ORTHOGONALITY IN NORMED LINEAR SPACES

A THESIS SUBMITTED TO THE

CENTRAL DEPARTMENT OF MATHEMATICS INSTITUTE OF SCIENCE AND TECHNOLOGY TRIBHUVAN UNIVERSITY, NEPAL

FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN MATHEMATICS BY

BHUWAN PRASAD OJHA

ORTHOGONALITY IN NORMED LINEAR SPACES

A THESIS SUBMITTED TO THE

CENTRAL DEPARTMENT OF MATHEMATICS INSTITUTE OF SCIENCE AND TECHNOLOGY TRIBHUVAN UNIVERSITY, NEPAL

FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN MATHEMATICS BY

BHUWAN PRASAD OJHA

DECLARATION

Thesis entitled "Orthogonality in Normed Linear Spaces", submitted to the Central Department of Mathematics, Institute of Science and Technology(IOST), Tribhuvan University, Nepal for the award of the degree of Doctor of Philosophy (Ph.D.), is a research work carried out by me under the supervision of Prof. Dr. Prakash Muni Bajracharya, Central Department of Mathematics, Tribhuvan University. This research is original and has not been submitted earlier in part or full in this or any other form to any university or institute, here or elsewhere, for the award of any degree.

RECOMMENDATION

This is to recommend that Mr. Bhuwan Prasad Ojha has carried out research entitled "Orthogonality in Normed Linear Spaces" for the award of Doctor of Philosophy (Ph.D.) in Mathematics under my supervision. To my knowledge, this work has not been submitted for any other degree. He has fulfilled all the requirements laid down by the Institute of Science and Technology (IOST), Tribhuvan University, Kirtipur for the submission of the thesis for the award of Ph.D. degree.

Prof. Dr. Prakash Muni Bajracharya
(Supervisor)
School of Mathematical Sciences
Tribhuvan University
Balkhu, Kathmandu
Nepal

Date: 18 June, 2021

Tribhuvan University
Institute of Science and Technology Central Department of Mathematics

LETTER OF APPROVAL

Date: 18 June , 2021

On the recommendation of Prof. Dr. Prakash Muni Bajracharya, this Ph. D. thesis submitted by Mr. Bhuwan Prasad Ojha, entitled Orthogonality in Normed Linear Spaces is forwarded by Central Department Research Committee (CDRC) to the Dean, IOST, T.U.

Prof. Dr. Tanka Nath Dhamala
Head,
Central Department of Mathematics
Tribhuvan University
Kirtipur, Kathmandu
Nepal

ACKNOWLEDGMENTS

The credit for the preparation of this dissertation goes to my respected research supervisor Prof. Dr. Prakash Muni Bajracharya for his invaluable scholarly supervision, constructive comments and suggestions that helped me to bring this dissertation in this form.

Moreover, I would also like to express my sincere gratitude to respected Prof. Dr. Tanka Nath Dhamala, the head of the department, for granting me permission to conduct this study-the subject of my interest.

My special thanks goes to my respected Prof. Dr. Kedar Nath Uprety, Prof. Dr. Narayan Prasad Pahari, Associate Professor Ajaya Singh and rest of the professors of the department for their direct and indirect help. Without their suggestions and instructions the dissertation would not have been completed. Likewise, my special thanks goes to the Apex College, Kathmandu for providing me PhD Faculty Fellowship - 2075 and Nick Simon Foundation during my study. Its generous financial support and assistance have meant more to me than I could ever express. Special thanks goes to my colleagues Mr. Phatik Paudel, Mr.Tara Prasad Adhikari and Mr. Bhuwan Bahadur Bohara for giving valuable time in the language part of this dissertation. Similarly, I am thankful to my mother, wife Nirmala, daughter Pabitra and son Surendra. Special cordial thanks go to all my colleagues of Apex college for their valuable suggestions and help.

ABSTRACT

This thesis deals with the orthogonality in normed linear spaces. The goal is to investigate and study different notions of orthogonality in normed spaces. By utilizing the 2-HH norm and bounded linear operators, some notions of orthogonality are introduced and then, different properties of orthogonality in relation to these orthogonalities are studied. We generalize the Robert, Birkhoff-James, and a new orthogonality in terms of the 2HH norm, and study the main properties of orthogonality. We prove that the Birkoff and Robert orthogonality in terms of the 2-HH norm are equivalent if the underlying space is real inner product space. Further, we prove that the isosceles orthogonality is homogeneous if and only if it is additive. Additionally, we prove that the orthogonality relation of type (I) in terms of 2-HH norm satisfies non-degeneracy, simplification, continuity, and uniqueness properties. Moreover, we prove that the Carlsson orthogonality in terms of bounded linear operators also satisfies non-degeneracy, simplification, and continuity properties. In the case of norm attaining bounded linear operator with disjoint support in a Hilbert space H, we prove that two operators are orthogonal in the sense of Pythagoras if and only if they are orthogonal in the sense of isosceles. In terms of buonded linear operators, we prove that the Pythagorean orthogonality and orthogonality relation of type (I), imply the Birkhoff-James orthogonality, but the converse may not be true. Under the restriction of an element belonging to the norm attainment set, we prove that the orthogonality of images also implies the orthogonality of operators in the Carlsson as well as Robert's sense. Finally, as applications, we prove that the Pythagorean orthogonality implies the best approximation, and the best approximation (resp. $\epsilon-$ best approximation) and Birkhoff orthogonality (resp. ϵ - Birkhoff orthogonality) are equivalents.

Keywords: Normed linear spaces, Inner-product space, Birkhoff-James orthogonality, Pythagorean orthogonality, p-HH norm, Best approximation

LIST OF SYMBOLS

\mathbb{N}	Set of positive integers		
\mathbb{R}	Set of real numbers or real line		
\mathbb{C}	Set of complex numbers		
$L(X, Y)$	Set of linear operators form X to Y		
$B(X, Y)$	Set of bounded linear operators form X to Y		
$x \perp_{2-H H-R} y$	x is Robert orthogonal to y via 2-HH norm		
$x \perp_{2-H H-B} y$	x is Birkhoff-James orthogonal to y via 2-HH norm		
$x \perp_{2-H H-P} y$	x is Pythagorean orthogonal to y via 2-HH norm		
$x \perp_{2-H H-i} y$	x is isosceles orthogonal to y via 2-HH norm		
$x \perp_{2-H H-N} y$	x is orthogonal to y via 2-HH norm in the sense of new orthogonality		
S_{X}	Unit sphere of X		
M_{T}	Norm attainment set of T		
\mathscr{A}	Banach algebra		
$K(X, Y)$	The set of compact linear operators from X to Y		
$<x, y>$	A line segment passes through (x, y)		
$[x, y]$	Segment between x and y		
M_{x}	The maximum of the length of non-trival segment contained in the unit sphere		
$B(H)$	Set of bounded linear operators in a Hilbert space H		
$\\|A\\|_{p}$	Schatten p-norm of A		
$g(x, y)$	g-angle between two vectors x and y		
$B(V, W)$	The space of all adjointable mapping form V to W		
$K(B, V)$	Closed linear subspace of $B(V, W)$		
$S p a n(X)$	The set of all finite linear combinations of elements of X		

TABLE OF CONTENTS

Declarationi
Recommendation ii
Letter of Approval iii
Acknowledgments iv
Abstract v
List of Symbols vi
1 INTRODUCTION 1
1.1 Statement of the problem 3
1.2 Objective of the study 3
1.3 Outline of the thesis 4
2 ORTHOGONALITY IN NORMED LINEAR SPACES 6
2.1 Introduction 6
2.1.1 Main properties of orthogonality in an inner product space: 6
2.2 Robert Orthogonality 7
2.3 Birkhoff Orthogonality 13
2.3.1 Orthogonality on C^{*}-module 15
2.3.2 Strong Birkhoff-James Orthogonality 17
2.3.3 Norm parallelism and Birkhoff-James orthogonality 19
2.3.4 Birkhoff-James orthogonality by applying semi-inner product 20
2.3.5 Modular Birkhoff orthgonality in Banach modules 23
2.3.6 Birkhoff orthogonality via 2-HH norm 24
$2.4 \quad$ Isosceles orthogonality 26
2.5 Pythagorean Orthogonality 33
2.6 Carlsson Orthogonality 38
2.6.1 Carlsson Orthogonality in terms of p-HH norm 40
3 ORTHOGONALITY IN TERMS OF p-HH NORM 45
3.1 Some special cases of Carlsson's orthogonality 45
3.2 Results on new orthogonality 52
4 BEST APPROXIMATION IN NORMED LINEAR SPACES 61
4.1 Introduction 61
4.2 Some results on best approximation 65
5 SMMARY AND CONCLUSION 69
5.1 Summary 69
5.2 Conclusion 70
5.3 Recommendation for the future work 71
REFERENCES 72

Chapter 1

INTRODUCTION

The natural definition of orthogonality of elements of an inner-product space is that, $x \perp y$ if and only if the inner-product $(x, y)=0$. However, in context of a normed linear space, this definition does not work due to the unavailability of the notion of inner-product. As a generalization of orthogonality from inner-product space to normed linear space, the first credit goes to R. C. James in the paper [1] even-though D. B. Robert introduced the first orthogonality in normed linear space in 1934. Robert's definition has the weakness that for some normed linear space at least one of every pair of orthogonal elements would have to be zero [2]. To avoid this difficulty, G. Birkhoff introduced a new concept of orthogonality in normed linear space by stating that " if x is a unit vector of a Banach Space X and $y \in X$, then x is orthogonal to y if and only if the straight line $\{x+\lambda y: \lambda \in \mathbb{K}\}$ is tangent to the unit ball of X at $x "[3]$. In 1945, James came up with the notion of the Pythagorean and isosceles orthogonalities which characterize inner-product space via their homogeneity and additivity [1].
S. O. Carlsson in 1962, introduced a generalized concepts of orthogonality in normed linear space by indicating that " the isosceles and Pythagorean orthogonality are special cases" [4]. The open problem related to relationship between the Birkhoff-James orthogonality and the Pythagorean orthogonality is discussed in the paper [5]. Motivated by Carlsson's results, two new special case of the Carlsson's orthogonality have been introduced and an attempt has been made to verify some properties of inner-product space in relation to these orthogonalities[6]. In 2010, E. Kikianty and S. S. Dragomir introduced the $p-H H$ norm on the cartesian square of normed linear space by generalizing the previous definition of the Carlsson orthogonality in terms of $2-H H$ norm, which also generalize the Pythagorean and isosceles orthogonality in terms of 2-HH norm[7]. Mo-
tivated by the results of Kikianty and Dragomir, the Birkhoff and new special cases of the Carlsson orthogonality in terms of 2-HH norm have been introduced [$[8]$. Besides, the Robert orthogonality in terms of 2-HH norm has also been introduced in the paper [9]. Bhatia and Semrl came up with new concept of orthogonality in terms of matrices, specially in the case of Birkhoff orthogonality [10]. Sain and Paul linked the Bhatia and Semrl property with norm attaining operators in a finite dimensional normed space which attains its norm on connected closed subset of the unit sphere of X and proved that "if two linear operators are orthogonal in the sense of Birkhoff-James, then there exists an element in the closed connected subset of the unit sphere at which the images of operators are also orthogonal in the sense of Birkhoff-James [11].

In 2013, Paul et al. introduced a concept of strong Birkhoff-James orthogonality by stating that x is said to be strongly orthogonal to y in the sense of Birkhff-James if and only if $\|x\|<\|x+\lambda y\|$ for all $\lambda \neq 0$. The notation $x \perp_{S B} y$ was used to indicate the orthogonality and proved that the strong Birkhoff-James orthogonality implies Birkhoff-James orthogonality, but the converse may not be true. To illustrate this concept, two elements $(1,0)$ and $(0,1)$ are taken in $l_{\infty}\left(\mathbb{R}^{2}\right)$, showing that $(1,0)$ and $(0,1)$ are orthogonal in the sense of Birkhoff-James but not strongly orthogonal to each other [12]. To study the difference of orthogonality in the complex case in comparison of real case Paul et al. in 2018 came of with new concept of Birkhoff-James orthogonality introducing new definitions on complex reflexive Banach space [13]. Recently, Bottazzi et al. have introduced a new generalization of earlier results on orthogonality of bounded linear operators. They discussed about Birkhoff-James, isosceles and Robert orthogonality in Banach spaces in terms of bounded linear operators [14].

Motivated by the results of Bottazzi et al., this research is focused on generalizing the earlier definition of the Carlsson orthogonality in terms of bounded linear operators with verifying some properties, like non-degeneracy, continuity and homogeneity property of an inner product space in relation to the Carlsson orthogonality for bounded linear operators. Kikianty and Dragomir mentioned without proof in their paper that the Pythagorean and isosceles orthogonality via 2-HH norm satisfies non-degeneracy, symmetry and continuity property [7]. In this thesis, all these properties have been proved when the norm on X is induced by an inner product. The equivalence of homogeneity and additivity of isosceles orthogonality via $2-\mathrm{HH}$ norm has been proved, the proof of which has been omitted in the paper by Kikianty and Dragomir. This thesis also generalizes the special case of the Carlsson orthogonality in terms of 2-HH norm in real normed linear space and
it has been proved that the orthogonality is unique in any normed space X . The Birkhoff and Robert orthogonality via 2-HH norm are found equivalent, whenever the underlying space is real inner product space [15].

1.1 Statement of the problem

The statements of problem are as follows:

- To study orthogonality in normed linear space by generalizing the notion of orthogonality;
- To study orthogonality in terms of p-HH norm;
- To study orthogonality in terms of bounded linear operators in Banach spaces;
- Use of orthogonality in the theory of best approximation.

1.2 Objective of the study

The objective of this study is

1. To study different types of orthogonality like: Birkhoff-James, Carlsson, Pythagorean, Robert, and isosceles by using functional and operators in Banach space and Hilbert spaces,
2. To establish correlation between various orthogonalities,
3. To generalize different orthogonalities via p - HH norm,
4. To generalize the Carlsson orthogonality in terms of operators and study some famous properties of inner-product space in relation to this orthogonality,
5. To link new two spacial cases of the Carlsson orthogonalityi in terms of p-HH norm and bounded linear operators,
6. To introduce some different relations between orthogonality and best approximation in normed linear spaces.

1.3 Outline of the thesis

This thesis is devoted to the study of orthogonality in normed linear space with generalization of different orthogonalities in terms of 2-HH norm in a real normed space and bounded linear space operators in Banach space and Hilbert space. The work begins with chapter 1 providing introduction of orthogonality as well as its development by different mathematicians at different span of time, statement of the problem, objectives, and outlines of the thesis.

Chapter 2 is written with necessary literature of orthogonality needed to introduce new result of the thesis. Some generalizations regarding to the Robert, isosceles, Birkhoff-Jame and new orthogonality in terms of 2-HH norms are introduced and studied. Depending on the generalized definition of the Carlsson orthogonality, a new generalization in terms of bounded linear operators is also introduced with verification of some properties of inner product space. The most important concept introduced in this chapter is the equivalency of Birkhoff-James orthogonality with isosceles orthogonality, however the Birkhoff- James orthogonality is not equivalent with the Pythagorean orthogonality in the case of norm attaining bounded linear operators with disjoint support in Hilbert space.

In chapter 3, the new results of research have been included involving two new particular cases of the Carlsson orthogonality with verifying some important properties. It has also been proved that the new particular case of the Carlsson orthogonality implies the Birkhoff-James orthogonality by taking $y=\frac{x}{1-\alpha}$, but the converse may not be true. The most important concept proved in that section is the new orthogonality through the medium of 2-HH norm that is unique in any normed space with the help of proving

$$
h(\mu):=\int_{0}^{1}\left\|(1-t) y+\frac{\mu}{2}(t x)\right\|^{2} d t+\int_{0}^{1}\left\|(1-t) y-\frac{\mu}{2}(t x)\right\|^{2} d t
$$

is a convex function in \mathbb{R}. In the case of new orthogonality in terms of bounded linear operators in Banach space, it implies the Birkhoff-James orthogonality; however, the converse may not be true. For any element belonging to the norm attainment set of T, if the images are orthogonal, then the operators are also orthogonal in the sense of isosceles as well as Birkhoff-James orthogonality.

In chapter 4, as an application of orthogonality in terms of best approximation are involved due to the fact that the problem of best approximation amounts to the problem of
minimizing a distance. An attempt has been made to prove some concept related to orthogonality (resp. ϵ-orthogonality) and the best approximation (resp. co-approximation).

The chapter 5 includes the summary, conclusion and recommendation for further work. Finally, in appendix, the publications and certificates of conferences, seminar and workshops have been included.

Chapter 2

ORTHOGONALITY IN NORMED LINEAR SPACES

2.1 Introduction

It is well known fact that a norm in a normed linear space does not necessarily arise from an inner product. Therefore the definition of orthogonality in an inner-product space may not work for any normed space. Due to this, different orthogonality in normed spaces have been introduced and studied through the medium of equivalent propositions to the usual orthogonality, since from 1934. This chapter includes different classical notions of orthogonality which were introduced by different mathematicians at different time period. In order to study orthogonality in normed linear spaces, the main properties of orthogonality in an inner-product space are needed. Due to this reason, some important properties of orthogonality in an inner-product spaces are mentioned as follows:

2.1.1 Main properties of orthogonality in an inner product space:

Let $x, y, z \in X$, where X is an inner-product space. Then the following properties holds [[1], [16]]:
(i) Non-degeneracy: If $x \perp x$, then $x=0$;
(ii) Simplification: If $x \perp y$, then for any $\lambda \in \mathbb{R}, \lambda x \perp \lambda y$;
(iii) Continuity: If $\left\{x_{n}\right\},\left\{y_{n}\right\} \subset X$ such that $x_{n} \perp y_{n}$ for all $n \in \mathbb{N}, x_{n} \rightarrow x$ and

$$
y_{n} \rightarrow y \text {, then } x \perp y \text {; }
$$

(iv) Homogeneity: If $x \perp y$, then $\lambda x \perp \mu y$ for all $\lambda, \mu \in \mathbb{R}$;
(v) Symmetry: If $x \perp y$, then $y \perp x$;
(vi) Additivity: If $x \perp y$ and $x \perp z$, then $x \perp y+z$;
(vii) If $x \neq 0$, then there exist $\alpha \in \mathbb{R}$ such that $x \perp \alpha x+y$;
(viii) Uniqueness: The above α is unique.

2.2 Robert Orthogonality

The generalization of orthogonality from inner-product space to normed linear space was given by D. B. Robert in 1934 with some limitations. The main weakness of this orthogonality was that, for some normed linear spaces, at least one of orthogonal elements would have to be zero [2]. The definition of orthogonality is as follows:

Definition 1 ([2], [1]). Let X be a normed linear space. A vector x is orthogonal to y in the sense of Robert if and only if $\|x+\beta y\|=\|x-\beta y\|$ identically in β.

Properties of Robert orthogonality

For any normed linear space X , the Robert orthogonality satisfies the following properties [16]:
(i) Robert orthogonality satisfies non-degeneracy, simplification, and continuity;
(ii) Robert orthogonality is homogeneous and symmetric;
(iii) In any normed linear space, the Robert orthogonality is not additive and does not satisfy the existence property;
(iv) If the norm on X is induced by an inner-product, Robert orthogonality satisfy the existence property.
R. C. James noted that it is interesting to investigate the properties of orthogonality in an inner-product space as applied to normed space and he focused mainly on the existence property in the paper [1] and uniqueness in the paper [17].

Example 1. [I] Let X be a normed linear space consisting all continuous functions of the form $f=a x+b x^{2}$, where $\left\|a x+b x^{2}\right\|=\max _{x \in(0,1)}\left|a x+b x^{2}\right|$. Then Two elements of X are orthogonal in the sense of Roberts if and only if one is zero; i.e; $\|f+\beta g\|=\|f-\beta g\|$ for all β only if $f=0$ or $g=0$.

Theorem 2.2.1. [16] Let X be a normed space. Then, the Robert orthogonality is equivalent to any other orthogonality if and only if X is an inner product space.

For any $(x, y) \in X^{2}$, Kikianty and Dragomir defined the p- norm on X^{2} as follows [7]:

$$
\|(x, y)\|_{p}= \begin{cases}{\left[\|x\|^{p}+\|y\|^{p}\right]^{\frac{1}{p}},} & 1 \leq p<\infty \tag{2.1}\\ \max \{\|x\|,\|y\|\}, & p=\infty\end{cases}
$$

From (2.1), it is obvious that $\|(x, y)\|_{p}=\|(y, x)\|_{p}$, and therefore p-norm is symmetric. Using the concepts of Hermite-Hadamard's inequality, we have

$$
\begin{equation*}
\int_{0}^{1}\|(1-t) x+t y\|^{p} d t \leq \frac{\|x\|^{p}+\|y\|^{p}}{2}=\frac{\|(x, y)\|_{p}^{p}}{2}<\infty \tag{2.2}
\end{equation*}
$$

With the help of (2.2), they defined the p-HH norm on X^{2} in the following ways [26]:

$$
\|(x, y)\|_{p-H H}=\left\{\begin{array}{lc}
\left(\int_{0}^{1}\|(1-t) x+t y\|^{p}\right) \frac{1}{p}, & \text { if } 1 \leq p<\infty \tag{2.3}\\
\sup _{t \in[0,1]}\|(1-t) x+t y\|, & \text { if } p=\infty
\end{array}\right.
$$

For all $x, y \in X$, it is obvious that $\|(x, y)\|_{p-H H}=\|(y, x)\|_{p-H H}$. Therefore the p-HH norm is symmetric. They proved that $\left(X^{2},\|(.,)\|.\right)$ is a normed linear space because the non-degeneracy and homogeneity of the norm can be derived from (2.3) and the triangle inequality follows from the Minkowski's inequality. If the norm on X is induced by an inner product (., .), then as a special case of the p-HH norm, it is denoted by 2 -HH norm. It is defined in the paper [7] as follows:

$$
\begin{equation*}
\|(x, y)\|_{2-H H}^{2}=\int_{0}^{1}\|(1-t) x+t y\|^{2} d t . \tag{2.4}
\end{equation*}
$$

For any $p \geq 1$, The p -norm and p -HH norm are equivalent in X^{2}.
Definition 2. A real valued function f defined on a non-empty subset $X \subset \mathbb{R}^{n}$ is called convex if
(i) the domain X of the function is convex.
(ii) for any $x, y \in X$ and $\lambda \in[0,1]$,

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \tag{2.5}
\end{equation*}
$$

If the inequality (2.5) is strict whenever $x \neq y$ and $0<\lambda<1$, then function f is called strictly convex function.

Let X be normed space in which the norm is induced by an inner-product. We make an attempt to generalize the Robert orthogonality via 2-HH norm, which satisfies nondegeneracy, simplification, continuity, symmetry, and homogeneity property [9].

Definition 3. [9] Let X be a real normed linear space in which the norm is induced by an inner-product and $\|(1-t) x+\lambda t y\|^{2}=\|(1-t) x-\lambda t y\|^{2}$ a. e. on $[0,1]$. Then x is said to be Robert orthogonal to y through the medium of 2-HH norm, denoted by $x \perp_{2-H H-R} y$ if and only if

$$
\begin{equation*}
\int_{0}^{1}\|(1-t) x+\lambda t y\|^{2} d t=\int_{0}^{1}\|(1-t) x-\lambda t y\|^{2} d t \tag{2.6}
\end{equation*}
$$

Theorem 2.2.2. [9] Let X be a real normed linear space in which the norm is induced by an inner-product. Then the Robert orthogonality via 2-HH norm satisfies the nondegeneracy, simplification and continuity.

Proof. Nondegeneracy: If $x \perp_{H H-R} x$. Then

$$
\begin{aligned}
\|(x, x)\|^{2} & =\int_{0}^{1}\|(1-t) x+t \lambda x\|^{2} d t \\
& =\int_{0}^{1}\|(1-t) x-t \lambda x\|^{2} d t \\
& =\int_{0}^{1}\langle(1-t) x-t \lambda x,(1-t) x-t \lambda x\rangle d t \\
& =\|(x, x)\|^{2} \int_{0}^{1}(1-t)^{2} d t+\|\lambda(x, x)\|^{2} \int_{0}^{1} t^{2} d t \\
& =\frac{1}{3}\|(x, x)\|^{2}\left(1+\lambda^{2}\right)
\end{aligned}
$$

It is clear that $\|(x, x)\|=0 \Rightarrow x=0$, which gives the non-degeneracy property.

Simplification: If $x \perp_{H H-R} y$ for any $\lambda, \mu \in \mathbb{R}$,

$$
\begin{aligned}
\int_{0}^{1}\|(1-t) \mu x+t \lambda \mu y\|^{2} d t & =|\mu|^{2} \int_{0}^{1}\|(1-t) x+t \lambda y\|^{2} d t \\
& =|\mu|^{2} \int_{0}^{1}\|(1-t) x-t \lambda y\|^{2} d t \\
& =\int_{0}^{1}\|(1-t) \mu x-t \lambda \mu y\|^{2} d t
\end{aligned}
$$

Therefore $\mu x \perp_{H H-R} \mu y$ for any $\mu \in \mathbb{R}$.
Continuity: If $x_{n} \perp_{2-H H-R} y_{n}$ with $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then

$$
\begin{aligned}
\int_{0}^{1}\left\|(1-t) x_{n}+\lambda t y_{n}\right\|^{2} d t & =\int_{0}^{1}\left\|(1-t) x_{n}+\lambda t y_{n}\right\|^{2} d t \\
\Rightarrow \lim _{n \rightarrow \infty} \int_{0}^{1}\left\|(1-t) x_{n}+\lambda t y_{n}\right\|^{2} d t & =\lim _{n \rightarrow \infty} \int_{0}^{1}\left\|(1-t) x_{n}+\lambda t y_{n}\right\|^{2} d t \\
\Rightarrow \int_{0}^{1}\|(1-t) x+\lambda t y\|^{2} d t & =\int_{0}^{1}\|(1-t) x+\lambda t y\|^{2} d t
\end{aligned}
$$

This shows that $x \perp_{2-H H-R} y$.

Theorem 2.2.3. [9] Let X be a real normed linear space in which the norm is induced by an inner-product. Then the Robert orthogonality via 2-HH norm is homogeneous, but not symmetric.

Proof. Homogeneity: Let x, y be elements of normed space X, and $\lambda, \mu \in \mathbb{R}$

$$
\begin{aligned}
\int_{0}^{1}\|(1-t) \lambda x+t \mu y\|^{2} d t & =\int_{0}^{1}\langle(1-t) \lambda x+t \mu y,(1-t) \lambda x+t \mu y\rangle d t \\
& =\|\lambda x\|^{2} \int_{0}^{1}(1-t)^{2} d t+\|\mu y\|^{2} \int_{0}^{1} t^{2} d t \quad(\because x \perp y) \\
& =\frac{1}{3}\left(\|\lambda x\|^{2}+\|\mu y\|^{2}\right)
\end{aligned}
$$

Again,

$$
\begin{aligned}
\int_{0}^{1}\|(1-t) \lambda x-t \mu y\|^{2} d t & =\int_{0}^{1}\langle(1-t) \lambda x-t \mu y,(1-t) \lambda x-t \mu y\rangle d t \\
& =\|\lambda x\|^{2} \int_{0}^{1}(1-t)^{2} d t+\|\mu y\|^{2} \int_{0}^{1} t^{2} d t \quad(\because x \perp y) \\
& =\frac{1}{3}\left(\|\lambda x\|^{2}+\|\mu y\|^{2}\right)
\end{aligned}
$$

Therefore the Robert Orthogonality via 2-HH norm is homogeneous if the normed space is equipped with an inner-product.

Symmetry: To check the symmetry of $2-H H-R$ orthogonality,

$$
\begin{aligned}
& \int_{0}^{1}\|(1-t) y+\lambda t x\|^{2}=\frac{1}{3}\left(\|y\|^{2}+\lambda^{2}\|x\|^{2}\right), \quad \text { but } \\
& \int_{0}^{1}\|(1-t) x+\lambda t y\|^{2}=\frac{1}{3}\left(\|x\|^{2}+\lambda^{2}\|y\|^{2}\right)
\end{aligned}
$$

$\therefore \quad \int_{0}^{1}\|(1-t) y+\lambda t x\|^{2} \neq \int_{0}^{1}\|(1-t) x+\lambda t y\|^{2}$, showing that $2-H H-R$ orthogonality is not symmetric via $2-H H$ norm.

Lemma 2.2.1. []] Let X be a normed linear space and $x, y \in X$. Then

$$
\lim _{\mu \rightarrow \infty}[\|(\mu+k) x+y\|-\|\mu x+y\|]=k\|x\|
$$

Theorem 2.2.4. [9] Let X be a normed linear space. Then $\forall x \in X, \quad \exists \mu \in \mathbb{R}: \mu x+$ $y \perp_{H H-R} x$,

Proof. Let $x, y \in X$ such that $x \neq 0$ (for the case of $\mathrm{x}=0$, the proof is trivial). Let us define a function $g: \mathbb{R} \times(0,1) \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
g(\mu, t) & =\|(1-t)(\mu x+y)+\lambda t x\|-\|(1-t)(\mu x+y)-\lambda t x\|, \text { where } \lambda \in \mathbb{R}^{+}, \mu \in \mathbb{R} \\
& =\|[(1-t) \mu+\lambda t] x+(1-t) y\|-\|[(1-t) \mu-\lambda t] x+(1-t) y\|
\end{aligned}
$$

and a function $G: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
G(x)=\int_{0}^{1} g(\mu, t) d t
$$

Now

$$
\begin{aligned}
\lim _{\mu \rightarrow \infty} g(\mu, t) & =\lim _{\mu \rightarrow \infty}[\|[(1-t) \mu+\lambda t] x+(1-t) y\|-\|[(1-t) \mu-\lambda t] x+(1-t) y\|] \\
& =(1-t) \lim _{\mu \rightarrow \infty}\left[\left\|\left(\mu+\frac{\lambda t}{1-t}\right) x+y\right\|-\left\|\left(\mu-\frac{\lambda t}{1-t}\right) x+y\right\|\right]
\end{aligned}
$$

Let $\mu-\frac{\lambda t}{1-t}=\xi$ so that as $\mu \rightarrow \infty, \xi \rightarrow \infty$. Then $\mu+\frac{\lambda t}{1-t}=\xi+\frac{2 \lambda t}{1-t}$

$$
\begin{aligned}
\therefore \quad \lim _{\mu \rightarrow \infty} g(\mu, t) & =\lim _{\xi \rightarrow \infty}\left[\left\|\left(\xi+\frac{2 \lambda t)}{1-t}\right) x+y\right\|-\|\xi x+y\|\right] \\
& =(1-t) \frac{2 \lambda t}{1-t} \quad(\text { by using Lemma 1.1) } \\
& =2 \lambda t\|x\|
\end{aligned}
$$

Hence $\lim _{\mu \rightarrow \infty} G(\mu)=\lim _{\mu \rightarrow \infty} \int_{0}^{1} g(\mu, t) d t=\int_{0}^{1} \lim _{\mu \rightarrow \infty} g(\mu, t) d t$ and by continuity of g,

$$
\begin{aligned}
\lim _{\mu \rightarrow \infty} G(\mu) & =\int_{0}^{1} 2 \lambda t\|x\| d t \\
& =\|\lambda x\|>0
\end{aligned}
$$

Also for any $t \in(0,1)$,

$$
\begin{aligned}
\lim _{\mu \rightarrow \infty} g(-\mu, t) & =\lim _{\mu \rightarrow \infty}[\|[(1-t)(-\mu)+\lambda t] x+(1-t) y\|-\|[(1-t)(-\mu)-\lambda t] x+(1-t) y\|] \\
& =\lim _{\mu \rightarrow \infty}[\|[(1-t) \mu-\lambda t] x-(1-t) y\|-\|[(1-t) \mu+\lambda t] x-(1-t) y\|] \\
& =(1-t) \lim _{\mu \rightarrow \infty}\left[\left\|\left(\mu-\frac{\lambda t}{1-t}\right) x-y\right\|-\left\|\left(\mu+\frac{\lambda t}{1-t}\right) x-y\right\|\right]
\end{aligned}
$$

Suppose $\mu+\frac{\lambda t}{1-t}=\xi$ so that as $\mu \rightarrow \infty . \xi \rightarrow \infty$ and $\mu-\frac{2 \lambda t}{1-t}=\xi-\frac{2 \lambda t}{1-t}$

$$
\begin{aligned}
\therefore \quad \lim _{\mu \rightarrow \infty} g(-\mu, t) & =(1-t) \lim _{\xi \rightarrow \infty}\left[\left\|\left(\xi-\frac{2 \lambda t}{1-t}\right) x-y\right\|-\|\xi x-y\|\right] \\
& =(1-t) \frac{(-2 \lambda t)}{1-t}\|x\| \quad \text { (by using Lemma 2.2.1) } \\
& =-2 \lambda t\|x\|
\end{aligned}
$$

By the continuity of g, we have
$\lim _{\mu \rightarrow \infty} G(-\mu)=\lim _{\mu \rightarrow \infty} \int_{0}^{1} g(-\mu, t) d t=\int_{0}^{1} \lim _{\mu \rightarrow \infty} g(-\mu, t) d t=\int_{0}^{1}-2 \lambda\|x\| d t=-\lambda\|x\|<0$.

Since G is continuous, so $\exists \mu_{0} \in \mathbb{R}: G\left(\mu_{0}\right)=0$.

$$
\text { Hence } \int_{0}^{1}\left\|(1-t)\left(\mu_{0} x+y\right)+\lambda t x\right\|^{2} d t=\int_{0}^{1}\left\|(1-t)\left(\mu_{0} x+y\right)-\lambda t x\right\|^{2} d t \text {. }
$$

2.3 Birkhoff Orthogonality

The concept of Birkhoff orthogonality began in 1935 [3]. In the literature of orthogonality this is known with some other names such as; Birkhoff- James orthogonality and Blaschke Birkhoff-James orthogonality (see [18]). In this paper [3, 17], an orthogonality which satisfies homogeneity but neither symmetric nor additive is defined by $x \perp y$ if and only if $\|x+\lambda y\| \geq\|x\|$ for all λ, is known as Birkhoff orthogonality or Birkhoff-James orthogonality. The geometrical meaning of Birkhoff orthogonality is that if x is an unit vector of a Banach space X and $y \in X$, then x is Birkhoff orthogonal to y means that the straight line $\{x+\lambda y: \lambda \in K\}$ is tangent to the unit ball of X at x . This concept is similar to the statement: suppose two lines l_{1} and l_{2} intersect at the point m , then $l_{1} \perp l_{2}$ if and only if the distance from a point m of l_{2} to a given point n of l_{1} is never less than the distance from m and n . [17] For any hyper-plane $H \subset X, \mathrm{x}$ is said to be orthogonal to H if $\forall x \in H, x \perp h$.

Bhatia and Semrl in [10] generalize the definition of Birkhoff orthogonality in terms of matrix operators. For any matrices A and B they denote the symbol $\|A\|$ for operator norm of A and A is orthogonal to B in the sense of Birkhoff-James iff for any complex number $\mathrm{z},\|A+z B\| \geq\|A\|$. A matrix A is orthogonal to B iff there exist a unit vector $x \in H$ such that $\|A x\|=\|A\|$ and $\langle A x, B x\rangle=0$ [10]. They also introduced BirkhoffJames orthogonality in [10] as $A \perp B$ if and only if $\|A+z B\|_{p} \geq\|A\|_{p}$, where $\|A\|_{p}$ denotes Schatten p-norm of A defined by $\|A\|_{p}=\left[\sum_{j=1}^{n} S_{j}(A)^{p}\right]^{\frac{1}{p}}$ for $1 \leq p<\infty$ and $S_{1}(A) \geq S_{1}(A) \geq \ldots \ldots \geq S_{n}(A)$ are singular values of A. Taking the special case for $p=2$, Bhatia and Semrl in [10] also proved that the given orthogonality is equivalent to usual Hilbert space condition $\langle A, B\rangle=0$, which defines an inner-product on the space of matrices as $\langle A, B\rangle=\operatorname{trace}\left(A^{*} B\right)$. The norm associated to this inner product is $\|\cdot\|_{2}$. In an infinite dimensional case [10], for any bounded operators in a Hilbert space $\mathrm{H}, A \perp B$ if and only if there exist a sequence $\left\{x_{n}\right\}$ of unit vectors such in H that $\|A x\| \rightarrow\|A\|$, and $\left\langle A x_{n}, B x_{n}\right\rangle \rightarrow 0$. Benitz et al. [19] proved that X is an inner-product space if and only if for any linear operators A and C in a finite dimensional normed space X ,
$A \perp C \Leftrightarrow \exists u \in S_{X}:\|A u\|=\|u\|, A u \perp C u$, where $S_{X}=\{x \in X:\|x\|=1\}$ and " \perp " denotes the Birkhoff-James orthogonality.

Theorem 2.3.1. [19] If S_{X} is not an ellipse(X is not an inner-product space), then there exists linear operators A and C in X such that $A \perp C$, but there does not exists $u \in S_{X}$ such that $\|A\|=\|A u\|$ and $A u \perp C u$.

Theorem 2.3.2 ([19]). A real finite dimensional normed space X is an inner-product space if and only if, for $A, C \in L(X), A \perp C \Leftrightarrow \exists x \in S_{X}:\|A\|=\|A x\|, A x \perp C x$.

Theorem 2.3.3. [20] The q-angle has the following properties:
(i) Part of parallelism property: $A_{q}(x, y)=0$ iff x and y are linearly dependent.
(ii) Part of homogeneity property: $A_{q}(A x, B y)=A_{q}(x, y)$ for every $x, y \in X$ and $A, B \in \mathbb{R}-\{0\}$.

In [20] Chen Zhi-Zhi et al. have given slightly different definition of Birkhoff orthogonality in such a way that; x is Birkhoff orthogonal to y iff $A_{q}(x, y)=\frac{\pi}{2}$ by using projections of the angles between two vectors x and y in a real two dimensional normed space X.

Definition 4. [20] The g-angle between two vectors x and y is given by $g(x, y)=\cos ^{-1} \frac{g(x, y)}{\|x\|\|y\|}$, where $g(x, y)=\frac{1}{2}\|x\|\left[\tau_{+}(x, y)+\tau_{-}(x, y)\right]$ and $\tau_{ \pm}(x, y)=\lim _{t \rightarrow \pm 0} \frac{\|x+t y\|-\|x\|}{t}$. In that case $x \perp_{g} y$ if $g(x, y)=0$ or $A_{g}(x, y)=\frac{\pi}{2}$.

For any $x=\left(x_{1}, x_{2}\right)^{T}$ and $y=\left(y_{1}, y_{2}\right)^{T}$ in a two dimensional real normed space X ,

$$
q(x, y)=\left\{\begin{array}{l}
0 \quad \text { if } \mathrm{x} \text { and } \mathrm{y} \text { are linearly dependent } \\
\left\|P_{x y}\right\|^{-1}, \text { if } \mathrm{x} \text { and } \mathrm{y} \text { are linearly independent. }
\end{array}\right.
$$

Continuity property: If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then $A_{q}\left(x_{n}, y_{n}\right) \rightarrow A_{q}(x, y)$, where $A_{q}(x, y)$ is q -angle between x and y defined by $A_{q}(x, y)=\sin ^{-1}[q(x, y)]$.

Lemma 2.3.1. [20] If x is Birkhoff orthogonal to y. Then for any $m, n \in \mathbb{R},\|m x+n y\| \geq$ $\|m x\|$.

Theorem 2.3.4. [21] Let $x=\left(x_{1}, x_{2}\right)^{T}$ and $y=\left(y_{1}, y_{2}\right)^{T}$ be two vectors in a two dimensional real normed space X with basis $\left\{e_{1}, e_{2}\right\}$. Then x is Birkhoff-orthogonal to y iff $A_{q}(x, y)=\frac{\pi}{2}$ i.e. $\left\|P_{x y}\right\|=1$.

2.3.1 Orthogonality on C^{*}-module

Let A be a C^{*}-algebra and H be a (left) \mathscr{A}-module. Suppose that the linear structure given on \mathscr{A} and H are compatible, that is, $\lambda(a x)=a(\lambda x)$ for every $\lambda \in \mathbb{C}$ and $a \in H$. Then there exists a mapping $\langle.,\rangle:. H \times H \rightarrow \mathscr{A}$ with the following properties [22]:
(i) $\langle x, x\rangle \geq 0$ for every $x \in H$,
(ii) $\langle x, x\rangle=0$ iff $x=0$,
(iii) $\langle x, y\rangle=\langle y, x\rangle^{*}$ for every $x, y \in H$,
(iv) $\langle a x, y\rangle=a\langle x, y\rangle$ of every $a \in \mathscr{A}$ and $x, y \in H$,
(v) $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$ for every $x, y, z \in H$

The pair $(H,\langle.,\rangle$.$) is called a (left) pre-Hilbert \mathscr{A}$-module. The map $\langle.$,$\rangle is called an$ \mathscr{A}-valued inner-product. If the pre-Hilbert \mathscr{A}-module $(H,\langle.,\rangle$.$) is complete with respect$ to the norm $\|x=\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$, then it is called \mathscr{A}-Hilbert \mathscr{A}-module over \mathscr{A}. Rajic et al. in [[22], [21]] introduced a new concept of Birkhoff-James orthogonality in a Hilbert $C *$ - modules over $C *$-algebra \mathscr{A} and proved that such orthogonality with respect to \mathscr{A} valued inner product coincide if and only if \mathscr{A} is isomorphic to \mathbb{C}. [22] A mapping $T: V \rightarrow W$ between \mathscr{A}-modules V and W is called adjointable if there exists mapping $T^{*}: W \rightarrow V$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $v \in V, y \in W$. Such a mapping T is bounded, linear and satisfies $T(x a)=T(x) a$ for all $x \in V$ and $a \in \mathscr{A}$. The space of all adjointable mapping from V into W is denoted by $B(V, W)$. Let $\theta_{x, y}(z)=x(y, z)$, where $\theta_{x, y} \in B(V, W)$ and $K(B, V)$ denotes the closed linear subspace of $B(V, W)$ spanned by $\left\{Q_{x y}: x \in W, y \in V\right\}$ is called space of compact operators.

Proposition 1. [22] Let $A, B \in B(H)$.Then $\min _{\lambda \in \mathbb{C}}\|A+\lambda B\|^{2}=\sup _{\|x i\|=1} M_{A, B}(\xi)$, where

$$
M_{A, B}(\xi)=\left\{\begin{array}{lcc}
\|A \xi\|^{2}-\frac{|\langle A \xi, B \xi\rangle|^{2}}{\|B \xi\|^{2}} & \text { if }, & B \xi \neq 0 \\
\|A \xi\|^{2} & \text { if, } & B \xi=0
\end{array}\right.
$$

Proposition 2. [22] let \mathscr{A} be a C^{*}-algebra, and $a, b \in \mathscr{A}$. Then $\min _{\lambda \in \mathbb{C}}\|a+\lambda b\|^{2}=$ $\max _{\varphi \in S(A)} M_{A, B}(\varphi)$, where

$$
M_{a, b}(\varphi)=\left\{\begin{array}{llr}
\varphi\left(a^{*} a\right)-\frac{\mid \varphi\left(a^{*} b\right)^{2}}{\varphi\left(b^{*} b\right)} & \text { if, } & \varphi\left(b^{*} b\right) \neq 0 \\
\varphi\left(a^{*} a\right) & \text { if, } & \varphi\left(b^{*} b\right)=0
\end{array}\right.
$$

Theorem 2.3.5. [22] Le V be a Hilbert C^{*}-module over a C^{*}-algebra \mathscr{A} and $x, y \in V$. Then $\min _{\varphi \in \mathbb{C}}\|x+\varphi y\|^{2}=\max _{\varphi \in S(A)} M_{x, y}(\varphi)$, where $M_{x, y}(\varphi) \in \mathscr{A}$ is defined by

$$
M_{x, y}(\varphi)=\left\{\begin{array}{lll}
\varphi(\langle x, x\rangle)-\frac{\mid \varphi(\langle x, y\rangle)^{2}}{\varphi(\langle y, y\rangle)} & \text { if, } & \varphi(\langle y, y\rangle) \neq 0 \\
\varphi(\langle x, x\rangle) & \text { if, } & \varphi(\langle y, y\rangle)=0
\end{array}\right.
$$

Theorem 2.3.6. [22] Let V be a Hilbert C^{*}-module over a C^{*}-algebra \mathscr{A}. Let $x, y \in V$. Then $x \perp_{B} y \Leftrightarrow \exists \varphi \in S(\mathscr{A}): \varphi(\langle x, x\rangle)=\|x\|^{2}$ and $\varphi(\langle x, y\rangle)=0$.

Theorem 2.3.7. [22] Let V be a Hilbert C^{*}-module over a C^{*}-algebra \mathscr{A} and $x, y \in V$. Then
(i) $x \perp_{B} y \Leftrightarrow\langle x, x\rangle \perp\langle x, y\rangle \Leftrightarrow\langle x, x\rangle \perp_{B}\langle y, x\rangle$.
(ii) $x \perp_{B} y \Rightarrow x \perp_{B} x\langle x, y\rangle$ and $x \perp_{B} x\langle y, x\rangle$.

Arambasic and Rajic (see in[22]) characterized Hilbert C^{*}-modules where the Birkhoff orthogonality coincides with the usual orthogonality with respect to inner-product space. By using the Gelfand-Mazur theorem, it can be proved that \mathscr{A} is isomorphic to \mathbb{C} and using this concept, \mathbb{C} is only the unital C^{*}-algebra in which Birkhoff orthogonality $x \perp_{B} y$ coincides with $x^{*} y=0$ for all elements $x, y \in \mathscr{A}$.

Theorem 2.3.8. [22] Let $V \neq\{0\}$ be a full Hilbert \mathscr{A}-module. then the following statements are equivalent:
(i) For all $x, y \in V$ the condition $\left(x \perp_{B} y \Leftrightarrow\langle x, y\rangle=0\right)$ is always true.
(ii) \mathscr{A} is isomorphic to \mathbb{C}.

Theorem 2.3.9. [23] Let T be a linear operator on a finite dimensional real normed space X and $M_{T}=\left\{x \in S_{X}:\|T x\|=\|T\|\right\}$. If M_{T} can be partitioned into tow non-empty sets which are contained in complementary subset of X, then there is a linear operator A on X such that $T \perp_{B} A$ but $T x \not \perp_{B} A x$.

Theorem 2.3.10. [23] Let T be a linear operator on a finite dimensional real smooth normed space X. If $M_{T}=\left\{x \in S_{X}:\|T x\|=\|T\|\right\}$ is a countable set with more than 2 points. Then for any $x \in M_{T}$ there is a linear operator A on X such that $T \perp_{B} A$ but $T x \not \perp_{B} A x$

Theorem 2.3.11. [23] Let T be a linear operator on a two dimensional real normed space X, and let $M_{T}=\left\{x \in S_{X}:\|T x\|=\|T\|\right\}$. If M_{T} has more than two components, then for any $x \in M_{T}$ there is a linear operator A on X such that $T \perp_{B} A$ but $T x \not \perp_{B} A x$.

2.3.2 Strong Birkhoff-James Orthogonality

Definition 5. (Strongly orthogonal set)[[12]: A finite set of elements $\left\{x_{1}, \ldots . ., x_{k}\right\}$ is said to be strongly orthogonal set in the sense of Birkhoff-James iff for each $m \in\{1,2, \ldots \ldots, k\}$

$$
\left\|x_{m}\right\|<\left\|x_{m}+\sum_{m=1, m \neq n}^{k} \lambda_{n} x_{n}\right\|,
$$

whenever $\lambda_{n} \neq 0$.
Theorem 2.3.12. [12] Let X be a normed linear space and $x_{0} \in S_{x}$. If there exists a Hamel basis of X containing x_{0} which is strongly orthogonal relative to x_{0} in the sense of Birkhoff-James, then x_{0} is an extreme point of B_{X}.

Theorem 2.3.13. [12] Let X be a normed linear space and $x_{0} \in S_{X}$ be an exposed point of B_{X}. Then there exists a Hamel basis of X containing x_{0} which is strongly orthogonal relative to x_{0} in the sense of Birkhoff-James.

Theorem 2.3.14. [12] Let X be a normed linear space and $x_{0} \in S_{X}$. If there exist a Hamel basis of X containing x_{0} which is strongly orthogonal relative to x_{0} in the sense of Birkhoff-James, then there exists a bounded invertible linear operator A on X such that $\|A\|=\left\|A_{0}\right\|>\|A y\|$ for all $y \in S_{X}$ with $y \neq \lambda x_{0}, \lambda \in S_{k}$.

Theorem 2.3.15. [12] For a normed space X and a point $x \in \operatorname{span}(X)$, the following are equivalent:
(i) x is an exposed point of B_{X}.
(ii) There is a Hamel basis of X containing x which is strongly orthonormal relative to x in the sense of Birkhoff-James.
(iii) There exists a bounded linear operator A on X which attains only at the points of the form λx with $\lambda \in S_{k}$.

Theorem 2.3.16. [12] For a normed linear space X, the following are equivalent:
(i) X is strictly convex, and
(ii) For each $x \in S_{X}$, there exists a Hamel basis of X containing x which is strongly orthonormal relative to x in the sense of Birkhoff-James.

For any bounded linear operator $T, A \in L(X)$, T is said to be Birkhoff-James orthogonal to A if $\|T+\lambda A\| \geq\|T\| \quad$ for all $\lambda \in \mathbb{C}$ and $M_{T}=\left\{x \in S_{X}:\|T x\|=\|T\|\right\}$. In the real Banach space X, Sain introduced two sets x^{+}and x^{-}in his paper [24] by
(i) $x^{+}=\{y \in X:\|x+\lambda y\| \geq\|x\| \quad$ for all $\quad \lambda \geq 0\}$ and
(ii) $x^{-}=\{y \in X:\|x+\lambda y\| \geq\|x\| \quad$ for all $\quad \lambda \leq 0\}$

For the complex Banach space, Paul et al. in 2018 introduced the following notations [13] depending on Sain's concept : For any $\gamma \in V$,
(i) $x_{\gamma}^{+}=\{y \in X:\|x+\lambda y\| \geq\|x\| \quad$ for all $\quad \lambda=t r, t \geq 0\}$
(ii) $x_{\gamma}^{-}=\{y \in X:\|x+\lambda y\| \geq \| x \mid$ for all $\lambda=t r, t \leq 0\}$
(iii) $x^{\frac{1}{\gamma}}=\{y \in X:\|x+\lambda y\| \geq\|x\| \quad$ for all $\quad \lambda=t r, t \in \mathbb{R}\}$ where $V=\{\gamma \in \mathbb{C}:|\gamma|=1, \arg (\gamma) \in[0,2 \pi]\}$. Also
(iv) If $\mu=e^{i \pi} \gamma$, then $\quad x_{\mu}^{+}=x_{\gamma}^{-}, x_{\mu}^{-}=x_{\gamma}^{+} \quad$ and $\quad x^{\frac{1}{\mu}}=x^{\frac{1}{\gamma}}$. In the complex Banach space,
(v) $x^{+}=\cap\left\{x_{\gamma}^{+}: \gamma \in V\right\}, x^{-}=\cap\left\{x_{\gamma}^{-}: \gamma \in V\right\}$ and $x^{\perp}=\cap\left\{x^{\frac{1}{\gamma}}: \gamma \in V\right\}$

Proposition 3. [24] Let $x, y \in X$, where X is an complex Banach space and $\gamma \in V$. Then following statements are true
(i) Either $y \in x_{\gamma}^{+}$or $y \in x_{\gamma}^{-}$.
(ii) $x \perp \gamma y \Leftrightarrow y \in x_{\gamma}^{+}$or $y \in x_{\gamma}^{-}$.
(iii) $y \in x_{\gamma}^{+} \Rightarrow \eta y \in(\xi x)_{\gamma}^{+}$for all $\eta, \xi>0$.
(iv) $y \in x_{\gamma}^{+} \Rightarrow-y \in x_{\gamma}^{-}$and $y \in(-x)_{\gamma}^{-}$.
(v) $y \in x_{\gamma}^{-} \Rightarrow \eta y \in(\xi x)_{\gamma}^{-}$for all $\eta, \xi>0$.
(vi) $y \in x_{\gamma}^{-} \Rightarrow-y \in x_{\gamma}^{+}$and $y \in(-x)_{\gamma}^{+}$.
(vii) $y \in x_{\gamma}^{+} \Rightarrow \mu y \in(\mu x)_{\gamma}^{+}$for all $\mu \in \mathbb{C}$.
(viii) $y \in x_{\gamma}^{-} \Rightarrow \mu y \in(\mu x)_{\gamma}^{-}$for all $\mu \in \mathbb{C}$.

Proposition 4. [24] Let $x, y \in X$, where X is a complex Banach space. Then the following are true
(i) $x \perp_{B} y \Leftrightarrow y \in x^{+}$and $y \in x^{-}$.
(ii) $y \in x^{+} \Rightarrow \eta y(\xi x)^{+}$for all $\eta, \xi>0$.
(iii) $y \in x^{+} \Rightarrow-y \in x^{-}$and $y \in(-x)^{-}$.
(iv) $y \in x^{-} \Rightarrow-y \in x^{+}$and $y \in(-x)^{+}$.
(v) $y \in x^{-} \Rightarrow \eta y \in(\xi x)^{-}$for all $\eta, \xi>0$.

Theorem 2.3.17. [24] Let X be a reflexive complex Banach space, and Y be any complex Banach space. Let $T, A \in K(x, y)$. Then $T \perp_{B} A \Leftrightarrow \forall \gamma \in V, \quad \exists \quad x=x(\gamma), y=$ $y(\gamma) \in M_{T}: A x \in(T x)_{\gamma}^{+}$and $T y \in(T y)_{\gamma}^{-}$.

Theorem 2.3.18. [24] Let X be a complex Banach Space. Let $x, y \in X$ and $r=e^{i \theta}$, where $\theta \in[0,2 \pi]$. If $y \in x_{\gamma}^{+}$, then either $y \in x_{\mu}^{+}$for all μ with $\arg \mu \in[0, \theta]$ or $y \in x_{\mu}^{+}$ for all μ with $\arg \mu \in[0, \pi]$.

Theorem 2.3.19. [24] Let be a linear operator on a finite dimensional complex Banach space X, such that M_{T} is a closed connected subset of S_{X}. Then for $A \in L(X), T \perp_{B}$ $A \Leftrightarrow \forall \gamma \in V \quad \exists \quad x=x(\gamma) \in M_{T}: T x \perp_{\aleph} A x$.

Theorem 2.3.20. [24] Let T be a linear operator in a finite dimensional complex Banach space X such that M_{T} is a closed connected subset of the unit sphere of X. Then for $A \in L(X), T \perp_{B} A \Leftrightarrow \exists \quad \theta \in[0, \pi]$ and $x, y \in M_{T}: A x \in(T x)_{\gamma}^{+}$for all γ with $\arg \gamma \in[\theta-\pi, \theta]$ and $A y \in(T y)_{\gamma}^{+}$for all γ with $\arg \gamma \in[\theta, \theta+\pi]$.

2.3.3 Norm parallelism and Birkhoff-James orthogonality

Definition 6. [25] Let $x, y \in X, K \in\{\mathbb{C}, \mathbb{R}\}$ and $T=\{\mu \in K:|\mu|=1\}$. Then x is said to be norm parallel to y if $\|x+\mu y\|=\|x\|+\|y\|$ for all $\mu \in T$.

Norm parallelism is symmetric as well as homogeneous; whereas, Birkhoff-James orthogonality is homogeneous but not symmetric in a Banach space. [25] In the case of Hilbert space, two elements are linearly dependent iff they are norm- parallel; however, in normed spaces two linearly dependent vectors are norm-parallel, but the converse may not be true. For instance, $(1,1)$ and $(1,0)$ are norm parallel but not linearly dependent. Depending on the concept of Birkhoff-James orthogonality and strong Birkhoff-James orthogonality Paul et al.[25] introduce a new geometric notion of semi-rotund point. For any normed linear space $\mathrm{X}, \beta \neq x \in X$ is said the semi-rotund point of X if $\exists y \in X$:
$x \perp_{S B} y$. If for every $x \neq 0 \in X, \mathrm{x}$ is a semi-rotund point, the normed space X is said to be semi-rotund space. Dragomir introduced the concept of approximate Birkhoff-James orthogonality [?] as follows: x is said to be approximate Birkhoff-James orthogonal to y if $\|x+\mu y\| \geq(1-\epsilon)\|x\|$ for all $\mu \in K$ and $\epsilon \in[0,1]$; however, Chmielinski [25, 27] defined approximate Birkhoff-James orthogonality as ; $x \perp_{D}^{\epsilon} \Leftrightarrow\|x+\mu y\| \geq \sqrt{1-\epsilon^{2}}\|x\|$ for all $\mu \in K$. The concept of approximate parallelism was developed by Zamani and Moslehian [28] by stating that x is approximately parallel to y if $\inf \{\|x+\lambda y\|: \lambda \in K\} \leq \epsilon\|x\|$ for all $\epsilon \in[0,1]$.

Proposition 5. [25] let X be a bounded linear operator form a normed space X to normed space Y and $x \in M_{T}$. Then for any $\epsilon \in[0,1]$ and $y \in X$, we have $x\left\|_{y}^{\epsilon} \Rightarrow T x\right\|^{\epsilon} T y$.

Theorem 2.3.21. [25] Let T and A are compact linear operators form a reflexive Banach space X to any normed space Y. Then $T\left\|A \Leftrightarrow \exists \quad x \in M_{T} \cap M_{A}: T x\right\| A x$.

Theorem 2.3.22. [25] If T and A are bounded linear operators form a normed space X to Y. Then $T\left\|A \Leftrightarrow \quad \exists\left\{x_{n}\right\} \in S_{X}: \lim _{n \rightarrow \infty}\right\| T x_{n}\|=\| T\left\|, \lim _{n \rightarrow \infty}\right\| A x_{n}\|=\| A \|$ and $\lim _{n \rightarrow \infty}\left\|T x_{n}+\mu A x_{n}\right\|=\|T\|+\|A\|$, for some $\mu \in K$.

Proposition 6. [25] Let T be a bounded linear operator form a normed space X into normed space Y and let $x \in M_{T}$. Then $T x \perp_{D}^{\epsilon} T y \Rightarrow x \perp_{D}^{\epsilon} y$ for any $\epsilon \in[0,1]$ and $y \in X$.

Theorem 2.3.23. [25] let T and A are bounded linear operators from finite dimensional Banach spaces X to Y. Then $T \perp_{S B} A \Leftrightarrow \forall \epsilon>0, \exists \mu_{\epsilon}>0: \forall|\mu|<\mu_{\epsilon}, \exists y_{\mu} \in$ $\left(\cup_{x \in M_{T}} B(x, \epsilon)\right) \cap S_{x}:\left\|T y_{\mu}+\mu A y_{\mu}\right\|>\|T\|$.

Theorem 2.3.24. [25] Let T and A are compact linear operators fron a reflexive Banach space X to any normed space Y be such that $T \perp_{B} A$ but $T \not \chi_{S B} A$. Then there exists $x \in M_{T}$ such that $T x \perp_{B} A x$.

Theorem 2.3.25. [25] Let T and A are bounded linear operators from a normed space X to Y. If $T \perp_{B} A$ but $T \not \perp_{S B} A$, then there exists a sequence $\left\{x_{n}\right\}$ in S_{X} such that $\left\|T x_{n}\right\| \rightarrow\|T\|, A x_{n} \rightarrow 0$ or there exist a sequence $\left\{x_{n}\right\}$ in S_{X} and sequence $\left\{\epsilon_{n}\right\}$ in \mathbb{R}^{+} such that $\left\|T x_{n}\right\| \rightarrow\|T\|, \epsilon_{n} \rightarrow 0$, and $T x_{n} \perp_{D}^{\epsilon_{n}} A x_{n}$.

2.3.4 Birkhoff-James orthogonality by applying semi-inner product

The concepts of Birkhoff-James orthogonality has been widely used by various researchers since 1935. The latest research on this topic by Sain, Mal, and Paul [29]have studied

Birkhoff-James orthogonality of compact linear operators between Hilbert space and Banach spaces by applying the notion of semi-inner product in normed linear spaces.

Definition 7. [29] For any normed linear space x, A scalar valued function (.,.) : $X \times$ $X \rightarrow K$, where $K \in\{\mathbb{C}, \mathbb{R}\}$ is a semi-inner product if for any $\xi, \eta \in K$ and for any $x, y, z \in X$, it satisfies the following conditions:
(i) $(\xi x+\eta y, z)=\xi(x, z)+\eta(x, z)$,
(ii) $(x, x)>0$, whenever $x \neq 0$.
(iii) $|(x, y)|^{2} \leq(x, x)(y, y)$,
(iv) $(x, \xi y)=\bar{\xi}(x, y)$.

Every semi-inner product space is a normed space with the norm $\|x\|^{2}=(x, x)$ and the norm of any normed space can be generated through a semi-inner product in infinitely many ways. Sain et al. in [29] characterized the Birkhoff-James orthogonality set of any compact linear operators between a reflexive Banach space any Banach spaces. They also proved that there is an relationship between the concept of semi-inner product spaces and the sets $x^{+}=\{y \in X:\|x+\gamma y\| \geq\|x\|$ for $\gamma \geq 0\}$ and $x^{+}=\{y \in X:\|x+\gamma y\| \geq\|x\|$ for $\gamma \leq 0\}$

Theorem 2.3.26. [29] Let T and A be compact linear operators from a reflexive Banach space X to any Banach space Y. If any one of the following conditions holds;
(i) M_{T} is a connected subset of S_{X}.
(ii) M_{T} is not connected but $M_{T}=D \cup(-D)$, where D is a non-empty subset of S_{X}.

Then $T \perp_{B} A \Leftrightarrow \exists x \in M_{T}: T x \perp_{B} A x$.
Theorem 2.3.27. [29] For a finite-dimensional Banach space X, the following statements are are equivalent.
(i) For any linear operator T on X, M_{T} is the unit sphere of some subspace of X.
(ii) For any linear operator T on $X, M_{T}=D_{T} \cup\left(-D_{T}\right)$, where D_{T} is connected subset of X.
(iii) X is an Euclidean space.

Theorem 2.3.28. [29] Let $x, y \in X$, where X is a normed linear space. Then the following are true.
(i) $y \in x^{+}$iff there exists a semi-inner product (.,.) on X with $(y, x) \geq 0$.
(ii) $y \in x^{-}$iff there exists a semi-inner product (.,.) on X with $(y, x) \leq 0$.

Theorem 2.3.29. [29] Let T and A be compact linear operators from a reflexive Banach space X to any Banach space Y be such that $T \perp_{B}$ A. let \mathscr{O}_{Y} denotes the collection of all semi-inner product on Y. Then

$$
\|T\|=\left\{\begin{array}{l}
\sup \left\{(T x, y): x \in S_{X}, y \in S_{Y},(., .) \in \mathscr{O}_{Y},(A x, y) \geq 0\right\} \\
\sup \left\{(T x, y): x \in S_{X}, y \in S_{Y},(., .) \in \mathscr{O}_{Y},(A x, y) \leq 0\right\}
\end{array}\right.
$$

Theorem 2.3.30. [29] Let T and A be bounded linear operators form a normed space X to Y be such that $T \perp_{B}$ A. Ley \mathscr{O}_{Y} denotes the collection of semi-inner product space on Y. Let $\epsilon>0$ be arbitrary but fixed after A choice. Then
(i) $\|T\|=\max \left\{l_{1}(\epsilon), l_{2}(\epsilon)\right\}=\max \left\{l_{1}(\epsilon), l_{3}(\epsilon)\right\}$, where
(ii) $l_{1}(\epsilon)=\sup \left\{(T x, y): x \in S_{X}, y \in S_{Y},(.,.) \in \mathscr{O}_{Y},|(A x, y)|<\epsilon\right\}$
(iii) $l_{2}(\epsilon)=\sup \left\{(T x, y): x \in S_{X}, y \in S_{Y},(.,.) \in \mathscr{O}_{Y}, A x \in(y)^{+\epsilon}\right\}$
(iv) $l_{3}(\epsilon)=\sup \left\{(T x, y): x \in S_{X}, y \in S_{Y},(.,.) \in \mathscr{O}_{Y}, A x \in(y)^{-\epsilon}\right\}$

Theorem 2.3.31. [29] Let X be normed linear space such that X^{*} is strictly convex. Let $f, g \in X^{*}$ be such that $f \perp_{B} g$. then

$$
\|f\|=\left\{\begin{array}{l}
\sup \left\{f(x): x \in S_{x}, g(x) \geq 0\right\} \\
\sup \left\{f(x): x \in S_{x}, g(x) \leq 0\right\}
\end{array}\right.
$$

Theorem 2.3.32. [29] Let T and A are compact linear operators from a reflexive Banach space X to any Banach space Y be such that for each $\lambda \in \mathbb{R}, M_{T+\lambda A}=D_{\lambda} \cup\left(-D_{\lambda}\right)$, where D_{λ} is a non-empty connected subset of S_{X}. Let \mathscr{O}_{Y} denotes the collection of all semi-inner product space on Y. Then

$$
\operatorname{dist}(T, \operatorname{span}\{A\})=\sup \left\{(T x, y): x \in S_{X}, y \in S_{Y},(., .) \in \mathscr{O}_{Y},(A x, y)=0\right\}
$$

Theorem 2.3.33. [29] Let X be a reflexive Banach space and Y be any Banach space. Let \mathcal{Z} be a finite dimensional subspace of $K(X, Y)$. Let $T \in K(X, Y) \backslash \mathscr{Z}$. Let us further assume that for any $\lambda \in \mathbb{R}$ and for any $A \in \mathscr{Z}, M_{T+\lambda A}=D_{\lambda, A} \cup\left(-D_{\lambda, A}\right)$, where $D_{\lambda, A}$ is non-empty connected subset of S_{X}. Then there exist $A_{0} \in \mathscr{Z}$ such that

$$
\operatorname{dis}(T, \mathscr{Z})=\sup \left\{(T x, y): x \in S_{X}, y \in S_{Y},\left(A_{0} x, y\right)=0\right\} .
$$

Moreover, A_{0} is the best approximation of T in \mathscr{Z}.

2.3.5 Modular Birkhoff orthgonality in Banach modules

We have already mentioned that Rajic et al. in[22] studied Birkhoff-James orthogonality in a Hilbert C^{*}-modules over a C^{*}-algebra. The most current research as generalization of Birkhoff-James orthogonality from Hilbert space to Banach spaces in [30], Sain and Tanaka studied the stronger version of modular Birkhoff-James orthogonality in the set of bounded and compact linear operators. In order to prove their study they introduced the following notions: $X^{\perp}=\left\{y \in X: x \perp_{B} y\right\}$ and $M_{A}=\left\{x \in S_{X}:\|A x\|=\|A\|\right\}$. An element $x \neq 0 \in X$ is said to be smooth point in \mathbf{X} if $\mathscr{T}(x)=\left\{f \in S_{X}^{*}: f(x)=\|x\|\right\}$ is a singleton set. For any Banach space X , an element $x \in X$ is said to be left symmetric in X if for any $y \in X, x \perp_{B} y \Rightarrow y \perp_{B} x$. Similarly x is said to be right symmetric in X if for any $y \in X, y \perp_{B} x \Rightarrow x \perp_{B} y$. If x is both left as well as right symmetric, then x is said to be a symmetric point.

Definition 8. [30] A Banach space X is called a right \mathscr{A}-module (where \mathscr{A} is a Banach algebra) if there exists a mapping of $X \times \mathscr{A}$ into X such that for each $a, b \in \mathscr{A}$ and $x \in X, x(a b)=(x a) b$ and $\|a x\| \leq\|x\|\|a\|$.

An element $x \in X$ is said to be right-modular Birkhoff-James orthogonal to $y \in X$, if $x \perp_{B}$ ya for all $a \in \mathscr{A}$ and left-modular Birkhoff-James orthogonal to y if $x \perp_{B}$ ay for all $a \in \mathscr{A}$.

Theorem 2.3.34. [30] Let T and A be compact linear operators form a reflexive real Banach space X to any real Banach space Y such that $M_{A}=\left\{ \pm x_{0}\right\}$ for some $x_{0} \in S_{X}$. Then $A_{B(X)}^{\perp} \Leftrightarrow T(X) \subset\left(A x_{0}\right)^{\perp}$.

Definition 9. [30] A Banach space X is said to be Kadets-Klee if whenever $\left\{x_{n}\right\}$ is a sequence in X and $x \in X$ is such that $\left\{x_{n}\right\}$ converges weekly to x and $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\|x\|$, then $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0$.

Theorem 2.3.35. [30] Let A be a compact linear operator from a reflexive Kadets-Klee real Banach space to any real Banach space be such that $M_{T}=\left\{ \pm x_{0}\right\}$ for some $x_{0} \in S_{X}$. Then given any bounded linear operator $T \in B(X, Y), A \perp_{B(X)} T \Leftrightarrow T(X) \subset\left(A x_{0}\right)^{\perp}$.

Theorem 2.3.36. [30] Let X, Y be real Banach spaces. Let $A \in B(X, Y)$ be a smooth point in $B(X, Y)$ such that $M_{A} \neq 0$. Then given any $T \in B(X, Y), A \perp_{B(X)} T \Leftrightarrow$ $T(X) \subset\left(A x_{0}\right)^{\perp}$, where $M_{A}=\left\{ \pm x_{0}\right\}$.

Theorem 2.3.37. [30] Let T and A are compact linear operators from a reflexive complex Banach space X to any complex Banach space Y be such that $M_{A}=\left\{e^{i \theta} x_{0}: \theta \in[0,2 \pi]\right\}$ for some $x_{0} \in S_{X}$. Then given any compact linear operator $T, A \perp_{B(X)} T \Leftrightarrow T(X) \subset$ $\left(A x_{0}\right)^{\perp}$.

Theorem 2.3.38. [30] Let T and A are compact linear operators from a reflexive real Banach Space X to any real Banach space Y be such that $M_{A}=\left\{ \pm x_{0}\right\}$ for some $x_{0} \in S_{X}$. Then given any compact linear operator $T, A \perp_{B(Y)}^{*} T=\Leftrightarrow T x_{0}=0$. Moreover, if X is Kadets-Klee, then same is true for any $T \in B(X, Y)$.

Theorem 2.3.39. [30] Let T and A are compact linear operators from a reflexive complex Banach space to any complex Banach space Y be such that $M_{A}=\left\{e^{i \theta} x_{0}: \theta \in[0,2 \pi]\right\}$ for some $x_{0} \in S_{X}$. Then given any $T \in K(X, Y), A \perp_{B(Y)}^{*} T \Leftrightarrow T x_{0}=0$.

If A is a bounded linear operator from a normed spaces X to Y , then its adjoint $A^{*} \in$ $B\left(Y^{*}, X^{*}\right)$ is defined by $\left(A^{*} y^{*}\right)=y^{*} A x$ for each $x \in X, y^{*} \in Y^{*}$ and $\left\|A^{*}\right\|=\|x\|$. For any subsets R and S of a Banach space $\mathrm{X}, R \perp_{B} S$ if $x \perp_{B} y$ for all $x \in R$ and $y \in S$.

Proposition 7. [30] Let T and A are bounded linear operators from a Banach space X to Y. If $A(x) \perp_{B} T(X)$, then $A \perp_{B} T$.

2.3.6 Birkhoff orthogonality via 2-HH norm

Motivated by various generalizations of Birkhoff orthogonality, we make an attempt to introduce this most popular orthogonality in terms of 2-HH norm which we denote by $x \perp_{2-H H-B} y$ [31].

In the case of 2-HH norm,

$$
\begin{aligned}
\int_{0}^{1}\|(1-t) x+\lambda t y\|^{2} & =\int_{0}^{1}\langle(1-t) x+\lambda t y,(1-t) x+\lambda t y\rangle d t \\
& =\|x\|^{2} \int_{0}^{1}(1-t)^{2} d t+2 \lambda\langle x, y\rangle \int_{0}^{t} t(1-t) d t+\lambda^{2}\|y\|^{2} \int_{0}^{1} t^{2} d t
\end{aligned}
$$

$x \perp y$, then

$$
\begin{align*}
\int_{0}^{1}\|(1-t) x+\lambda t y\|^{2} & =\|x\|^{2} \int_{0}^{1}(1-t)^{2} d t+\lambda^{2}\|y\|^{2} \int_{0}^{1} t^{2} d t \\
& =\frac{1}{3}\left(\|x\|^{2}+\|\lambda y\|^{2}\right) \tag{2.7}
\end{align*}
$$

But,

$$
\begin{equation*}
\int_{0}^{1}\|(1-t) x\|^{2} d t=\|x\|^{2} \int_{0}^{1}(1-t)^{2} d t=\frac{1}{3}\|x\|^{2} \tag{2.8}
\end{equation*}
$$

Since $\|\lambda y\|^{2}$ is a non-negative quantity, so from relation 2.7 and 2.8 , we conclude that

$$
\begin{equation*}
\int_{0}^{1}\|(1-t) x+\lambda t y\|^{2} \geq \int_{0}^{1}\|(1-t) x\|^{2} d t \tag{2.9}
\end{equation*}
$$

Keeping above result in our mind, we can conclude that $x \perp_{2-H H}(B) y$ if the relation (2.9) is satisfied.

In the following theorem, 2-HH-R and 2-HH-B denotes the Robert orthogonality and Birkhoff-James orthogonality via 2-HH norm respectively.

Theorem 2.3.40. [9] Let $x, y \in X$, where X is a real normed linear space equipped with an inner-product space over the field $\mathbb{K}=(\mathbb{R}$ or $\mathbb{C})$ and $\mu=\lambda t$. Then 2 -HH-R orthogonality implies $2-H H-B$ orthogonality and conversely.

Proof. Assume $x \perp_{2-H H-R} y$. Then for any $\mu \in \mathbb{R}$,

$$
\begin{align*}
\int_{0}^{1}\|(1-t) x+\mu y\|^{2} d t & =\int_{0}^{1}\|(1-t) x-\mu y\|^{2} d t \\
& =\int_{0}^{1}\langle(1-t) x-\mu y,(1-t) x-\mu y\rangle d t \\
& =\int_{0}^{1}\left[\|(1-t) x\|^{2}-(1-t)\langle x, y\rangle-\mu(1-t)\langle y, x\rangle+\|\mu y\|^{2}\right] d t \\
& =\int_{0}^{1}\|(1-t) x\|^{2} d t+\int_{0}^{1}\|\mu y\|^{2} d t \\
& \geq \int_{0}^{1}\|(1-t) x\|^{2} d t \tag{2.10}
\end{align*}
$$

Therefore x is 2-HH-B orthogonal to y . To prove the converse part, It is enough to show that $x \perp_{2-H H-B} y \Rightarrow\langle x, y\rangle=0 \Rightarrow x \perp_{2-H H-R} y$.

Let $x \perp_{2-H H-B} y$. Then for any $\lambda \in \mathbb{K}$,

$$
\begin{align*}
& \int_{0}^{1}\|(1-t) x+\lambda t y\|^{2} d t \geq \int_{0}^{1}\|(1-t) x\|^{2} d t \\
& \Rightarrow \int_{0}^{1}\|(1-t) x\|^{2} d t+[\lambda\langle y, x\rangle+\overline{\lambda\langle y, x\rangle}] \int_{0}^{1} t(1-t) d t \\
& +|\lambda|^{2}\|y\|^{2} \int_{0}^{1} t^{2} d t \geq \int_{0}^{1}\|(1-t) x\|^{2} d t \\
& \Rightarrow \operatorname{Re}[\lambda\langle y, x\rangle]+|\lambda|^{2}\|y\|^{2} \geq 0 \tag{2.11}
\end{align*}
$$

Now, for $\lambda=\frac{-\langle x, y\rangle}{2\|y\|^{2}}$, inequality 2.11 becomes $\frac{-\left\langle\left.\langle y, x\rangle\right|^{2}\right.}{4\|y\|^{2}} \geq 0$. Therefore, we have $\langle x, y\rangle=0$.

On the other hand it is easy to show that $\langle x, y\rangle=0 \Rightarrow x \perp_{2-H H-R} y$.

2.4 Isosceles orthogonality

Definition 10. []] An element x of a normed linear space X is orthogonal to $y \in X$ in the sense of isosceles if and only if $\|x-y\|=\|x+y\|$.

For ordinary Euclidean space, the analogy of this definition is two vectors are perpendicular if and only if their sum and difference can be sides of an isosceles triangle.

Properties of isosceles orthogonality:

(i) Isosceles orthogonality satisfy non-degeneracy, simplification and continuity;
(ii) Isosceles orthogonality is symmetric;
(iii) Isosceles orthogonality is unique if and only if the space is strictly convex;
(iv) If the isosceles orthogonality is homogeneous (additive)in X , then X is an innerproduct space.

Theorem 2.4.1. [I] Let $(X,\|\cdot\|)$ be a normed space and $x, y \in X$. Then there exists a number α such that

$$
\|x+(\alpha x+y)\|=\|x-(\alpha x+y)\|
$$

Theorem 2.4.2. [I] If isosceles orthogonality is homogeneous in a normed linear space X, then X is an abstract Euclidean space.

Theorem 2.4.3. [T] If isosceles orthogonality is additive in a normed linear space X, then X is an abstract Euclidean space.

Corollary 2.4.1. [[]] The properties of homogeneity and additivity of isosceles orthogonality are equivalent for a normed linear space X. If the isosceles orthogonality is homogeneous or additive, then for any element x and y there is a unique number α for which $x \perp \alpha x+y$.

In the paper [32], Kapoor and Prasad discussed about the unique property of isosceles orthogonality and proved that the isosceles orthogonality is unique if and only if the underlying space is strictly convex. The details of uniqueness property was discussed on Alonso's paper [16]. In 1994, Alonso mentioned in the paper [33] that the isosceles orthogonality is said to be unique in a normed linear space whose dimension is at least two if for each two dimensional subspace X_{1}, and $x \in X_{1} \backslash\{0\}$, and each number $\xi>0$, there exist a unique point (except for the sign) $y \in \xi S_{x_{1}}$ such that $x \perp_{I} y$ and it is said to be λ-unique if for each point $x \neq 0$ and each point y , there exist a unique number λ such that $x \perp_{I} \lambda x+y$. Ji et al. elaborate the Alonso's results on uniqueness of isosceles orthogonality and proved some important relations related to isosceles orthogonality. The most important concept they proved that, if the isosceles orthogonality is not λ-unique, then it is not unique and if isosceles orthogonality is not unique, then it is not λ-unique. Therefore, the uniqueness and λ-uniqueness if isosceles orthogonality is equivalent [34]

Definition 11. [34] A real finite dimensional normed linear space is called Minkowski space.If the dimension of Minkowski space is two, then it is called a Minkowski plane. plane.

Theorem 2.4.4. [34] Let X be Minkowski or normed plane. If there exists x_{1}, y_{1}, y_{2} such that $y_{1} \neq y_{2},\left\|y_{1}\right\|=\left\|y_{2}\right\|, x \perp_{I} y_{1}$ and $x \perp_{I} y_{2}$, then the following relations hold:

$$
\begin{equation*}
\left\|x+y_{1}\right\|=\left\|x-y_{1}\right\|=\left\|x+y_{2}\right\|=\left\|x-y_{2}\right\|=\left\|y_{1}\right\|=\left\|y_{2}\right\| \tag{2.12}
\end{equation*}
$$

[34] For any two distinct points $x, y \in X$, the line segment passes through x and y is denoted by (x, y) and the segment between \mathbf{x} and y by $[x, y]$. For any point $x \in X \backslash\{0\}$, the maximum of the length of non-trivial segment contained in the unit sphere S_{X} and
parallel to the line $(-x, x)$ is denoted by M_{x}. i.e

$$
M_{x}=\sup \left\{\|a-b\|:[a, b] \subseteq S_{x}, a \neq b, \text { and } \frac{a-b}{\|a-b\|}=\frac{x}{\|x\|}\right\}
$$

If there is no non-trivial segment contained in S_{X} and parallel to the line $(-x, x)$, then $M_{x}=0$ [34].

Theorem 2.4.5. [34] Let X be a Minkowski (or normed plane) and $x \in X$ satisfying $\|x\|>0$. Then for each number $s \in\left[0, \frac{2\|x\|}{M_{x}}\right] \quad\left(s \in\left[0,+\infty\right.\right.$ when $\left.M_{x}=0\right)$, then there exist a unique point $y_{1 s} S_{x}$ (except for the sign) such that $x \perp_{i} y$.

Corollary 2.4.2. [34] Let X be a Minkowski (or normed) plane and $x \in X$ satisfying $\|x\|>0$. Then for each number $0 \leq r \leq\|x\|$, there exists a unique point $y \in r S_{X}$ (except for the sign) such that $x \perp_{I} y$.

Corollary 2.4.3. [34] Let X be a strictly convex Minkowski(or normed) plane and $x \in X$ satisfying $\|x\|>0$. Then for any $r \in[0,+\infty)$, there exists a unique point $y \in r S_{X}$ (except for the sign) such that $x \perp_{I} y$.

Theorem 2.4.6. [34] Let $(X,\|\|$.$) be a normed linear space with \operatorname{dim} X \geq 2$ and $x, y \in$ X satisfying $\|x\|>0$ and $0 \leq\|y\| \leq \frac{2\|x\|}{M_{x}(y)}\left(0 \leq\|y\|<+\infty\right.$ when $\left.M_{x}(y)=0\right)$. Then there exists a unique real number α such that $x \perp_{\alpha} x+y$.

Ji and Wu introduced a new geometry constant $D(X)$ to give a quantitative characterization of the difference between Birkhoff-orthogonality and isosceles orthogonality [35]. They showed that 1 and $2(\sqrt{2}-1)$ are the upper and lower bound for $D(X)$, respectively, and characterize the space of which $\mathrm{D}(\mathrm{X})$ attains the lower and upper bounds.

Theorem 2.4.7. [35] For any real normed linear space X with $\operatorname{dim}(X) \geq 2,2(\sqrt{2}-1) \leq$ $D(X) \leq 1$ and $D(X)=1$ if and only if X is Euclidean.

Theorem 2.4.8. [35] For any real Banach Space X with $\operatorname{dim}(X) \geq 2$, there exists $e_{1}, e_{2} \in$ $S(X)$ such that $e_{1} \perp_{I} e_{2}$ and $\inf _{\lambda \in \mathbb{R}}\left\{\left\|e_{1}+e_{2}\right\|\right\}=2(\sqrt{2}-1)$ if and only if there exists a two dimensional subspace X_{0} of X and $x_{0} \in S\left(X_{0}\right)$ such that x_{0} is the common end point of two segments of which the length are not less than $\sqrt{2}$.

Theorem 2.4.9. [35] Let X be a symmetric Minkowski plane and $\left\{e_{1}, e_{2}\right\}$ be a pair of axis of X. Then
(i) $e_{1} \perp_{R} e_{2}$,
(ii) $e_{1} \perp_{I} e_{2}$,
(iii) e_{1} and e_{2} is a pair of conjugate diameters of X,
(iv) X^{*} is also symmetric Minkowski plane and $\left\{e_{1}^{*}, e_{2}^{*}\right\}$ is a pair of axes of X^{*}, where e_{1}^{*}, e_{2}^{*} is the supporting functional of e_{1}, e_{2} respectively.

Theorem 2.4.10. [35] Let X be a symmetric Minkowski plane, e_{1}, e_{2} be a pair of axes of X, then for all $x, y \in S(X), x=\alpha e_{1}+\beta e_{2}, x \perp_{I} y$ if and only if $y= \pm\left(-\beta e_{1}+\alpha e_{2}\right)$.

In 2010, Dragomir and Kikianty came up with new generalization of isosceles orthogonality in terms of 2-HH norm. They gave the definition of orthogonality as follows:

Definition 12. [7] Let $(X,\|\|$.$) be normed space, and x, y \in X$. Then x is said to be isosceles orthogonal to y in terms of 2-HH norm if and only if

$$
\int_{0}^{1}\|(1-t) x+t y\|^{2} d t=\int_{0}^{1}\|(1-t) x-t y\|^{2} d t .
$$

This orthogonality is equivalent to the usual orthogonality, if the space is equipped with an inner-product.

Theorem 2.4.11. [7] Let X be a normed space. Then the isosceles orthogonality via 2-HH norm is existent.

Theorem 2.4.12. [7] Let X be a normed space. Then isosceles orthogonality is unique if and only if X is strictly convex

Theorem 2.4.13. [7] Isosceles orthogonality via 2-HH norm is homogeneous in a normed space X if and only if X is an inner product space.

Theorem 2.4.14. [36] Let X be a normed linear space with the norm induced by an innerproduct. Then, the isosceles orthogonality via 2 - H H norm satisfies the non-degeneracy, continuity and symmetry property.

Proof. Non-degeneracy: If $x \perp_{2-H H-I} y$, then

$$
\begin{align*}
& \int_{0}^{1}\|(1-t) x+t x\|^{2} d t=\int_{0}^{1}\|(1-t) x-t x\|^{2} d t \\
\Rightarrow & \int_{0}^{1}\|x\|^{2} d t=\int_{0}^{1}\|x\|^{2}(1-2 t)^{2} d t \\
\Rightarrow \quad & \|x\|^{2}=\frac{2}{3}\|x\|^{2} \\
\Rightarrow \quad & \frac{1}{3}\|x\|^{2}=0 \\
\Rightarrow \quad & x=0 . \tag{2.13}
\end{align*}
$$

Continuity: Let $x_{n} \rightarrow x, y_{n} \rightarrow y$ for all n, and $x_{n} \perp_{2-H H-I} y_{n}$. Then,

$$
\begin{align*}
& \int_{0}^{1}\left\|(1-t) x_{n}+t y_{n}\right\|^{2} d t=\int_{0}^{1}\left\|(1-t) x_{n}-t y_{n}\right\|^{2} d t \\
\Rightarrow & \lim _{n \rightarrow \infty} \int_{0}^{1}\left\|(1-t) x_{n}+t y_{n}\right\|^{2} d t=\lim _{n \rightarrow \infty} \int_{0}^{1}\left\|(1-t) x_{n}-t y_{n}\right\|^{2} d t \\
\Rightarrow \quad & \int_{0}^{1}\|(1-t) x+t y\|^{2} d t=\int_{0}^{1}\|(1-t) x-t y\|^{2} d t \\
\Rightarrow \quad & x \perp_{2-H H-I} y . \tag{2.14}
\end{align*}
$$

Symmetry: If $x \perp_{2-H H-I} y$, then

$$
\begin{array}{ll}
& \int_{0}^{1}\|(1-t) x+t y\|^{2} d t=\int_{0}^{1}\|(1-t) x-t y\|^{2} d t \\
\Rightarrow & \frac{1}{3}\left(\|x\|^{2}+\|y\|^{2}\right)=\frac{1}{3}\left(\|x\|^{2}+\|y\|^{2}\right) \\
\Rightarrow \quad & \frac{1}{3}\left(\|y\|^{2}+\|x\|^{2}\right)=\frac{1}{3}\left(\|y\|^{2}+\|x\|^{2}\right) \\
\Rightarrow \quad & \int_{0}^{1}\|(1-t) y+t x\|^{2} d t=\int_{0}^{1}\|(1-t) y-t x\|^{2} d t \\
\Rightarrow & y \perp_{2-H H-I} x . \tag{2.15}
\end{array}
$$

Kikianty and Dragomir (2010), proved that the homogeneity and additivity of the Pythagorean orthogonality via $2-H H$ norm is equivalent; however, they also stated the similar result about the isosceles orthogonality with respect to $2-H H$ norm, by omitting the proof. In the following theorem, we give complete proof regarding the equivalency of
homogeneity and additivity of the $H H-I$ orthogonality.
Theorem 2.4.15. [36] Let $x \perp_{2-H H-I} y$. Then, the following are equivalent:

1. Isosceles orthogonality via $2-H$ Horm is homogeneous.
2. Isosceles orthogonality via $2-H$ norm is additive.

Proof. (1) $\Rightarrow(2)$. Assume that the isosceles orthogonality via $2-H H$ norm is homogeneous. We shall show that it is additive. As $2-H H-I$ orthogonality is homegeneous in a normed sapce X if and only if X is an inner product space, and therefore it is additive. $(2) \Rightarrow(1)$. Conversely assume that additive property holds and $x \perp_{2-H H-I} y$. Since, $2-H H-I$ orthogonality exists, for any $x,-y$ there exists a $\beta \in \mathbb{R}: x \perp_{2-H H-I} \beta x-y$, and by additivity property, we conclude that $x \perp_{2-H H-I} \beta x$. Hence, $\beta=0$ whenever $x \neq 0$ and therefore $x \perp_{2-H H-I}-y$. Again by the symmetry and additivity property of isosceles orthogonality via $2-H H$ norm, we may conclude that $p x \perp_{2-H H-I} q y$ for all integers p and q. When $p \neq 0$,

$$
\begin{align*}
\int_{0}^{1}\left\|(1-t) x+t\left(\frac{q}{p}\right) y\right\|^{2} d t & =\frac{1}{3}\left(\|x\|^{2}+\frac{q^{2}}{p^{2}}\|y\|^{2}\right) \\
& =\int_{0}^{1}\left\|(1-t) x-t \frac{q}{p} y\right\|^{2} d t \tag{2.16}
\end{align*}
$$

This shows that $x \perp_{2-H H-I} k y$ for some $k \in \mathbb{Q}$, and by using the continuity of norm, $x \perp_{2-H H-I} k y$ for any real k. Again $2-H H-I$ orthogonality is symmetric, and therefore we may conclude that it is homogeneous.

Definition 13. [14] Let H be a real or complex Hilbert space and $T_{1}, T_{2} \in B(H)$. Then two operators T_{1} and T_{2} have disjoint support if and only if $T_{1} T_{2}^{*}=T_{2}^{*} T_{1}=0$.

Bottazi et al. studied the isosceles orthogonality of bounded (positive) linear operators on Hilbert space with some of the related properties, including operators having disjoint support. [14] Let T_{1} and T_{2} are norm attaining bounded linear operators in a Banach space X. Then, T_{1} is said to be isosceles orthogonal to T_{2} if for every $h \in M_{T}$,

$$
\begin{equation*}
\left\|\left(T_{1}-T_{2}\right)(h)\right\|=\left\|\left(T_{1}+T_{2}\right)(h)\right\| . \tag{2.17}
\end{equation*}
$$

Also, in the same paper, the Pythagorean orthogonal for operators was defined as follows: T_{1} is said to be Pythagorean orthogonal to T_{2} if for every $h \in M_{T}$,

$$
\begin{equation*}
\left\|\left(T_{1}-T_{2}\right)(h)\right\|^{2}=\left\|T_{1}\right\|^{2}+\left\|T_{2}\right\|^{2} \operatorname{or}\left\|\left(T_{1}+T_{2}\right)(h)\right\|^{2}=\left\|T_{1}\right\|^{2}+\left\|T_{2}\right\|^{2} . \tag{2.18}
\end{equation*}
$$

Theorem 2.4.16. [36] Let T_{1} and T_{2} be norm attaining bounded linear operators with the disjoint support in a Hilbert space H. Then, T_{1} is isosceles orthogonal to T_{2} if and only if T_{1} is Pythagorean orthogonal to T_{2}.

Proof. Let $T_{1}, T_{2} \in B(H)$. Assume T_{1} is isosceles orthogonal to T_{2} and $h \in M_{T}$. Using the relation (2.21), we have

$$
\begin{align*}
\left\|\left(T_{1}-T_{2}\right)(h)\right\|^{2} & =\left\|\left(T_{1}+T_{2}\right)(h)\right\|^{2} \\
& =\left\|T_{1}(h)\right\|^{2}+\left\|T_{2}(h)\right\|^{2}+2 \operatorname{Re}\left\langle T_{1} T_{2}^{*} h, h\right\rangle \\
& =\left\|T_{1}(h)\right\|^{2}+\left\|T_{2}(h)\right\|^{2} \\
& =\left\|T_{1}\right\|^{2}+\left\|T_{2}\right\|^{2} . \tag{2.19}
\end{align*}
$$

This shows that T_{1} is Pythagorean orthogonal to T_{2}. Conversely assume that, for any $h \in M_{T}$,

$$
\begin{aligned}
\left\|\left(T_{1}-T_{2}\right)(h)\right\|^{2} & =\left\|T_{1}(h)\right\|^{2}+\|\left. T_{2}(h)\right|^{2} \\
& =\left\|\left(T_{1}+T_{2}\right)(h)\right\|^{2} .
\end{aligned}
$$

Therefore,

$$
\left\|\left(T_{1}-T_{2}\right)(h)\right\|=\left\|\left(T_{1}+T_{2}\right)(h)\right\| .
$$

That is,

$$
\begin{equation*}
\left\|T_{1}-T_{2}\right\|=\left\|T_{1}+T_{2}\right\| \tag{2.20}
\end{equation*}
$$

Proposition 8. [36] Let T_{1} and T_{2} be bounded linear operators form a Banach space X to Y. Then for any $x \in M_{T_{1}+T_{2}} \cap M_{T_{1}-T_{2}}, T_{1}(x) \perp_{I} T_{2}(x) \Rightarrow T_{1} \perp_{I} T_{2}$.

Proof. Let $x \in M_{T_{1}+T_{2}} \cap M_{T_{1}-T_{2}}$. Suppose $T_{1}(x) \perp_{I} T_{2}(x)$. Then,

$$
\begin{aligned}
\left\|T_{1}(x)-T_{2}(x)\right\| & =\left\|T_{1}(x)+T_{2}(x)\right\| \\
\Rightarrow \quad\left\|\left(T_{1}-T_{2}\right) x\right\| & =\left\|\left(T_{1}+T_{2}\right) x\right\| \\
\Rightarrow \quad\left\|T_{1}-T_{2}\right\| & =\left\|T_{1}+T_{2}\right\|
\end{aligned}
$$

Proposition 9. [36] Let T_{1} and T_{2} be bounded linear operators form a Banach space X to
Y and $\left\{x_{n}\right\}$ be a sequence in X such that $\lim _{n \rightarrow \infty} x_{n}=x$. Then for any $x \in M_{T_{1}+T_{2}} \cap M_{T_{1}-T_{2}}$

$$
T_{1}\left(x_{n}\right) \perp_{I} T_{2}\left(x_{n}\right) \Rightarrow T_{1} \perp_{I} T_{2}
$$

Proof. Let $x \in M_{T_{1}+T_{2}} \cap M_{T_{1}-T_{2}}$. Suppose $T_{1}\left(x_{n}\right) \perp_{I} T_{2}\left(x_{n}\right)$. Then,

$$
\begin{aligned}
\left\|T_{1}\left(x_{n}\right)-T_{2}\left(x_{n}\right)\right\| & =\left\|T_{1}\left(x_{n}\right)+T_{2}\left(x_{n}\right)\right\| \\
\Rightarrow \quad \lim _{n \rightarrow \infty}\left\|T_{1}(x)-T_{2}\left(x_{n}\right)\right\| & =\lim _{n \rightarrow \infty}\left\|T_{1}\left(x_{n}\right)+T_{2}\left(x_{n}\right)\right\| \\
\Rightarrow \quad\left\|T_{1}\left(x_{n}\right)-T_{2}(x)\right\| & =\left\|T_{1}(x)+T_{2}(x)\right\| \\
\Rightarrow \quad\left\|T_{1}-T_{2}\right\| & =\left\|T_{1}+T_{2}\right\|
\end{aligned}
$$

2.5 Pythagorean Orthogonality

Definition 14. [I] Let $(X,\|\|$.$) be normed linear space and x, y \in X$. An element x is said to be orthogonal to y if and only if

$$
\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2} .
$$

In ordinary Euclidean space, this is analogous to the fact that two vectors are perpendicular if and only if there is right triangle having two vectors as legs. James mentioned in the paper [1] that, in case of normed linear space, Pythagorean and isosceles orthogonality are not equivalent.

Properties of Pythagorean orthogonality [16]

(i) Pythagorean orthogonality is symmetric;
(ii) Pythagorean orthogonality is either homogeneous or additive if and only if the norm is induced by an inner-product;
(iii) Pythagorean orthogonality is unique;
(iv) Pythagorean orthogonality is α-unique;
(v) If $X=\mathbb{R}^{2}$ with a regular octagon as unit sphere then the Pythagorean orthogonality is S-unique, however it is not S - unique when S is an square.

Definition 15. [16] Let $(X,\|\|$.$) be a normed space and 0 \neq x, y \in X$. Then the orthogonality is said to be left (right) unique if there exists only one α such that $x \perp$ $\alpha x+y(\alpha x+y \perp x)$.

In the case of Pythagorean orthogonality, James proved that the left and right uniqueness are equivalent.

Theorem 2.5.1. [1] Let $(X,\|\|$.$) be a normed space and x, y \in X$. Then there exists a number α such that

$$
\|x-(\alpha x+y)\|^{2}=\|x\|^{2}+\|\alpha x+y\|^{2} .
$$

Corollary 2.5.1. []] Let $(X,\|\|$.$) be a normed space and x, y \in X$. Then there exists a number α such that

$$
\|x+(\alpha x+y)\|^{2}=\|x\|^{2}+\|\alpha x+y\|^{2} .
$$

Theorem 2.5.2. [l] If Pythagorean orthogonality is homogeneous in a normed linear space X, then X is an abstract Euclidean space.

Theorem 2.5.3. [I]] The property of homogeneity and additivity of Pythagorean orthogonality are equivalent for normed linear space.

Corollary 2.5.2. [l] If Pythagorean orthogonality is additive in a normed linear space X, then X is an abstract Euclidean space.

Theorem 2.5.4. [1] Let $(X,\|\|$.$) be a normed linear space and x, y \in X$. Then the following are equivalent:
(i) X is an inner product space;
(ii) x is Pythagorean orthogonal to y implies x is isosceles orthogonal to y;
(iii) x is isosceles orthogonal to y implies x is Pythagorean orthogonal to y.

Theorem 2.5.5. [I] Let $(X,\|\|$.$) be a normed linear space and x, y \in X$. Then the following are equivalent:
(i) X is an inner product space;
(ii) x is Pythagorean orthogonal to y implies x is Birkhoff-James orthogonal to y;
(iii) x is Birkhoff-james orthogonal to y implies x is Pythagorean orthogonal to y.

Dragomir and Kikianty introduced Pythagorean orthogonality in terms of $2-\mathrm{HH}$ norm.

Definition 16. [7]| Let $(X,\|\|$.$) be normed linear space. An element x \in X$ is said to be Pythagorean orthogonal to y in terms of $2-H H$ norm if and only if

$$
\int_{0}^{1}\|(1-t) x+t y\|^{2} d t=\frac{1}{3}\left(\|x\|^{2}+\|y\|^{2}\right) .
$$

This orthogonality is equivalent to usual orthogonality, when the space is equipped with an inner-product.

Proposition 10. [7] Let $(X,\|\cdot\|)$ be normed linear space and $x, y \in X$ such that $(1-t) x$ is Pythagorean orthogonal to ty for almost every $t \in[0,1]$, then $x \perp_{H H-P} y$.

Proposition 11. [7] Let $(X,\|\cdot\|)$ be a normed space. Then the Pythagorean orthogonality via 2-HH norm is existent.

Theorem 2.5.6. [7] Pythagorean orthogonality via 2-HH norm is unique in any normed space X.

Dragomir and Kikianty mentioned the following theorem in the paper [7] without giving detailed proof. In this thesis we make an attempt to give the detailed proof.

Theorem 2.5.7. [36] Let X be a normed linear space with the norm induced by an inner-product. Then, the Pythagorean orthogonality via $2-H$ Horm satisfies the nondegeneracy, continuity and symmetry property.

Proof. Non-degeneracy: If $x \perp_{2-H H-p} x$, then

$$
\begin{aligned}
& \int_{0}^{1}\|(1-t) x+t x\|^{2} d t=\frac{1}{3}\left(\|x\|^{2}+\|x\|^{2}\right) \\
\Rightarrow & \|x\|^{2}=\frac{2}{3}\|x\|^{2} \\
\Rightarrow \quad & \frac{1}{3}\|x\|^{2}=0 \\
\Rightarrow & x=0 .
\end{aligned}
$$

Continuity: Let $x_{n} \rightarrow x, y_{n} \rightarrow y$ and $x_{n} \perp_{2-H H-p} y_{n}$. Then,

$$
\begin{aligned}
& \int_{0}^{1}\left\|(1-t) x_{n}+t y_{n}\right\|^{2} d t=\frac{1}{3}\left(\|x\|_{n}^{2}+\left\|y_{n}\right\|^{2}\right) \\
\Rightarrow & \lim _{n \rightarrow \infty} \int_{0}^{1}\left\|(1-t) x_{n}+t y_{n}\right\|^{2} d t=\lim _{n \rightarrow \infty} \frac{1}{3}\left(\left\|x_{n}\right\|^{2}+\left\|y_{n}\right\|^{2}\right) \\
\Rightarrow & \quad \int_{0}^{1}\|(1-t) x+t y\|^{2} d t=\frac{1}{3}\left(\|x\|^{2}+\|y\|^{2}\right) \\
\Rightarrow \quad & x \perp_{2-H H-P} y .
\end{aligned}
$$

Symmetry: If $x \perp_{2-H H-P} y$, then

$$
\begin{aligned}
\|(x, y)\|_{2-H H} & =\frac{1}{3}\left(\|x\|^{2}+\|y\|^{2}\right) \\
& =\frac{1}{3}\left(\|y\|^{2}+\|x\|^{2}\right) \\
& =\int_{0}^{1}\|(1-t) y+t x\|^{2} d t \\
& =\|(y, x)\|_{2-H H} .
\end{aligned}
$$

In the case of norm attaining bounded linear operators, when the norm is induced by an inner-product, we introduce a relation between the isosceles and Pythagorean orthogonalities by stating that the operator T_{1} is isosceles orthogonal to T_{2} if and only if T_{1} is Pythagorean orthogonal to T_{2}. Furthermore, we prove an interesting relation that the Pythagorean orthogonality implies the Birkhoff-James orthogonality, but the converse may not be true. To disprove this statement, we take two dimensional matrix operators on a Hilbert space whose norm is obtained by taking trace of the product of the adjoint of an operator with the operator itself.

Bottazi et al. (2020), studied the isosceles orthogonality of bounded (positive) linear operators on Hilbert space with some of the related properties, including operators having disjoint support. Let T_{1} and T_{2} are norm attaining bounded linear operators in a Banach space X. Then, T_{1} is said to be isosceles orthogonal to T_{2} if for every $h \in M_{T}$,

$$
\begin{equation*}
\left\|\left(T_{1}-T_{2}\right)(h)\right\|=\left\|\left(T_{1}+T_{2}\right)(h)\right\| . \tag{2.21}
\end{equation*}
$$

Also, in the same paper, the Pythagorean orthogonal for operators was defined as follows:
T_{1} is said to be Pythagorean orthogonal to T_{2} if for every $h \in M_{T}$,

$$
\begin{equation*}
\left\|\left(T_{1}-T_{2}\right)(h)\right\|^{2}=\left\|T_{1}\right\|^{2}+\left\|T_{2}\right\|^{2} \text { or }\left\|\left(T_{1}+T_{2}\right)(h)\right\|^{2}=\left\|T_{1}\right\|^{2}+\left\|T_{2}\right\|^{2} . \tag{2.22}
\end{equation*}
$$

The following theorem gives the characterization of Birkhoff-James orthogonality for operators.

Theorem 2.5.8. [36] Let T_{1} and T_{2} be norm attaining bounded linear operators in a Hilbert space H. If T_{1} is Pythagorean orthogonal to T_{2}, then T_{1} is Birkhoff-James orthogonal to T_{2}, but the converse may not be true

Proof. Let $T_{1}, T_{2} \in B(H)$ such that T_{1} is Pythagorean orthogonal to T_{2}. Then, by using (2.22) with $h \in M_{T}$,

$$
\begin{array}{ll}
& \left\|\left(T_{1}+\lambda T_{2}\right)(h)\right\|^{2}=\left\|T_{1}(h)\right\|^{2}+\left\|\lambda T_{2}(h)\right\|^{2} \\
\Rightarrow & \left\|\left(T_{1}+\lambda T_{2}\right)(h)\right\|^{2} \geq\left\|T_{1}(h)\right\|^{2} \\
\Rightarrow & \left\|\left(T_{1}+\lambda T_{2}\right)(h)\right\| \geq\left\|T_{1}(h)\right\|^{2} \\
\Rightarrow & \left\|T_{1}+\lambda T_{2}\right\| \geq\left\|T_{1}\right\| . \tag{2.23}
\end{array}
$$

This shows that T_{1} is Birkhoff-James orthogonal to T_{2}.

The following example shows that the converse of above theorem may not be true.
Example 2. Suppose that H is the two dimensional Hilbert space. Consider the Banach space $B(H)$. Let $T_{1}=\left(\begin{array}{ll}4 & 0 \\ 0 & 3\end{array}\right), T_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in B(H)$ and $\lambda \in[0,1]$. We know that $\|T\|^{2}=\operatorname{trace}\left(T^{*} T\right)$. Then,

$$
\begin{aligned}
T_{1}+\lambda T_{2} & =\left(\begin{array}{cc}
4+\lambda & 0 \\
0 & 3+\lambda
\end{array}\right), \\
\left(T_{1}+\lambda T_{2}\right)^{*} & =\left(\begin{array}{cc}
4+\lambda & 0 \\
0 & 3+\lambda
\end{array}\right), \\
\left(T_{1}+\lambda T_{2}\right)^{*}\left(T_{1}+\lambda T_{2}\right) & =\left(\begin{array}{cc}
(4+\lambda)^{2} & 0 \\
0 & (3+\lambda)^{2}
\end{array}\right) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\operatorname{trace}\left[\left(T_{1}+\lambda T_{2}\right)^{*}\left(T_{1}+\lambda T_{2}\right)\right]=(4+\lambda)^{2}+(3+\lambda)^{2} \tag{2.24}
\end{equation*}
$$

Since, $\lambda \in[0,1]$,

$$
\begin{array}{ll}
& \min \left[\operatorname{trace}\left(\left(T_{1}+\lambda T_{2}\right)^{*}\left(T_{1}+\lambda T_{2}\right)\right)\right] \geq 25 \\
\Rightarrow \quad & \left\|T_{1}+\lambda T_{2}\right\|^{2} \geq 25 \\
\Rightarrow \quad & \left\|T_{1}+\lambda T_{2}\right\| \geq 5 . \tag{2.25}
\end{array}
$$

Similarly we can find $\left\|T_{1}\right\|=5$. Therefore, we may conclude that T_{1} is Birkhoff-James orthogonal to T_{2}. On the other hand,

$$
T_{1}+T_{2}=\left(\begin{array}{ll}
5 & 0 \\
0 & 4
\end{array}\right) \text { and }\left[\left(T_{1}+T_{2}\right)^{*}\left(T_{1}+T_{2}\right)\right]=\left(\begin{array}{cc}
25 & 0 \\
0 & 16
\end{array}\right)
$$

It follows that $\left\|T_{1}+T_{2}\right\|^{2}=41$. However, $\left\|\left.T_{1}\right|^{2}+\right\| T_{2} \|^{2}=26$. Therefore, T_{1} is not Pythagorean orthogonal to T_{2}.

2.6 Carlsson Orthogonality

S. O. Carlsson in 1962 introduced a generalized concept of orthogonality in normed space with indicating that isosceles and Pythagorean orthogonality are special cases [4].

Definition 17. Let $(X,\|\|$.$) be a normed linear space and a_{k}, b_{k}, c_{k}, k=1, \ldots \ldots . m$, a fixed collection of real numbers satisfying

$$
\sum_{k=1}^{m} a_{k} b_{k} c_{k}=1, \sum_{k=1}^{m} a_{k} b_{k}^{2}=\sum_{k=1}^{m} a_{k} c_{k}^{2}=0 .
$$

An element $x \in X$ is said to be orthogonal to $y \in X$ if

$$
\sum_{k-1}^{m} a_{k}\left\|b_{k} x+c_{k} y\right\|^{2}=0
$$

Theorem 2.6.1. [4] Let $(X,\|\|$.$) be a normed space and x, y \in X$. Then there is a number α such that x is Carlsson orthogonal to $\alpha x+y$.

Definition 18. [4] Orthogonality is said to have property (H) in normed linear space X if $x \perp_{C} y$ implies that

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{k=1}^{m} a_{k}\left\|n b_{k} x+c_{k} y\right\|^{2}=0 \quad \text {, where } n \text { is a positive integer }
$$

Definition 19. [4] Let $(X,\|\cdot\|)$ be a normed space. The norm on X is said to be Gateaux differentiable if, for every pair of elements $0 \neq x, y \in X$, the limit

$$
N(x, y)=\lim _{h \rightarrow 0} \frac{\|x+h y\|-\|x\|}{h} \text { exists. }
$$

Theorem 2.6.2. [4] If the Carlsson orthogonality has property (H) in X, then the norm of X is Gateaux differentiable and $x \perp_{C} y$ holds if and only if $N(x, y)=0$.

Definition 20. [4] Let $(X,\|\|$.$) be a normed space and x, y \in X$. Then x is said to be anti-orthogonal to y if y is orthogonal to x or if and only if

$$
\sum_{K=1}^{m} a_{k}\left\|c_{k} x+b_{k} y\right\|^{2}=0
$$

Carlsson proved that if orthogonality has property (H), then it is equivalent to normality and therefore homogeneous. In this regards, it is better to say that anti-orthogonality has property (H). If the orthogonality is replaced by anti-orthogonality, then there is a number α such that $x \perp C \alpha x+y$ and the norm of X is Gateaux differentiable and $x \perp_{C} y$ fi and only if $N(x, y)=0$.

Theorem 2.6.3. [4] If the Carlsson orthogonality has property (H), then it is symmetric and equivalent to normality in X.

Corollary 2.6.1. [4] If $\operatorname{dim} X \geq 2$ and the Carlsson orthogonality is homogeneous or additive in X, then X is Euclidean space.

Theorem 2.6.4. [4] If X is a normed linear space in which the Carlsson orthogonality has property has property (H), then X is an Euclidean space.

Corollary 2.6.2. [4] If X is normed linear space in which the Carlsson orthogonality is homogeneous or additive, then X is Euclidean space.

Theorem 2.6.5. Let $a_{k} \neq 0, b_{k}, c_{k}, k=1, \ldots . ., m$, be real numbers such that $\left(b_{k}, c_{k}\right)$ and $\left(b_{r}, c_{r}\right)$ are linearly independent for $k \neq r$. If $(X,\|\|$.$) be a normed linear space satisfying$ the condition

$$
\sum_{k=1}^{m} a_{k}\left\|b_{k} x+c_{k} y\right\|^{2}=0 \quad \text { for all } x, y \in X .
$$

Then X is an Euclidean space.

2.6.1 Carlsson Orthogonality in terms of p-HH norm

In 2010, E. Kikianty and S.S. Dragomir played a vital role to introduce $p-H H$ norm on the Cartesian square of normed spaces by generalizing the previous definition of Carlsson orthogonality through the medium of $2-H H$ norm, which also generalizes the Pythagorean and isosceles orthogonality through te medium of $2-H H$ [37].

Definition 21. [37] Let $(X,\|\|$.$) be a normed linear space and a_{k}, b_{k}, c_{k}, k=1,2,3, \ldots \ldots, m$, $m \in \mathbb{N}$ be real numbers. An element $x \in X$ is said to be Carlsson orthogonal to y in terms of 2-HH norm if and only if

$$
\sum_{k=1}^{m} a_{k} \int_{0}^{1}\left\|(1-t) b_{k} x+t y c_{k}\right\|^{2} d t=0
$$

with conditions

$$
\sum_{k=1}^{m} a_{k} b_{k}^{2}=\sum_{k=1}^{m} a_{k} c_{k}^{2}=0 \text { and } \sum_{k=1}^{m} a_{k} b_{k} c_{k}=1
$$

In any inner product space, the Carlsson orthogonality via 2-HH norm is equivalent to the usual orthogonality.

Theorem 2.6.6. [37] Carlsson orthogonality in terms of $2-H$ H norm satisfies the nondegeneracy, simplification and continuity.

Theorem 2.6.7. [37] Let $(X,\|\|$.$) be a normed space. Then the Carlsson orthogonality$ via 2-HH norm is existent.

Theorem 2.6.8. [37] Let $(X,\|\|$.$) be a normed space in which the Carlsson orthogonality$ in terms of 2-HH norm is homogeneous (or additive) to the left. Then X is an inner product space.

Definition 22. [37] The Carlsson orthogonality in terms of 2-HH norm is said to have property (H) in a normed space X, if x is Carlsson orthogonal to y implies that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \int_{0}^{1} \sum_{k=1}^{m} a_{k}\left\|n b_{k}(1-t) x+c_{k} t y\right\|^{2} d t=0
$$

If the Carlsson orthogonality via 2-HH norm is homogeneous (or additive to the left) in X , then it has property (H) and if X is an inner product space, then the Carlsson orthogonality in terms of 2-HH norm is homogeneous (or additive) and therefore it has (H).

Lemma 2.6.1. [37| Let $(X,\|\|$.$) be a normed space where the Carlsson orthogonality in$ terms of 2-HH norm has property (H). Suppose that for any $x, y \in X$, there exist $\alpha \in \mathbb{R}$ such the $x \perp_{H H-C} \alpha x+y$. Then

$$
\alpha=\frac{-1}{\|x\|}\left[\sum_{b_{k} c_{k}>0} a_{k} b_{k} c_{k} N_{+}(x, y)+\sum_{b_{k} c_{k}<0} a_{k} b_{k} c_{k} N_{-}(x, y)\right]
$$

Corollary 2.6.3. [37] If the Carlsson orthogonality via 2-HH norm has property (H), then the norm of X is Gateaux differentiable at x and $x \perp_{H H-C} y$ holds if and only if $N(x, y)=0$.

Corollary 2.6.4. [37] If the Carlsson orthogonality via 2-HH norm has property (H), then it is symmetric and equivalent to B-orthogonality.

Bottazzi et al. in the paper [14] discussed about Birkhoff-James, isosceles, and Robert orthogonality in Banach spaces in terms of bounded linear operators. Motivated by the results of Bottazzi et al. (2020), we make an attempt to introduce the Carlsson orthogonality for bounded linear operators in Banach Spaces. Furthermore, we verify some properties, like non-degeneracy, continuity, and homogeneity property of an inner-product space in the context of the Carlsson orthogonality in terms of bounded linear operators.

Definition 23. [36] Let T_{1} and T_{2} are bounded linear operators on X. Then, the operator T_{1} is orthogonal to T_{2} in the sense of Carlsson (denoted by $T_{1} \perp_{C}^{O} T_{2}$) if for any $h \in M_{T}$,

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left\|\left(q_{k} T_{1}+r_{k} T_{2}\right)(h)\right\|^{2}=0 \tag{2.26}
\end{equation*}
$$

satisfying the conditions

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k} q_{k} r_{k}=1, \sum_{k=1}^{n} p_{k} q_{k}^{2}=\sum_{k=1}^{n} p_{k} r_{k}^{2}=0 \tag{2.27}
\end{equation*}
$$

Theorem 2.6.9. [36] Let T_{1} and T_{2} be norm attaining bounded linear operators on a Banach space X. If $T_{1}=T_{2}=T$, then

$$
\sum_{k=1}^{n} p_{k}\left\|\left(q_{k} T_{1}+r_{k} T_{2}\right)(h)\right\|^{2}=0 \Leftrightarrow T=0
$$

Proof. Let $T_{1}, T_{2} \in B(X)$ and $h \in M_{T}$. Assume 2.26 under the condition 2.27). Since,
$T_{1}=T_{2}=T$, we have

$$
\begin{array}{ll}
& \sum_{k=1}^{n} p_{k}\left\|\left(q_{k} T+r_{k} T\right)(h)\right\|^{2}=0 \\
\Rightarrow & \sum_{k=1}^{n} p_{k}\left|q_{k}+r_{k}\right|^{2}\|T h\|^{2}=0 \\
\Rightarrow & \|T h\|^{2}=0 \\
\Rightarrow & \|T h\|=0 .
\end{array}
$$

As $h \in M_{T}$, we can write $\|T h\|=\|T\|$. Therefore, we may conclude that

$$
\begin{equation*}
\|T\|=0 \Rightarrow T=0 \tag{2.28}
\end{equation*}
$$

The converse part is obvious.
Theorem 2.6.10. [36] Let $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ be sequences of norm attaining bounded linear operators on a Banach space X. Then,

$$
U_{n} \perp_{C}^{O} V_{n} \Rightarrow U \perp_{C}^{O} V .
$$

Proof. In the case of linear operators, boundedness and continuity are equivalent. By the continuity of the U_{n} 's and V_{n} 's, we can write

$$
\lim _{n \rightarrow \infty} U_{n}(h)=U(h) \quad \text { and } \quad \lim _{n \rightarrow \infty} V_{n}(h)=V(h) .
$$

Since, U_{n} is Carlsson orthogonal to V_{n} and $h \in M_{T}$, we have

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left\|\left(q_{k} U_{n}+r_{k} V_{n}\right)(h)\right\|^{2}=0 \tag{2.29}
\end{equation*}
$$

under the condition (2.27). It follows that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{k=1}^{n} p_{k} \|\left(q_{k} U_{n}+r_{k} V_{n}\right)\left(h \|^{2}=0\right. \\
\Rightarrow \quad & \sum_{k=1}^{n} p_{k}\left\|\left(q_{k} U+r_{k} V\right)(h)\right\|^{2}=0 . \\
\Rightarrow \quad & U \perp_{C}^{O} V .
\end{aligned}
$$

Therefore, the Carlsson orthogonality satisfies continuity property of an inner-product space.

Bottazzi et al, (2020) defined the disjoint support as follows: Let H be a real or complex Hilbert space and $T_{1}, T_{2} \in B(H)$. Then, two operators T_{1} and T_{2} have disjoint support if and only if

$$
\begin{equation*}
T_{1} T_{2}^{*}=T_{2}^{*} T_{1}=0 \tag{2.30}
\end{equation*}
$$

Theorem 2.6.11. [36] Let T_{1} and T_{2} be norm attaining bounded linear operators on a Hilbert space H with disjoint support. Then, $T_{1} \perp_{C}^{O} T_{2}$ implies that $T_{2} \perp_{C}^{O} T_{1}$.

Proof. Let $T_{1}, T_{2} \in B(H)$ and $h \in M_{T}$. Then, $\left\|\left(T_{1}+T_{2}\right)(h)\right\|=\left\|T_{1}+T_{2}\right\|$. Since, T_{1} and T_{2} have disjoint support then, equation 2.30 holds. Suppose $T_{1} \perp_{C}^{O} T_{2}$. Then, for $h \in M_{T}$, Equation (2.26) under Condition (2.27) can be written as

$$
\sum_{k=1}^{n} p_{k}\left[\left\langle q_{k} T_{1} h+r_{k} T_{2} h, q_{k} T_{1} h+r_{k} T_{2} h\right\rangle\right]=0 .
$$

It follows that

$$
\begin{align*}
& \sum_{k=1}^{n} a_{k}\left[\left\|q_{k} T_{1}\right\|^{2}+\left\|r_{k} T_{2} h\right\|^{2}+q_{k} r_{k}\left\langle T_{1} h, T_{2} h\right\rangle+q_{k} r_{k}\left\langle T_{2} h, T_{1} h\right\rangle\right]=0 \\
\Rightarrow & \sum_{k=1}^{n} p_{k}\left[\left\|q_{k} T_{1} h\right\|^{2}+\left\|r_{k} T_{2} h\right\|^{2}+2 q_{k} r_{k} R e\left\langle T_{2}^{*} T_{1} h, h\right\rangle\right]=0 \\
\Rightarrow \quad & \sum_{k=1}^{n} p_{k}\left[\left\|q_{k} T_{1} h\right\|^{2}+\left\|r_{k} T_{2} h\right\|^{2}=0\right. \\
\Rightarrow \quad & \sum_{k=1}^{n} p_{k} q_{k}^{2}\left\|T_{1}\right\|^{2}+a_{k} r_{k}^{2}\left\|T_{2}\right\|^{2}=0 \tag{2.31}
\end{align*}
$$

Similarly, if $T_{2} \perp_{C}^{O} T_{1}$, then we have

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k} q_{k}^{2}\left\|T_{2}\right\|^{2}+p_{k} r_{k}^{2}\left\|T_{1}\right\|^{2}=0 \tag{2.32}
\end{equation*}
$$

Replacing the role of constants in equations 2.31) and 2.32, we can conclude that $T_{2} \perp_{C}^{O}$ T_{1}.

Theorem 2.6.12. [36] Let T_{1} and T_{2} be bounded linear operators from a Banach space X to Y. Then for any $x \in M_{q_{k} T_{1}+r_{k} T_{2}}$, if the images of T_{1} and T_{2} are orthogonal in the
sense of Carlsson orthogonality in terms of bounded linear operator, then the operators are also orthogonal.

Proof. Let $x \in M_{q_{k} T_{1}+r_{k} T_{2}}$ and $T_{1}(x) \perp_{C}^{O} T_{2}(x)$. Then

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left\|q_{k} T_{1}(x)+r_{k} T_{2}(x)\right\|^{2}=0 \tag{2.33}
\end{equation*}
$$

satisfying the conditions

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k} q_{k} r_{k}=1, \quad \sum_{k=1}^{n} p_{k} q_{k}^{2}=\sum_{k=1}^{n} p_{k} r_{k}^{2}=0 \tag{2.34}
\end{equation*}
$$

Since $x \in M_{q_{k} T_{1}+r_{k} T_{2}}$, we must have $\left\|q_{k} T_{1}(x)+r_{k} T_{2}(x)\right\|=\left\|\left(q_{k} T_{1}+r_{k} T_{2}\right) x\right\|=$ $\left\|q_{k} T_{1}+r_{k} T_{2}\right\|$. Therefore from relation (2.33) and (2.34), we may conclude that

$$
\sum_{k=1}^{n} p_{k}\left\|q_{k} T_{1}+r_{k} T_{2}\right\|^{2}=0
$$

Which shows that T_{1} is Carlsson orthogonal to T_{2} in terms of operators.

Chapter 3

ORTHOGONALITY IN TERMS OF p-HH NORM

3.1 Some special cases of Carlsson's orthogonality

Pythagorean and isosceles orthogonalities have been generalized by S.O. Carlsson in 1962. These orthogonalities are obtained by assigning particular values of constants in a generalized Carlssons orthogonality. In this section we will show how isosceles and Pyhagorean orthogonalities can be obtained from Carlsson orthogonality and introduce two new orthogonality relations in relation to Carlsson's orthogonality.

Theorem 3.1.1. [4] Pythagorean and isosceles orthogonalities are special cases of the Carlsson orthogonality in normed linear space.

Proof. For Pythagorean orthogonality, We have

$$
\begin{aligned}
& \sum_{k=1}^{3} a_{k}\left\|b_{k} x+c_{k} y\right\|^{2}=0 \\
& \Rightarrow \quad a_{1}\left\|b_{1} x+c_{1} y\right\|^{2}+a_{2}\left\|b_{2} x+c_{2} y\right\|^{2}+a_{3}\left\|b_{3} x+c_{3} y\right\|^{2}=0
\end{aligned}
$$

Put $a_{1}=-1, a_{2}=a_{3}=1, b_{1}=b_{2}=1, b_{3}=0$ and $c_{1}=-1, c_{2}=0, c_{3}=1$. Then

$$
\begin{align*}
& 0=a_{1}\left\|b_{1} x+c_{1} y\right\|^{2}+a_{2}\left\|b_{2} x+c_{2} y\right\|^{2}+a_{3}\left\|b_{3} x+c_{3} y\right\|^{2} \\
& =(-1)\|x-y\|^{2}+\|x\|^{2}+\|y\|^{2} \\
& \Rightarrow \quad\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2} \tag{3.1}
\end{align*}
$$

Now,

$$
\sum_{k=1}^{3} a_{k} b_{k} c_{k}=1, \sum_{k=1}^{3} a_{k} b_{k}^{2}=0, \sum_{k=1}^{3} a_{k} c_{k}^{2}=0
$$

For isosceles orthogonality,

$$
\begin{aligned}
& \sum_{k=1}^{2} a_{k}\left\|b_{k} x+c_{k} y\right\|^{2}=0 \\
& \Rightarrow a_{1}\left\|b_{1} x+c_{1} y\right\|^{2}+a_{2}\left\|b_{2} x+c_{2} y\right\|^{2}=0
\end{aligned}
$$

Put $a_{1}=\frac{1}{2}, a_{2}=\frac{-1}{2}, b_{1}=b_{2}=1, c_{1}=1$ and $c_{2}=-1$. Then

$$
\begin{align*}
& 0=a_{1}\left\|b_{1} x+c_{1} y\right\|^{2}+a_{2}\left\|b_{2} x+c_{2} y\right\|^{2} \\
&=\frac{1}{2}\|x+y\|^{2}+\frac{-1}{2}\|x-y\|^{2} \\
& \Rightarrow\|x+y\|^{2}=\|x-y\|^{2} \\
& \therefore\|x+y\|=\|x-y\| \tag{3.2}
\end{align*}
$$

Now,

$$
\begin{aligned}
\sum_{k=1}^{2} a_{k} b_{k} c_{k} & =a_{1} b_{1} c_{1}+a_{2} b_{2} c_{2} \\
& =\frac{1}{2} \times 1 \times 1+\frac{-1}{2} \times 1 \times-1 \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
\sum_{k=1}^{2} a_{k} b_{k}^{2} & =a_{1} b_{1}^{2}+a_{2} b_{2}^{2} \\
& =\frac{1}{2} \times 1+\frac{-1}{2} \times 1 \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\sum_{k=1}^{2} a_{k} C_{k}^{2} & =a_{1} C_{1}^{2}+a_{2} C_{2}^{2} \\
& =\frac{1}{2} \times 1+\frac{-1}{2} \times 1 \\
& =0
\end{aligned}
$$

Motivated by this theorem, we make an attempt define two new special cases of the Carlsson orthogonality, which we have mentioned as follows:

Proposition 12. [6] let $(X,\|\|$.$) be a real normed space in which the norm is induced by$ an inner product. Then $x \in X$ is orthogonal to $y \in X$ if and only if

$$
\begin{equation*}
2\|x+y\|^{2}+i\|x+i y\|^{2}=2\|x-y\|^{2}+i\|x-i y\|^{2} \tag{3.3}
\end{equation*}
$$

Proof. Let $x, y \in X$. Assume $x \perp y$. Then

$$
\sum_{k=1}^{m} a_{k}\left\|b_{k} x+c_{k} x\right\|^{2}=0
$$

satisfying

$$
\begin{equation*}
\sum_{k=1}^{m} a_{k} b_{k}^{2}=\sum_{k=1}^{m} a_{k} c_{k}^{2}=0 \quad \text { and } \sum_{k=1}^{m} a_{k} b_{k} c_{k}=1 \tag{3.4}
\end{equation*}
$$

In particular if $n=4$, we have

$$
\begin{align*}
& \sum_{k=1}^{4} a_{k}\left\|b_{k} x+c_{k} x\right\|^{2}=0 \\
\Rightarrow & a_{1}\left\|b_{1} x+c_{1} y\right\|^{2}+a_{2}\left\|b_{2} x+c_{2} y\right\|^{2}+a_{2}\left\|b_{3} x+c_{3} y\right\|^{2}=0 \tag{3.5}
\end{align*}
$$

Taking the values of constants in equation (3.5) as: $a_{1}=b_{1}=c_{1}=b_{2}=b_{3}=1, a_{2}=$ $\frac{i}{2}, c_{3}=i, a_{3}=c_{3}=-1$ satisfying condition (3.4) with $n=4$ leads to the desired result. The converse part is obvious.

Corollary 3.1.1. [6] The orthogonality relation (3.3) satisfies the non-degeneracy, simplification and continuity.

Proof. Non-degeneracy: If $x \perp y$, then

$$
\begin{aligned}
2\|x+x\|^{2}+i\|x+i x\|^{2} & =2\|x-x\|^{2}+i\|x-i x\| \\
\Rightarrow 8\|x\|^{2} & =0 \\
\Rightarrow x & =0
\end{aligned}
$$

Simplification: If $x \perp y$, then

$$
\begin{gathered}
2\|x+y\|^{2}+i\|x+i y\|^{2}=2\|x-y\|^{2}+i\|x-i y\|^{2} \\
\Rightarrow 2\|\lambda x+\lambda y\|^{2}+i\|\lambda x+i \lambda y\|^{2}=2\|\lambda x-\lambda y\|^{2}+i\|\lambda x-i \lambda y\|^{2} \\
\Rightarrow \lambda x \perp \lambda y .
\end{gathered}
$$

Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequence in X such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ and $x_{n} \perp y_{n}$. Then

$$
\begin{gathered}
2\left\|x_{n}+y_{n}\right\|^{2}+i\left\|x_{n}+i y_{n}\right\|^{2}=2\left\|x_{n}-y_{n}\right\|^{2}+i\left\|x_{n}-i y_{n}\right\|^{2} \\
\Rightarrow \lim _{n \rightarrow \infty} 2\left\|x_{n}+y_{n}\right\|^{2}+i\left\|x_{n}+i y_{n}\right\|^{2}=\lim _{n \rightarrow \infty} 2\left\|x_{n}-y_{n}\right\|^{2}+i\left\|x_{n}-i y_{n}\right\|^{2} \\
\Rightarrow 2\|x+y\|^{2}+i\|x+i y\|^{2}=2\|x-y\|^{2}+i\|x-i y\|^{2} \\
\Rightarrow x \perp y .
\end{gathered}
$$

Proposition 13. [6] let $(X,\|\|$.$) be a real normed space in which the norm is induced by$ an inner product. Then $x \in X$ is orthogonal to $y \in X$ if and only if

$$
\begin{equation*}
\left\|x+\frac{y}{2}\right\|^{2}+\left\|x-\frac{y}{2}\right\|^{2}=\frac{1}{2}\|\sqrt{2} x+y\|^{2}+\|x\|^{2} \tag{3.6}
\end{equation*}
$$

Proof. Let $x, y \in X$. Assume $x \perp y$. Then

$$
\sum_{k=1}^{m} a_{k}\left\|b_{k} x+c_{k} x\right\|^{2}=0
$$

satisfying

$$
\begin{equation*}
\sum_{k=1}^{m} a_{k} b_{k}^{2}=\sum_{k=1}^{m} a_{k} c_{k}^{2}=0 \quad \text { and } \sum_{k=1}^{m} a_{k} b_{k} c_{k}=1 \tag{3.7}
\end{equation*}
$$

In particular if $\mathrm{n}=4$, we have

$$
\begin{align*}
& \sum_{k=1}^{4} a_{k}\left\|b_{k} x+c_{k} x\right\|^{2}=0 \\
\Rightarrow & a_{1}\left\|b_{1} x+c_{1} y\right\|^{2}+a_{2}\left\|b_{2} x+c_{2} y\right\|^{2}+a_{2}\left\|b_{3} x+c_{3} y\right\|^{2}=0 \tag{3.8}
\end{align*}
$$

Taking the values of constants in equation (3.8) as: $a_{1}=a_{2}=b_{1}=b_{2}=c_{3}=1, a_{3}=$ $a_{4}=c_{2}=\frac{-1}{2}, c_{1}=\frac{1}{2}, b_{3}=b_{4}=\sqrt{2}, c_{4}=0$ satisfying condition 3.7 with $n=4$ leads to the desired result. Conversely assume (3.6) holds and it can be easily shown that x is orthogonal to y.

Corollary 3.1.2. [6] Orthogonality relation (3.6) satisfy the non-degeneracy, simplification and continuity.

Proof. Non-degeneracy: If $x \perp x$, then

$$
\begin{aligned}
& \left\|x+\frac{x}{2}\right\|^{2}+\left\|x-\frac{x}{2}\right\|^{2}=\frac{1}{2}\|\sqrt{2} x+x\|^{2}+\|x\|^{2} \\
\Rightarrow & \|x\|=0 \\
\Rightarrow & x=0
\end{aligned}
$$

Simplication: If $x \perp y$, then

$$
\begin{aligned}
& \left\|x+\frac{y}{2}\right\|^{2}+\left\|x-\frac{y}{2}\right\|^{2}=\frac{1}{2}\|\sqrt{2} x+y\|^{2}+\|x\|^{2} \\
\Rightarrow & \left\|\lambda x+\frac{\lambda y}{2}\right\|^{2}+\left\|\lambda x-\frac{\lambda y}{2}\right\|^{2}=\frac{1}{2}\|\sqrt{2} \lambda x+\lambda y\|^{2}+\|\lambda x\|^{2} \\
\Rightarrow & \lambda x \perp \lambda y
\end{aligned}
$$

Continuity: Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequence in X such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ for all $n \in \mathbb{N}$ and $x_{n} \perp y_{n}$, then

$$
\begin{aligned}
& \left\|x_{n}+\frac{y_{n}}{2}\right\|^{2}+\left\|x_{n}-\frac{y_{n}}{2}\right\|^{2}=\frac{1}{2}\left\|\sqrt{2} x_{n}+y_{n}\right\|^{2}+\left\|x_{n}\right\|^{2} \\
\Rightarrow & \lim _{n \rightarrow \infty}\left\|x_{n}+\frac{y_{n}}{2}\right\|^{2}+\left\|x_{n}-\frac{y_{n}}{2}\right\|^{2}=\lim _{n \rightarrow \infty} \frac{1}{2}\left\|\sqrt{2} x_{n}+y_{n}\right\|^{2}+\left\|x_{n}\right\|^{2} \\
\Rightarrow & \left\|x+\frac{y}{2}\right\|^{2}+\left\|x-\frac{y}{2}\right\|^{2}=\frac{1}{2}\|\sqrt{2} x+y\|^{2}+\|x\|^{2} \\
\Rightarrow & x \perp y .
\end{aligned}
$$

Lemma 3.1.1. [6] Let X be a normed linear space, in which the norm on X is induced by an inner product. Then the orthogonality relation (3.6) is homogeneous.

Proof. If $x \perp y$, then we have,

$$
\left\|x+\frac{1}{2} y\right\|^{2}+\left\|x-\frac{1}{2} y\right\|^{2}=\frac{1}{2}\|\sqrt{2} x+y\|^{2}+\|x\|^{2}
$$

Now,

$$
\begin{aligned}
& \left\|\lambda x+\frac{1}{2} \mu y\right\|^{2}+\left\|\lambda x-\frac{1}{2} \mu y\right\|^{2}-\frac{1}{2}\|\sqrt{2} \lambda x+\mu y\|^{2}-\|\lambda x\|^{2}=0 \\
& \Rightarrow \quad\left\langle\lambda x+\frac{1}{2} \mu y, \lambda x+\frac{1}{2} \mu y\right\rangle+\left\langle\lambda x-\frac{1}{2} \mu y, \lambda x-\frac{1}{2} \mu y\right\rangle \\
& -\frac{1}{2}\langle\sqrt{2} \lambda x+\mu y, \sqrt{2} \lambda x+\mu y\rangle-\langle\lambda x, \lambda x\rangle=0 \\
& \Rightarrow \quad-2 \sqrt{2} \lambda \mu\langle x, y\rangle=0
\end{aligned}
$$

Therefore the given orthogonality is homogeneous if and only if the space is inner product space.

Lemma 3.1.2. [8] Let $(X,\|\cdot\|)$ be a real normed space in which the norm on X is induced by an inner- product. Then orthogonality relation (3.6) implies Birkhoff orthogonality if $y=\frac{x}{1-\alpha}$, but the converse may not be true.

Proof. Suppose $x \perp y$. Then by definition,

$$
\begin{align*}
& \left\|x+\frac{1}{2} y\right\|^{2}+\left\|x-\frac{1}{2} y\right\|^{2}=\frac{1}{2}\|\sqrt{2} x+y\|^{2}+\|x\|^{2} \\
& \Rightarrow\left\|x+\frac{1}{2} y\right\|^{2}+\left\|x-\frac{1}{2} y\right\|^{2} \geq\|x\|^{2} \\
& \Rightarrow\left\|x+\frac{1}{2} y-x+\frac{1}{2} y\right\|^{2} \geq\|x\|^{2} \\
& \Rightarrow\|y\|^{2} \geq\|x\|^{2} \ldots \ldots . \tag{1}
\end{align*}
$$

Since $y=\frac{x}{1-\alpha}$ so that $y=x+\alpha y$. Therefore form the relation (1)

$$
\begin{aligned}
& \|x+\alpha y\|^{2} \geq\|x\|^{2} \\
& \Rightarrow\|x+\alpha y\| \geq\|x\| \\
& \Rightarrow x \perp_{B} y .
\end{aligned}
$$

To disprove the converse part, consider $X=\left(\mathbb{R}^{2},\|\cdot\|_{1}\right)$, where $\|\cdot\|_{1}=\sum_{k=1}^{2}\left|x_{k}\right|$ for some $x=\left(x_{1}, x_{2}\right) \in X$. Let $x=(-2,1), y=(2,2)$. and $\alpha \in \mathbb{R}$ we have

$$
\begin{aligned}
\|x+\alpha y\|_{1} & =\|(2,1)+\alpha(2,2)\|_{1} \\
& =\|-2+2 \alpha, 1+2 \alpha\|_{1} \\
& =|-2+2 \alpha|+|1+2 \alpha| \\
& \geq 3 \\
& =\|x\|_{1}
\end{aligned}
$$

But

$$
\begin{aligned}
\left\|x+\frac{1}{2} y\right\|^{2}+\left\|x-\frac{1}{2} y\right\|^{2} & =\left\|(-2,1)+\frac{1}{2}(2,2)\right\|^{2}+\left\|(-2,1)-\frac{1}{2}(2,2)\right\|^{2} \\
& =\|(-2,1)+(1,1)\|^{2}+\|(-2,1)-(1,1)\|^{2} \\
& =18
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2}\|\sqrt{2} x+y\|^{2}+\|x\|^{2} & =\frac{1}{2}\|\sqrt{2}(-2,1)+(2,2)\|^{2}+\|(-2,1)\|^{2} \\
& =\frac{1}{2}\|(-2 \sqrt{2}+2, \sqrt{2}+2)\|^{2}+9 \\
& =\frac{1}{2}(0.828+3.4142)^{2}+9 \\
& =17.99
\end{aligned}
$$

which shows that x is not orthogonal to y in the sense of orthogonality relation 3.6.
If the underlying space X is a real inner product space and the relation (3.6) holds a. e on $[0,1]$. Then using the concept of 2-HH norm, can define orthogonality relation 3.6)
in terms of 2-HH norm as follows:
Definition 24. Let $(X .\|\|$.$) be a real normed space and x, y \in X$. Then x is said to be orthogonal to y in the sense of $2-H$ norm if and only if

$$
\begin{equation*}
\int_{0}^{1}\left\|(1-t) x+\frac{1}{2} t y\right\|^{2} d t+\int_{0}^{1}\left\|(1-t) x-\frac{1}{2} t y\right\|^{2} d t=\frac{1}{2} \int_{0}^{1}\|\sqrt{2}(1-t) x+t y\|^{2} d t+\int_{0}^{1}\|(1-t) x\|^{2} d t \tag{3.9}
\end{equation*}
$$

To verify the this, we have the following relations:

$$
\begin{aligned}
\int_{0}^{1}\left\|(1-t) x+\frac{1}{2} t y\right\|^{2} d t+\int_{0}^{1}\left\|(1-t) x-\frac{1}{2} t y\right\|^{2} d t & =\frac{1}{3}\|x\|^{2}+\frac{1}{12}\|y\|^{2}+\frac{1}{3}\|x\|^{2}+\frac{1}{12}\|y\|^{2} \\
& =\frac{2}{3}\|x\|^{2}+\frac{1}{6}\|y\|^{2} .
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{1}\|\sqrt{2}(1-t) x+t y\|^{2} d t+\int_{0}^{1}\|(1-t) x\|^{2} d t & =\frac{1}{2}\left(\frac{2}{3}\|x\|^{2}+\frac{1}{3}\|y\|^{2}\right)+\frac{1}{3}\|x\|^{2} \\
& =\frac{2}{3}\|x\|^{2}+\frac{1}{6}\|y\|^{2} .
\end{aligned}
$$

3.2 Results on new orthogonality

Definition 25. [15] Let $(X .\|\|$.$) be a normed linear space. A vector x \in X$ is said to be 2-HH-N orthogonal to $y \in X$ (denoted by $x \perp_{2-H H-N} y$) if and only if

$$
\begin{equation*}
\int_{0}^{1}\left\|(1-t) x+\frac{1}{2} t y\right\|^{2} d t+\int_{0}^{1}\left\|(1-t) x-\frac{1}{2} t y\right\|^{2} d t=\frac{2}{3}\|x\|^{2}+\frac{1}{6}\|y\|^{2} \tag{3.10}
\end{equation*}
$$

E. Kikianty and S.S. Dragomir in [7] proved that " the Pythagorean orthogonality via 2-HH norm is unique in any normed space X ". To prove this, they use the following Lemma by omitting the proof. We give a detailed proof of Lemma as they stated the paper [7].

Lemma 3.2.1. [15] Let $x, y \in X$, where X is normed liner space. Let h be a function on \mathbb{R} defined by

$$
h(\mu):=\int_{0}^{1}\|(1-t) y+\mu(t x)\|^{2} d t .
$$

Then h is a convex function on \mathbb{R}, and for any $r \in(0,1)$ and $\mu_{1}, \mu_{2} \in \mathbb{R}$ where $h\left(\mu_{1}\right) \neq$ $h\left(\mu_{2}\right)$, we have

$$
h\left[r \mu_{1}+(1-r) \mu_{2}\right]<r h\left(\mu_{1}\right)+(1-r) h\left(\mu_{2}\right) .
$$

Proof. Let $r \in(0,1)$ and $\mu_{1}, \mu_{2} \in \mathbb{R}$ such that $h\left(\mu_{1}\right) \neq h\left(\mu_{2}\right)$. Then

$$
\begin{aligned}
h & {\left[r \mu_{1}+(1-r) \mu_{2}\right] } \\
= & \int_{0}^{1}\left\|(1-t) y+\left[r \mu_{1}+(1-r) \mu_{2}\right](t x)\right\|^{2} d t \\
= & \int_{0}^{1}\left\|(1-t) y+r \mu_{1}(t x)+\mu_{2}(t x)-r \mu_{2}(t x)\right\|^{2} d t \\
= & \int_{0}^{1}\left\|(1-t) y+r \mu_{1}(t x)+\mu_{2}(t x)-r \mu_{2}(t x)-r(1-t) y+r(1-t) y\right\|^{2} d t \\
= & \int_{0}^{1}\left\|r\left[(1-t) y+\mu_{1}(t x)\right]+(1-r)\left[(1-t) y+\mu_{2}(t x)\right]\right\|^{2} d t \\
\leq & \int_{0}^{1} r^{2}\left\|(1-t) y+\mu_{1}(t x)\right\|^{2} d t+(1-r)^{2} \int_{0}^{1}\left\|(1-t) y+\mu_{2}(t x)\right\|^{2} d t \\
& +2 r(1-r) \int_{0}^{1}\left\|(1-t) y+\mu_{1}(t x)\right\|\left\|(1-t) y+\mu_{2}(t x)\right\| d t \\
= & \int_{0}^{1} r\left\|(1-t) y+\mu_{1}(t x)\right\|^{2} d t+(1-r) \int_{0}^{1}\left\|(1-t) y+\mu_{2}(t x)\right\|^{2} d t \\
& +\left(r^{2}-r\right) \int_{0}^{1}\left[\left\|(1-t) y+\mu_{1}(t x)\right\|^{2}+\left\|(1-t) y+\mu_{2}(t x)\right\|^{2}\right. \\
& \left.-2\left\|(1-t) y+\mu_{1}(t x)\right\|\left\|(1-t) y+\mu_{2}(t x)\right\|\right] d t \\
= & r h\left(\mu_{1}\right)+(1-r) h\left(\mu_{2}\right)-r(1-r) \int_{0}^{1}\left[\left\|(1-t) y+\mu_{1}(t x)\right\|-\left\|(1-t) y+\mu_{2}(t x)\right\|\right]^{2} d t \\
\leq & r h\left(\mu_{1}\right)+(1-r) h\left(\mu_{2}\right)
\end{aligned}
$$

Which shows that h is a convex function. Since $h\left(\mu_{1}\right) \neq h\left(\mu_{2}\right)$, then the inequality will be strict and therefore

$$
h\left[r \mu_{1}+(1-r) \mu_{2}\right]<r h\left(\mu_{1}\right)+(1-r) h\left(\mu_{2}\right) .
$$

As a similar concept of Lemma 3.2.1, we also prove the following Lemma which is useful to prove the uniqueness property of new orthogonality via 2 -HH norm.

Lemma 3.2.2. [15] Let $(X .\|\|$.$) be a normed space and x, y \in X$. Let h be a function defined on \mathbb{R} by

$$
h(\mu):=\int_{0}^{1}\left\|(1-t) y+\frac{\mu}{2}(t x)\right\|^{2} d t+\int_{0}^{1}\left\|(1-t) y-\frac{\mu}{2}(t x)\right\|^{2} d t
$$

Then h is a convex function on \mathbb{R} and for any $r \in(0,1)$, and $\mu_{1}, \mu_{2} \in \mathbb{R}$ where $h\left(\mu_{1}\right) \neq$ $h\left(\mu_{2}\right)$, we have

$$
h\left[r \mu_{1}+(1-r) \mu_{2}\right]<r h\left(\mu_{1}\right)+(1-r) h\left(\mu_{2}\right)
$$

Proof. Suppose $\mathrm{h}(\mu)=\mathrm{f}(\mu)+\mathrm{g}(\mu)$, where

$$
\begin{aligned}
& f(\mu)=\int_{0}^{1}\left\|(1-t) y+\frac{\mu}{2}(t x)\right\|^{2} d t \quad \text { and } \\
& g(\mu)=\int_{0}^{1}\left\|(1-t) y-\frac{\mu}{2}(t x)\right\|^{2} d t
\end{aligned}
$$

First we show that $\mathrm{f}(\mathrm{k})$ is a convex function. Let $r \in(0,1)$ and $\mu_{1}, \mu_{2} \in \mathbb{R}$ such that

$$
\begin{aligned}
& h\left(\mu_{1}\right) \neq h\left(\mu_{2}\right) . \\
& f {\left[r \mu_{1}+(1-r) \mu_{2}\right] } \\
&= \int_{0}^{1} \|(1-t) y+\frac{1}{2}\left[\left[r \mu_{1}+(1-r) \mu_{2}\right](t x) \|^{2} d t\right. \\
&= \int_{0}^{1}\left\|(1-t) y+\frac{1}{2} r \mu_{1}(t x)+\frac{1}{2} \mu_{2}(t x)-\frac{1}{2} r \mu_{2}(t x)\right\|^{2} d t \\
&= \int_{0}^{1}\left\|(1-t) y+\frac{r \mu_{1}}{2}(t x)+\frac{\mu_{2}}{2}(t x)-r \frac{\mu_{2}}{2}(t x)+r(1-t) y-r(1-t) y\right\|^{2} d t \\
&= \int_{0}^{1}\left\|r\left[(1-t) y+\frac{\mu_{1}}{2}(t x)\right]+(1-r)\left[(1-t) y+\frac{\mu_{2}}{2}(t x)\right]\right\|^{2} d t \\
& \leq r^{2} \int_{0}^{1}\left\|(1-t) y+\frac{\mu_{1}}{2}(t x)\right\|^{2} d t+(1-r)^{2} \int_{0}^{1}\left\|(1-t) y+\frac{\mu_{2}}{2}(t x)\right\|^{2} d t \\
&+2 r(1-r) \int_{0}^{1}\left\|(1-t) y+\frac{\mu_{1}}{2}(t x)\right\|\left\|(1-t) y+\frac{\mu_{2}}{2}(t x)\right\| d t \\
&= r \int_{0}^{1}\left\|(1-t) y+\frac{\mu_{1}}{2}(t x)\right\|^{2} d t+(1-r) \int_{0}^{1}\left\|(1-t) y+\frac{\mu_{2}}{2}(t x)\right\|^{2} d t \\
&+r^{2} \int_{0}^{1}\left\|(1-t) y+\frac{\mu_{1}}{2}(t x)\right\|^{2} d t+(1-r)^{2} \int_{0}^{1}\left\|(1-t) y+\frac{\mu_{2}}{2}(t x)\right\|^{2} d t \\
&-r \int_{0}^{1}\left\|(1-t) y+\frac{\mu_{1}}{2}(t x)\right\|^{2} d t-(1-r) \int_{0}^{1}\left\|(1-t) y+\frac{\mu_{2}}{2}(t x)\right\|^{2} d t \\
&+2 r(1-r) \int_{0}^{1}\left\|(1-t) y+\frac{\mu_{1}}{2}(t x)\right\|\left\|(1-t) y+\frac{\mu_{2}}{2}(t x)\right\| d t \\
&= r f\left(\mu_{1}\right)+(1-r) f\left(\mu_{2}\right)+\left(r^{2}-r\right) \int_{0}^{1}\left[\left\|(1-t) y+\frac{\mu_{1}}{2}(t x)\right\|-\left\|(1-t) y+\frac{\mu_{1}}{2}(t x)\right\|\right]^{2} d t \\
&= r f\left(\mu_{1}\right)+(1-r) f\left(\mu_{2}\right)-\left(r-r^{2}\right) \int_{0}^{1}\left[\left\|(1-t) y+\frac{\mu_{1}}{2}(t x)\right\|-\left\|(1-t) y+\frac{\mu_{1}}{2}(t x)\right\|\right]^{2} d t \\
& \leq r f\left(\mu_{1}\right)+(1-r) f\left(\mu_{2}\right)
\end{aligned}
$$

Which shows that f is a convex function. Similarly, for the function

$$
g(\mu)=\int_{0}^{1}\left\|(1-t) t-\frac{\mu}{2}(t x)\right\|^{2} d t
$$

we can show that

$$
g\left[r \mu_{1}+(1-r) \mu_{2}\right] \leq r g\left(\mu_{1}\right)+(1-r) g\left(\mu_{2}\right)
$$

and we conclude that g is also a convex function. Also, we know that the sum of two convex functions is also convex. Then $h(\mu)=f(\mu)+g(\mu)$ is convex. Since $h\left(\mu_{1}\right) \neq$
$h\left(\mu_{2}\right)$, then the inequality will be strict and therefore

$$
h\left[r \mu_{1}+(1-r) \mu_{2}\right]<r h\left(\mu_{1}\right)+(1-r) h\left(\mu_{2}\right)
$$

Theorem 3.2.1. [15] 2-HH-N orthogonality is unique in any normed space X.

Proof. The proof has a similar idea to that of Kapoor and Prasad [pp. 406] and Kikianty and Dragomir [pp. 41]. Suppose 2-HH-N orthogonality is not unique. Then we must have elements $x \neq 0$ and $y \in X$, and a $\lambda>0$ such that $x \perp_{2-H H-N} y$ and $x \perp_{2-H H-N} \lambda x+y$. Define a convex function

$$
h(\mu)=\int_{0}^{1}\left\|(1-t) y+\frac{\mu}{2}(t x)\right\|^{2} d t+\int_{0}^{1}\left\|(1-t) y-\frac{\mu}{2}(t x)\right\|^{2} d t
$$

Now,

$$
\begin{align*}
h(1) & =\int_{0}^{1}\left\|(1-t) y+\frac{1}{2}(t x)\right\|^{2} d t+\int_{0}^{1}\left\|(1-t) y-\frac{1}{2}(t x)\right\|^{2} d t \\
& =\frac{2}{3}\|y\|^{2}+\frac{1}{6}\|x\|^{2} \\
& =h(0)+\frac{1}{6}\|x\|^{2} \tag{3.11}
\end{align*}
$$

Setting $\beta=\frac{2(1-t) \lambda}{t}$ and note that

$$
\begin{align*}
h(\beta) & =\int_{0}^{1}\left\|(1-t) y+\frac{1}{2} \cdot \frac{2(1-t) \lambda}{t}(t x)\right\|^{2} d t+\int_{0}^{1}\left\|(1-t) y-\frac{1}{2} \cdot \frac{2(1-t) \lambda}{t}(t x)\right\|^{2} d \\
& =\int_{0}^{1}\|(1-t) y+(1-t) \lambda x\|^{2} d t+\int_{0}^{1}\|(1-t) y-(1-t) \lambda x\|^{2} d t \\
& =\int_{0}^{1}\|(1-t)(y+\lambda x)\|^{2} d t+\int_{0}^{1}\|(1-t)(y-\lambda x)\|^{2} d t \\
& =\frac{\|y+\lambda x\|^{2}}{3}+\frac{\|y-\lambda x\|^{2}}{3} \tag{3.12}
\end{align*}
$$

and,

$$
\begin{align*}
h(\beta+1) & =\int_{0}^{1}\left\|(1-t)(y+\lambda x)+\frac{t x}{2}\right\|^{2} d t+\int_{0}^{1}\left\|(1-t)(y-\lambda x)-\frac{t x}{2}\right\|^{2} d t \\
& =\frac{\|y+\lambda x\|^{2}}{3}+\frac{\|y-\lambda x\|^{2}}{3}+\frac{\|x\|^{2}}{6} \\
& =h(\beta)+\frac{\|x\|^{2}}{6} \tag{3.13}
\end{align*}
$$

Now, suppose that $0<\beta<1$ and note that $h(1) \neq h(0)$ (since $x \neq 0$), Lemma 3.2.2 gives

$$
\begin{equation*}
h(\beta)<\beta h(1)+(1-\beta) h(0) \tag{3.14}
\end{equation*}
$$

Also $h(\beta+1) \neq h(\beta)($ since $x \neq 0)$ and with the help of Lemma3.2.2

$$
\begin{aligned}
h(1) & <\beta h(\beta)+(1-\beta) h(\beta+1) \\
& =\beta h(\beta)+(1-\beta)\left[h(\beta)+\frac{\|x\|^{2}}{6}\right] \\
& =\beta h(\beta)+(1-\beta)[h(\beta)+h(1)-h(0)] \\
\Rightarrow h(\beta) & >\beta h(1)+(1-\beta) h(0),
\end{aligned}
$$

which contradicts (3.14). Now consider the case $\beta>1$, we have

$$
\begin{aligned}
h(1) & \leq \frac{\beta-1}{\beta} h(0)+\frac{1}{\beta} h(\beta) \\
& =h(0)+\frac{1}{\beta}[h(\beta)-h(0)] \\
\Rightarrow h(1)-h(0) & \leq \frac{1}{\beta}[h(\beta)-h(0)] \\
\Rightarrow \frac{\|x\|^{2}}{6} & \leq \frac{1}{\beta}[h(\beta)-h(0)]
\end{aligned}
$$

Since $x \neq 0$, then, $h(\beta) \neq h(0)$, and using the Lemma 3.2.2, we have

$$
\begin{equation*}
h(1)<\frac{\beta-1}{\beta} h(0)+\frac{1}{\beta} h(\beta) \tag{3.15}
\end{equation*}
$$

Also $h(1) \neq h(\beta+1)$ and Lemma 3.2.2 gives us

$$
\begin{aligned}
h(\beta) & <\frac{1}{\beta} h(1)+\frac{\beta-1}{\beta} h(\beta+1) \\
& =\frac{1}{\beta} h(1)+\frac{\beta-1}{\beta}[h(\beta)+h(1)-h(0)] \\
\Rightarrow h(1) & >\frac{1}{\beta} h(\beta)+\frac{\beta-1}{\beta} h(0),
\end{aligned}
$$

which contradicts the relation (3.15). For the case $\beta=1$, we have

$$
\begin{aligned}
h(2) & =h(1)+\frac{\|x\|^{2}}{6} \\
& =h(0)+\frac{\|x\|^{2}}{3}
\end{aligned}
$$

This shows that $h(2) \neq h(0)$ (since $x \neq 0$). Then we have

$$
\begin{aligned}
h(1) & <\frac{1}{2} h(0)+\frac{1}{2} h(2) \\
& =\frac{1}{2}\left[h(0)+h(0)+\frac{\|x\|^{2}}{3}\right] \\
\Rightarrow h(1) & <h(0)+\frac{\|x\|^{2}}{6},
\end{aligned}
$$

which contradicts (3.11). Thus in all cases we get a contradiction. Hence 2-HH-N orthogonality is unique in any normed space.

Definition 26. Let T_{1} and T_{2} be norm attaining bounded linear operators in a Banach space X. An operator $T_{1} \in B(X)$ is said to be orthogonal to $T_{2} \in B(X)$ if and only if for any $h \in M_{T}$,

$$
\begin{equation*}
\left\|\left(T_{1}+\frac{1}{2} T_{2}\right)(h)\right\|^{2}+\left\|\left(T_{1}-\frac{1}{2} T_{2}\right)(h)\right\|^{2}=\frac{1}{2}\left\|\left(\sqrt{2} T_{1}+T_{2}\right)(h)\right\|^{2}+\left\|T_{1}(h)\right\|^{2} . \tag{3.16}
\end{equation*}
$$

Theorem 3.2.2. Let T_{1} and T_{2} be bounded linear operators in a real Hilbert space H. Then, orthogonality relation (3.16) implies the Birkhoff-James orthogonality, but the converse may not be true.

Proof. Let $T_{1}, T_{2} \in B(H)$ and $h \in M_{T}$. Assume that T_{1} is orthogonal to T_{2}. Then, we have

$$
\begin{aligned}
& \left\|\left(T_{1}+\frac{1}{2} T_{2}\right)(h)\right\|^{2}+\left\|\left(T_{1}-\frac{1}{2} T_{2}\right)(h)\right\|^{2}=\frac{1}{2}\left\|\left(\sqrt{2} T_{1}+T_{2}\right)(h)\right\|^{2}+\left\|T_{1}(h)\right\|^{2} \\
\Rightarrow \quad & \left\|T_{2}(h)\right\|^{2} \geq\left\|T_{1}(h)\right\|^{2} .
\end{aligned}
$$

Setting $T_{2}=\frac{T_{1}}{1-\alpha}$, so that $T_{2}=T_{1}+\alpha T_{2}$ and we get

$$
\left\|\left(T_{1}+\alpha T_{2}\right)(h)\right\|^{2} \geq\left\|T_{1}(h)\right\|^{2} .
$$

This implies that

$$
\begin{equation*}
\left\|\left(T_{1}+\alpha T_{2}\right)(h)\right\| \geq \| T_{1}(h) . \tag{3.17}
\end{equation*}
$$

Hence, T_{1} is Birkhoff-James orthogonal to T_{2}. To disprove the above statement, we can take operators $T_{1}, T_{2} \in B(H)$ as described in the example of (Theorem. 2.5.8,
showing that T_{1} is Birkhoff-James orthogonal to T_{2}. On the other hand,

$$
\begin{equation*}
\left\|\left(T_{1}+\frac{1}{2} T_{2}\right)\right\|^{2}+\left\|\left(T_{1}-\frac{1}{2} T_{2}\right)\right\|^{2}=51 . \tag{3.18}
\end{equation*}
$$

However,

$$
\begin{equation*}
\frac{1}{2}\left\|\left(\sqrt{2} T_{1}+T_{2}\right)\right\|^{2}+\left\|T_{1}^{2}\right\|=27+7 \sqrt{2} \tag{3.19}
\end{equation*}
$$

showing that T_{1} is not orthogonal to T_{2}.
Theorem 3.2.3. Let $T_{1}, T_{2} \in B(X)$. Then for any $x \in M_{T_{1}+T_{2}} \cap M_{T_{1}-T_{2}}$ and $T_{1}(x)+$ $T_{2}(x) \perp_{B} T_{2}(x)$ and $T_{1}(x)-T_{2}(x) \perp_{B} T_{2}(x)$ implies $T_{1} \perp_{I} T_{2}$.

Proof. Since $T_{1}(x)+T_{2}(x) \perp_{B} T_{2}(x)$, then we have $\left\|T_{1}(x)+T_{2}(x)\right\| \leq \| T_{1}(x)+T_{2}(x)+$ $\lambda T_{2}(x) \|$ for all $\lambda \in \mathbb{K}$. Taking $\beta=1+\lambda$, we have

$$
\begin{aligned}
\left\|T_{1}(x)+T_{2}(x)\right\| & \leq\left\|T_{1}(x)+T_{2}(x)+(\beta-1) T_{2}(x)\right\| \\
& =\left\|T_{1}(x)+T_{2}(x)+\beta T_{2}(x)-T_{2}(x)\right\| \\
& =\left\|T_{1}(x)+\beta T_{2}(x)\right\| \\
\Rightarrow\left\|\left(T_{1}+T_{2}\right) x\right\| & \leq\left\|\left(T_{1}+\beta T_{2}\right) x\right\|
\end{aligned}
$$

In particular for $\beta=-1$, we have $\left\|\left(T_{1}+T_{2}\right) x\right\| \leq\left\|\left(T_{1}-T_{2}\right) x\right\|$. Since $x \in M_{T_{1}+T_{2}} \cap$ $M_{T_{1}(x)+T_{2}(x)}$, then we must have $\left\|\left(T_{1}+T_{2}\right)\right\| \leq\left\|\left(T_{1}-T_{2}\right)\right\|$. Similarly if $T_{1}(x)-T_{2}(x) \perp_{B}$ $T_{2}(x)$, we obtain $\left\|T_{1}-T_{2}\right\| \leq\left\|T_{1}+T_{2}\right\|$ and therefore by combining these inequalities we get the desired result.

Corollary 3.2.1. Let $T_{1}, T_{2} \in B(X)$ and assume that $T_{1}+T_{2} \perp_{B} T_{2}$ and $T_{1}-T_{2} \perp_{B} T_{2}$.
Then $T_{1} \perp_{I} T_{2}$.

Proof. Since $T_{1}+T_{2} \perp_{B} T_{2}$, then we have $\left\|T_{1}+T_{2}\right\| \leq\left\|T_{1}+T_{2}+\lambda T_{2}\right\|$ for all $\lambda \in \mathbb{K}$. Taking $\beta=1+\lambda$, we have

$$
\begin{aligned}
\left\|T_{1}+T_{2}\right\| & \leq\left\|T_{1}+T_{2}+(\beta-1) T_{2}\right\| \\
& =\left\|T_{1}+T_{2}+\beta T_{2}-T_{2}\right\| \\
& =\left\|T_{1}+\beta T_{2}\right\|
\end{aligned}
$$

In particular for $\beta=-1$, we have $\left\|T_{1}+T_{2}\right\| \leq\left\|T_{1}-T_{2}\right\|$. Similarly if $T_{1}-T_{2} \perp_{B} T_{2}$, we obtain $\left\|T_{1}-T_{2}\right\| \leq\left\|T_{1}+T_{2}\right\|$ and therefore by combining these inequalities we get the desired result.

Proposition 14. Let T be a bounded linear operator from a normed linear space X to Y and $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be sequence in X and $x \in M_{T}$ such that $x_{n} \rightarrow x, y_{n} \rightarrow y, T x_{n} \rightarrow T x$, Then for any $y \in X$ and $\epsilon \in[0,1), T x_{n} \perp_{B}^{\epsilon} T y_{n} \Rightarrow x \perp_{B}^{\epsilon} y$.

Proof. Let $x \in M_{T}$ and $\epsilon \in[0,1)$. Since $T x_{n} \perp_{B}^{\epsilon} T y_{n}$, then we have for any $\lambda \in \mathbb{K}$,

$$
\begin{align*}
(1-\epsilon)\left\|T x_{n}\right\| & \leq\left\|T x_{n}+\lambda T y_{n}\right\| \\
\Rightarrow(1-\epsilon)\left\|T x_{n}\right\| & \leq\|T\|\left\|x_{n}+\lambda y_{n}\right\| \\
\Rightarrow(1-\epsilon) \lim _{n \rightarrow \infty}\left\|T x_{n}\right\| & \leq\|T\| \lim _{n \rightarrow \infty}\left\|x_{n}+\lambda y_{n}\right\| \\
\Rightarrow(1-\epsilon)\|T x\| & \leq\|T\|\|x+\lambda y\| \tag{3.20}
\end{align*}
$$

Since $x \in M_{T}$, then we must have $\|T x\|=\|T\|\|x\|$, and therefore the inequality 3.20) can be written as $(1-\epsilon)\|T\|\|x\| \leq\|T\|\|x+\lambda y\|$. Hence $\|(1-\epsilon)\| x\|\leq\| x+\lambda y \|$ is the desired result.

Chapter 4

BEST APPROXIMATION IN NORMED LINEAR SPACES

4.1 Introduction

In the case of normed linear space, the concept of best approximation was developed by M. Nicolescu in 1938 [38] and the more detail were discussed in the paper by M. K. Krein [39]. Within the framework of normed linear spaces the problem of best approximation amounts to the problem of minimizing a distance, hence it is geometrized, and thus in its study one can use arguments based on geometric intuition [38].

Definition 27 ([40], [41]). Let G be a subset of a normed linear space X. A point $g_{0} \in G$ is said to be best approximation for $f \in X$, if and only if for all $g \in G$,

$$
\left\|f-g_{0}\right\| \leq\|f-g\|
$$

and is said to be best co-approximation

$$
\left\|g_{0}-g\right\| \leq\|f-g\|
$$

The set of all best approximation of $f \in X$ in G is denoted by $P_{G}(f)$ and best coapproximation by $R_{G}(f)$. For a subspace G of X , Mazaheri and Modarres in the paper
[42] define \widehat{G} and \widetilde{G} as follows:

$$
\begin{aligned}
& \widehat{G}=P_{G}^{-1}(0)=\{f \in X:\|f\|=d(f, G)\}=\{f \in X: x \perp G\} \quad \text { and } \\
& \widetilde{G}=R_{G}^{-1}(0)=\{f \in X:\|g\| \leq\|f-g\| \quad \forall g \in G\}=\{f \in X: G \perp f\}
\end{aligned}
$$

Lemma 4.1.1 ([42],[43]). Let G be a linear subspace of normed space X. Then
(i) G is Chebychev subspace if and only if $X=G \oplus \widehat{G}$,
(ii) G is proximal subspace if and only if $X=G+\widehat{G}$.

Lemma 4.1.2 ([42],[43]). Let G be a linear subspace of a normed space X and $x \in X \backslash G$. Then for any element $g_{0} \in G$, the following statements are equivalent:
(i) $g_{0} \in R_{G}(x)$,
(ii) For each $g \in G$ there exist a functional $f^{g} \in X^{*}$ such that $\left\|f^{g}\right\|=1, f^{g}(x)=$ $f^{g}\left(g_{0}\right)$ and $f^{g}(g)=\|g\|$.

Lemma 4.1.3 ([42], [44]). Let X be a real Banach space and G be proximinal subset of X. Suppose $P_{G}: X \rightarrow G$ is the best approximation operator on G. Then for all $x \in X$ and $g \in G$, the following inequality holds:

$$
\begin{equation*}
\|z-g\| \leq\|x-g\| z \in P_{G}(x) \tag{4.1}
\end{equation*}
$$

If the inequality (4.1) is true, then $P_{G}(x) \subseteq R_{G}(x)$ for every $x \in X$.
Proposition 15. [42] Let X be a Banach space and G be linear subspace of X. Then \widetilde{G} is a linear closed subspace of X.

Theorem 4.1.1. [42] Let X be a smooth Banach space and G be a co-proximinal subspace of X, then \widetilde{G} is a proximinal subspace of X.

Theorem 4.1.2. [42] Let X be a smooth Banach space and G be a co-Chebychev subspace of X, then \widetilde{G} is a Chebychev subspace of X.

Definition 28. [40] Let G be a subset of a normed linear space X and $\epsilon>0$, then a point $g_{0} \in G$ is said to be ϵ-best approximation for $f \in X$ if

$$
\left\|f-g_{0}\right\| \leq\|f-g\|+\epsilon \quad(\text { for all } g \in G)
$$

and $g_{0} \in G$ is said to be ϵ-co-approximation for $f \in X$ if

$$
\begin{equation*}
\left\|g_{0}-g\right\| \leq\|f-g\|+\epsilon \quad(\text { for all } g \in G) \tag{4.2}
\end{equation*}
$$

The set of all ϵ-approximation of f in G is denoted by $P_{G}(f, \epsilon)$ and the set of all ϵ-co-approximation of f in G is denoted by $R_{G}(f, \epsilon)$.

Definition 29. [40] Let $(X,\|\|$.$) be a normed space, f, g \in X$ and $\epsilon>0$. Then f is said to be ϵ-orthogonal to g if and only if

$$
\|f\| \leq\|f+\alpha g\|+\epsilon \quad \text { for all scalar } \alpha \text { with }|\alpha| \leq 1 .
$$

If G_{1} and G_{2} are subsets of X, then $G_{1} \perp_{\epsilon} G_{2}$ if and only if $g_{1} \perp_{\epsilon} g_{2}$ for all $g_{1} \in G$ and $g_{2} \in G$.

Theorem 4.1.3. [40] Let G be a subspace of a normed space X and $\epsilon>0$. Then for all $f \in X$,

$$
\begin{aligned}
& g_{0} \in P_{G}(f, \epsilon) \Leftrightarrow f-g_{0} \perp_{\epsilon} G \\
& g_{0} \in R_{G}(f, \epsilon) \Leftrightarrow G \perp_{\epsilon} f-g_{0}
\end{aligned}
$$

Lemma 4.1.4. [40] Let G be a subspace of a normed space X, then
(i) If $\epsilon>0, f, g \in X$ and $f \perp_{\epsilon} g$, then $f \perp_{\delta} g$ for all $\delta \geq \epsilon$.
(ii) If $f, g \in X$ and $f \perp g$, then $f \perp_{\epsilon} g$ for all $\epsilon>0$.
(iii) If $f \in X$ and $\epsilon>0$, then $0 \perp_{\epsilon} f$ and $f \perp_{\epsilon} 0$.
(iv) If $f \perp_{\epsilon} g$ and $|\beta|<1$, then $\beta f \perp_{\epsilon} \beta g$.
(v) If $f \in X, \epsilon>0$ and $\delta \geq \epsilon$, then

$$
\begin{aligned}
& g_{0} \in P_{G}(f, \epsilon) \Rightarrow g_{0} \in P_{G}(f, \delta) \\
& g_{0} \in R_{G}(f, \epsilon) \Rightarrow g_{0} \in R_{G}(f, \delta)
\end{aligned}
$$

Mazaheri and Zadeh proved in the paper [45] that the isometric operators on normed linear space preserves all approximation property. They proved that every linear operator preserving approximation is an isometry multiplied by a constant.

Definition 30. [45] $\operatorname{Let}(X,\|\|$.$) and (Y,\|\|$.$) be two normed linear spaces. A mapping$ $T: X \rightarrow Y$ is called preserving approximation if and only if for all subspace G of X and all $x \in X$,

$$
\begin{equation*}
T\left(P_{G}(x)\right)=P_{T(G)}(T(x)) \tag{4.3}
\end{equation*}
$$

Similarly T is called preserving co-approximation if and only if for app subspace G of X and all $x \in X$,

$$
\begin{equation*}
T\left(R_{G}(x)\right)=R_{T(G)}(T(x)) \tag{4.4}
\end{equation*}
$$

Lemma 4.1.5. [45] Let $T: X \rightarrow X$ is an isometry operator, where X be a normed linear space, then for all subspace G of X and $x \in X$,

$$
\begin{aligned}
& T\left(P_{G}(x)\right)=P_{T(G)}(T(x)) \quad \text { and } \\
& T\left(R_{G}(x)\right)=R_{T(G)}(T(x))
\end{aligned}
$$

Corollary 4.1.1. [45] Let $(X,\|\|$.$) be a normed space. Every isometry operator T: X \rightarrow$ X is preserving approximation (resp. Co-approximation).

Theorem 4.1.4. [45] Suppose $T: X \rightarrow Y$ be a linear map from a normed space X into Y preserving approximation (resp. Co-approximation).
(i) Suppose G is a subspace of X, then G is proximinal (resp. co-proximinal) of X if and only if $T(G)$ is proximinal (resp. co-proximinal).
(ii) Suppose G is a subspace of X, then G is Chebyshev (resp. co-Chevyshev) of X if and only if $T(G)$ is Chebyshev (resp. co-Chevyshev).
(iii) If T is linear, then for all $x, y \in X, x \perp y \Rightarrow T(x) \perp T(y)$.
(iv) For all subset G of $X, T(\widehat{G})=\widehat{T(G)},($ res. $T(\widetilde{G})=\widetilde{T(G)})$.
(v) Suppose G is a subspace of X, then G is orthogonality complement in X if and only if $T(G)$ is orthogonality complement in Y.
(vi) Suppose G is a subspace of X, if T is a continuous and onto preserve approximation map, then G is quasi Chebyshev if and only if $T(G)$ is quasi Chebyshev.

Definition 31. [45] Let $(X,\|\|$.$) and (Y,\|\|$.$) be a normed linear spaces and \epsilon>0$. A mapping $T: X \rightarrow Y$ is called ϵ-preserving approximation if and only iffor all subspaces G of X and all $x \in X$,

$$
\begin{equation*}
T\left(P_{G, \epsilon}(x)\right)=P_{T(G), \epsilon}(T(x)) . \tag{4.5}
\end{equation*}
$$

where $P_{G, \epsilon}(x)=\left\{g_{0} \in G:\left\|x-g_{0}\right\| \leq\|x-g\| \quad\right.$ for all $\left.g \in G\right\}$
Theorem 4.1.5. [45] Let $T: X \rightarrow X$ be preserving approximation, where X is a normed space, then $T=k U$ such that $k \in \mathbb{R}$ and U is an isometry.
Lemma 4.1.6. [45] Let X be a normed linear space and $\epsilon>0$. Then every isometry operator $T: X \rightarrow X$ is ϵ-preserving approximation.

Theorem 4.1.6. [45] Suppose $(X,\|\|$.$) and (Y,\|\|$.$) be two normed linear spaces, \epsilon>0$ and $T: X \rightarrow Y$ is onto preserving ϵ-approximation.
(i) If T is linear, then

$$
\forall x, y \in X, x \perp_{\epsilon} y \Rightarrow T(x) \perp_{\epsilon} T(y)
$$

(ii) For a subspace G of $X, T\left(\widehat{G_{\epsilon}}\right)=\widehat{T(G)_{\epsilon}}$.

4.2 Some results on best approximation

Theorem 4.2.1. Let $(X,\|\cdot\|)$ be a normed linear space and if $\forall f \in X \exists g_{0} \in G: f-g_{0} \perp_{P}$ G, then $g_{0} \in P_{G}(f)$.

Proof. Let $f \in X$ and $g \in G$ and $f-g_{0}$ is Pythagorean orthogonal to g. Then

$$
\begin{aligned}
& \left\|f-g_{0}-g\right\|^{2}=\left\|f-g_{0}\right\|^{2}+\|g\|^{2} \\
\Rightarrow & \left\|f-g_{0}\right\|^{2} \leq\left\|f-g_{0}-g\right\|^{2} \\
\Rightarrow & \left\|f-g_{0}\right\| \leq\left\|f-g_{0}-g\right\|
\end{aligned}
$$

Setting $g+g_{0}=h$, we get

$$
\left\|f-g_{0}\right\| \leq\|f-h\| \quad \Rightarrow g_{0} \in P_{G}(f)
$$

Theorem 4.2.2. Let $(X,\|\|$.$) be a normed linear space and T: X \rightarrow X$ is an isometry operator. Then $T\left(g_{0}\right) \in T\left(P_{G}(x)\right)$ if and only if $T(x)-T\left(g_{0}\right) \perp_{B} T(G)$.

Proof. The proof has a similar idea to that of Mazaheri and Zadeh [45]. Assume $T\left(g_{0}\right) \in$ $T\left(P_{G}(x)\right)$ and $T\left(g_{1}\right) \in T(G)$. Then

$$
\left\|T(x)-T\left(g_{0}\right)\right\| \leq\left\|T(x)-T\left(g_{1}\right)\right\|
$$

Put $T\left(g_{1}\right)=T\left(g_{0}\right)-\alpha T(g)$ for any fixed $T(g) \in T(G)$ and $\alpha \in \mathbb{R}$. Then we have,

$$
\begin{aligned}
\left\|T(x)-T\left(g_{0}\right)\right\| & \leq\left\|T(x)-\left(T\left(g_{0}\right)-\alpha T(g)\right)\right\| \\
& =\left\|\left(T(x)-T\left(g_{0}\right)+\alpha T(g)\right)\right\|
\end{aligned}
$$

This shows that $T(x)-T\left(g_{0}\right)$ is Birkhoff orthogonal to $T(G)$.
Conversely assume $T(x)-T\left(g_{0}\right) \perp_{B} T(G)$. Then for all $\alpha \in \mathbb{R}$ and $T\left(g_{0}\right) \in T(G)$, we have

$$
\begin{equation*}
\left\|t(x)-T\left(g_{0}\right) \mid \leq\right\| T(x)-T\left(g_{0}\right)+\alpha T\left(g_{1}\right) \| \tag{4.6}
\end{equation*}
$$

Let $T(g) \in T(G)$ be arbitrary and fixed and taking $T\left(g_{1}\right)=T\left(g_{0}\right)-T(g)$ and $\alpha=1$ in the inequality (4.6), we get

$$
\begin{aligned}
& \left\|T(x)-T\left(g_{0}\right)\right\| \leq\|T(x)-T(g)\| \\
\Rightarrow & T\left(g_{0}\right) \in T\left(P_{G}(x)\right)
\end{aligned}
$$

Theorem 4.2.3. Let $(X,\|\cdot\|)$ be a normed linear space and $T: X \rightarrow X$ is an isometry operator. Then $T\left(g_{0}\right) \in T\left(P_{G}(x, \epsilon)\right)$ if and only if $T(x)-T\left(g_{0}\right) \perp_{B}^{\epsilon} T(G)$.

Proof. The proof has a similar idea to that of Mazaheri and Zadeh [45]. Assume $T\left(g_{0}\right) \in$ $T\left(P_{G}(x, \epsilon)\right)$ and $T\left(g_{1}\right) \in T(G)$. Then

$$
\left\|T(x)-T\left(g_{0}\right)\right\| \leq\left\|T(x)-T\left(g_{1}\right)\right\|+\epsilon
$$

Put $T\left(g_{1}\right)=T\left(g_{0}\right)-\alpha T(g)$ for any fixed $T(g) \in T(G)$ and $|\alpha| \leq 1$. Then we have,

$$
\begin{aligned}
\left\|T(x)-T\left(g_{0}\right)\right\| & \leq\left\|T(x)-\left(T\left(g_{0}\right)-\alpha T(g)\right)\right\|+\epsilon \\
& =\left\|\left(T(x)-T\left(g_{0}\right)+\alpha T(g)\right)\right\|+\epsilon
\end{aligned}
$$

This shows that $T(x)-T\left(g_{0}\right)$ is approximate Birkhoff orthogonal to $T(G)$.

Conversely assume $T(x)-T\left(g_{0}\right) \perp_{B}^{\epsilon} T(G)$. Then for all α with $|\alpha| \leq 1$ and $T\left(g_{0}\right) \in$ $T(G)$, we have

$$
\begin{equation*}
\left\|t(x)-T\left(g_{0}\right) \mid \leq\right\| T(x)-T\left(g_{0}\right)+\alpha T\left(g_{1}\right) \|+\epsilon \tag{4.7}
\end{equation*}
$$

Let $T(g) \in T(G)$ be arbitrary and fixed and taking $T\left(g_{1}\right)=T\left(g_{0}\right)-T(g)$ and $\alpha=1$ in the inequality (4.7), we get

$$
\begin{aligned}
& \left\|T(x)-T\left(g_{0}\right)\right\| \leq\|T(x)-T(g)\|+\epsilon \\
\Rightarrow \quad & T\left(g_{0}\right) \in T\left(P_{G}(x, \epsilon)\right)
\end{aligned}
$$

Recall that

$$
\begin{aligned}
R_{G}(x) & =\left\{g_{\epsilon} G:\left\|g_{0}-g\right\| \leq\|x-g\| \quad \text { for all } g \in G\right\} \quad \text { and } \\
R_{G}(x, \epsilon) & =\left\{g_{\epsilon} G:\left\|g_{0}-g\right\| \leq\|x-g\|+\epsilon \quad \text { for all } g \in G\right\}
\end{aligned}
$$

are the set of all co-approximation and ϵ-co-approximation of x in G. If $T: X \rightarrow X$ is an isometry operator, then for all subspace G of X and all $x \in X$, we have $\|T(x)\|=$ $\|x\|$. Keeping this in mind and using the similar concepts of (Theorem4.2.2 and Theorem4.2.3), we prove the following lemma.

Lemma 4.2.1. Let $(X,\|\|$.$) be a normed linear space and T: X \rightarrow X$ is an isometry operator. Then $T\left(g_{0}\right) \in T\left(R_{G}(x, \epsilon)\right)$ if and only if $T(g) \perp_{\epsilon} T(x)-T\left(g_{0}\right)$.

Proof. Assume $T\left(g_{0}\right) \in T\left(R_{G}(x, \epsilon)\right)$. Then

$$
\begin{equation*}
\left\|T\left(g_{0}\right)-T\left(g^{\prime}\right)\right\| \leq\left\|T(x)-T\left(g^{\prime}\right)\right\|+\epsilon \tag{4.8}
\end{equation*}
$$

For $|\beta| \leq 1$ and $\beta \neq 0$, put $T\left(g^{\prime}\right)=T\left(g_{0}\right)-\frac{1}{\beta} T(g)$. Then the inequality 4.8 becomes

$$
\begin{aligned}
&\left\|T\left(g_{0}\right)-T\left(g_{0}\right)+\frac{1}{\beta} T(g)\right\| \leq\left\|T(x)-T\left(g_{0}\right)+\frac{1}{\beta} T(g)\right\|+\epsilon \\
& \Rightarrow \quad\left\|\frac{1}{\beta} T(g)\right\| \leq\left\|T(g)+\beta\left(T(x)-T\left(g_{0}\right)\right)\right\|+\epsilon \beta \\
& \Rightarrow \quad\|T(g)\| \leq\left\|T(g)+\beta\left(T(x)-T\left(g_{0}\right)\right)\right\|+\epsilon \\
& \Rightarrow \quad T(g) \perp_{\epsilon} T(x)-T\left(g_{0}\right)
\end{aligned}
$$

Conversely assume that $T(g) \perp_{\epsilon} T(x)-T\left(g_{0}\right)$, then for all $|\beta| \leq 1$ and $T\left(g^{\prime}\right) \in T(G)$, we have

$$
\begin{equation*}
\left\|T\left(g^{\prime}\right)\right\| \leq\left\|\beta\left(T(x)-T\left(g_{0}\right)\right)+T\left(g^{\prime}\right)\right\|+\epsilon \tag{4.9}
\end{equation*}
$$

Letting $T(g) \in T(G)$ and putting $T\left(g^{\prime}\right)=T\left(g_{0}\right)-T(g)$ and $\beta=1$ in 4.9 to get the desired result showing that $T\left(g_{0}\right) \in T\left(R_{G}(x, \epsilon)\right)$.

Chapter 5

SMMARY AND CONCLUSION

5.1 Summary

The main part of the thesis begins from chapter 2 and ends with chapter 4. In chapter 2, the classical definition of orthogonality by Roberts has been generalized in terms of p-HH norm by proving (Theorem,2.2.2) and (Theorem 2.2.3). Using the concept of Lemma 2.2.1, an important concept in relation to the Robert and Birkhoff-James orthogonality has been proved in Theorem 2.2.4 and Theorem 2.3.40. A relation in regard to the equivalency of homogeneity and additivity of the isosceles orthogonality have been proved in the Throrem 2.4.15. In the case of bounded linear operators on Hilbert space H , Theorem 2.4.16, Proposition 8 and Proposition 9 have been proved as a new result. As a generalized concept of the isosceles and Pythagorean orthogonality, Carlsson played the central role to introduce new concept of orthogonality. After that, Kikianty and Dragomir generalized the concept of Carlsson's orthogonality in terms of p-HH norm. Motivated by both concepts, an attempt was made to introduce the Carlsson's orthogonality in terms of bounded linear operators and proved Theorem 2.6.9, Theorem 2.6.10. Theorem 2.6.11 and Theorem 2.6 .12 in relation to this orthogonality.

Chapter 3 is significant in this research work due to the fact that some new concepts of orthogonality have been introduced with the help of the Carlsson orthogonality; and different properties of inner-product space in relation to these orthogonalities are also verified. Motivated by this concept, two new particular cases of the Carlsson orthogonality were introduced by taking real and complex constants, and Proposition 12 with Corollary 3.1.1. Proposition 13 with corollary 3.1.2, Lemma 3.1.1 and Lemma 3.1.2 were proved.

Furthermore, the orthogonality relation 3.6 in terms of 2-HH norm were introduced and $2-\mathrm{HH}-\mathrm{N}$ orthogonality via $2-\mathrm{HH}$ norm as unique in any normed space has been proved. The orthogonality relation 3.6 in terms of bounded linear operators was also introduced and it has been proved that such orthogonality implies the Birkhoff-James orthogonality, however, the converse may not be true in the Theorem 3.2.2. For the norm attainment set of T (i. e. for any $x \in M_{T}$), the Theorem 3.2.3 with Corollary 14, and Proposition 14 has been proved.

The application part of orthogonality, which can be linked with the best approximation in normed linear space is included in chapter 4.The concept of best approximation amounts to the problem of minimizing distance. The Theorem 4.2.1, Theorem 4.2.2, Theorem 4.2.3, and Lemma 4.2.1 have been proved in the set of approximation (resp. co-approximation) and ϵ-approximation (resp. ϵ-co-approximation) .

5.2 Conclusion

It is concluded that the Pythagorean and the isosceles orthogonalities via $2-H H$ norm on a normed linear space satisfies the non-degeneracy, continuity and symmetry property; moreover, the homogeneity and additivity of the isosceles orthogonality with respect to $2-H H$ norm are equivalent. It is found that the Carlsson orthogonality for norm attaining bounded linear operators is continuous. In addition, the Pythagorean orthogonality implies the Birkhoff-James orthogonality. In the case of norm attaining bounded linear operators on a Hilbert space H with disjoint support, the Carlsson orthogonality is symmetric and the isosceles orthogonality is equivalent to the Pythagorean orthogonality. Finally, the orthogonality of bounded linear operators in a real Hilbert space H implies Birkhoff-James orthogonality, but the converse may not be true. Regarding the uniqueness property, $2-\mathrm{HH}-\mathrm{N}$ orthogonality through the medium of $2-\mathrm{HH}$ norm is unique in any normed space. Furthermore, the 2-HH-N orthogonality in terms of bounded linear operators implies the Birkhoff-James orthogonality, but the converse may not be true. In the case of isometry operator $T: X \rightarrow X$, the best approximation (resp. ϵ-best approximation) of an element $T\left(g_{0}\right)$ is equivalent to orthogonality (resp. ϵ-orthogonality) of images.

5.3 Recommendation for the future work

First of all, there are some properties of orthogonality still remained to check in the case of new special case of the Carlssion orthogonality in terms of of 2-HH norm and bounded linear operators. Secondly, the properties like: existence, uniqueness, additivity etc. are also not studied for the generalized Carlsson orthogonality in terms of operators. Finally, on the basis of this research, there may have several chances of connecting orthogonality in the theory of best approximation. Some of the possibilities are as follows:

- Study of existence and uniqueness property of new orthogonality in normed linear space;
- Use of orthogonalities like: isosceles, Pythagorean, Carlsson and new orthogonalities in the theory of best approximation;
- Study of homogeneity property of new new orthogonality through the medium of 2-HH norm and bounded linear operators;
- Study of existence and uniqueness property of Birkhoff-James orthogonality in terms bounded linear operators.

REFERENCES

[1] James, R.C.: Orthogonality inn ormed linear spaces, Duke. J. Math, 12(1945), 265-291.
[2] Roberts, D.B.: On the geometry of abstract vector spaces, Tohoku Math . J., 39(1934), 42-59.
[3] Birkhoff, G.: Orthogonality in linear metric spaces, Duke Math . J., 1(1935),265-291.
[4] Carlsson, S.O.: Orthogonality in normed linear spaces, Arc. Math, 1(1)(1962), 297-311.
[5] Ojha, B.P., Bajracharya, P.M.: A Glimpse on Birkhoff-James Orthogonality in Banach Spaces,Methods Funct. Anal. Topology, 26(4)(2020), 373-383.
[6] Bajracharya, P.M., Ojha, B.P.: Birkhoff Orthogonality and Different Particular Cases of Carlsson's Orthogonality on Normed Linear Spaces, Journal of Mathematics and Statistics, 1(16)(2020), 133-141.
[7] Dragomir, S.S., Kikianty, E.: Orthogonality connected with integral means and characterizations of inner product spaces, J. Geom., 98(1)(2010), 3349.
[8] Ojha, B.P., Bajracharya, P.M.: Birkhoff and new orthogonality in normed linear spaces via 2-HH norm, International Journal of Scientific and Engineering Research, 11(2)(2020), 225-232.
[9] Ojha, B.P., Bajracharya, P.M.: Robert Orthogonality in Normed Linear Spaces Via 2-HH Norm, IEEE-SEM, 8(1)(2019), 85-93.
[10] Bhatia, R., Semrl, P.: Orthogonality of matrices and some distance problems, Linear Algebra and its Applications, 287(1999), 77-85.
[11] Sain, D., Paul, K.: Operator norm attainment and inner product space, Linear Algebra and its Applications, 439(2013), 2448-2452.
[12] Paul, K., Sain, D., Jha, K.: On strong orthogonality and strictly convex normed linear space, Journal of Inequalities and Applications, 242(1) (2013), 1-7.
[13] Paul, K., Mall, A., Sain, D.: Orthogonality of bounded linear operators on complete Banach space, Annals of Mathematics, 3(3)(2018), 669-709.
[14] Bottazzi, T., Conde, C., Sain, D.: A study of orthogonality of bounded linear operators, Banach J. Math. Annal, 14(1)(2020), 1001-1018.
[15] Ojha, B.P., Bajracharya, P.M., Mishra, V. N.: On Uniqueness of New Orthogonality via 2-HH Norm in Normed Linear Space, Journal of Function Spaces, (2020), 1-6.
[16] Alonso, J., Benitez, C.: Orthogonality in normed linear spaces: A survey. II. Relations between main orthogonalities, Extracta Math, 3(1) (1988), 1-15.
[17] James, R.C.: Orthogonality and Linear Functionals in Normed Linear Spaces, Transactions of the American Mathematical Society, 61(2) (1947), 265-292.
[18] Sikoraska, J.: Orthogonality and Functional Equations, Aquat. Math., 89(1) (2015), 215-277.
[19] Benitez, C., Fernandez, M., Soriano, M.L.: Orthogonality of matrices, Linear Algebra and its Applications, 422(1) (2007), 155-163.
[20] Zhi-Zhi, C., Wei, L., Lulin, L.: Projections Birkhoff orthogonality and angles in normed spaces, Linear Algebra and its Applications, 27(4) (2011), 378-384.
[21] Askarizades, A., Dehghan, M .: G-frames as a special frames, Tark. J. Math., 37 (2013), 60-70.
[22] Arambasic, L., Rajic, R.: The Birkhoff-James orthogonality in Hilbert C^{*} -modules, Linear algebra and its applications, 347 (2012), 1913-1929.
[23] Sain, D., Paul, K., Hait, S.: Operator norm attainment and Birkhoff-James orthogonality, Linear algebra and its applications, 476 (2015), 85-97.
[24] Sain, D.: Birkhoff-James orthogonality of linear operators on finite dimensional Banach spaces, Math. Anal. Appl., 447(2) (2015), 860-866.
[25] Mall, A., Sain, D., Paul, K.: On some geometric properties of operator spaces, Banach J. Math. Anal., 13(1) (2019), 174-191.
[26] Dragomir, S.S.: On approximation of continuous linear functional in normed linear spaces, An.Univ. Timisoara. Stiint. Math, 29(1) (1991), 5158.
[27] Chmielinski, J.: Linear mappings approximately preserving orthogonality, J. Math. Anal. Appl., 304(1) (2005), 158-169.
[28] Zamani,A., Moslehian, M. S.: Exact and Approximate Operator Parallelism, Canadian Mathematical Bulletin, 58(1)(2015), 207-224.
[29] Sain, D., Mall, A., Paul, K.: Some remarks on Birkhoff James orthogonality of linear operators, Expositiones Mathematicae, 38(1) (2020), 138-147.
[30] Sain, D., Tanaka, R.: Modular Birkhoff-James orthogonality in B(X, Y) and K(X, Y), Banach Journal of Mathematical Analysis, 14(2020), 13471362.
[31] Ojha, B.P., Bajracharya, P.M.: 2-HH Norm and Birkhoff-James Orthogonality in Normed Spaces, i-managers Journal on Mathematics, 8(3)(2019), 1-9.
[32] Kapoor, O.P., Prasad, J.: Orthogonality and characterizations of inner product spaces, Bull. Austral. Math. Soc., 19(1978), 403-416.
[33] Alonso, J.: Uniqueness property of isosceles orthogonality in normed linear spaces, Ann. Sci. Math. Quebec, 18(1994), 25-38.
[34] Ji, D., Lie, J., Wu, S.: On the uniqueness of isosceles orthogonality in normed linear spaces, Results. Math, 59(2011), 157-162.
[35] Ji, D., Wu, S.: Quantative characterization of the difference between Birkhoff orthogonality and isosceles orthogonality, Math. Anal. Appl, 323(2006), 1-7.
[36] Ojha, B.P., Bajracharya, P.M.: Orthogonality in terms 2-HH norm and bounded linear operators in Banach spaces, Applications and Applied Mathematics: An International Journal (AAM), 16(1) (2021),631-642.
[37] Kikianty, E., Dragomir, S.S.: On Carlsson type orthogonality and characterization of inner product spaces, Filomat, 24(2012), 859-870.
[38] Singer, I.: Best approximation in normed linear spaces by elements of linear subspaces, Springer, 171(1970), 17-163.
[39] Krein, M.K.: On the set of the best approximations of an element in normed linear spaces, Rev. Math. pures et appl, 5(1960), 383-402.
[40] Vaezpour, S.M.: On the ϵ - Best Coapproximation, International Mathematical Forum, 53(2)(2007), 2599-2606.
[41] Singer, I.: On best Approximation of Continuous Functions, Math. Annalen, 140(1960), 165-168.
[42] Mazaheri, H., Modarres, S.M.S.: Some results concerning proximinality and co-proximinality, Nonlinear Analysis, 62(2005), 1123-1126.
[43] Papini, P.L., Singer, I.: Best co-approximation in normed linear spaces, Monatshefte fr Mathematik, 88(1979), 27-44.
[44] Moree, C.: The solution by iteration of nonlinear equation involving psistrongly accertive operators, Nonlinear Analysis, 37(1999), 125-138.
[45] Mazaheri, H., Zadeh, M. H.: The Maps Preserving Approximation, International Mathematical Forum, 19(2)(2007), 905-909.

APPENDIX

PUBLICATIONS

1. Ojha, B.P., Bajracharya, P.M.: Orthogonality in terms 2-HH norm and bounded linear operators in Banach spaces, Applications and Applied Mathematics: An International Journal (AAM), 16(1) (2021),631-642.
(Indexed in: Mathematical Reviews, MathSciNet, Zentralblatt Math).
2. Ojha, B.P., Bajracharya, P.M., Mishra.V N.: On uniqueness of new orthogonality via 2-HH norm in normed linear space, Journal of Functions Spaces, Volume 2020: https://doi.org/10.1155/2020/8835492.
(Indexed in: Mathematical Reviews, MathSciNet, Zentralblatt Math).
3. Ojha, B.P., Bajracharya, P.M.: A Glimpse on Birkhoff-James Orthogonality in Different Spaces, Methods Funct. Anal. Topology, 26(4)(2020), 373-383. (Indexed in: MathSciNet, Zentralblatt Math, Mathematical Reviews).
4. Bajracharya, P.M., Ojha,B.P.: Birkhoff orthogonality and Different Particuler cases of Carlsson Orthogonality in normed linaer spaces, Journal of Mathematics and Statistics, 16(1)(2020), 133-141 .
(Indexed in: Mathematical Reviews, MathSciNet, Zentralblatt Math).
5. Ojha, B.P., Bajracharya, P.M.: 2-HH Norm and Birkhoff-James Orthogonality in Normed Spaces, i-manager's Journal on Mathematics (JMAT), 8(3)(2019), 1-9.
6. Ojha, B.P., Bajracharya, P.M.: Robert Orthogonality in Normed Linear Spaces Via 2-HH Norm, International European Extended Enablement in Science, Engineering and Management, 8(1)(2020), 85-93.
7. Ojha, B.P., Bajracharya, P.M.: Birkhoff and New Orthogonality in Normed Linear Spaces Via 2-HH Norm, International Journal of Scientific and Engineering

Research, 11(2)(2020), 225-232.
8. Ojha, B.P., Bajracharya, P.M.: Relation of Pythagorean and Isosceles orthogonality with best approximation in normed spaces, Mathematics education forum Chitwan, 4(2019), 72-79.
9. Ojha, B.P., Bajracharya, P.M.: Some remarks on the generalization of orthogonality in terms of operators , Methods Funct. Anal. Topology, 27(2)(2021), (Accepted Manuscript).
(Indexed in: MathSciNet, Zentralblatt Math, Mathematical Reviews).

CONFERENCES/ WORKSHOPS/ SEMINARS

1. National Conference on Mathematics and Its Application, January 11-13, 2017, Chitwan, Nepal(presented paper entitled " Different Concepts of Derivatives".
2. $7^{\text {th }}$ National Conference on Mathematics and Its Applications, January 12-15, 2019, Butwal, Nepal (presented paper entitled " Some Particular Cases of Carlsson's Orthogonality on Normed Linear Spaces).
3. Second International Conference on Application of Mathematics to Non-linear Sciences (AMNS-2019), June 27-30, Pokhara, Nepal.
4. International Conference on Analysis and Its Applications- 2021 April 09-11, 2021.

LIST OF PUBLISHED PAPERS

Applications and Applied Mathematics: An International Journal (AAM)

6-2021

Orthogonality in Terms of 2-HH Norm and Bounded Linear Operators in Banach Spaces

Bhuwan P. Ojha

Tribhuvan University
Prakash M. Bajracharya
Tribhuvan University

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam

Part of the Analysis Commons

Recommended Citation

Ojha, Bhuwan P. and Bajracharya, Prakash M. (2021). Orthogonality in Terms of 2-HH Norm and Bounded Linear Operators in Banach Spaces, Applications and Applied Mathematics: An International Journal (AAM), Vol. 16, Iss. 1, Article 35
Available at: https://digitalcommons.pvamu.edu/aam/vol16/iss1/35

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu.

Applications and Applied Mathematics:
An International Journal (AAM)
Published Issues >
Special Issues >
Call for Papers
Call for Papers (Digital Commons)
Copyright and Access
Dear Colleagues
Editorial Board
Co-Founder and Editor-in-Chief:
Evaluation Form
Dr. Aliakbar Montazer Haghighi

Hindawi

Research Article

On Uniqueness of New Orthogonality via 2-HH Norm in Normed Linear Space

Bhuwan Prasad Ojha $\mathbb{D}^{1},{ }^{1}$ Prakash Muni Bajracharya $\mathbb{C D}^{1}$, and Vishnu Narayan Mishra \oplus^{2}
${ }^{1}$ Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
${ }^{2}$ Department of Mathematics, Faculty of Science, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, Madhya Pradesh, India

Correspondence should be addressed to Bhuwan Prasad Ojha; bhuwanp.ojha@apexcollege.edu.np
Received 29 August 2020; Revised 23 October 2020; Accepted 2 November 2020; Published 21 November 2020

Abstract

Academic Editor: Syed Abdul Mohiuddine Copyright © 2020 Bhuwan Prasad Ojha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper generalizes the special case of the Carlsson orthogonality in terms of the 2-HH norm in real normed linear space. Dragomir and Kikianty (2010) proved in their paper that the Pythagorean orthogonality is unique in any normed linear space, and isosceles orthogonality is unique if and only if the space is strictly convex. This paper deals with the complete proof of the uniqueness of the new orthogonality through the medium of the 2 -HH norm. We also proved that the Birkhoff and Robert orthogonality via the $2-\mathrm{HH}$ norm are equivalent, whenever the underlying space is a real inner-product space.

1. Introduction

Different notions of orthogonality in normed linear spaces have been developed by various mathematicians. As a generalization of orthogonality from inner product space to normed linear space " x is orthogonal to y if and only if $\|x+\lambda y\|=\|x-\lambda y\|$ identically in λ " was suggested by Robert ($[1,2]$). However, it has the weakness that for some normed linear space, at least one of every pair of orthogonal elements would have to be zero, i.e., $\|x+\lambda y\|$ $=\|x-\lambda y\|$ for all λ only if $x=0$ or $y=0$. This difficulty is not experienced in the isosceles, Pythagorean, and Birkhoff orthogonalities.

To study the difference of orthogonality in the complex case in comparison with the real case, Paul et al. in 2018 came with a new concept of Birkhoff-James orthogonality by introducing new definitions on complex reflexive Banach spaces and introduced more than one equivalent characterization of Birkhoff-James orthogonality of compact linear operators in the complex case [3]. In 1945, James came with the concept of the Pythagorean and isosceles orthogonalities, which characterize inner product space via their homogeneity and additivity [4]. James also discussed the existence property of
isosceles orthogonality type. The property of the uniqueness of isosceles orthogonality was not discussed until Kapoor and Prasad's paper was published. They proved that the Pythagorean orthogonality is unique in any normed linear space; however, the isosceles orthogonality is unique if and only if the space is strictly convex [5].

Carlsson introduced a more general type of orthogonality treating the isosceles and Pythagorean orthogonalities are special cases [6]. Martini and Wu showed many interesting connections between the Birkhoff and isosceles orthogonality. They proved that if a linear map preserves the Birkhoff orthogonality, then it also preserves the isosceles orthogonality [7]. In 2007, Alsina and Tomas gave a different characterization of the inner product space with the help of weaker linearity axioms of the scalar product and Pythagoras/isos celes orthogonality [8].

Using the concept of the $\mathrm{p}-\mathrm{HH}$ norm as described in the paper [9], Kikianty and Dragomir came up with a new notion of orthogonality with the help of the 2-HH norm, which is closely related to the Pythagorean and isosceles orthogonal ities [10]. They proved that the Pythagorean orthogonality via 2-HH norm satisfies the nondegeneracy, continuity, and symmetry properties; however, it is neither additive nor

A GLIMPSE ON BIRKHOFF-JAMES ORTHOGONALITY IN BANACH SPACES

B. P. OJHA AND P. M. BAJRACHARYA

Abstract

This paper is an overview of various results on Birkhoff-James orthogonality of operators in Hilbert space and Banach spaces. We mainly focus on Birkhoff orthogonality of linear(bounded and ompact) operators in terms of matrices, projection angles, Hilbert C^{*}-modules as well as on Banach modules. The article concludes with some open problems regarding possible correlation between Birkhoff-James orthogonality and Carlsson orthogonality, particularly in the case of Pythagorean orthogonality.

Дано огляд різноманітних результатів щодо ортогональності в сенсі БіркгофаДжеймса операторів у гільбертових і банахових просторах. Переважно розглядається ортогональність за Біркгофом лінійних (обмежених і компактних) операторів у термінах матриць, кутів, гільбертових C^{*}-модулів, а також банахових модулів. Наведені деякі відкриті питання стосовно співвідношень ортогональністю Біркгофа-Джеймса та ортогональністю Карлссона, зокрема для випадку піфагорової ортогональності

1. Introduction

The concept of Birkhoff orthogonality began in 1935 [1]. In the literature of orthogonality this is known with some other names such as; Birkhoff- James orthogonality and Blaschke Birkhoff-James orthogonality (see [2]). In this paper [1, 3], an orthogonality which satisfies homogeneity but neither symmetric nor additive is defined by $x \perp y$ if and only if $\|x+\lambda y\| \geq\|x\|$ for all λ, is known as Birkhoff orthogonality or Birkhoff-James orthogonality. The geometrical meaning of Birkhoff orthogonality is that if x is an unit vector of a Banach space X and $y \in X$, then x is Birkhoff orthogonal to y means that the straight line $\{x+\lambda y: \lambda \in K\}$ is tangent to the unit ball of X at x . This concept is similar to the statement: suppose two lines l_{1} and l_{2} intersect at the point m , then $l_{1} \perp l_{2}$ if and only if the distance from a point of l_{2} to a given point n of l_{1} is never less than the distance from m and n . [3] For any hyper-plane $H \subset X, \mathrm{x}$ is said to be orthogonal to H if $\forall x \in H, x \perp h$.

Bhatia and Semrl in [4] generalize the definition of Birkhoff orthogonality in terms of matrices. For any matrices A and B they denote the symbol $\|A\|$ for operator norm of A and A is orthogonal to B in the sense of Birkhoff-James iff for any complex number $\mathrm{z},\|A+z B\| \geq\|A\|$. A matrix A is orthogonal to B iff there exist a unit vector $x \in H$ such that $\|A x\|=\|A\|$ and $\langle A x, B x\rangle=0[4]$. They also introduced Birkhoff- James orthogonality in [4] as $A \perp B$ if and only if $\|A+z B\|_{p} \geq\|A\|_{p}$, where $\|A\|_{p}$ denotes Schatten p-norm of A defined by $\|A\|_{p}=\left[\sum_{j=1}^{n} S_{j}(A)^{p}\right]^{\frac{1}{p}}$ for $1 \leq p<\infty$ and $S_{1}(A) \geq$ $\ldots . . S_{n}(A)$ are singular values of A. Taking the special case for $p=2$, Bhatia and Semrl in [4] also proved that the given orthogonality is equivalent to usual Hilbert space condition $\langle A, B\rangle=0$, which defines an inner-product on the space of matrices as $\langle A, B\rangle=\operatorname{tr}\left(A^{*} B\right)$. The norm associated to this inner product is $\|\cdot\|_{2}$. In an infinite dimensional case [4], for

[^0]

Original Research Paper

Birkhoff Orthogonality and Different Particular Cases of Carlsson's Orthogonality on Normed Linear Spaces

Prakash Muni Bajracharya and Bhuwan Prasad Ojha

Central Department of Mathematics, Kirtipur, Kathmandu, Nepal

Article history

Received: 21-02-2020
Revised: 15-05-2020
Accepted: 21-07-2020
Corresponding Author: Bhuwan Prasad Ojha Central Department of Mathematics, Kirtipur, Kathmandu, Nepal Email: bhuwanp.pjha@gmail.com

Abstract

Let $x, y \in X$, where X is an inner-product space. We say x is orthogonal to y if $\langle x, y\rangle=0$. When we move to general normed spaces there are many possibilities of extending the notion of orthogonality. Since 1934, different types of orthogonality relations in normed spaces have been introduced and studied. In this study, we enlist some properties of Birkhoff's orthogonality and Carlsson's orthogonality along with it we introduce two new particular cases of Carlsson's orthogonality and check some properties of othogonality in relation to these particular cases in normed spaces.

Keywords: Birkhoff Orthogonality, Carlsson Orthogonality, Minkowski Plane, Pythagorean Orthogonality, Robert Orthogonality

Introduction

Let X^{*} be dual space of a normed space X and S_{X} denotes the unit sphere of X given by $S_{X}=\{x \in X:\|x\|=$ 1\}. The Hermite-Hadamard's inequality defined in (Mihai et al., 2018) is given by:

$$
(b-a) f\left(\frac{a+b}{2}\right) \leq \int_{a}^{b} f(t) d t \leq(b-a) \frac{f(a)+f(b)}{2}
$$

We briefly describe the content of this paper: Section 1 contains the review of various properties and characterizations of Birkhoff orthogonality in normed linear spaces. Section 2 contains Carlsson orthogonality in classical sense and in HH-sense with the help of $p-H H$ norm. Section 3 includes the main results of our research by introducing new cases of Carlsson orthogonality verifying some properties of the inner-product space in relation of these orthogonalities.

There are different orthogonality relations studied in the general normed linear space since from 1934. The Robert orthogonality condition which was introduced by Robert in 1934 is known as the first orthogonality defined in general normed spaces (Birkhoff, 1935). Robert orthogonality implies both Birkhoff orthogonality introduced by (Birkhoff, 1935) and isosceles orthogonality introduced by (James, 1945). Generalizing the Isosceles, Robert and Pythagorean orthogonalities in the normed space, (Carlsson, 1962) introduced a new type of orthogonality. After that numerous notions of orthogonality have been introduced. Kikianty and Dragomir (2010) introduced p - HH -norms $(1 \leq p<\infty)$ and some notions of orthogonality have been introduced by
utilizing $2-\mathrm{HH}$-norm, which are closely related to the classical Pythagorean orthogonality and isosceles orthogonality. Kapoor and Prasad (1978) proved uniqueness property of isosceles orthogonality.

Mizuguchi (2017) let $(X,\|\cdot\|)$ be a real normed space. For any vector $x, y \in X$, we say that x is orthogonal to y $\left(x \perp_{B} y\right)$ in the sense of Birkhoff if:

$$
\|x\| \leq\|x+\lambda y\| \text { for all } \lambda \in \mathbb{R}
$$

James was the first who did a comprehensive study of the properties of Birkhoff orthogonality and therefore Birkhoff orthogonality is also known to as BirkhoffJames orthogonality. James (1945) introduced Isosceles and Pythagorean orthogonality proved that if for every x it is possible to find a vector y in a two dimensional subspace containing x such that $x \perp_{B} y$; then the space is necessarily an inner product space (Dragomir and Kikianty, 2010). If X is an inner product Space, then \perp_{B} coincide with the standard orthogonality in inner product space. It is obvious that Birkhoff orthogonality is homogeneous; however, it is in general, neither symmetric nor additive.

Definition (Martini and Spirova, 2010)

A hyperplane of a normed linear space X is any proper closed linear subset H which is not properly contained in a proper linear subset of X, or any translation $x+H$ of such a linear subset H.

If $\left\{y_{n}\right\}$ is a sequence converging to y, x is orthogonal to $\left\{y_{n}\right\}$, then $x \perp y$. Hence for any x, the set

2-HH NORM AND BIRKHOFF-JAMES ORTHOGONALITY IN NORMED SPACES

By
BHUWAN PRASAD OJHA *
PRAKASH MUNI BAJRACHARYA **
*_** Department of Mathematics at Tribhuvan University, Kathmandu, Nepal.
Date Received: 05/11/2019
Date Revised: 20/12/2019
Date Accepted: 10/04/2020

ABSTRACT

For any normed space X, the $p-H H$ norms X were introduced by Kikianty and Dragomir on $X^{2}=X \times X$ of normed spaces. p norms and p-HH norms induce the same topology, so they are equivalent, but are geometrically different. Besides that, E. Kikianty and S. S. Dragimor introduced HH-P orthogonality and HH-l orthogonality by using 2-HH norm and discussed main properties of these orthogonalities. The main purpose of this paper is to focus on the concept of 2-HH norm to Birkhoff and a new orthogonality in normed spaces, and we discuss some properties of these orthogonalities. It is proved that Robert orthogonality via 2-HH norm implies Birkhoff-James orthogonality via 2-HH norm; however, it is not necessary for the converse part.
Keywords: Birkhoff Orthogonality, Robert Orthogonality, p-HH Norm.
INTRODUCTION
Motivated by the Hermite-Hadamard inequality, Kikianty and Dragomir (2008) introduced p-HH norm by giving their equivalence to p-norms in X^{2}. Even though the equivalence of p -norms and $\mathrm{p}-\mathrm{HH}$ norms are known, they are different due to the fact that p-HH norms not only depend on the size of vectors, but they depend on the relative position of the original vectors. Furthermore, these norms have been extended to X^{n} of a normed space X. To illustrate the quantitative comparison between p-norms and p-HH norms, Kikianty, in his thesis used the inequality $\left|h(x)-\frac{1}{b-a} \int_{a}^{b} h(t) d t\right| \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a) M$ for a real valued function $h(x)$ which is continuous and differentiable on (a, b) satisfying the condition $|h(x)| \leq M$, where M is a real number.

Dragomir and Kikianty (2010), mentioned that the extension of sequence spaces also gives the fundamental difference of p-norms and p-HH norms. Kikianty and Dragomir (2008) mentioned in their paper that the classical norms can be extended from means on $(0, \infty)$ to normed space X in different ways; one calculates the norm of n vectors in X and then calculates the mean of resulting numbers and therefore these norms depend on the original vectors only through their norms which process is highly helpful to calculate the norm of X^{n}. The weighted arithmetic means are exponential in this case because of the fact that, one first computes a fixed linear combination of the original vectors and then gives the X-norm of the result which maintains the more of the structure of X^{n}, but a weighted arithmetic mean of non-zero vectors does not give the norm of X^{n} because its arithmetic mean may be zero. The p -HH norms keeps the responsiveness of the arithmetic means to the geometry of X^{n} due to the fact that their dependency not only depends on the size of vectors, also they depend on the relative position of the n original vectors in the space X.

In the paper of Kikianty and Sinnamon (2009), the p-norm is defined as follows: Let X be a normed space and for any positive integer $n, x=\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$. Under the usual addition and scalar multiplication, it becomes a normed space when equipped with any of the following norms:

$$
\|x\|_{p}=\left\{\begin{array}{lc}
\left(\left\|x_{1}\right\|^{p}+\left\|x_{2}\right\|^{p}+\ldots \ldots .+\left\|x_{n}\right\|^{p}\right)^{\frac{1}{p}}, & 1 \leq p<\infty \\
\max \left\{\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots . .,\left\|x_{n}\right\|\right\}, & p=\infty
\end{array}\right.
$$

i-manager's Journal on Mathematics (JMAT)

Current Issue Vol. 9 Issue 2

- On Fuzzy n-Normed Spaces Lacunary Statistical Convergence of Order a
- Solving Fisher's Equation using Modified Exponential Cubic B-Spline Differential Quadrature
- Semi Maximal Ideals of Be-Algebras
© ω-Filters of Commutative Be-Algebras
- Millennium Challenge

Most Read

© A Simple Method of Numerical Integration for a Class of Singularly Perturbed Two Point Boundary Value Problems

Volume 8 Issue 3 July - September 2019

Research Paper

2-HH Norm and Birkhoff-James Orthogonality in Normed Spaces
Bhuwan Prasad Ojha*, Prakash Muni Bajracharya**
*.** Department of Mathematics at Tribhuvan University, Kathmandu, Nepal.
Ojha, B. P., and Bajracharya, P. M. (2019). 2-HH Norm and Birkhoff-James Orthogonality in Normed Spaces. i-manager's Journal on Mathematics, 8(3), 1-9. https://doi.org/10.26634/jmat.8.3.16746

Abstract References Full Article (HTML) PDF

Abstract

For any normed space X , the p -HH norms X were introduced by Kikianty and Dragomir on $\mathrm{X}^{2}=\mathrm{XxX}$ of normed spaces. p norms and $\mathrm{p}-\mathrm{HH}$ norms induce the same topology, so they are equivalent, but are geometrically different. Besides that, E . Kikianty and S. S. Dragimor introduced HH-P orthogonality and HH-I orthogonality by using 2-HH norm and discussed main properties of these orthogonalities. The main purpose of this paper is to focus on the concept of 2-HH norm to Birkhoff and a new orthogonality in normed spaces, and we discuss some properties of these Robert orthogonality via 2-HH norm implies Birkhoff-James orthogonality via $2-\mathrm{HH}$ no Online

- O Type here to search

Review Procedure

Abstracting/Indexing

The Journal follows a double blind peer-review
process. The submitted articles / research
papers are reviewed by Professors/ Educators of Mathematics.

》Click here to view the duties of Reviewers
For all copyright related queries contact info@imanagerpublications.com

Robert Orthogonality in Normed Linear Spaces Via 2-HH Norm

Bhuwan Prasad Ojha, Prakash Muni Bajracharya

Abstract

The p-HH norms on X^{2} were introduced by Kikianty and Dragomir in 2008. Besides that, E. Kikianty and S.S. Dragimor introduced HH-P orthogonality and HH-I orthogonality by using 2-HH norm and discussed main properties of these orthogonalities. In this paper, we test the concept of 2 -HH norm to Robert orthogonality in normed spaces and discuss some properties of this orthogonality.
Keywords: Robert orthogonality, p-HH norm, Isosceles orthogonality, Pythagorean orthogonality, Hermite-Hadamards inequality .

1 Introduction

The p-HH norms are equivalent to p-norms on X^{2}, as they induce the same topology, but geometrically they are different. The p-HH norm is an extension of the generalized logarithmic mean which is connected by the Hermite-Hadamards inequality to p-norm. The definition of the generalized logarithmic mean and Hermite-Hadamards inequality are as follows:

Definition. [6, 9] For any convex function $f:[a, b] \rightarrow \mathbb{R}([a, b] \subset \mathbb{R}$, the Hermite-Hadamard's inequality is defined as

$$
(b-a) f\left(\frac{a+b}{2}\right) \leq \int_{a}^{b} f(t) d t \leq(b-a)\left[\frac{f(a)+f(b)}{2}\right]
$$

. This inequality has been extended (see-12) for convex function $f:[x, y] \rightarrow \mathbb{R}$, where $[x, y]=$ $\{(1-t) x+t y, t \in[0,1]\}$. In that case Hermite-Hadamards integral inequality becomes

$$
\begin{equation*}
f\left(\frac{x+y}{2)} \leq \int_{0}^{1} f[(1-t) x+t y] d t \leq \frac{f(x)+f(y)}{2}\right. \tag{1}
\end{equation*}
$$

Using the convexity of $f(x)=\|x\|^{p} \quad(x \in X, p \geq 1)$ and relation (1) we have

$$
\left\|\frac{x+y}{2}\right\| \leq\left[\int_{0}^{1}\|(1-t) x+t y\|^{p} d t\right]^{\frac{1}{p}} \leq \frac{1}{2^{\frac{1}{p}}}\left(\|x\|^{p}+\|y\|^{p}\right)^{\frac{1}{p}} .
$$

1

[^1]

Selective removal of toxic Pb (II) ion by solid phase extraction with carboxylate derivative of C -symmetric triphenoxy methane platform. PDF

Anup Basnet Chetry, Birendra Babu Adhikari,Keisuke Ohto
A new solid phase extraction reagent was developed by impregnating an ion-exchange ligand tris(3,5-di-tert-butyl-2-
carboxymethoxyphenyl)methane into Amberlite SAD-7 resin. Sorption behavior of the resin towards $\mathrm{Pb}(\mathrm{II})$ and some other divalent transition metal was studied as a function of various experimental parameters by batch as well as continuous sorption experiments. The resin showed excellent selectivity for sorption of Pb (II) over other divalent metal ions. The sorption process was found to follow pseudo-second kinetics, and sorption equilibrium was fitted with Langmuir isotherms model. In continuous column experiment, traces of $\mathrm{Pb}(\mathrm{II})$ ions were selectively captured in the packed bed of the resin over excess of $\mathrm{Zn}(I I)$ ions. The results infer that the new impregnated resin is a promising material as an efficient sorbent for selective removal of lead from contaminated streams

Robert Orthogonality in Normed Linear Spaces Via 2-HH Norm PDF
Prakash Muni Bajryacharya, Bhuwan Prasad Ojha
The p-HH norms on $\$ \mathrm{X}^{\wedge}\{2\} \$$ were introduced by Kikianty and Dragomir in 2008. Besides that, E. Kikianty and S.S. Dragimor introduced HH-P orthogonality and $\mathrm{HH}-\mathrm{I}$ orthogonality by using $2-\mathrm{HH}$ norm and discussed main properties of these orthogonalities. In this paper, we test the concept of 2-HH norm to Robert orthogonality in normed spaces and discuss some properties of this orthogonality.

O Type here to search

Birkhoff and New Orthogonality in Normed Linear Spaces Via 2-HH Norm

Bhuwan Prasad Ojha, Prakash Muni Bajracharya

Abstract

The p-HH norms were introduced by Kikianty and Dragomir on the Cartesian square of normed spaces. P-norms and p-HH norms induces the same topology, so they are equivalent, but geometrically they are different. Besides that, E. Kikianty and S.S. Dragimor introduced HH-P orthogonality and HH-I orthogonality by using 2-HH norm and discussed main properties of these orthogonalities. In this paper, we test the concept of 2-HH norm to Birkhoff and a new orthogonality in normed spaces and discuss some properties of these orthogonalities.
Keywords: Birkhoff orthogonality,Hermite-Hadamard's inequality, Pythagorean orthogonality, p-HH norm, Logarithmic mean

1 Introduction

An inner-product on X defines a norm on X by $\|x\|^{2}=\langle x, x\rangle$. Every innerproduct spaces are normed spaces, but the converse may not be true. A best example of normed space which is not an inner-product space is $l^{p}=\left\{\left(x_{n}\right), x_{n} \in \mathbb{R}: \sum\left|x_{n}\right|<\infty\right\}$ for $p \neq 2$.

Definition. The $p-H H$ norm on $X^{2}=X \times X$ is defined by

$$
\|(x, y)\|_{p-H H}=\left(\int_{0}^{1}\|(1-t) x+t y\|^{p} d t\right)^{\frac{1}{p}}
$$

for any $x, y \in X^{2}$ and $1 \leq p<\infty$.
The 2-HH norm is defined as follows:

$$
\begin{aligned}
\|(x, y)\|_{2-H H}^{2} & =\int_{0}^{1}\|(1-t) x+t y\|^{2} d t \\
& =\frac{1}{3}\left[\|x\|^{2}+\langle x, y\rangle+\|y\|^{2}\right.
\end{aligned}
$$

The p-HH norms are equivalent to p-norms on X^{2}, as they induce the same topology, but geometrically they are different. The p-HH norm is an extension of the generalized logarithmic mean which is connected by the Hermite-Hadamards inequality to p-norm. The definition of the generalized logarithmic mean and Hermite-Hadamards inequality are as follows:

Experimental Investigation of Tensile and Compression Properties of Unidirectional Sisal Epoxy Resin Composite[Full-Text []] Habtamu Dagne, Mulugeta H/Mariam, Daniel Tilahun

The applications of natural fiber are becoming very significant reinforcement for polymeric composites vis-a-vis different applications due to their advantageous properties such as low cost, environmental friendly, good mechanical performance and so on.

Using Multimedia Tools in Education (Citizenship Education in the Basic School, Ghana)[Full-Text[] $]$ Agordzo Kofi George

This study gathered data on how teachers integrated multimedia technology into the teaching of Citizenship Education to Basic students in Basic School. Questionnaire and observations were used for data collections. Findings indicated that multimedia integration is a factor in the teaching of School. Questionnaire and observations were used for data collections. Findings indicated that multimedia integration is a factor in the teaching of
Citizenship Education in the schools. The study indicated that Internet suffing, audiovisual tape, overhead projectors and internet education were the preterred method of multimedia integrated into classroom lessons.

Birkhoff and New Orthogonality in Normed Linear Spaces Via 2-HH Norm[Full-Text[] Bhuwan Prasad Ojha , Prakash Muni Bajracharya

The p-HH norms were introduced by Kikianty and Dragomir on the Cartesian square of normed spaces . P-norms and p-HH norms induces the same topology, so they are equivalent, but geometrically they are di erent.

Steroids induced cytotoxicity in hepatic cancer cells[Full-Textec]
Israa Najm Abdullah Al-lbadi, Abdulkareem Khattar Alhatemi, Majida Malik Meteab Alshammari

Type here to search

Relation of Pythagorean and Isosceles Orthogonality with Best approximation in Normed Linear Space

Bhuwan Prasad Ojha, Prakash Muni Bajrayacharya
Central Department of Mathematics, Tribhuvan University, Kritipur
E-mail: bhuwanp.ojha@apexcollege.edu.np

Abstract

In an arbitrary normed space, though the norm not necessarily coming from the inner product space, the notion of orthogonality may be introduced in various ways as suggested by the mathematicians like R.C. James, B. D. Roberts, G. Birkhoff and S.O. Carlsson. We aim to explore the application of orthogonality in normed linear spaces in the best approximation. Hence it has already been proved that Birkhoff orthogonality implies best approximation and best approximation implies Birkhoff orthogonality. Additionally, it has also been proved that in the case of ε-orthogonality, ε-best approximation implies ε-orthogonality and vice-versa. In this article we established relation between Pythagorean orthogonality and best approximation as well as isosceles orthogonality and ε-best approximation in norned space.

Key words: Best approximation, Birkhoff orthogonality, Pythagorean orthogonality, ε-best approximation, Isosceles orthogonality.

Introduction

For any non-empty subset M of X , where X is a normed space, an element $m_{0} \in \mathrm{M}$ is called best best approximation to $\mathrm{x} \in \mathrm{X}$ from M if $\forall \mathrm{m} \in \mathrm{M},\left\|\mathrm{x}-\mathrm{m}_{0}\right\| \leq\|\mathrm{x}-\mathrm{m}\|$. The collection of all such elements $m_{0} \in \mathrm{M}$ which are best approximation to $\mathrm{x} \in \mathrm{X}$ is denoted by $P_{M}(\mathrm{x})$. If $P_{M}(\mathrm{x})$ contains at least one element, then the subset M is called a proximal set. If for each $\mathrm{x} \in \mathrm{X}$ has a unique best approximation in M , in that case the set M is called Chebychev set of X . In another word the set M is called Chebychev if $P_{M}(\mathrm{x})$ is singleton (Akramm, 2010).
Theorem 1.1. Let M be a subspace of a normed space X,
(i) If $\mathrm{x} \in \mathrm{M}$, then $P_{M}(\mathrm{x})=\{\mathrm{x}\}$
(ii) If $\mathrm{x} \in \operatorname{cl}(\mathrm{M}) \backslash \mathrm{M}$, then $P_{M}(\mathrm{x})=\varnothing($ Akramm 2010 $)$ (Singer 1974)

Proof. (i) Let $\mathrm{x} \in \mathrm{M}$, then $\mathrm{d}(\mathrm{x}, \mathrm{x})=0$ which implies that $\mathrm{d}(\mathrm{x}, \mathrm{M})=0$.
Therefore $P_{M}(\mathrm{x})=\{\mathrm{x} \in \mathrm{M}:\|\mathrm{x}-\mathrm{y}\|=\mathrm{d}(\mathrm{x}, \mathrm{M})\}=\{\mathrm{x} \in \mathrm{M}:\|\mathrm{x}-\mathrm{y}\|=0\}=\{\mathrm{x}\}$

CERTIFICATES OF THE CONFERENCES

Second International Conference on Applications of Mathematics to Nonlinear Sciences (AMNS-2019)

June 27-30, 2019, Pokhara, Nepal http://anmaweb.org/AMNS-2019

This certificate is awarded to

Bhuwan Prasad Ojha

for participating in

Second International Conference on Applications of Mathematics to Nonlinear Sciences
(AMNS-2019)
on June 27-30, 2019, Pokhara, Nepal.
kauprety
Dr. Kedar Nath Uprety
AMNS-2019 Conference Convener

Whastan K Veeths perident of ANMMA
Pan 1) ing libate IViverings USA

${ }^{4}$ Ketar Nath Uprets, HOD, Central Department of Marhematica Trilhemin Uhiversity, Nepal

NEPAL MATHEMATICAL SOCIET
 International Conference on $\mathfrak{A n a l p s i s}$ and its $\mathfrak{A p p l i t a t i o n s}$ - 2021
 (ICAA_NEPAL_2021)

e- Certificate of participation

This is to certify

Orr. Bhuwan Prasad Oiha

from Tribhuvan University, Nepal has actively participated in International Conference on Analysis and Its Applications 2021 (ICAA_NEPAL_2021) organized by Nepal Mathematical Society (NMS) in collaboration with the Central Department of Mathematics, Tribhuvan University (TU); Department of Mathematics, School of Science, Kathmandu University (KU); South Asian University (SAU), New Delhi, India; Association of Nepalese Mathematicians in America (ANMA) USA; Department of Mathematics Valmeeki Campus, Nepal Sanskrit University (NSU) from April 9 - 11, 2021.

[^0]: 2020 Mathematics Subject Classification. 45E15, 46J10.
 Keywords. Birkhoff-James orthogonality, Banach modules, Carlsson orthogonality, Robert orthogonality.

[^1]: ${ }^{1}$ Corresponding author: Bhuwan Prasad Ojha(PhD student, Tribhuvan University, kathmandu, Nepal) email: bhuwanp.ojha@apexcollege.edu.np
 Co-author: Dr. Prakash Muni Bajracharya(Professor, Tribhuvan University, kathmandu, Nepal) email: pmbajracharya13@gmail.com

