
TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

A

PROJECT REPORT

ON

IMPLEMENTATION OF CONSORTIUM BLOCKCHAIN FOR

DECENTRALIZED KYC SHARING

SUBMITTED BY:

MUKUL ATREYA (PUL075BCT051)

SANDEEP ACHARYA (PUL075BCT074)

SANGAM CHAULAGAIN (PUL075BCT078)

SAUJAN TIWARI (PUL075BCT083)

SUBMITTED TO:

DEPARTMENT OF ELECTRONICS & COMPUTER ENGINEERING

May, 2023

Page of Approval

TRIBHUVAN UNIVERSIY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certifies that they have read and recommended to the Institute of En-

gineering for acceptance of a project report entitled ”Implementation Of Consortium

Blockchain For Decentralized KYC Sharing” submitted by Mukul Atreya, Sandeep

Acharya, Sangam Chaulagain and Saujan Tiwari in partial fulfillment of the require-

ments for the Bachelor’s degree in Electronics & Computer Engineering.

.............................

Supervisor

Prof. Dr. Subarna Shakya

Professor

Department of Electronics and Computer

Engineering,

Pulchowk Campus, IOE, TU.

.............................

Internal examiner

.............................

External examiner

Date of approval:

ii

Copyright

The author has agreed that the Library, Department of Electronics and Computer Engineer-

ing, Pulchowk Campus, Institute of Engineering may make this report freely available for

inspection. Moreover, the author has agreed that permission for extensive copying of this

project report for scholarly purposes may be granted by the supervisors who supervised the

project work recorded herein or, in their absence, by the Head of the Department wherein

the project report was done. It is understood that the recognition will be given to the author

of this report and to the Department of Electronics and Computer Engineering, Pulchowk

Campus, Institute of Engineering in any use of the material of this project report. Copying

or publication or the other use of this report for financial gain without approval of to the

Department of Electronics and Computer Engineering, Pulchowk Campus, Institute of En-

gineering and author’s written permission is prohibited.

Request for permission to copy or to make any other use of the material in this report in

whole or in part should be addressed to:

Head

Department of Electronics and Computer Engineering

Pulchowk Campus, Institute of Engineering, TU

Lalitpur, Nepal.

iii

Acknowledgments

We feel immensely blessed and grateful for the invaluable guidance and assistance we received

from numerous individuals throughout the completion of our Major Project. Firstly, we

express our sincerest appreciation to the Institute of Engineering for incorporating the major

project as an integral component of our curriculum. We extend our heartfelt thanks to the

Department of Electronics and Computer Engineering for initiating and facilitating this

project.

Our profound gratitude goes to our college for providing us with the necessary resources

and support to work on this academic project. We are particularly indebted to our esteemed

supervisor, Prof. Dr. Subarna Shakya, for his constructive and motivating suggestions

regarding this project. His explanations of concepts such as Blockchain, Networking, Cryp-

tography, guidelines on software usage, and analysis were immensely helpful to us throughout

the project.

We are fortunate to have received constant encouragement, support, and guidance from

all of our respected teachers. We would also like to thank RARA labs for the mentorship and

financial resources that aided us throughout the project. Lastly, we would like to express our

heartfelt appreciation to our friends, seniors, and everyone directly or indirectly involved in

the project. Their invaluable contributions made it possible for us to complete the project

successfully.

Sincerely,

Mukul Atreya

Sandeep Acharya

Sangam Chaulagain

Saujan Tiwari

iv

Abstract

Know Your Customer (KYC) process that is followed by the Financial Institutions (FIs) at

present is highly inefficient and inconvenient for both FIs and customers. This process re-

quires verification of customer’s identity documents independently by the businesses leading

to high costs as well as wastage of resources. This project provides an efficient solution based

on the Blockchain technology. The submission details of customers are collected only once

for the verification process, irrespective of the number of financial institutions they register.

The verified document is then shared with the organizations that require the information

based on the customer’s approval. It leads to an efficient KYC process reducing costs and

resources. This system uses private distributed file storage to store the identity documents

and consortium blockchain technology is used to record and manage the KYC transactions

ensuring security and transparency. The financial institutions act as the full nodes of the

blockchain and the synchronization of blocks takes place through the P2P network.

Keywords: KYC, Consortium Blockchain,Distributed File Storage, P2P network

v

Contents

Page of Approval ii

Copyright iii

Acknowledgements iv

Abstract v

Contents viii

List of Figures ix

List of Tables x

List of Abbreviations xi

1 Introduction 1

1.1 Background . 1

1.2 Problem statements . 2

1.3 Objectives . 2

1.4 Scope . 2

2 Literature Review 3

2.1 Related work . 3

2.2 Related theory . 7

2.2.1 Blockchain . 7

2.2.2 Peer to peer network . 8

2.2.3 Transactions . 9

2.2.4 Block . 9

2.2.5 Consensus . 9

2.2.6 Public Key Cryptography . 10

2.2.7 Hashing . 11

2.2.8 Wallets . 12

2.2.9 Javascript and Go packages for cryptography 13

vi

2.2.10 Networking . 13

3 Requirement Analysis 15

3.1 Functional Requirements . 15

3.1.1 Registration of Customers and Financial Institutions 15

3.1.2 Uploading KYC details . 15

3.1.3 Verification of KYC . 15

3.1.4 Request for permission . 15

3.1.5 Grant permission . 15

3.1.6 Record transactions . 15

3.2 Non Functional Requirements . 16

3.2.1 Reliability . 16

3.2.2 Performance . 16

3.2.3 Maintainability . 16

3.2.4 Security . 16

3.3 Tools and Technologies . 17

3.3.1 Hardware Requirements . 17

3.3.2 Software Requirements . 17

4 Feasibility Study 18

4.1 Economic Feasibility . 18

4.2 Technical Feasibility . 18

4.3 Operational Feasibility . 18

4.4 Schedule Feasibility . 18

5 Methodology 19

5.1 System Architecture . 19

5.1.1 Blockchain . 20

5.1.2 Private Distributed File Storage . 20

5.1.3 Centralized Off-Chain Database . 20

5.1.4 Wallet . 20

5.1.5 Backend Server . 20

5.1.6 User Interface . 21

5.2 System Development Workflow . 21

5.2.1 Designing Blockchain Data Structure 21

5.2.2 Identification of Nodes . 24

5.2.3 Designing Peer To Peer Network . 25

vii

5.2.4 Creating Wallets . 25

5.2.5 Signing and Storing Transactions . 26

5.2.6 Mining and consensus algorithm . 27

5.2.7 Private Distributed File Storage Integration 27

5.2.8 Off Chain Database Integration . 28

5.2.9 Building the APIs . 28

5.2.10 Designing User Interface and API Integration 29

5.3 System Usage Workflow . 29

5.3.1 Registration . 29

5.3.2 KYC upload . 30

5.3.3 KYC verification . 30

5.3.4 KYC sharing . 30

6 Evaluation, Result and Analysis 31

6.1 Verification and Validation . 31

6.1.1 Verification . 31

6.1.2 Validation . 32

6.2 Results . 33

6.2.1 Easy and Secure KYC Sharing . 33

6.2.2 Intuitive User Interface . 33

6.2.3 Blockchain Development . 34

6.2.4 Efficient Storage . 34

6.2.5 Crypto-less Blockchain . 34

6.3 Outputs . 35

6.4 Analysis . 41

6.4.1 Benefits of decentralized KYC sharing 41

6.4.2 Advantages of IPFS storage mechanism 41

6.4.3 Limitations of a crypto-less blockchain 41

6.4.4 Potential of blockchain technology . 41

7 Conclusion and Future Enhancements 42

7.1 Conclusion . 42

7.2 Future Enhancements . 42

References . 42

Appendices . 44

viii

List of Figures

2.1 Hashing procedure . 11

5.1 System Architecture Diagram . 19

5.2 System Development Workflow . 21

5.3 Block structure in blockchain . 22

5.4 KYC Upload Transaction . 23

5.5 KYC Verify Transaction . 23

5.6 KYC Grant Access Transaction . 23

5.7 Transaction structure . 24

5.8 Block broadcast from miner node to other nodes. 25

5.9 Signing of Transaction . 26

5.10 IPFS Swarm Cluster . 27

5.11 System Usage Workflow . 29

6.1 De KYC Landing Page . 35

6.2 Customer Profile . 35

6.3 KYC Upload Form . 36

6.4 KYC Details Page . 36

6.5 Request Verification . 37

6.6 Bank Profile . 37

6.7 Verification Requests . 38

6.8 Request client for KYC . 38

6.9 Grant Access to KYC . 39

6.10 Downloading blocks on first connection . 39

6.11 Receive a sent block . 39

6.12 Bank users . 40

6.13 Blockchain Explorer . 40

ix

List of Tables

2.1 Literature Review Matrix . 5

3.1 Software Requirements Table . 17

x

List of Abbreviations

KYC Know Your Customer

IPFS InterPlanetary File System

SSI Self Soverign Identity

FI Financial Institution

PoW Proof of Work

PoS Proof of Stake

DPos Delegated Proof of Stake

EVM Ethereum Virtual Machine

ECDSA Elliptic Curve Digital Signature Algorithm

API Application Programming Interface

Dapp Decentralized App

RSA Rivest-Shamir-Adleman

ERC Ethereum Request for Comments

ID Identification Document

SDLC Software Development Life Cycle

JSON JavaScript Object Notation

SQL Structured Query Language

DNS Domain Name System

P2P Peer-to-Peer

UI User Interface

PBFT Practical Byzantine Fault Tolerance

xi

1. Introduction

1.1 Background

Know Your Customer(KYC) is the process or steps taken by financial institutions to estab-

lish customer identity, understand their nature of activities and assess risks involved with

customers. Currently, the KYC process is carried out individually by each bank where the

customer has to provide the same identification data to each bank, which is then verified

independently by each bank. This is a time and cost-intensive job for FIs, as well as an

irritating process for customers as they have to be physically present every time they visit a

bank to verify their personal identity.

A central authority that collects and shares KYC among all financial institutions is a

possible solution to above mentioned problems but it can lead to crashes, leaks, mistrusts

and misuse of personal data. Also customers have no control over whom to grant or revoke

KYC access because all data is managed by a centralized controller.

One solution to this problem is the use of distributed ledger where all digital data is

replicated, shared, and synchronized across multiple FIs following some certain consensus

protocols to ensure validity of data. Blockchain, one of the emerging and most popular

distributed ledger technologies, is suited for decentralized asset management because it can

act as a physically decentralized but logically centralized source of truth for information.

Many popular blockchain technologies like Bitcoin and Ethereum provide developers

to build their solution upon them. For years, Ethereum has been the choice of develop-

ers to build decentralized applications. Ethereum provides smart contracts, a code that is

immutable once deployed and gets executed as programmed, to build the blockchain appli-

cations. Also, bitcoin provides some of the Layer 2 solutions for building on the Bitcoin

blockchain.

However, the existing blockchain technologies have their own cryptocurrencies. According

to the existing laws of Nepal, all types of cryptocurrency transactions are banned. Also, For

this particular use case, no such feature will be required. On the other hand, even the

simple smart contracts in the ethereum blockchain are relatively expensive. Modifying these

algorithms would be possible, but the effort to modify the existing source code could exceed

the effort of implementing a blockchain from scratch.

So the new and improved approach to KYC filling and verification is proposed using

blockchain technology implemented from scratch. The use of consortium blockchain and

1

decentralized file storage makes this proposed system a secure and transparent medium to

share KYC documents.

1.2 Problem statements

Financial institutions, government agencies, and other entities that require KYC (Know Your

Customer) procedures to ensure compliance with regulations often struggle with lengthy and

costly processes to verify the identity of their customers. The current KYC process involves

users providing their personal information multiple times to different institutions, which

can be cumbersome and risky. Also, there is a huge waste of resources by FIs in order to

verify the same user who has already been verified by some other FI. Blockchain technology

can be a good solution for this process, but many current blockchain platforms embed a

cryptocurrency component within them. As there is a ban on cryptocurrency transactions

in our country, it is impossible to leverage these platforms for this use case.

Therefore, A customized consortium blockchain is needed to facilitate the sharing of KYC

information between customers and the FIs in a transparent and efficient manner, without

the use of cryptocurrency.

1.3 Objectives

To implement a consortium blockchain technology for the verification and sharing of KYC

documents.

1.4 Scope

Based on the concept of consortium blockchain, Decentralized KYC is the system proposed to

facilitate the easy management of KYC documents by the FIs. It discourages the redundant

process of filling out the KYC form by the customer and verification by the FIs every time

the customer wishes to work with a certain FI. Also, the cost of verification is reduced as

verification is done only once. Its main application is in banks and FIs to verify and extract

the KYC documents of the customer. Furthermore, it can be modified to be used by a

separate governmental institution to act as a mediator between the customer and FIs to

manage KYC documents.

2

2. Literature Review

2.1 Related work

“Bitcoin: A Peer-to-Peer Electronic Cash System” a white paper published by Satoshi

Nakamoto was one of first paper that proposes a trustless electronic payment system based

on cryptography and proof of work consensus algorithm allowing any two willing parties to

transact directly with each other without the need for a trusted third party through proof of

work consensus mechanism over peer to peer network. Bitcoin as well as many other popular

blockchains known today are based on this whitepaper.[1]

“Ethereum: A Next Generation Smart Contract and Decentralized Application Plat-

form” a white paper published by Vitalik Buterin proposes blockchain technology with an

integrated, fully-fledged Turing complete programming language that can be used to write

”contracts” that can store arbitrary state transition functions which dictate the execution of

actions in the system. This provided users and developers with complete freedom to build

any decentralized applications they wish for.[2]

Juan Benet demonstrated a distributed peer-to-peer file system that links all computing

devices through a single file system and offers a high throughput content-addressed block

storage model with content-addressed hyperlinks. This creates a generalized Merkle directed

acyclic graph, a type of data structure that can be used to create distributed versioned file

systems and even blockchains. IPFS, an implementation based on this paper combines all

above technologies to implement a trustless peer-to-peer distributed file-storage with no

single point of failure.[3]

“Implementing a blockchain from scratch: why, how, and what we learned” by Fabian

Knirsch, Andreas Unterweger and Dominik Engel presents the implementation of blockchain

from scratch for achieving a lightweight and simple solution for energy trading among house-

holds. The paper helps to gain an insight into the use cases of blockchain technology, where

blockchain technologies are most suitable and the implementation of the blockchain from

scratch. They discuss how the blockchains currently available in the market are either too

complex or not suitable for their use case.[4]

The Hong Kong Monetary Authority in 2016 published the “Whitepaper On Distributed

Technology” highlighting the potential benefits of blockchain technology for the FIs. It

concluded that blockchain technology could be a huge benefit to digitize, update and share

identity information among FIs in an effective and secure manner. The paper stated that

3

the blockchain based identity management system would have many benefits. There would

be a better customer experience as the customer would submit the KYC documents only

once. Also the costs and resources needed for the KYC management would be reduced.[5]

A blockchain-based KYC optimization system was proposed in 2017 by Jose Parra Moy-

ano and Omri Ross. The system aimed to provide a solution to decrease the cost of overall

KYC management. The KYC verification process is conducted only once by the first finan-

cial institution the customer wishes to work with and the result of verification is shared in

an anonymized and secure form with all financial Institutions wishing to establish a financial

relationship with that customer. Furthermore, the cost is distributed among all the financial

institutions working with that customer. However, they proposed a complex database archi-

tecture in which customers need to store these data privately and circulate them among the

FIs with which they want to work. Such a structure is costly, and it becomes clear when one

compares the customer journey that emerges from this structure with the existing customer

journey that the self-storage aspect would be a disadvantage.[6]

A distributed ledger based KYC which can be shared with multiple financial institutions

was proposed by Syed Azhar Hussain,Zeeshan-ul-hassan Usman. It has suggested a Proof Of

Importance consensus algorithm to establish a scoring mechanism for details provided in the

KYC process . For example, supply of basic phone number,email addresses can be graded

as 50 while supply of biometrics and fingerprints can be graded as 100 and similarly supply

of citizenship cards, national identities are graded as 200. So users can control the amount

of KYC data to be shared with financial institutions according to the grade of information

needed.[7]

Prince Sinha and Ayush Kaul proposed a system in their paper “Decentralized KYC

System” that is more cost-efficient due to offchain data storage in which KYC data is stored

in a decentralized database and only hash and username is stored as on-chain data on the

blockchain reducing cost for the deployment of the smart contract.[8]

4

Table 2.1: Literature Review Matrix

S.N Title Author Comments

1 Bitcoin: A Peer-to-

Peer Electronic Cash

System

Satoshi Nakamoto This paper proposes a trust-

less electronic payment system

based on cryptography allow-

ing any two willing parties to

transact directly with each other

without the need for a trusted

third party through proof of

work consensus mechanism over

peer to peer network.

2 Ethereum: A Next-

Generation Smart

Contract and Decen-

tralized Application

Platform

Vitalik Buterin The blockchain technology

described in this paper has

an integrated, fully-fledged

Turing-complete programming

language that can be used

to write ”contracts” that can

store arbitrary state transition

functions and enable users to

build any kind of decentralized

system.

3 IPFS - Content Ad-

dressed, Versioned,

P2P File System

Juan Benet This paper presents the Inter-

Planetary File System(IPFS), a

peer-to-peer distributed file sys-

tem.

4 Implementing a

blockchain from

scratch: why, how, and

what we learned

Fabian Knirsch,

Andreas Un-

terweger and

Dominik Engel

This paper presents the appli-

cation of the blockchain tech-

nology for use cases other than

financial transactions and the

implementation of blockchain

from scratch for achieving a

lightweight and simple solution

based upon a particular use case.

5

5 A Taxonomic Ap-

proach to Under-

standing Emerging

Blockchain Identity

Management Systems

Löıc Lesavre,

Priam Varin, Pe-

ter Mell, Michael

Davidson, and

James Shook

This paper presents about dif-

ferent blockchain-based Identity

management systems. It catego-

rizes these systems into a tax-

onomy based on differences in

blockchain architectures, gover-

nance models, and other salient

features.

6 Whitepaper On Dis-

tributed Ledger Tech-

nology

The Hong Kong

Monetary Author-

ity

This paper highlighted the po-

tential benefits of blockchain

technology for the banks and

financial institutions and con-

cluded that blockchain technol-

ogy could be a huge benefit to

digitize, update and share iden-

tity information among banks

and FI’s in an effective and se-

cure manner.

7 KYC Optimization Us-

ing Distributed Ledger

Technology

Jos´e Parra-

Moyano and Omri

Ross

First paper to suggest that the

KYC verification process should

be conducted only by the first fi-

nancial Institution which wishes

to work with a customer, and

that the result of verification

and validation should be shared

in an anonymized and secure

form with all financial Institu-

tions which will wish to estab-

lish a financial relationship with

that customer.

6

8 Decentralized KYC

System

Prince Sinha and

Ayush Kaul

This paper proposed system

is more cost-efficient due to

offchain data storage in which

KYC data is stored in a

decentralized database and

only hash and username is

stored as on-chain data on the

blockchain.This reduces cost

for deployment of the smart

contract.

2.2 Related theory

2.2.1 Blockchain

A blockchain is a digital ledger of transactions that is duplicated and distributed across the

entire network of computer systems (nodes). Each block in the chain contains a number of

transactions, and every time a new transaction occurs on the blockchain, a record of that

transaction is added to every participant’s ledger. Blockchain is a type of DLT (Distributed

Ledger Technology) in which transactions are recorded with an immutable cryptographic

signature called a hash.

There are mainly three types of blockchain:

• Public blockchain: A public blockchain is the permission-less distributed ledger

technology where anyone can join and do transactions. It is a non-restrictive version

where each peer has a copy of the ledger and anyone can access the public blockchain

if they have an internet connection.

• Private blockchain: A private blockchain can be best defined as the blockchain that

works in a restrictive environment, i.e., a closed network. It is also a permissioned

blockchain that is under the control of an entity.

• Consortium blockchain: A consortium blockchain is an approach to solving organi-

zations needs where there is a need for both public and private blockchain features. In a

consortium blockchain, some aspects of the organizations are made public, while others

remain private. A consortium blockchain is managed by more than one organization.

7

2.2.2 Peer to peer network

A peer-to-peer (P2P) network is a sort of computer network where each user functions as

both a client and a server. This type of network eliminates the need for a centralized server

and allows for the sharing of resources and data. All nodes in a P2P network are equal and

have the same ability to make requests, reply to requests, and share resources.

A central server is in charge of overseeing and delivering resources and data to clients

in a classic client-server arrangement. In contrast, P2P networks do not require a central

server because any node or participant can share and receive data and resources directly

from other nodes. These networks are often used for file sharing, instant messaging, and

other communication applications.

The architecture of a P2P network can be classified into unstructured and structured.

Unstructured P2P networks are more common and simpler in design. They are characterized

by a lack of a formal structure, which means that nodes can connect to any other nodes in

the network without any predefined rules or requirements. In an unstructured P2P network,

nodes are typically connected to a limited number of other nodes, forming a loosely connected

mesh network. This design is often used for file sharing applications.

Structured P2P networks, on the other hand, have a more formal structure that organizes

the nodes into a hierarchical or distributed structure. This allows for more efficient routing

and searching of resources in the network. Structured P2P networks are often used for

content distribution and communication applications.

P2P network provides scalability. Because there is no central server, the network can

handle large amounts of traffic and can easily scale up as more nodes join the network.

Additionally, P2P networks are often more robust and resilient than traditional client-server

networks because they do not have a single point of failure. However, P2P networks can

also be used for illegal activities, such as piracy or malware distribution, and can be difficult

to monitor and regulate. Additionally, the decentralized nature of P2P networks can make

them slower and less efficient than centralized networks for certain types of applications.

A P2P network is essential to the distributed and decentralized character of blockchain

systems in the context of blockchain technology. Each node in a blockchain network keeps a

copy of the blockchain ledger, and all nodes communicate with one another to agree on the

ledger’s current state.

A new transaction on the blockchain is broadcasted to all network nodes. The transaction

is subsequently verified by each node using a set of network-agreed consensus standards. If

the transaction is legitimate, it is included in a fresh block that is subsequently broadcasted

to all network nodes.

8

2.2.3 Transactions

In blockchain network transactions are any kind of data that is stored on the blockchain. It

could be anything from the transfer of ownership of a digital asset to a simple message that

needs to be stored permanently. A transaction is initiated by a participant on the network

who wants to create a new record on the blockchain.The transaction contains information

such as the Sender, Receiver, Amount, Timestamp, Signature and other relevant data. When

a user initiates a transaction, it is broadcasted to all the nodes on the network, which validates

the transaction using a consensus algorithm. Once the transaction is validated, it is added

to a block, which is then added to the existing blockchain.

This information is then verified and validated by the nodes on the blockchain network

using consensus algorithms to ensure the transaction is valid and meets the rules of the

network and finally added to blocks.

2.2.4 Block

A block is a container data structure that aggregates transactions for inclusion in the public

ledger, the blockchain.

Block can be generally divided into two major sections:

• Header: Header section contains metadata about the block, such as a timestamp, a

nonce (a random number used in the mining process to create a new block), and the

hash of the previous block in the chain. The header also contains a hash of the data

section, which is used to ensure the integrity of the block’s transactions.

• Data: Data section contains a set of transactions that have been validated by the

network’s consensus mechanism followed by a long list of transactions that make up

the bulk of its size.

2.2.5 Consensus

Consensus is the process of achieving agreement among multiple nodes or participants in

the system regarding a particular state or decision. In a distributed system, where there is

no central authority, achieving consensus is essential to ensure that all participants agree on

the current state of the system and any changes made to it.

Consensus is achieved through a consensus algorithm, which is a set of rules and pro-

tocols that allow nodes to agree on a specific state or decision. In the blockchain network,

the consensus algorithm ensures that all nodes in the system have the same copy of the

9

distributed ledger. Consensus algorithms are used to validate transactions to confirm their

authenticity, and ensure that they are added to the blockchain in a secure and decentralized

manner. It is necessary for maintaining the integrity of blockchain.

There are different types of consensus algorithms used in blockchain technology. The

popular consensus algorithms include:

• Proof of Work (PoW): This is the most commonly used consensus algorithm, used

by cryptocurrencies like Bitcoin and Ethereum. It involves miners competing to solve

complex mathematical problems to validate transactions and add new blocks to the

blockchain.

• Proof of Stake (PoS): This consensus algorithm selects validators based on their

stake in the network, and validators are chosen to add new blocks based on the amount

of cryptocurrency they hold.

• Delegated Proof of Stake (DPoS): This consensus algorithm is similar to PoS, but

instead of selecting validators based on their stake, it selects a group of delegates to

validate transactions and add new blocks to the blockchain.

• Practical Byzantine Fault Tolerance (PBFT): This consensus algorithm is used

in permissioned blockchains and relies on a small group of nodes, known as validators,

to reach consensus on transactions and blocks.

2.2.6 Public Key Cryptography

Public key cryptography, also known as asymmetric cryptography, is a cryptographic system

that uses two keys, a public key and a private key, to encrypt and decrypt data. This system

was developed to overcome the limitations of traditional symmetric cryptography, where the

same key is used to encrypt and decrypt data, making it vulnerable to attacks if the key is

compromised.

In public key cryptography, the public key is freely available to anyone who wants to

send encrypted data to the owner of the private key, while the private key is kept secret and

only known to the owner. The public key can be distributed widely without any security

concerns, as it is only used to encrypt data and not to decrypt it.

The use of public key cryptography provides several advantages over traditional sym-

metric cryptography. It eliminates the need for a secure channel to transmit the encryption

key, as the public key can be freely distributed. It also enables digital signatures, where the

sender can sign a message using their private key, and the receiver can verify the signature

10

using the sender’s public key. This provides a way to authenticate the sender and ensure

that the message has not been tampered with in transit.

In a blockchain network, each participant has a public key and a private key. The public

key is a unique identifier that is used to receive transactions and to validate digital signatures,

while the private key is a secret that is used to sign transactions and prove ownership of the

associated public key.

Wallet is used to generate and manage these public and private keys. Each participant

generates a key pair, and the public key is used to create a unique digital identity on the

blockchain network. The private key is kept secure and used to sign transactions and prove

ownership of the public key. When a transaction is submitted to the blockchain network, it

is digitally signed using the private key of the sender. The digital signature is then verified

by the network using the public key of the sender. This ensures that the transaction was

sent by the rightful owner of the public key and that it has not been tampered with in transit.

2.2.7 Hashing

Hashing is a process of converting any input data of arbitrary length into a fixed-size output,

typically a string of digits and letters of a specific length, using a mathematical algorithm

called a hashing function. The output is commonly referred to as a hash or message digest.

The hashing function takes the input data and applies a series of mathematical operations

to it to produce the output hash.

Figure 2.1: Hashing procedure

[9]

11

The key properties of a hashing function are:

• Deterministic: For a given input, the output of the hashing function will always be

the same.

• Irreversible: It is computationally infeasible to reconstruct the original input data

from the hash.

• Uniformity: A small change in the input data should produce a significant change in

the output hash.

• Collision-resistant: It is computationally infeasible to find two different inputs that

produce the same output hash.

Hashing is used in blockchain technology to ensure the integrity and security of the data

stored in blocks. Each block in a blockchain contains a hash of the previous block, forming

a chain of blocks that is resistant to tampering. Any attempt to modify the data in a

block would result in a different hash value, breaking the chain and making the modification

immediately detectable.

2.2.8 Wallets

Crypto wallets are digital wallets that are used to securely store private and public keys

for transactions on blockchain networks. Private keys are used to sign transactions, while

public keys are used to prove ownership of transactions through digital signatures.When a

user initiates a transaction, the crypto wallet creates a digital signature using the private

key to authenticate the transaction. The digital signature is a mathematical algorithm that

verifies the ownership of the private key and ensures that the transaction cannot be altered

after it has been signed.

The private key must be kept secret and secure at all times. If the private key is lost

or stolen, the funds in the wallet are lost forever. Therefore, it is important to backup the

private key and store it in a secure location. Many wallets offer features such as multi-

signature and hardware wallets to provide additional security for private keys.

Crypto wallets come in two forms: hot wallets and cold wallets. Hot wallets are connected

to the internet and allow for easy access to funds, while cold wallets are offline and offer

greater security.

Most crypto wallets use a combination of software and hardware to store private keys.

Hardware wallets, for example, store private keys on a physical device, such as a USB drive,

that is disconnected from the internet when not in use. Software wallets, on the other hand,

12

store private keys on a computer or mobile device and can be protected with passwords or

other security measures.

In addition to storing private and public keys, crypto wallets also allow users to view

their cryptocurrency balances, track transactions, send and receive funds which depend on

the type of blockchain network we are working with.

2.2.9 Javascript and Go packages for cryptography

Ethers.js is a JavaScript library for interacting with blockchain networks. One of the main

features of Ethers.js is the ability to create and manage wallets that can be used to sign

transactions and messages on the blockchain. When creating a new wallet, Ethers.js uses

the Elliptic Curve Digital Signature Algorithm (ECDSA) to generate a new private key that

is associated with the wallet. This private key is then used to sign transaction

Wallet.signMessage() method, takes transaction data as input and generates a signature

using the private key associated with the wallet. This signature can be included with the

transaction data and forwarded to the blockchain network.

go-ethereum/crypto is a Go implementation for interacting with blockchain networks.

crypto.SigToPub() method reconstructs the public key from the signature and transaction

data and compares it to the expected public key to determine if the signature is valid.

Both Ethers.js and go-ethereum/crypto rely on the Elliptic Curve Digital Signature Al-

gorithm (ECDSA) for signing and verification of transactions and messages on the blockchain.

2.2.10 Networking

In the context of blockchain, Networking refers to the process of communication and data

exchange between the nodes in the network. To facilitate this communication, blockchain

networks use a variety of networking protocols and technologies among which P2P plays a

crucial role. In a peer-to-peer network, each node acts both as a client and a server, and

is responsible for transmitting and receiving data to and from other nodes. Nodes can join

or leave the network at any time, and new nodes can be added without the need for a

central authority to manage the process. P2P networking is implemented along with other

networking protocols which specifies how nodes communicate and share and broadcast data

with each other. The protocol defines the format of messages and blocks, as well as rules for

validation of received data. One of the important aspect of networking is block broadcasting.

13

Block Broadcasting

Block broadcasting is the process of distributing a newly mined block to the entire network

of nodes in a blockchain system. When a new block is created, it needs to be broadcasted

to the network in order to be verified and added to the blockchain.

In a peer-to-peer network, the block is initially broadcasted by the node that mined it,

known as the ”originating node”. The node will then send the block to a number of its

connected peers, who in turn send the block to their connected peers, and so on. This

process continues until the block has been distributed to all nodes in the network.

There are two main methods for block broadcasting in a blockchain network. They are:

• Flooding: In this method, the originating node sends the block to all of its connected

peers, who in turn send the block to all of their connected peers, and so on. This process

continues until the block has been received by all nodes in the network. Flooding is

simple and effective, but it can result in a large amount of network traffic and can

potentially overload nodes with too many incoming blocks.

• Gossiping: In this method, the originating node sends the block to a small number of

its connected peers, who in turn send the block to a small number of their connected

peers, and so on. This process continues until the block has been received by all nodes

in the network. Gossiping is more efficient than flooding, as it reduces the amount of

network traffic and can help prevent network congestion. Additionally, it allows nodes

to prioritize blocks based on their importance and relevance to the network.

14

3. Requirement Analysis

3.1 Functional Requirements

3.1.1 Registration of Customers and Financial Institutions

Customers as well as financial institutions should be able register into the platform.

3.1.2 Uploading KYC details

Customers should be able to upload KYC details on the platform as well as approach finan-

cial institutions for verification.

3.1.3 Verification of KYC

Financial institutions should be able to view and verify documents provided by the users.

3.1.4 Request for permission

Financial institutions should be able to request the customers for their KYC documents

which are already verified by some other institution in the network.

3.1.5 Grant permission

Customers should be able to give permission for financial institutions in order to view their

KYC documents.

3.1.6 Record transactions

All the transactions in the system should be recorded and broadcasted in the blockchain.

15

3.2 Non Functional Requirements

3.2.1 Reliability

System should be free from faults, bugs and be available all the time to the users to upload

and share the KYC details and FIs to verify or access the documents at any time upon

request.

3.2.2 Performance

The KYC details encryption, upload, decryption, viewing, verification and sharing process

all should occur within proper time.

3.2.3 Maintainability

The system should be easily maintainable and the errors and bugs should be found and

debugged easily.

3.2.4 Security

The KYC details should be encrypted and should be viewed only by authorized persons.

16

3.3 Tools and Technologies

3.3.1 Hardware Requirements

Banks will serve as full nodes for blockchain networks, therefore hardware for the bank side

will consist of a computer with adequate processing power, storage, and internet connectiv-

ity, with proper power backups.Users act as half node and only engages through front end

interface hence the necessary hardware is an internet-connected laptop or mobile device.

3.3.2 Software Requirements

Table 3.1: Software Requirements Table

S.N Languages/Frameworks Function

1 Golang Used for developing blockchain servers.

2 NodeJS Used for connecting blockchain, frontend and

databases.

3 ReactJS Used for making User Interfaces.

4 MongoDB Used for storing off-chain data.

5 IPFS Swarm Used for storing KYC documents.

6 BadgerDB Used for storing on-chain data.

17

4. Feasibility Study

4.1 Economic Feasibility

The project is economically feasible as very high computation power is not required for the

development process. Also, a custom consortium blockchain is created where cryptocurren-

cies aren’t required.

4.2 Technical Feasibility

While implementing a blockchain solution from scratch is a complex and time-consuming

process, it is technically feasible with the right expertise and resources. Since blockchain

technology has been around for decades, there’s a lot of resources to study about them. As

long as the development team has the required technical skills, knowledge, and tools, they

can design and implement a blockchain solution like this.

4.3 Operational Feasibility

The project is operational feasible as it can be operational just after configuring nodes. The

complexities of blockchain technologies are abstracted away from the users. So users can use

the system easily.

4.4 Schedule Feasibility

The schedule of the project as mentioned in the Gantt chart of the project proposal was

met. It was completed in a total of 28 weeks. Thus, this project is schedule feasible.

18

5. Methodology

5.1 System Architecture

Figure 5.1: System Architecture Diagram

19

The major components of the system are:

5.1.1 Blockchain

Blockchain is the core part of the proposed system. A consortium blockchain is created

where all the transactions between the customers and FIs are stored. The FIs themselves

are the distributed nodes to run the programs to process blocks. FIs participate as full nodes

by mining and processing the transactions whereas the users participate as the half nodes

by only participating in transactions and not concerned with the mining.

5.1.2 Private Distributed File Storage

In order to store the KYC documents of the user, a private distributed file storage is imple-

mented where the documents of the users are stored safely and reliably. The documents are

encrypted cryptographically and stored in the distributed file storage. The FIs themselves

are the nodes of the distributed file storage and are responsible for storing the KYC docu-

ments of the users.

5.1.3 Centralized Off-Chain Database

There is some information that is too extensive to be stored in the blockchain. Blockchain is

mostly utilized to maintain immutable events with user KYC (verification,access banks,IPFS

address etc.). The information that is extensive to be stored in the blockchain is stored in the

centralized database. This database helps to keep track of offchain events like user requests

for verification,banks requests for KYC access etc.

5.1.4 Wallet

Public and Private keys are username and password for blockchain which are unique to each

user. So a simple wallet program is implemented in order to generate,store and manage key

value pairs of public and private keys associated with users and FIs.

5.1.5 Backend Server

Backend server is used as an interface between the Blockchain Server and the User Interface.

Also, it is responsible for the communication with the distributed file storage and databases.

Thus, the backend server acts as an intermediary responsible for the communication with

all other components of the system.

20

5.1.6 User Interface

User Interfaces are used by customers and FIs to interact with the system. An easy to use

User interface is created hiding all the blockchain complexities from the end users.

5.2 System Development Workflow

Figure 5.2: System Development Workflow

5.2.1 Designing Blockchain Data Structure

Blockchain is a linear chain of blocks. Each chain contains a set of transactions and other

details. Blocks are linearly connected and are cryptographically secured. Each block header

contains the previous block hash, nonce, and other details. All blocks are connected linearly

by carrying the hash of the previous block. The first block with no previous block hash

is called Genesis Block. Transaction is a variable-sized field that includes the list of all

transactions contained in the block.

21

Figure 5.3: Block structure in blockchain

Different parts contained in the block are:

• Block Hash: A block hash is a unique identifier for a block in a blockchain network.

It is a fixed-length cryptographic hash function that is used to secure and validate the

integrity of the data within the block. The hash is generated by applying a complex

mathematical algorithm (SHA256) to the block’s contents.

• Previous Block Hash: The previous block hash is the hash of the previous block

in the blockchain. Each block in the chain contains the hash of the previous block,

which creates a chain of blocks that are linked together. This field is used to ensure

the immutability of the blockchain because any changes to a previous block will cause

all subsequent blocks to become invalid.

• Nonce: A nonce is a number that is added to a block’s header during the mining

process in a Proof of Work (PoW) blockchain network. The nonce is a random number

that is added to the block’s data to create a hash that meets the network’s difficulty

target. The difficulty target is a value that determines how hard it is to mine a block,

and the nonce is used to adjust the hash until it meets the target.

• Block Height: Block height refers to the number of blocks in a blockchain network.

Each block in the chain is assigned a unique height, starting with the genesis block,

which has a height of 0. As new blocks are added to the network, the block height

increases, and each new block is added to the end of the blockchain. The block height

is used to determine the current state of the network and to synchronize the blocks

with other nodes.

22

• Transactions: Transaction is a variable-sized field that includes the list of all trans-

actions contained in the block. The blockchain implemented in the project contains

only one transaction per block. Transactions are initiated in three different situations.

They are:

1. KYC Upload

Figure 5.4: KYC Upload Transaction

2. KYC Verify

Figure 5.5: KYC Verify Transaction

3. Grant Access

Figure 5.6: KYC Grant Access Transaction

23

There are different fields in a transaction. They are:

Figure 5.7: Transaction structure

• ID: A transaction ID, also known as a TXID, is a unique identifier assigned to each

transaction in a blockchain network. The transaction ID is a string of characters that

is generated through a hashing algorithm, which converts the transaction data into a

fixed-length, alphanumeric string.

• Customer Address: This field contains the wallet address of the customer whose

transaction is stored. This field is important because it is used to differentiate one user

from another in the blockchain.

• Bank Access: This field contains the wallet address of the FI. This field means that

the FI has access to the KYC details of the customer with the address present in

Customer Address Field.

• Is Verified: It is a simple boolean field which identifies whether the user is verified

or not.

• Ipfs Hash: This field contains the hash of the KYC documents of the users.

• Verified By Bank Address: Once the user is verified by the FI, this field contains

the address of the FI who verified the user.

• Signature: This is one of the important fields of the transaction as this field contains

the cryptographically signed data. The signature is done by the transaction initiator.

It can be used to verify if the transaction is really initiated by the entity or not.

5.2.2 Identification of Nodes

The FIs themselves are the blockchain nodes of the proposed system. They are the devices

which are authorized to keep record of the distributed ledger. Their responsibility is to val-

idate the accuracy of each transaction block adding it to the blockchain. Once the blocks

24

are mined by the miner node, the blocks are broadcasted to all other participating nodes in

order to synchronize the blockchain across all the nodes.

5.2.3 Designing Peer To Peer Network

Nodes in the blockchain communicate with each other via a Peer To Peer network. Every

Financial Institution acts as a full node in our blockchain. They maintain their own copy of

the chain. A random node acts as a main node in our implementation to provide a list of

connected nodes and to provide all the blocks for the new node. Whenever a new node enters

the platform, they download all the blocks from the main node. After the block transfer is

complete, the Node can validate and mine the blocks. The miner node mines the incoming

block and then adds it to its own chain. After that, the block is sent to all other nodes.

Figure 5.8: Block broadcast from miner node to other nodes.

5.2.4 Creating Wallets

A new wallet is created for each financial institution and customer during registration. For

added security each wallet is encrypted with the user’s password and stored securely on

off-chain data storage, along with other registration details.

Wallet holders can access their wallets and use them to sign and broadcast transactions

within the system. This allows them to securely interact with the blockchain network in a

user-friendly way.

25

5.2.5 Signing and Storing Transactions

When signing transactions in the system, the wallet must be decrypted with a valid password.

Once decrypted, the private key from the wallet is used to sign the transaction, resulting in

a unique signature of the transaction data.This signature, along with the signer’s public key

and the transaction data, is then sent to the blockchain network. The blockchain network can

verify the credibility of the signature using the signature, public key, and transaction data.

If the signature matches, the transaction is added to the block. Otherwise, the transaction

is discarded.

Figure 5.9: Signing of Transaction

This process ensures that only authorized parties with access to the correct private key

can sign transactions and interact with the blockchain network. By verifying the signature

and public key, the blockchain network can ensure the authenticity and integrity of trans-

actions added to the block. This helps to maintain the security and trustworthiness of the

blockchain network.

26

5.2.6 Mining and consensus algorithm

Block mining is the process by which new transactions are validated and added to the

blockchain. Proof of work consensus algorithm is used to validate the transaction. Banks as

full nodes use their resources to mine the blocks and add them in the chain. It is designed

to prevent fraud and ensure the security and integrity of the blockchain.

Independent verification of the transaction is done by a full node, based on a compre-

hensive list of criteria. The verifying full node includes the transaction into a new block by

mining, a demonstrated computation through a Proof-of-Work algorithm. The newly added

block is broadcasted to other nodes in the peer to peer network. The nodes do independent

verification of the new block and assemble the block into their own chain.

5.2.7 Private Distributed File Storage Integration

It is not cost-effective and efficient to store all KYC information in blockchain. Therefore,

a third-party private distributed file storage system is used to store KYC information in

encrypted format. Address or cryptographic hash of the file returned by the storage system

is stored on the blockchain. The content of the file can only be accessed by connected banks

with the user’s consent.

Figure 5.10: IPFS Swarm Cluster

27

IPFS Swarm Cluster is used as a Private distributed file storage. It is a group of nodes

that are connected and share content with each other.

There are two different types of nodes:

• Bootstrap Node: The backend server acts as the bootstrap node and is responsible

for managing the cluster and client nodes.

• Client Node: The FIs themselves are the client nodes of the IPFS swarm cluster.

They store the encrypted KYC documents and are used to download and retrieve

content from the network.

5.2.8 Off Chain Database Integration

Off-chain Database is used to store the information associated with the users, financial

institutions (FIs) and KYC.

User details such as the email, hashed password, KYC status, encrypted wallet, wallet

address, etc are stored. Bank details such as bank name, email, hashed password, registra-

tion number, address, phone number, encrypted wallet, wallet address, etc. are stored. KYC

details associated with users are also stored.

5.2.9 Building the APIs

APIs are used to connect the blockchain server, backend and frontend part of our project.

For sending the transaction data from Nodejs server to Go blockchain, a TCP socket is used.

The data is sent as a stream of bytes delimited by a newline character. The data is passed

in the following format:

header {
from : ” node j s ” ,

command : ”commandToPerform” ,

} ;

t ransact ionData {
customerAddress : ”0xAddr355 ” ,

s i gna tu r e : ”0x51gnAtuR3” ,

bankAddress : ”0xAddr355 ” ,

} ;

For the communication between central backend server and frontend, API is based on

HTTP request/response. HTTP requests are sent by the frontend at the certain URL end-

28

points and response is sent in the JSON format.

5.2.10 Designing User Interface and API Integration

A web application with a user-friendly interface has been developed to facilitate transactions

for both users and financial institutions (FIs). To simplify the blockchain’s intricacies, the

application employs a password-based system for initiating transactions, which abstracts

away the complexities of the blockchain wallet. During transactions, the password provided

is used to decrypt the wallet, thereby retrieving the private key required for signing the

transactions.

The application backend utilizes APIs exposed by the blockchain nodes to communicate

with them, providing the necessary transaction data to initiate transactions within our ap-

plication. Additionally, the backend fetches chain data from the blockchain nodes using the

APIs they provide.

The frontend of the application uses APIs exposed by the backend for user registration,

authentication, transaction initiation, and fetching data from distributed storage, off-chain

storage, and the blockchain.

5.3 System Usage Workflow

Figure 5.11: System Usage Workflow

5.3.1 Registration

The users and FIs are registered to the platform using their email address and password. A

unique wallet address is generated for each entity and is linked with the account. The wallet

is encrypted by using the user’s password and is stored in the database.

29

5.3.2 KYC upload

After registration on the platform, KYC details and documents are uploaded by the users.

The documents are encrypted, stored in private distributed file storage and the returned

hash is then stored in the blockchain.

5.3.3 KYC verification

The user can request one of the registered FI in order to verify the KYC. The requested FI

can view the details shared by the user and can verify the user. Now, the user is verified and

the verification status for the user is added in the form of transaction on the chain together

with the identity of the verifier.

5.3.4 KYC sharing

Once the user is verified by a FI, the KYC details can be easily shared with other FIs. The

user can grant access to the FI in order to view the KYC details if FI requests the user

for the details. After the access is granted, a new transaction is initiated and stored in the

blockchain.

30

6. Evaluation, Result and Analysis

6.1 Verification and Validation

The verification and validation process is an essential part of software development, ensuring

that the product meets the requirements and performs as expected. Various techniques for

verification and validation to ensure the quality and functionality of the blockchain-based

KYC sharing system was employed.

6.1.1 Verification

Verification is the process of ensuring that the system meets the specified requirements.

Following techniques were used for verification:

6.1.1.1 Code Review

The blockchain code was reviewed by experienced developers who have experience in blockchain

development. The code review was focused on ensuring that the code followed best practices

and coding standards for Golang and blockchain development. The review covered security,

performance, and consistency. The review process included code walkthroughs and peer

reviews to ensure that all issues were identified and resolved.

6.1.1.2 Unit Testing

Unit tests were written for the blockchain and other component’s code to ensure that it

worked as expected and met the project requirements. The unit tests were designed to cover

all possible use cases and edge cases and were executed with every code change.

6.1.1.3 Integration Testing

Integration tests were performed to ensure that the blockchain, back-end and front-end com-

ponents interact correctly with each other and with external dependencies. The tests were

designed to cover all possible interactions between the components and external dependen-

cies.

31

6.1.1.4 Code Coverage

Code coverage was measured to ensure that all important parts of the code were tested and

to identify any parts of the code that were not covered by unit tests. It was used to guide

further testing and identify any areas for improvement.

6.1.2 Validation

Validation is the process of ensuring that the system meets the user’s needs and is fit for

purpose. In our project, we used the following techniques for validation:

6.1.2.1 System Testing

Overall system and features were tested by creating multiple nodes simulating multiple

banks and customers and sharing KYC data between them. This was done in a simulated

production environment to ensure that the system would work correctly in the real world.

The tests covered the following scenarios:

1. Creating a new KYC record.

2. Sharing a KYC record between nodes.

3. Verification of record.

4. Recording of transactions on chain.

Finally results were recorded and analyzed for any issues or bugs.

6.1.2.2 User acceptance testing

This test ensured that the system was designed to meet users requirements. Based on the

feedback from the user system was refined.

6.1.2.3 Performance testing

Load testing was performed by simulating multiple banks and users creating high network

load.Stress testing on blockchain was also performed by creating a large number of blocks

and transactions from different nodes.This test ensured that the overall system could handle

large number nodes and high traffic condition without impacting the system’s performance..

32

6.1.2.4 Persistence testing

To ensure that the KYC data, off-chain data, and blockchain data were persistently and

reliably stored, persistence testing was performed. Test focused on the IPFS storage system

to ensure that it could accurately store KYC data over time.Original uploaded data on IPFS

was tested with the hash present on the blockchain to verify that the data was reliably stored

and could be retrieved when needed. Additionally, tested the persistence of blockchain data

during a server crash to ensure that the system could recover without any data loss.Overall,

persistence testing on the different storage systems ensured reliability,accuracy,durability of

data over time.

6.1.2.5 Security testing

Conducted security testing to identify any vulnerabilities in the system and ensure that it is

secure and resilient against attacks such that unverified and invalid signature transactions

were not added to the blockchain.

Overall, the verification and validation process was critical to ensuring the quality and

functionality of our blockchain-based KYC sharing system. By using a combination of test-

ing, peer review, and user acceptance testing, we were able to verify that the system met

the specified requirements and validate that it was fit for purpose.

6.2 Results

6.2.1 Easy and Secure KYC Sharing

Decentralized KYC sharing was successfully implemented using ReactJS, NodeJs, and IPFs

on top of the consortium blockchain. The system provides secure and transparent sharing of

KYC data between different parties, with data stored on IPFs and hashes stored as trans-

actions on the blockchain. Decentralized KYC sharing reduces the time and cost associated

with KYC verification and increases privacy and security.

6.2.2 Intuitive User Interface

User feedback was collected to assess the usability and user experience of the implementa-

tion. Easy and intuitive user interface was developed to allow users to interact with the

application without any advance knowledge of blockchain and web technologies.

33

6.2.3 Blockchain Development

The blockchain was designed and implemented using Golang, with a focus on simplicity

and efficiency. The architecture of the blockchain supports the creation and validation of

transactions, and includes features such as peer-to-peer communication and consensus mech-

anisms. The development process presented several challenges, such as ensuring consistency

and synchronizing data across the network. These challenges were addressed through the

implementation of robust consensus algorithms and data storage mechanisms.

6.2.4 Efficient Storage

Mongo DB was used as an off-chain database to store data that was too extensive to store

on the blockchain. The off-chain database stores user profiles, transaction history, and

other metadata using cryptographic techniques such as hashing. This approach improves

scalability, reduces the size of the blockchain, and reduces storage costs while ensuring the

consistency and security of the data.

6.2.5 Crypto-less Blockchain

The blockchain was developed without involving any cryptocurrency. Instead, it was designed

to support the decentralized sharing of KYC data. This approach provides a secure and

efficient alternative to centralized KYC verification systems, while improving privacy and

reducing costs.

34

6.3 Outputs

Figure 6.1: De KYC Landing Page

Figure 6.2: Customer Profile

35

Figure 6.3: KYC Upload Form

Figure 6.4: KYC Details Page

36

Figure 6.5: Request Verification

Figure 6.6: Bank Profile

37

Figure 6.7: Verification Requests

Figure 6.8: Request client for KYC

38

Figure 6.9: Grant Access to KYC

Figure 6.10: Downloading blocks on first connection

Figure 6.11: Receive a sent block

39

Figure 6.12: Bank users

Figure 6.13: Blockchain Explorer

40

6.4 Analysis

6.4.1 Benefits of decentralized KYC sharing

Decentralized KYC sharing allows for the secure sharing of KYC data among different or-

ganizations without a centralized intermediary. This reduces the risk of data breaches and

improves data privacy. It also enables faster onboarding processes for customers and reduces

costs for businesses by eliminating the need for redundant KYC checks. By leveraging de-

centralized technologies, businesses can improve their KYC processes and provide a better

experience for their customers.

6.4.2 Advantages of IPFS storage mechanism

Use of IPFS storage mechanism ensures data privacy as data is not stored on a centralized

server and can only be accessed by authorized nodes. Additionally, IPFS enables efficient

and scalable storage of data, which is essential in a decentralized system.

6.4.3 Limitations of a crypto-less blockchain

A cryptocurrency-less blockchain may be limited in terms of incentivization as it lacks a na-

tive cryptocurrency to reward users for their participation. This could make it challenging

to maintain the blockchain. Additionally, it is not suitable for blockchain applications that

rely on a cryptocurrency component to function properly.

6.4.4 Potential of blockchain technology

Blockchain technology’s secure and efficient data sharing capabilities can be applied to other

industries and use cases where data privacy and security are paramount. By leveraging

blockchain, organizations can store and share data in a secure, transparent, and decentral-

ized manner.

Overall, our project showcases the potential of blockchain technology to transform the way

we handle sensitive data, specifically in the area of KYC sharing. By using a decentralized

system that is secure and efficient, we have created a practical solution to the challenge of

securely sharing KYC data among different organizations.

41

7. Conclusion and Future Enhancements

7.1 Conclusion

We have successfully implemented a decentralized KYC sharing system using blockchain

technology that does not involve cryptocurrency. The blockchain was designed and im-

plemented with a focus on simplicity and efficiency, and the off-chain database and IPFS

storage mechanism used provides scalability and reduces storage costs while ensuring the

consistency and security of the data. The implementation provides a secure and efficient al-

ternative to centralized KYC verification systems, reduces the time and cost associated with

KYC verification, and increases privacy and security. The project demonstrates the potential

of blockchain technology in developing decentralized and efficient systems that can improve

existing processes in various industries, and contributes to the advancement of blockchain

technology.

7.2 Future Enhancements

While we have put in our best efforts to complete our project, there is always room for

improvement and future enhancements. Some potential areas for future improvement and

development include:

• Implementation of KYC update mechanism: The implementation could be ex-

tended to update the existing KYC of the customers.

• Improved user interface and user experience: The user interface and user ex-

perience of the implementation could be improved to make it more intuitive and user-

friendly, thus increasing adoption and usage.

• Integration with AI and machine learning: The implementation could be ex-

tended to integrate with AI and machine learning algorithms, enabling advanced data

analysis and decision-making.

• Adoption of more efficient consensus mechanisms: The implementation could

be further optimized by adopting more efficient consensus mechanisms, such as proof-

of-stake, to reduce energy consumption and increase scalability.

42

References

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

[2] Vitalik Buterin. Ethereum: A next- generation smart contract and decentralized appli-

cation platform.

[3] Juan Benet. Ipfs - content addressed, versioned, p2p file system.

[4] Andreas Unterweger Fabian Knirsch and Dominik Engel. Implementing a blockchain

from scratch: why, how, and what we learned.

[5] Hong Kong Monetary Authority. Whitepaper on distributed ledger technology.

[6] José Parra Moyano and Omri Ross. Kyc optimization using distributed ledger technology.

Business and Information Systems Engineering, 59(6), 2017.

[7] Syed Azhar Hussain and Zeeshan-ul-hassan Usmani. Blockchain-based decentralized kyc

(know-your-customer). In ICSNC 2019: The Fourteenth International Conference on

Systems and Networks Communications. IARIA, 2019.

[8] Prince Sinha and Ayush Kaul. Decentralized kyc system. International Research Journal

of Engineering and Technology (IRJET), 2018.

[9] https://www.simplilearn.com. A definitive guide to learn the sha-256 (secure hash algo-

rithms), 2023.

43

Appendices

ECDSA

ECDSA (Elliptic Curve Digital Signature Algorithm) is a public key cryptosystem that is

widely used for secure communication over the internet. It is based on the mathematics of

elliptic curves and is an efficient alternative to traditional digital signature algorithms such

as RSA.

The algorithm is used to generate digital signatures for electronic documents and is based

on the use of elliptic curves in finite fields. The security of the algorithm is based on the

complexity of the discrete logarithm problem in these finite fields.ECDSA does not encrypt

or prevent someone from seeing or accessing data, what it protects against though is making

sure that the data was not tampered with.

The process of generating a digital signature using ECDSA involves two steps: key gen-

eration and signature generation.

Key Generation

In the first step, generate a public-private key pair using an elliptic curve in a finite field.

The public key is shared with others, while the private key is kept secret. The key pair is

generated using the following steps:

1. Select an elliptic curve over a finite field and a point G on the curve, which is used as

the generator point.

2. Choose a private key k randomly from the set 1, 2, . . . , n-1, where n is the order of

the generator point G.

3. Compute the public key point Q = k * G, where * represents the elliptic curve point

multiplication operation.

Signature Generation

In the second step, generate a digital signature for a document using private key and the

ECDSA algorithm. The signature is verified by corresponding public key. The signature

generation process involves the following steps:

44

1. Hash the document to be signed using a cryptographic hash function to generate a

message digest.

2. Generate a random number r from the set (1, 2, . . . , n-1), where n is the order of the

generator point G.

3. Compute a point R = r * G on the elliptic curve.

4. Compute the value s = (hash + k * r) / d mod n, where hash is the message digest, d

is the user’s private key, and mod n means that the result is reduced modulo n.

5. The digital signature is the pair (R, s).

Signature Verification

In ECDSA, a digital signature is a pair of numbers (r, s) that are derived from the message

being signed and the sender’s private key. The receiver verifies the signature by using the

sender’s public key, which is a point on an elliptic curve, along with the signature and the

hash of the message.

The verification process involves the following mathematical steps:

1. The receiver computes the value of the hash of the message using a secure hash function.

2. The receiver then computes a value called the inverse of s. This inverse value is

computed by finding a value s
−1 such that s ∗ s−1 mod n = 1, where n is the order of

the curve. This modular inverse of s is used in the next step of the verification process.

3. Next the receiver computes two points on the elliptic curve. The first point P is

computed as s multiplied by the base point G of the elliptic curve plus the hash value

of the message multiplied by the public key point Q of the sender. The second point

is the point on the elliptic curve represented by the pair of numbers (r, s), which is

the signature obtained from the sender.The base point G is a well-defined point on the

elliptic curve that is known to both the sender and the receiver. In ECDSA, the base

point G is a fixed point on the elliptic curve that is chosen at the time of selecting the

elliptic curve parameters.

4. The receiver then checks whether the first point P obtained is the same as the second

point obtained from the signature (r, s). If the points match, then the signature is

verified to be valid. This is because the signature is generated by computing the scalar

multiplication of the base point G with a random scalar k and then decomposing it

into two numbers r and s. In the verification process, the receiver computes a point

45

P using the scalar multiplication of s with G and adds the hash value of the message

multiplied by the public key point Q. If the signature is valid, the two points P and (r,

s) will be the same.

46

