlsson orthogonality
in classical sense and in HH-sense with the help of p-HH
norm. Section 3 includes the main results of our research
by introducing new cases of Carlsson orthogonality
verifying some properties of the inner-product space in
relation of these orthogonalities.

There are different orthogonality relations studied in
the general normed linear space since from 1934. The
Robert orthogonality condition which was introduced by
Robert in 1934 is known as the first orthogonality
defined in general normed spaces (Birkhoff, 1935).
Robert orthogonality implies both Birkhoff orthogonality
introduced by (Birkhoff, 1935) and isosceles
orthogonality introduced by (James, 1945). Generalizing
the Isosceles, Robert and Pythagorean orthogonalities in
the normed space, (Carlsson, 1962) introduced a new
type of orthogonality. After that numerous notions of
orthogonality have been introduced. Kikianty and
Dragomir (2010) introduced p-HH-norms (1 < p <) and
some notions of orthogonality have been introduced by

////// Science

% [Publications

84

Abstract: Let x, y € X, where X is an inner-product space. We say X is
orthogonal to y if (x, y) = 0. When we move to general normed spaces there
are many possibilities of extending the notion of orthogonality. Since 1934,
different types of orthogonality relations in normed spaces have been
introduced and studied. In this study, we enlist some properties of Birkhoff's
orthogonality and Carlsson's orthogonality along with it we introduce two
new particular cases of Carlsson's orthogonality and check some properties of
othogonality in relation to these particular cases in normed spaces.

Keywords: Birkhoff Orthogonality, Carlsson Orthogonality, Minkowski
Plane, Pythagorean Orthogonality, Robert Orthogonality

utilizing 2-HH-norm, which are closely related to the
classical Pythagorean orthogonality and isosceles
orthogonality. Kapoor and Prasad (1978) proved
uniqueness property of isosceles orthogonality.

Mizuguchi (2017) let (X, ||-||) be a real normed space.
For any vector X, y € X, we say that x is orthogonal to y
(xLgy) in the sense of Birkhoff if:

[X|<|x+Ay| forall A e R

James was the first who did a comprehensive study of
the properties of Birkhoff orthogonality and therefore
Birkhoff orthogonality is also known to as Birkhoff-
James orthogonality. James (1945) introduced Isosceles
and Pythagorean orthogonality proved that if for every x
it is possible to find a vector y in a two dimensional
subspace containing x such that x_Lgy; then the space is
necessarily an inner product space (Dragomir and
Kikianty, 2010). If X is an inner product Space, then Lg
coincide with the standard orthogonality in inner product
space. It is obvious that Birkhoff orthogonality is
homogeneous; however, it is in general, neither
symmetric nor additive.

Definition (Martini and Spirova, 2010)

A hyperplane of a normed linear space X is any
proper closed linear subset H which is not properly
contained in a proper linear subset of X, or any
translation x + H of such a linear subset H.

If {yn} is a sequence converging to y, X is
orthogonal to {yn}, then xLy. Hence for any x, the set

© 2020 Prakash Muni Bajracharya and Bhuwan Prasad Ojha. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.
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ABSTRACT

For any normed space X, the p-HH norms X were infroduced by Kikianty and Dragomir on X = X x X of normed spaces. p-
norms and p-HH norms induce the same fopology, so they are equivalent, but are geometrically different. Besides that,
E. Kikianty and S. S. Dragimor infroduced HH-P orthogonality and HH-I orthogonality by using 2-HH norm and discussed
main properties of these orthogonalities. The main purpose of this paper is to focus on the concept of 2-HH norm to
Birkhoff and a new orthogonality in normed spaces, and we discuss some properties of these orthogonalities. It is proved
that Robert orthogonality via 2-HH norm implies Birkhoff-James orthogonality via 2-HH norm, however, it is not necessary
for the converse part.

Keywords: Birkhoff Orthogonality, Robert Orthogonality, p-HH Norm.
INTRODUCTION

Motivated by the Hermite-Hadamard inequality, Kikianty and Dragomir (2008) introduced p-HH norm by giving their
equivalence to p-normsin X, Even though the equivalence of p-normns and p-HH normns are known, they are different due to
the fact that p-HH norms not only depend on the size of vectors, but they depend on the relative position of the original
vectors. Furthermore, these norms have been extended to X" of a normed space X. To illustrate the quantitative comparison
between p-norms and p-HH norms, Kikianty, in his thesis used the inequality [h(x) 1 L:’ h(t) dt|< 1 + (xﬁiﬁ) ] (b—-a) M fora
real valued function h(x) which is continuous and differentiable on (a, b) so’risfylné(?he condition |h(x) \(E_K]/?, where Mis areal
number.

Dragomir and Kikianty (2010), mentioned that the extension of sequence spaces also gives the fundamental difference of
p-norms and p-HH norms. Kikianty and Dragomir (2008) mentioned in their paper that the classical norms can be extended
fromn means on (0, «o) to normed space X in different ways; one calculates the norm of n vectors in X and then calculates the
mean of resulting numbers and therefore these norms depend on the original vectors only through their norms which
process is highly helpful to calculate the norm of X'. The weighted arithmetic means are exponential in this case because of
the fact that, one first computes a fixed linear combination of the original vectors and then gives the X-norm of the result
which maintains the more of the structure of X", but a weighted arithmetic mean of non-zero vectors does not give the norm
of X" because its arithmetic mean may be zero. The p-HH norms keeps the responsiveness of the arithmetic means to the
geometry of X" due to the fact that their dependency not only depends on the size of vectors, also they depend on the
relative position of the n original vectors in the space X.

Inthe paper of Kikianty and Sinnamon (2009), the p-norm is defined as follows: Let X be a normed space and for any positive
integern, x = (x,...., X)) € X". Under the usual addition and scalar multiplication, it becomes a normed space when equipped
with any of the following norms:

Il = {(llrl P+ llealP + o+ llzalP)3, 1< p< o0
max{||z|, [|zall . ... lzall}. p=00
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Robert Orthogonality in Normed Linear Spaces
Via 2-HH Norm

Bhuwan Prasad Ojha, Prakash Muni Bajracharya

Abstract

The p-HH norms on X2 were introduced by Kikianty and Dragomir in 2008. Besides that,
E. Kikianty and S.S. Dragimor introduced HH-P orthogonality and HH-I orthogonality by using
2-HH norm and discussed main properties of these orthogonalities. In this paper, we test the
concept of 2-HH norm to Robert orthogonality in normed spaces and discuss some properties of
this orthogonality.

Keywords:  Robert orthogonality, p-HH norm, Isosceles orthogonality, Pythagorean orthogonality,
Hermite-Hadamards inequality .

1 Introduction

The p-HH norms are equivalent to p-norms on X2, as they induce the same topology, but geometri-
cally they are different. The p-HH norm is an extension of the generalized logarithmic mean which
is connected by the Hermite-Hadamards inequality to p-norm. The definition of the generalized
logarithmic mean and Hermite-Hadamards inequality are as follows:

Definition. [6, 9] For any convex function f : [a,b] — R([a,b] C R, the Hermite-Hadamard’s
inequality is defined as

a+b
2

)S/abf(t)dtg(b—a) {f(“);f(b)}

. This inequality has been extended (see-12) for convex function f : [x,y] — R, where [z,y] =
{(1 =t)z +ty,t € [0,1]}. In that case Hermite-Hadamards integral inequality becomes

;r)yg/of[(l—t)x+ty}dtgw ...... (1).

(b—a)f(

T

I

Using the convexity of f(z) = ||z||” (z € X,p > 1) and relation (1) we have

1
T+y 1 P 1 1
<[ [ a-nerairal” < el -
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Selective removal of toxic Pb(ll) ion by solid phase extraction with carboxylate derivative of C3-symmetric triphenoxy
methane platform. @ PDF

Anup Basnet Chetry, Birendra Babu Adhikari,Keisuke Ohto

A new solid phase extraction reagent was developed by impregnating an ion-exchange ligand tris(3,5-di-tert-butyl-2-
carboxymethoxyphenyl)methane into Amberlite SAD-7 resin. Sorption behavior of the resin towards Pb(ll) and some other divalent transition
metal was studied as a function of various experimental parameters by batch as well as continuous sorption experiments. The resin showed
excellent selectivity for sorption of Pb(ll) over other divalent metal ions. The sorption process was found to follow pseudo-second kinetics, and
sorption equilibrium was fitted with Langmuir isotherms model. In continuous column experiment, traces of Pb(ll) ions were selectively
captured in the packed bed of the resin over excess of Zn(ll) ions. The results infer that the new impregnated resin is a promising material as
an efficient sorbent for selective removal of lead from contaminated streams

Robert Orthogonality in Normed Linear Spaces Via 2-HH Norm @ PDF
Prakash Muni Bajryacharya, Bhuwan Prasad Ojha
The p-HH norms on $X*{2}$ were introduced by Kikianty and Dragomir in 2008. Besides that, E. Kikianty and S.S. Dragimor introduced HH-P

orthogonality and HH-I orthogonality by using 2-HH norm and discussed main properties of these orthogonalities. In this paper, we test the
concept of 2-HH norm to Robert orthogonality in normed spaces and discuss some properties of this orthogonality.
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Birkhoftf and New Orthogonality in
Normed Linear Spaces Via 2-HH Norm

Bhuwan Prasad Ojha , Prakash Muni Bajracharya

Abstract

The p-HH norms were introduced by Kikianty and Dragomir on the Cartesian square of normed
spaces . P-norms and p-HH norms induces the same topology, so they are equivalent, but geometri-
cally they are different. Besides that, E. Kikianty and S.S. Dragimor introduced HH-P orthogonality
and HH-T orthogonality by using 2-HH norm and discussed main properties of these orthogonalities.
In this paper, we test the concept of 2-HH norm to Birkhoff and a new orthogonality in normed
spaces and discuss some properties of these orthogonalities.

Keywords: Birkhoff orthogonality, Hermite- Hadamard’s inequality, Pythagorean orthogonality, p-HH
norm, Logarithmic mean

1 Introduction

An inner-product on X defines a norm on X by ||z||* = (z,2). Every innerproduct spaces are
normed spaces, but the converse may not be true. A best example of normed space which is not an
inner-product space is I? = {(z,), 2, € R : Y |z,| < 00} for p # 2.

Definition. The p — HH norm on X2 = X x X is defined by

Il = (1= 002+ ol

for any z,y € X2 and 1 < p < oo.

The 2-HH norm is defined as follows:

1
1 )12 o = / 11— t) + ty|?dt
1
= Sl + o, 9) + P

The p-HH norms are equivalent to p-norms on X2, as they induce the same topology, but geometri-
cally they are different. The p-HH norm is an extension of the generalized logarithmic mean which
is connected by the Hermite-Hadamards inequality to p-norm. The definition of the generalized
logarithmic mean and Hermite-Hadamards inequality are as follows:

1
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Relation of Pythagorean and Isosceles Orthogonality with Best approximation in
Normed Linear Space

Bhuwan Prasad Ojha, Prakash Muni Bajrayacharya
Central Department of Mathematics, Tribhuvan University, Kritipur
E-mail: bhuwanp.ojha@apexcollege.edu.np

Abstract

In an arbitrary normed space, though the norm not necessarily coming from the inner
product space, the notion of orthogonality may be introduced in various ways as suggested
by the mathematicians like R.C. James, B. D. Roberts, G. Birkhoff and S.O. Carlsson. We
aim to explore the application of orthogonality in normed linear spaces in the best
approximation. Hence it has already been proved that Birkhoff orthogonality implies best
approximation and best approximation implies Birkhoff orthogonality. Additionally, it has
also been proved that in the case of € —orthogonality, € —best approximation implies
& —orthogonality and vice-versa. In this article we established relation between
Pythagorean orthogonality and best approximation as well as isosceles orthogonality
and € —best approximation in norned space.

Key words:  Best approximation, Birkhoff orthogonality, Pythagorean orthogonality, ¢ —best
approximation, Isosceles orthogonality.
Introduction
For any non-empty subset M of X, where X is a normed space, an element m, € M is
called best best approximation to x € X from M if ¥V m € M, ||x-myl||<|[x-m||. The collection of
all such elements m, € M which are best approximation to x€ X is denoted by Py,(x). If Py (X)
contains at least one element, then the subset M is called a proximal set. If for each x € X has a
unique best approximation in M, in that case the set M is called Chebychev set of X. In another
word the set M is called Chebychev if Py, (x) is singleton (Akramm, 2010).
Theorem 1.1. Let M be a subspace of a normed space X,
(1) If x € M, then Py (x) ={x} (1) If x € clM)\ M, then Py (x) = @( Akramm 2010)
( Singer 1974)

Proof: (i) Let x € M, then d(x, x) = 0 which implies that d(x, M) = 0.
Therefore Pp(x) = {x € M : [[x-y|Fd(x, M)} ={x € M : |x-y|= 0}={x}
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