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Abstract

Photoplethysmography (PPG) is a low-cost optical device that measures changes in blood

volume in the microvascular tissue bed from the skin’s surface. It has been used in commercial

medical devices to gauge peripheral vascular disease and autonomic function by monitoring

blood pressure, heart rate, and oxygen saturation. Due to the presence of motion artifact

during exercises, there arises difficulty in measuring heart rate from PPG signal. A machine

learning based approach is used to monitor heart rate (HR) using wrist-type photoplethys-

mography (PPG) signals in this paper. By combining 1D CNN and a bidirectional LSTM,

the model get benefit from the strengths of both architectures, capturing both local and

long-term patterns in the input data. The proposed model exhibits average absolute error

of less than 1.5 bpm for all the training and test datasets. The model shows the promising

result with less than 300 thousands network parameters.

Keywords: PPG, ECG, CNN, LSTM, Motion Artifact, Sequence models
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1. Introduction

Continuous monitoring of heart rate in natural environments can provide clinicians with

valuable information about a patient’s health status, especially for patients with heart dis-

eases. Many wearable devices such as Samsung Gear Fit, Atlas Fitness Tracker, and Mio

Alpha Heart Rate Sport Watch have the capability to monitor heart rate in real-time using

Photoplethysmography (PPG) signals obtained from the wearer’s wrists. The PPG signals

can be sensed and measured from various body parts, e.g., the finger, ear, wrist, arm, etc [9]

using optical sensors that consist of a light transmitter (LED) and a receiver (photodetec-

tor). These sensors can operate in transmission or reflection modes, and they detect changes

in blood volume by measuring the intensity of the light reflected from the skin.

1.1 Background

Over the past several decades, the capability of wearable technology has gradually increased.

With their numerous internal and external sensors, contemporary wearable technology pro-

vide a wide range of practical fitness tracking functions,including step, calorie, sleep, and

other tracking metrics. One of these capabilities is the ability to measure heart rate (HR)

during exercise using photoplethysmography (PPG). HR monitoring, which is incorporated

into smartwatches or wristbands, can direct exercisers in adapting their training load to

better meet their training objectives. PPG signals have gained popularity as an alternative

to conventional HR estimation methods based on Electrocardiography (ECG).

In this study, we focus on using deep learning techniques to estimate heart rate from PPG

signals obtained from the wrist. By combining a 1D CNN and a bidirectional LSTM, the

model can benefit from the strengths of both architectures, capturing both local and long-

term patterns in the input data. The 1D CNN can extract features that are specific to local

regions of the input sequence, while the bidirectional LSTM can capture long-term depen-

dencies and contextual information across the entire sequence. Our approach is evaluated

on a publicly available dataset, and the results demonstrate the effectiveness of our method

in accurately estimating heart rate from PPG signals.
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1.2 Problem statements

The main challenge of incorporating a reflectance type photoplethysmography sensor device

is its inaccuracy during intensive physical activities of the subject. While measuring the HR,

a wide range of parameters are needed to be taken in consideration such as– different ac-

tivities, body movements, body types, and wearable-device form factors, i.e., smartwatches,

earbuds, wristbands, etc. There are five foundational challenges that impact the accuracy:

Optical Noise, Sensor Location, Skin Tone, The Crossover Problem, Low Perfusion. It is

difficult to detect the heartbeat accurately, since the signals are contaminated by extremely

strong motion artifacts caused by subjects’ hand movements and the sensor is sensitive to it.

Regardless of the methods adopted in order to overcome the effects of MA, it is not possible

to get accurate results in the measurement of HR of a subject when the power corresponding

to the HR in the measured PPG is low. The PPG’s signal-to-noise ratio(SNR) is a chal-

lenging aspect of getting an accurate HR measurement. Low SNR usually occurs when the

subject is indulged in intensive physical exercise.

1.3 Objectives

• To detect Heart Rate(HR) accurately minimizing the inaccuracy caused by motion

artifact(MA).

1.4 Scope

This project will find an effective method to predict heart rate and will incorporate several

wearable heart rate monitors. The product’s utility will optimize athletics performance by

providing real-time data. It will also help in early diagnosis of cardiac arrhythmia (Atrial

Fibrillation) and Arterial stiffness. It can also be used for biometric identification. The

potential applications of our work are vast, ranging from improving the accuracy of wearable

health monitoring devices to aiding in the diagnosis and treatment of cardiovascular diseases.

2



2. Literature Review

2.1 Related work

Several studies and scientific research have been carried out in heart rate(HR) estimation.

HR monitors are becoming increasingly common on portable devices such as smartwatches

and fitness trackers. In these devices, the pulse is detected by an optical sensor built into

the wrist unit’s watchband or case back. Many different groups have tried to reduce the

power dimension and improve the accuracy of HR. Several Digital Signal Processing(DSP)

techniques as well as Machine learning (ML) algorithms have been used to solve this issue.

PPG technology is plagued by two major issues: motion artifact (MA) noise and power

consumption. MA removal methodologies are important for obtaining accurate HR.HR es-

timation from artifact-induced PPG signals has received a lot of attention recently.

Several methods including adaptive filtering [18], independent component analysis (ICA) [8],

frequency-domain analysis, empirical mode decomposition (EMD), wavelet-based denoising,

SVD decomposing and other decomposition models, Novel algorithm(WFPV) using wiener

filtering, windows adaptive noise cancellation(ANC), spectral subtraction, and Kalman fil-

tering have been used for removing MA. All algorithms’ performances were evaluated in

relation to ground truth HR, which was obtained concurrently from the ECG signal. The

three-stage TROIKA method, based on signal decomposition, sparsity-based high-resolution

spectrum estimation, spectral peak tracking, and verification, has largely influenced HR es-

timation from wrist-worn PPG [19].

To detect heartbeats from a PPG signal, several supervised learning approaches were pro-

posed as an alternative to traditional techniques. A variety of neural network-based frame-

works have been employed to estimate HR with the least amount of inaccuracy. Several

algorithms were used for the classification of spectral peaks of PPG for heart rate tracking.

[20] used linear regression for HR prediction. [16] used SVM classifier for classification based

on spectral peak separation and spectral peak ratio. [1] used CNN and LSTM where images

and signals were given as input to CNN for the training of network.

3



Low-complexity processing has recently gained attention in the context of real-time HR

estimation in resource-constrained environments. In [3], a methodology based on the Fast

Fourier transform (FFT) spectrum of short windows of PPG and tri-axial accelerometer sig-

nals was proposed.

The latest research paper published in 2022 [5], used the hybrid of signal processing and

machine learning techniques which characterized signal using statistical, time, and frequency

features and learned to estimate heart rate through a Convolutional-Recurrent Regressor.

2.2 Related theory

2.2.1 PPG signal

The cardiac cycle is the series of events that take place between the start and finish of a

heartbeat. The ventricular diastole and the ventricular systole are the two primary phases

of the heart cycle. Blood flows to the auricles during the diastole, also known as the relax-

ation phase, which causes a reduction in blood vessel pressure. The blood is pumped during

the systole, or contraction phase out of the ventricles and dispersed throughout the body,

increasing blood pressure.

PPG uses the optical biomonitoring method by detecting changes in the reflected light due

to change in skin reflectivity during contraction and dilation of blood vessels. And later

this reflected light on the photodiode causes changes in current flow which then is changed

to a digital signal for further processing. A photo-emitter of infrared light is coupled to a

photo-receiver, using as the medium of light propagation, the body segment in which it is

desired to register the PPG signal as shown in [Fig. 2.1][10]. The pulsatile signal of the

blood volume (pulse wave) is detected by the photo-transistor.

Further processing can be done in two approaches i.e. time domain and frequency do-

main where signals are fed into the neural network for the training process to determine the

spectral peak of ventricular contraction and dilation.

4



Figure 2.1: Working principle of PPG sensor

2.2.2 Deep Neural Network

Deep Neural Network is a subset of machine learning that mimics the way the brain learns.

This technology is used by scientists and engineers to provide machines with some degree

of “thinking” ability similar to that of the human mind. The networks process and repro-

cess data, gradually refining the analysis and results to accurately recognize, classify, and

describe objects within the data. It is a subset of artificial neural networks (ANNs) that

has multiple layers of interconnected nodes or neurons, which allow it to model complex

non-linear relationships between input and output variables.

In a DNN, the input layer receives the raw data, such as an image or audio file, and then

passes it through a series of hidden layers, each of which applies a set of learned weights and

biases to the input to transform it into a more abstract representation. Finally, the output

layer produces the predicted result, such as a classification or regression value.

5



Figure 2.2: Deep Neural Networks

There are various types of deep neural networks (DNNs) that are used in different applica-

tions. Here are some of the most common types:

1. Feedforward Neural Network(FNNs): FNNs are type of neural network where infor-

mation flows only in one direction, from the input layer through the hidden layers to

the output layer. In FNNs, there are no cycles or loops in the network architecture. In

this network, the input layer receives input data, which is then passed through one or

more hidden layers where the data is transformed using nonlinear activation functions.

The output of the final hidden layer is then fed into the output layer, which produces

the final output of the network. The weights and biases of the network are learned

during training using an optimization algorithm, such as backpropagation.

2. Convolutional Neural Networks (CNNs): CNNs are mainly used for image and video

analysis. They consist of convolutional layers that detect and extract features from

the input image, followed by pooling layers that reduce the spatial dimensions of the

features. CNNs have achieved state-of-the-art performance in many computer vision

tasks, such as image classification, object detection, and segmentation.

3. Recurrent Neural Networks (RNNs): RNNs are designed for sequential data analysis,

such as natural language processing and speech recognition. They have loops in their

architecture that allow them to process information from previous time steps, which

makes them suitable for tasks that involve temporal dependencies. Long Short-Term

Memory (LSTM) and Gated Recurrent Unit (GRU) are popular variants of RNNs that

can handle long-term dependencies.
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2.2.3 Butterworth Filter

The Butterworth filter is a type of signal processing filter that is designed to have a frequency

response that is as flat as possible in the passband, which is the range of frequencies that

the filter allows to pass through without significant attenuation. The main advantage of

the Butterworth filter is that it has a maximally flat magnitude response in the passband,

which means that it does not introduce any ripples or distortions in the frequency response.

This makes it ideal for applications where a flat frequency response is important, such as in

audio processing, image processing, or biomedical signal processing. The roll-off rate of the

Butterworth filter can be controlled by adjusting the order of the filter. A higher-order filter

will have a steeper roll-off rate but will also introduce more phase distortion in the passband.

[Fig. 2.3] shows the filter passes the frequency component of 0.5-4.5Hz attenuate other.

Figure 2.3: Butterworth frequency response
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3. Methodology

We used publicy available dataset of PPG signals collected during treadmill exercise, which

was preprocessed through sliding window, bandpass filter, resampling, and z-score normaliza-

tion. We trained a deep learning model using a combination of convolutional neural networks

(CNN) and bidirectional long short-term memory (LSTM) networks to predict heart rate

from PPg signals.

3.1 Datasets

The datasets for our project:

3.1.1 IEEE Signal Processing Cup (SPC)

Its training data consists of 12 male subjects, yellow skin, 18-35 years for dataset collection.

The wristband embedding consists of 2-channel PPG(pulse oximeter with 609 nm green

LED), 3-axis acceleration, ECG recorded simultaneously from the chest (used as reference

for HR). All signals sampled at 125 Hz and subjects are walked or ran on a treadmill in

order:

• 1-2 km/h for 0.5 min

• 6-8 km/h for 1 min

• 12-15 km/h for 1 min

• 6-8 km/h for 1 min

• 12-15 km/h for 1 min

• 1-2 km/h for 0.5 min

Subjects used the hand to pull clothes, wipe sweat on forehead, and push buttons on the

treadmill, in addition to freely swing. The test dataset consists of 11 subjects, aged 19-58

years whose wrist PPG was acquired using a pulse oximeter with green LEDs, 3-axis ac-

celerometer, and ECG simultaneously recorded from chest. All signals were sampled at 125

Hz. It consists of five minutes recording of intensive arm movements. Subjects performed

various commonly used arm rehabilitation exercises, running, jump, push-up and boxing.[19]

The training dataset is of 81.4MB in ’ts’ file format. The 2-channel PPG and 3-axis ac-

celeration and ECG value are separated with ’:’. Each channel PPG signal is recorded for
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1000 times at a sampling rate of 125Hz for 8 sec. [Fig. 3.1] shows two channel PPG signal

visualized using matplotlib and [Fig. 3.2] shows three-axis accelerometer data with captured

heart rate of 75BPM using ECG.

(a) Channel 1 PPG signal (b) Channel 2 PPG signal

Figure 3.1: PPG signal (75BPM)

(a) Accelerometer X-direction (b) Accelerometer Y-direction

(c) Accelerometer Z-direction

Figure 3.2: Accelerometer X,Y,Z (75BPM)

3.1.2 BAMI-II

The BAMI-II dataset contains wrist PPGs recorded during stay, walking, and running. In

this dataset, 23 subjects were taken in the exercise protocol which included

• 2 min of walking at 3–4 km/h

• 4 min of running at 6–8 km/h

• 4 min of walking at 3–4 km/h

• 1 min of rest to cool down
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The session was designed to reflect cardiac rehabilitation exercise for cardiac patients with

poor exercise ability, in which they normally walk or run by holding a treadmill bar. The

subjects were 17 men and 6 women with an average age of 22.0 ± 1.7 years. The entire

exercise process was performed on a treadmill. The signal of accelerometers and gyroscopes

are collected to remove the motion artifact from the PPGs. A reference chest ECG is in-

cluded to allow a benchmark comparison of heart rate during treadmill exercise. The PPG,

accelerometer and gyroscope signal are sampled at 50 Hz wile ECG is sampled at 125Hz.[2].

3.2 Explored Approaches

Estimating heart rate from a photoplethysmography (PPG) signal can be done using differ-

ent approaches. One common approach we tried was to first apply Fast Fourier Transform

(FFT) to the PPG signal and extract the heart rate frequency component. In addition to

using FFT of PPG signal as input for heart rate estimation, we used FFT of accelerometer

data as an input. This is because motion artifact can interfere with the accuracy of heart

rate estimation from PPG signals. By using accelerometer data as an additional input we

account for the motion artifact which would have improved the accuracy of heart rate esti-

mation. The FFT of accelerometer data can be used to identify the frequency components

corresponding to the motion artifact. This frequency spectrum is then used as input to a

convolutional neural network (CNN) instead of the raw PPG signal and raw accelerometer

data. This allows the CNN to learn directly from the frequency domain features of the

signal, which can potentially improve the accuracy of heart rate estimation. The CNN was

trained using a dataset that includes the FFT of PPG signals, FFT of accelerometer and

their corresponding heart rates.

While using FFT of accelerometer data as an input to the CNN can be a useful, it didn’t

gave the expected results. There could be several reasons for this, such as the CNN archi-

tecture may not be suitable for the data. The best MAE we were able to achieve was 12.633.

[Fig. 3.3] shows the architecture of the CNN model we initially tried and [Fig. 3.4] shows

the hyperparameter search for the CNN model architecture. We can see that the best set

of hyperparameters i.e. batch size:8, conv2d layer 1 filters: 128, conv2d layer 2 filters: 256,

conv2d layer 3 filters: 64, conv2d layer 4 filters: 1024, conv2d layer 5 filters: 8, dense units:

1024, in between activation: ReLU, learning rate: 0.0001 and output activation: tanh gave

MAE of 12.633. So we, dropped the idea of using CNN and frequency domain approach and

shifted to using CNN and LSTM with time domain approach
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Figure 3.3: Tried CNN Architecture

Figure 3.4: CNN hyperparameter tuning

3.3 Preprocessing

We passed signal into series of preprocessing techiques before training our deep learning

model to ensure that it is in a suitable format for machine learning. The preprocesing

techniques includes butterworth bandpass filter, resampling, sliding window and z-score nor-

malization.

3.3.1 Bandpass Filter

Bandpass filter is performed to remove components of the PPG signal that do not reflect

heart rate by allowing the signals of specific range and attenuating signal outside of range.

The accelerometer and PPG signals were passed into 2nd order Butterworth bandPass Filter

with cutoff frequencies of 0.5-4.5Hz which effectively removed signal components outside the

range of cardiac activity.
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(a) Original PPG signal (b) Butterworth Filtered PPG signal

3.3.2 Resampling

Resampling reduces the amount of data while still retaining the relevant information about

the cardiac waveform. The resampling works by applying a Fourier transform to the input

signal and then interpolating the Fourier coefficients to the desired sampling rate. The

resulting signal is then obtained by applying an inverse Fourier transform to the interpolated

coefficients. The signals were then re-sampled to 64 Hz. After resampling the number of

samples was reduced to 512 samples. This process can be broken down into the following

steps:

1. Compute the discrete Fourier transform (DFT) of the input signal using the fast Fourier

transform (FFT) algorithm.

2. Calculate the new sampling rate based on the desired resampling frequency and the

original sampling rate.

3. Interpolate the Fourier coefficients to the new sampling rate using an up-sampling or

down-sampling technique, depending on the new sampling rate relative to the original

sampling rate.

4. Compute the inverse Fourier transform (IFFT) of the interpolated Fourier coefficients

to obtain the resampled signal.
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Figure 3.6: Resampling of signal

3.3.3 Sliding Window

The sliding window approach is used to segment the continuous PPG signal into smaller

windows or segments of fixed duration. Each segment is then processed independently to

estimate the heart rate within that segment. By sliding the window along the signal with

some overlap, we can estimate the heart rate at multiple time points throughout the signal.

For each subject, a sliding window approach was applied to the signals with a window length

of 8 seconds and a 2 second slide. This means each window contained 8 seconds of PPG

data, and adjacent windows overlapped by 6 seconds.

Figure 3.7: Sliding Window

3.3.4 Z-score Normalization

The final preprocessing step include z-score normalization, which is a common technique

used to standardize the data and remove the effect of different scales in the input features.

Z-score normalization ensure that the signals have a mean of zero and a standard deviation

of one, which makes them more comparable across different signals and less sensitive to

variations in the amplitude or baseline of the signal. It is calculated by using the simple

formula

z =
x− µ

σ
(3.1)

where
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• z is the z-score

• x is a particular data point

• µ is the mean of the input data

• σ is the standard deviation of the input data

Figure 3.8: Normalized signal

3.4 Model Architecture and Implementation

In this paper, deep learning based heart rate prediction model consists of mainly two architec-

ture i.e. Convolution Neural Network (1D- CNN) and Bidirectional LSTM. The preprocessed

data of PPG signals and Accelerometer signals are used as separate input layer later they

were merged for overall feature extraction using CNN. As, traditional neural network lacks

correlation with time and each step of each parameters is independent. But, in heart rate

prediction, change in physiological signals are closely related to time. So, we adopted time

related Bidirectional LSTM as one of our architecture module. Later, output of Bi-LSTM is

convolved, flattened and dense for final prediction.
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Figure 3.9: Model summary
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3.4.1 Intuition behind each blocks of architecture:

Convolution layer for sensor data

The convolution block in sensor data extracts local interaction with each sensing modality.

The input size of (512, 1) for PPG signal and (512, 3) for accelerometer sizhang2014troikagnals

are convolved separately with filter size of 32. The activation function used in this block is

ReLU. Then obtained output is batch normalized, averaged pooled as required and passed

to the merging module. Several dropout layer are also used for preventing overfitting sensor

data during feature extraction.

Convolution layer for concatenated data

The above obtained sensor specific features are then merged together in this module for

extracting global features from both PPG and accelerometer signals. As like in first block,

the obtained concatenated output is convolved, batch normalized and average pooled for

obtaining global feature. Later, the output obtained from this block is passed to time based

module.

Time- based module(Bi-directional LSTM module)

The global feature are passed to bidirectional LSTM for obtaining time domain feature that

reflects the behavior of the signal over time. The number of LSTM units used is 32.The

temporal features are then passed to the prediction module.

Prediction module

The temporal features are passed to the prediction module which contains a convolutional

layer to reduce the dimensionality of the features for the fully connected layer.

3.4.2 Operational blocks used in architecture

Several unit blocks are used in model architecture for various functions which are described

below:
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1D-Convolution

One-dimensional convolution(1D-Convolution) is a mathematical operation commonly used

in signal processing and machine learning. It involves sliding a small window, called a kernel

or filter, over a one-dimensional input signal and computing a weighted sum of the values

within the window at each position.

The basic idea behind 1D convolution is to extract local features from the input signal

by analyzing the values in a small neighborhood around each point. The kernel defines the

shape of this neighborhood and the weights assigned to each value in the neighborhood con-

trol how much influence it has on the output. The process of 1D convolution can be broken

down into the following steps:

1.Define a kernel of size k and weights w1, w2, ..., wk.

2.Slide the kernel over the input signal x, starting from the leftmost position.

3.At each position, compute the dot product of the kernel and the values in the current

neighborhood of size k centered at that position.

4.Store the result in a new output signal y at the corresponding position.

5.Repeat steps 2-4 for every position in the input signal, stopping when the kernel reaches

the rightmost position.
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Figure 3.10: Operation of 1D-Convolution

Max pooling

Max pooling is a type of operation commonly used in convolutional neural networks (CNNs)

for image recognition tasks. It is a way to reduce the spatial size (height and width) of the

input feature map while retaining its depth (number of channels).

In max pooling, a window (often called the kernel or filter) is applied to the input fea-

ture map, and the output at each location is the max of the values within that window.

The size of the window is typically a hyperparameter that is chosen based on the size of

the input feature map and the desired output size. Max pooling is a way to reduce the

dimensionality of the input feature map while retaining important features, and it can help

to prevent overfitting and improve the efficiency of the network.
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Activation Function

Here, in our architecture, we have used Rectified Linear Unit(ReLU) as an activation func-

tion. It can be calculated as:

f(x) = MAX(0, x) (3.2)

In other words, the output of the function is the maximum of the input x and 0. The ReLU

function is a non-linear function, which means that it can introduce non-linearities into the

output of a neural network, allowing it to learn more complex relationships between inputs

and outputs.

The main benefit of the ReLU function is that it is computationally efficient to evaluate

and differentiate, which makes it a popular choice in neural network architectures. Addi-

tionally, ReLU has been shown to perform well in practice and is less prone to the vanishing

gradient problem that can occur with other activation functions like the sigmoid function.[Fi]

Figure 3.11: ReLU and its derivative

Batch Normalization

Batch normalization is a technique used in deep neural networks to normalize the inputs of

a layer. It aims to improve the speed, performance, and stability of the training process.

The normalization process involves centering and scaling the inputs to a layer by subtracting

the mean and dividing by the standard deviation of the batch of inputs. This normalization

is applied independently to each feature dimension (i.e., each channel in a convolutional

neural network).

It works on following ways:
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1. Compute the mean and variance of the mini-batch:

Given a mini-batch of inputs, batch normalization computes the mean and variance of each

feature dimension (i.e., channel in a convolutional neural network). This is done indepen-

dently for each feature dimension using the following equations:

mean =
1

m

m∑
i=1

xi (3.3)

variance =
1

m

m∑
i=1

(xi −mean)2 (3.4)

Here, m is the number of inputs in the mini-batch and xi is the i-th input in the mini-batch.

2. Normalize the inputs:

Batch normalization normalizes the inputs by subtracting the mean and dividing by the

standard deviation. The normalized input

zi is computed as follows:

zi =
xi −mean√
(variance+ ϵ)

(3.5)

where ϵ is a small constant (e.g., 10−5) added to the denominator for numerical stability.

3.Scale and shift:

Batch normalization introduces two learnable parameters, gamma and beta, which allow the

network to learn the optimal scale and shift for each feature dimension. The normalized and

transformed input

yi is computed as follows:

yi = γ ∗ zi + β (3.6)

where γ and β are learnable parameters that are updated during training via backpropaga-

tion.

4.Apply non-linearity: Finally, the transformed input yi is passed through a non-linear

activation function (e.g., ReLU) to produce the output of the batch normalization layer.

Long Short Term Memory (LSTM)

An enhanced Recurrent Neural Network (RNN) and sequential network, called LSTM net-

work, permits information to stay. It is capable of resolving the RNN’s vanishing gradient

issue. It processes data passing on information as it propagates forward as in RNN. The

differences are the operations within the LSTM’s cells.These operations are used to allow
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the LSTM to keep or forget information. The LSTM have the ability to remove or add

information to the cell state, carefully regulated by structures called gates.

Figure 3.12: Architecture of RNN

Gates are a way to optionally let information through. They are composed out of a sigmoid

neural net layer and a pointwise multiplication operation.[Fig. 3.13] shows the architecture

of LSTM.

Figure 3.13: Architecture of LSTM

Components of LSTMs

The LSTM cell contains the following components:

• Forget Gate “f” ( a neural network with sigmoid).

• Candidate layer “C”(a NN with Tanh)

• Input Gate “I” ( a NN with sigmoid )
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• Output Gate “O”( a NN with sigmoid)

• Hidden state “H” ( a vector )

• Memory state “C” ( a vector)

Inputs to the LSTM cell at any step are Xt (current input) , Ht−1 (previous hidden state

) and Ct−1 (previous memory state). Outputs from the LSTM cell are Ht (current hidden

state ) and Ct (current memory state).

Working of gates in LSTMs

First, LSTM cell takes the previous memory state Ct−1 and does element wise multiplication

with forget gate (f) to decide if present memory state Ct. If forget gate value is 0 then

previous memory state is completely forgotten else f forget gate value is 1 then previous

memory state is completely passed to the cell ( Remember f gate gives values between 0 and

1 ).

• Ct = Ct−1 ∗ ft

• Calculating the new memory state:

Ct = Ct + (It ∗ C ′
t)

• Now, we calculate the output:

Ht = tanh(Ct)

Dense layer

In a convolutional neural network (CNN), a dense layer (also known as a fully connected

layer) is a type of layer that connects every neuron in the previous layer to every neuron in

the current layer. Unlike convolutional layers, which only connect neurons in local regions

of the input, dense layers can capture global patterns in the input and used at the end of

a CNN to produce the final output. In a CNN, the output of the last convolutional layer

is often flattened (i.e., reshaped into a 1D vector) before being passed through one or more

dense layers. This allows the dense layers to capture global patterns in the input and make

a final prediction.

Overall, dense layers in CNNs can help to improve the expressiveness of the network and
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make it more capable of capturing complex relationships between inputs and outputs. How-

ever, they also increase the number of parameters in the network, which can make it more

prone to overfitting if not properly regularized.

3.4.3 Method used for overcoming overfitting

DropOut

Dropout is a regularization technique commonly used in neural networks to prevent overfit-

ting. Overfitting occurs when a model learns to fit the training data too closely, resulting in

poor generalization to new, unseen data.

Dropout works by randomly dropping out (setting to zero) a fraction of the neurons in

a layer during training. The dropout rate is typically set between 0.1 and 0.5, meaning

that each neuron has a probability of being dropped out during each training step. When

neurons are dropped out, the remaining neurons have to step up and take over their roles.

This encourages the network to learn more robust and general features, rather than relying

on specific neurons to always be present. Dropout also prevents neurons from co-adapting,

which can lead to overfitting.

During inference, all neurons are used, but their outputs are scaled down by the dropout rate

to account for the fact that not all neurons were active during training. By using dropout,

a neural network can learn to generalize better and avoid overfitting, which can lead to im-

proved performance on new, unseen data. However, it is important to note that using too

much dropout can hurt performance, so it is important to find the right balance between

regularization and model capacity.

Early stopping

Early stopping is another regularization technique commonly used in machine learning to

prevent overfitting. It works by monitoring the performance of the model on a validation set

during training and stopping the training process when the performance on the validation

set stops improving.

The basic idea behind early stopping is that the model is likely to be overfitting the training

data if its performance on the validation set starts to degrade while the performance on the
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training set continues to improve. By stopping the training process at this point, the model

is prevented from continuing to fit the noise in the training data and is instead encouraged

to generalize better to new, unseen data. To implement early stopping, the training process

is typically monitored after each epoch, and the model with the best performance on the

validation set is saved. If the performance on the validation set does not improve for a

certain number of epochs, the training process is stopped and the saved model is used for

inference.In our case, we have used patience(number of epochs with no improvement after

which training will be stopped) of 30.

The key advantage of early stopping is that it is easy to implement and can be effective

at preventing overfitting, especially when combined with other regularization techniques

such as dropout. However, it is important to choose the right stopping criteria and to avoid

stopping too early, as this can result in underfitting and poor performance on the validation

and test sets.

3.4.4 Model checkpoint

Model checkpointing is a technique used to periodically save the weights and other param-

eters of a model during training, so that the training process can be resumed from the last

saved point if it is interrupted or crashes.The saved model checkpoints can also be used to

perform inference on new data or to fine-tune the model on additional data later on.

The main benefit of model checkpointing is that it allows you to save time and resources by

avoiding the need to restart the training process from scratch if it is interrupted or if you

want to resume training from a certain point. It can also be used to compare the perfor-

mance of different models trained on the same data, as well as to perform model selection by

choosing the model checkpoint with the best performance on a validation set. In our case,

we have used saveBestOnly=True, it only saves when the model is considered the “best” and

the latest best model is considered on the basis of minimum validation loss.

3.4.5 Loss function

We have used Negative log likelihood(NLL) as our loss function.It measures the error between

the predicted probability distribution and the actual probability distribution of the target

variable. Intuitively, the NLL loss function penalizes the model more heavily when it makes
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confident but incorrect predictions, and less heavily when it makes uncertain predictions or

correct predictions. This makes it a suitable loss function for models that are designed to

output probabilities. It can be mathematically given as for normal distribution as:

NLL = − ln

(
1

σ
√
2π

exp
(
−1

2

(x− µ

σ

)2))
(3.7)

where, σ = standard deviation and µ = mean

3.4.6 Optimizer

We have used Nadam as our optimizer.Nadam stands for “Nesterov-accelerated Adaptive

Moment Estimation”.It combines the benefits of two other optimization methods: Nesterov

accelerated gradient (NAG) and Adam. Like NAG, Nadam uses a momentum term to

accelerate the gradient descent process and overcome the problem of oscillation and slow

convergence in regions with high curvature. However, Nadam also incorporates the adaptive

learning rate and bias correction techniques of Adam, which allow for efficient learning rates

that adapt to the shape of the loss surface and scale the learning rates based on the running

averages of the first and second moments of the gradients.

Nadam performs well in a variety of deep learning applications, particularly in models with

large amounts of data or complex loss surfaces. It has been shown to converge faster and

achieve better generalization than other optimization methods, such as Adagrad and RM-

Sprop.The update rule for Nadam can be described as follows:

1. Compute the gradient of the loss function with respect to the model parameters.

2. Compute the exponentially decaying average of the first and second moments of the

gradients.

3. Correct the first and second moments for bias.

4. Compute the Nesterov accelerated gradient using the corrected first moment and momen-

tum term.

5. Update the model parameters using the Nesterov accelerated gradient and the learning

rate.The update rule is of the form:

θt+1 = θt −
η√

v̂t + ϵ

(
β1m̂t +

(1− βt)gt
1− βt

1

)
(3.8)
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4. System design

[Fig. 4.1] shows the general workflow of our system. Firstly, we collect the data from PPG

to determine the spectral peaks. As the signal mostly contains noisy signal, so it is combined

with the signal obtained from accelerometer to remove the MA effect. The available PPG

and accelerometer signals undergoes preprocessing steps which includes filtering(Band pass

filter), resampling and normalization to obtain fine data for feeding to our model. Then

obtained signals are separately applied to our deep learning architecture which includes 1D-

convolution operation, pooling and batch normalization, later obtained ppg and accereometer

signals are merged together and feed to our LSTM for finalizing our our training part. After

training phase, we cross-validate(LOSO cross-validation) our model in order to obtain more

accurate heart rate prediction. During prediction, mean provides predicted heart rate and

variance provides uncertainity in prediction.

4.1 Software Requirement

The software tools used in our project include TensorFlow, NumPy, SciPy, and Pandas.

TensorFlow is an open-source machine learning framework widely used for building deep

learning models. NumPy is a Python library for numerical computing, providing support for

arrays, matrices, and mathematical functions. SciPy is a scientific computing library that

offers tools for signal processing, optimization, and statistical analysis. Pandas is a library

for data manipulation and analysis, providing data structures and functions for cleaning,

exploring, and transforming data. Together, these tools provide a powerful and flexible

environment for implementing and testing deep learning models. We used kaggle for training

our model.

Tensorflow Numpy Pandas

Sklearn Matplotlib Seaborn

Scipy Kaggle keras

Table 4.1: Software tools
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Figure 4.1: System Workflow
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5. Results and Discussion

The approach and model that we adopted for the project must be evaluated to determine

its performance on unseen data. It must be able to estimate the heart rate not only on the

data it was trained on, but also on the new data. There are various different techniques for

model evaluation. We have used leave-one-session-out (LOSO) cross-validation[13].

5.1 Leave-One-Session-Out Cross Validation (LOSO CV)

It is a model evaluation technique where parameter optimisation is performed on all data

except of one session, and the left-out session is used as test data. This procedure is repeated

so that each session is used as test data exactly once. Thus, if a data set has adequate va-

riety, results reported with LOSO cross-validation can reflect the generalisation capabilities

of the developed algorithms.

The reason for using LOSO cross-validation is mainly due to the fact that the optimisa-

tion of model parameters to a specific subject or even a specific session is not possibly useful

in daily life. It should perform well in all situations. For heart rate estimation a single

subject is left out in a session for testing purpose and remaining data is used for training

and validation. [Fig. 5.1] shows the concept of LOSO cross-validation

Figure 5.1: LOSO cross-validation
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5.2 Evaluation Metrics

Evaluation metrics are used to measure the quality and performance of the machine learning

model. Evaluating machine learning models is essential for any project. There are many

different types of evaluation metrics available to test a model. The problem we are dealing

is a Regression problem so, the metrics for regression are used particularly Mean Absolute

Error(MAE)

5.2.1 Mean Absolute Error (MAE)

MAE is a model evaluation metric used with regression models. Absolute Error is the

amount of error in the measurements. It is the absolute difference between the true value

and predicted value i.e. the true heart rate recorded from ECG and predicted heart rate by

the model. To obtain the overall MAE, the MAE of individual sessions were averaged

It is mathematically represented as:

MAE =
1

S

S∑
s=1

( 1
n

n∑
i=1

|yi − ŷi|
)

(5.1)

where, S = number of sessions

n = number of samples

y = True value

ŷ = Predicted value

5.2.2 Uncertainty

In the context of machine learning, uncertainty refers to the lack of confidence in one’s model

estimates.Uncertainty is an important consideration in many machine learning applications,

and in particular, it may be crucial to quantify the amount of uncertainty for any given

prediction referred to as predictive uncertainty. When high stakes decisions are being made

based on predictions of machine learning models, e.g. in health care, it is vital to know how

much confidence to have in the prediction. Since, our application domain is health care for

the estimation of heart rate, the consideration of uncertainty is vital.

Predictive uncertainty refers to the uncertainty in a prediction made about some target

variable of interest. Predictive uncertainty exists whenever one has uncertainty in making a

given prediction, and to express this uncertainty, we have made distributional predictions,
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instead of point predictions.Therefore, instead of predicting that the heart rate of person

is 128 BPM(a point prediction), our model predicts that the heart rate is approximately

distributed according to a Gaussian distribution, with mean of 128 BPM and standard de-

viation of 1.2 BPM.

The uncertainty can be divided into two categories: aleatoric uncertainty (inherent un-

certainty of the system) and epistemic uncertainty (uncertainty about the choice of model).

Aleatoric Uncertainty

Aleatoric uncertainty is a type of uncertainty that arises from the randomness or variability

of a system or phenomenon because of information that cannot be measured (i.e. noise).

It is also known as stochastic uncertainty or data uncertainty.When this noise is present,

aleatoric uncertainty cannot be eliminated even by more data or knowledge and even if the

number of samples collected tends towards infinity. We can assume the aleatoric uncertainty,

the inherent randomness, to be either constant (homoscedastic) or variable (heteroscedastic),

as a function of the input explanatory variables. Here, we have considered heteroscedastic

aleatoric uncertainty.

It can be mathematically represented as:

ua(xi) =
1

T

T∑
t=1

σ̂2
i,t (5.2)

where, ua(xi) = aleatoric uncertainty

T = number of predictions

σ̂ = predicted standard deviation

x = inputwindow

Epistemic Uncertainty

Epistemic uncertainty refers to the uncertainty of the model and is often due to a lack of

training data. Epistemic uncertainty is the uncertainty that comes from being unsure about

one’s model choice. Epistemic uncertainty of a trained model will decrease as the size of

training data increases and might also be affected by the suitability of model architecture.As
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opposed to aleatoric uncertainty, epistemic uncertainty can in principle be reduced on the

basis of additional information. If one is doing modelling with a neural network and is given

a finite number of samples to train on, the uncertainty of what the weights in the network

should be is epistemic uncertainty. However, as the number of samples being trained on

tends to infinity, the epistemic uncertainty tends towards zero as the correct model is able

to be identified.

It can be mathematically represented as:

ue(xi) =
1

T

T∑
t=1

µ2
i,t −

( 1

T

T∑
t=1

µi,t

)2

(5.3)

where, ue(xi) = epistemic uncertainty

T = number of predictions

µ = predictedmean value

x = inputwindow

[Fig. 5.2] shows the Aleatoric and Epistemic Uncertainty for simple hypothetical data. We

can see for values between -3 and -2 there is high aleatoric uncertainty and is low for range

about 2.5 to 3.5. The Epistemic uncertainty is high where the data points are not present

in the traing data. The model is highly uncertain in this region and its prediction is merely

a random guess.

Figure 5.2: Uncertainty
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Sharpness

Sharpness is a measure of how narrow, concentrated, or peaked the predictive distribution is.

Sharpness is evaluated solely based on the predictive distribution, and neither the datapoint

nor the ground truth distribution are considered when measuring sharpness.Sharpness is a

valuable property in the predictive distribution as sharper the distributional, more is the

model confident in its predictions.

[Fig. 5.3] shows, two Gaussian distributional predictions, one with mean 0 and variance

0.1 and another with mean 0 and variance 1. First distribution is sharper than a second

with mean 0 and variance 1 and hence first is more confident than the second one.

Figure 5.3: Sharpness

5.3 Model Performance

We have trained and evaluated our model on two publicly available datasets; IEEE SPC

dataset and BAMI II dataset. The performance of our model was comparable to State of

the Art techniques with fewer number of parameters and model size.

As the model is trained and evaluated using LOSO CV, the performance of model for differ-

ent folds were evaluated. The performance on BAMI dataset was a little lower as compared

to IEEE dataset

5.3.1 Dataset distribution for particular fold

[Fig. 5.4a] and [Fig. 5.4b] shows the amount of datasets in each of the training, validation

and test sets for a particular fold for IEEE and BAMI dataset respectively. It shows that
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(a) IEEE (b) BAMI

Figure 5.4: Dataset split proportions

roughly around 2,200 windows are present in training set, about 1,000 in validation set and

about 1,00 in test set for IEEE and roughly around 5,800 windows are present in training

set, about 3,000 in validation set and about 1,00 in test set for BAMI. Each window consists

of 8s data with 512 samples. Stratified sampling was performed for partitioning the data

into train and validation sets so as to preserve the original distribution of data.

5.3.2 Distribution of true Heart Rate

[Fig. 5.5a] and [Fig. 5.5b] shows the distribution of ground truth value of Heart Rate (HR)

in each of the training, validation and test sets for a particular fold for IEEE and BAMI

dataset respectively. It shows that the distribution is similar for train set and validation set.

This is mainly due to the use of stratified sampling for partitioning the data into train and

validation sets so as to preserve the original distribution of data for the validation.
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(a) IEEE (b) BAMI

Figure 5.5: True HR distribution

5.3.3 Distribution as per activity

[Fig. 5.6a] and [Fig. 5.6b] shows the distribution of dataset as per the activity done during

data collection for training, validation and test sets for a particular fold for IEEE and

BAMI dataset respectively. It shows that the activities various arm exercise, intensive arm

exercise, running on treademill at 8 Km/hr and 15 Km/hr donot have any data in test test

for IEEE.This is due to LOSO CV where a particular subject selected for testing doesn’t

have data for the mentioned activites. For BAMI all activities are included in all sets.
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(a) IEEE (b) BAMI

Figure 5.6: Activity types distribution

Learning Curve

[Fig. 5.7] and [Fig. 5.8] shows the learning curve for the dataset IEEE and BAMI respectively.

It shows that the MAE decreases with the increase in the number of epochs for both training

and validation set. For IEE, the minimum MAE for validation set is obtained at epoch

number 128 where the model saved and used for the evaluation of test set. On evaluation at

test set it gave MAE of 1.686. Similarly, for BAMI the minimum MAE for validation set is

obtained at epoch number 77 where the model saved and used for the evaluation of test set.

On evaluation at test set it gave MAE of 1.782.

Figure 5.7: Learning Curve(MAE) IEEE
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Figure 5.8: Learning Curve(MAE) BAMI

[Fig. 5.9a] and [Fig. 5.9b]shows the count plot of MAE and different sets of data for IEEE

and BAMI dataset. It shows that the MAE on train set is about 1.8, validation set is about

2.2 and on test set is 1.68 for IEEE.Similarly, for BAMI the MAE on train set is about 2.2,

validation set is about 2.4 and on test set is 1.88. From the count plot, we can see model

has similar performance on all three sets i.e. it doesn’t overfit or underfit the dataset.

(a) IEEE (b) BAMI

Figure 5.9: MAE as per dataset

Loss function

[Fig. 5.10] and [Fig. 5.11] shows the loss for the dataset against number of epochs for IEEE

and BAMI respectively. It shows that the Loss decreases with the increase in the number of

epochs for both training and validation set. For IEE, the minimum Loss for validation set

is obtained at epoch number 128 where the model saved and used for the evaluation of test
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set. On evaluation at test set it gave Loss of 1.725. Simialrly, for BAMI the minimum Loss

for validation set is obtained at epoch number 77 where the model saved and used for the

evaluation of test set. On evaluation at test set it gave Loss of 1.825.

Figure 5.10: Learning Curve(NLL) IEEE

Figure 5.11: Learning Curve(NLL) BAMI

[Fig. 5.12a] [Fig. 5.12b] and shows the count plot of Loss and different sets of data for

IEEE and BAMI respectively. It shows that the Loss on train set is about 1.8, validation

set is about 2.6 and on test set is 1.799 for IEEE and about 2.1 on train set, about 2.4 on

validation set and 1.813 on test set for BAMI. From the count plot, we can see model has

similar performance on all three sets.
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(a) IEEE (b) BAMI

Figure 5.12: NLL as per dataset

Learning rate

[Fig. 5.13a] [Fig. 5.13b] shows the change in learning rate as number of epochs increases

for IEEE and BAMI respectively. Reducing the learning rate on a plateau is a common

technique used in deep learning to improve the performance of a model during training.

The idea is to gradually decrease the learning rate when the model stops making significant

progress in reducing the loss on the training data.Here, we have started the learning rate

from 0.001 which is gradually decreases.The learning rate is reduced by of 0.9 if the Loss

doesn’t improve for 5 epochs.
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(a) IEEE (b) BAMI

Figure 5.13: Learning Rate while training

Aleatoric uncertainty

[Fig. 5.14a] and [Fig. 5.14b]shows box plot of the aleatoric uncertainty for the test set for

IEEE and BAMI respectively. It is the uncertainty that exists inherently in the dataset and

can’t be removed. From the plot we can see that running on treadmill at 12km/hr activity

has high amount of uncertainty as compared to other activities for IEEE and 2.5km/hr in

case of BAMII. The least amount of uncertainty is on rest begin for both IEEE and BAMI.
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(a) IEEE (b) BAMI

Figure 5.14: Aleatoric uncertainty

Epistemic Uncertainty

[Fig. 5.15a] and [Fig. 5.15b] shows box plot of the epistemic uncertainty for the test set for

IEEE and BAMI respectively. It is the uncertainty that exists due to the model and can be

reduced. The shaded region of the plot represents the band of epistemic uncertainty.
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(a) IEEE (b) BAMI

Figure 5.15: Epistemic uncertainty

Sharpness

[Fig. 5.16a] and [Fig. 5.16b] shows the sharpness of the prediction for IEEE and BAMI

respectively. The sharp is the prediction, the more confident a model is in its prediction.

From the plot we can see that the mean sharpness is 1.62 for IEEE and 1.95 for BAMI.
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(a) IEEE (b) BAMI

Figure 5.16: Sharpness

Overall Performance

For IEEE dataset, [Fig. 5.18] shows the MAE for overall sessions which is 1.3 BPM. Similarly,

[Fig. 5.18] shows MAE for all session as per the activity. The mean MAE for activities is

1.27 BPM.
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Figure 5.17: MAE by session IEEE

Figure 5.18: MAE by Activity IEEE

For BAMI dataset, [Fig. 5.19] shows the MAE for overall sessions which is 1.54 BPM.

Similarly, [Fig. 5.20] shows MAE for all session as per the activity. The mean MAE for
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activities is 1.69 BPM.

Figure 5.19: MAE by session BAMI

Figure 5.20: MAE by Activity BAMI

44



5.4 Result Comparison

According to the [Table 5.1] provided, Our model performs well compared to other methods

for pulse rate estimation on both IEEE and BAMI datasets. Our model has an MAE

value of 1.30 on the IEEE dataset and 1.54 on the BAMI dataset which is comparable

to the MAE values of DeepPulse and Chung et al., the two best performing methods on

both datasets.Compared to other methods, Our model has the advantage of using only a

single PPG signal, smaller number of parameters and a low sampling rate, which can reduce

implementation costs and make the system more efficient.

Methods Datasets

IEEE BAMI

Deep PPG 4.00 N/A

±5.40

CorNET (LOSO) 4.67 6.61

±3.71 ±5.35

Binary CorNET 6.20 N/A

±4.95

PPGnet 3.36 12.48

±4.10 ±14.45

Chung et al. 0.67 1.46

±0.50 ±1.23

DeepPulse 1.16 1.65

±0.47 ±0.40

Our model 1.30 1.54

±0.56 ±0.42

Table 5.1: Comparison of MAE among different models
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6. Conclusion

We successfully implemented deep learning approach to predict HR from PPG signal along

with accelerometer signal. The result shows that our approach is comparatively better than

other convention approach. We have used only one PPG signal and a low sampling rate

can be an effective way to reduce the cost of implementing a pulse rate estimation system.

Traditionally, pulse rate estimation systems used multiple PPG signals and high sampling

rates to capture detailed information about the pulse waveforms. However, using multiple

PPG sensors and high sampling rates can be expensive and may require complex signal

processing algorithms to extract meaningful information from the data. The model shows

the good result with less than 300 thousands network parameters. These results indicate the

potential of this deep learning approach in monitoring heart rate using PPG signals, which

could have important implications in healthcare and wearable technology.
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7. Limitations and Future Enhancements

7.1 Limitations

The limitations of our project are:

• Limited dataset: There is limited dataset used for training and testing the model.

Some of these sources such as skin tone, skin temperature, age, sex and BMI have

not been fully considered in the datasets used. Additionally, the dataset only covers a

limited range of motions and exercises, which may not be representative of all possible

scenarios in real-life use. As a result, the generalizability of the model may be limited.

• Challenge in Real-time monitoring: Next limitation is its hardware implementation and

computational time, which can be challenging in real-time monitoring applications.

• Inherent Limitation: It shows lower accuracy for heart rate detection in individuals

with darker skin tones due to the inherent limitations of photoplethysmography tech-

nology.

7.2 Future Enhancements

Based on the findings and limitations of this study, several avenues for future research can

be pursued. Firstly, the development of a larger dataset covering a wider range of motions

and exercises can help improve the accuracy and generalizability of the model. Addition-

ally, exploring different deep learning architectures and optimization techniques can further

enhance the performance of the model. Furthermore, future research can focus on the im-

plementation of the model on portable and low-power hardware devices for real-time heart

rate monitoring applications.
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Appendix

The table 7.1 presents the model parameters for our machine learning model. The parameters

are grouped into different categories, including Band-pass Filter Parameters, Convolution 1D

Parameters, LSTM Parameters, and Other Parameters. The table lists the specific parameter

values for each category, such as the lower and upper frequencies for the band-pass filter,

the size and number of filters for the sensor and concatenate layers, the dropout rates for

different layers, the resampling frequency, the optimizer, and the loss function.

Band-pass Filter Parameters

Lower Frequency 0.5 Hz

Upper Frequency 4.5 Hz

Order 2

Convolution 1D Parameters

Sensor filter Size 16

Sensor number of filters 32

Sensor dropout 0.15

Concatenate filter size 16

Concatenate number of filters 64

Concatenate dropout 0.15

Pool size 2

LSTM Parameters

Units 32

Dropout 0.15

Other Parameters

Resampling frequency 64

Optimizer Nadam

Epochs 200

Batch size 32

Loss Function Negative Log Likelihood(NLL)

Table 7.1: Model Parameters
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Figure 7.1: Model Architecture

[Fig. 7.1] shows the layers in the overall architecture of our developed model.

52



[Fig. 7.2] shows PPG signal, accelerometer signals,true heart rate and predicted mean and

standard deviation of heart rate for 8s window.

Figure 7.2: Prediction on test data

53


	Page of Approval
	Copyright
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Problem statements
	Objectives
	Scope

	Literature Review
	Related work
	Related theory
	PPG signal
	Deep Neural Network
	Butterworth Filter


	Methodology
	Datasets
	 IEEE Signal Processing Cup (SPC)
	BAMI-II

	Explored Approaches
	Preprocessing
	Bandpass Filter
	Resampling
	Sliding Window
	Z-score Normalization

	Model Architecture and Implementation
	Intuition behind each blocks of architecture:
	Operational blocks used in architecture
	Method used for overcoming overfitting
	Model checkpoint
	Loss function
	Optimizer


	System design
	Software Requirement

	Results and Discussion
	Leave-One-Session-Out Cross Validation (LOSO CV)
	Evaluation Metrics
	Mean Absolute Error (MAE)
	Uncertainty

	Model Performance
	Dataset distribution for particular fold
	Distribution of true Heart Rate
	Distribution as per activity

	Result Comparison

	Conclusion
	Limitations and Future Enhancements
	Limitations
	Future Enhancements
	References
	Appendix


