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Abstract

With the advancements in power, cost, and availability of microprocessors as well as the

rapid growth in networking technologies and infrastructure, it is natural that we have devel-

oped technologies to allow hundreds of machines to connect with one another over a LAN

for resource-sharing. These resources range from hardware devices to databases, files, com-

putational power, and much more. With the benefits of such a system for developers and

students in mind, this project, aims to be a framework using which resources of multiple sys-

tems within a computer network can be utilized. This framework is an attempt to abstract

away the complexities of distributed application development by providing a platform to

work upon. It is intended to be a robust, scalable, and safe platform for developing resource-

sharing applications. The project itself is a culmination of our four years of engineering

study, as we derive our knowledge base from teachings of the curriculum such as operating

systems, distributed systems, data structures and algorithms, microprocessors, and computer

networks. Thus, the project serves both facets of academia and practical implementation.

Keywords: Distributed System, Computer Networks, Resource Sharing, Fault Tolerance
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1. Introduction

1.1 Background

In recent decades, there has been a staggering amount of development in computer sys-

tems with the development of cheaper and more powerful microprocessors than ever before.

Likewise, innovations in high-speed computer network technologies have made it possible to

communicate between devices within a few microseconds. On the other hand, more data is

being produced than ever before thanks to the spread of devices and the internet of things

(IoT), and conventional centralized systems are no longer able to handle the volume of data

being produced. Hence, the idea of connecting different autonomous computer systems in

order to create an easily accessible, scalable, and reliable distributed system is not limited

to the concept but is available for all to use for themselves.

Distributed systems are one of the cornerstones of today’s interconnected computer sys-

tems around the world. They achieve the processing of enormous amounts of data by break-

ing it up into smaller, manageable chunks and distributing it across multiple processing

systems. From cloud-based services providing services seamlessly to millions of users around

the world reliably and consistently to large GPU farms used for crypto-currency mining and

training deep learning models, distributed computing has been used to solve a number of

computational problems that are infeasible to be used on a single host machine.

We have developed a programming framework that facilitates the creation of reliable, safe,

and flexible software applications capable of executing on multiple nodes. This framework

provides developers with a robust programming model that supports distributed computing

and enables the creation of resilient software systems. Our framework extends the con-

currency capability of Golang that allows programmers to distribute function execution in

multiple nodes and the low-level API/features of OS accessible through C++ to consolidate

cross-platform execution and filesystem access. In addition to this, we have implemented

various algorithms pertaining to distributed computing, the results of which can contribute

to academic research and a better understanding of distributed systems overall.

1.2 Problem Statement

1. Limited computational power in single-processor systems: The evaluation of

computationally expensive problems can take minutes or hours, and although com-

1



puting power is steadily increasing as well as parallel processing capabilities, the com-

plexity continues to keep pace. Single-processor systems are being outmatched in this

respect.

2. Under utilization of available resources: Even within a small campus network,

we have multiple interconnected computers whose processing power we can channel

together to create a single abstraction unit capable of huge amounts of processing.

However, distributed processing is complicated and has not been tested within the

campus network yet.

3. Development of distributed networking applications: While simple socket pro-

gramming can be fairly understood and developed, creating a whole distributed ecosys-

tem is something that requires a lot of expertise and planning. There are frameworks

available for this but they are mostly tailored toward a particular application (for eg,

combined GPU computation for training deep learning models in TensorFlow) and are

not useful for general programming structure.

1.3 Objectives

1. To create a generic framework for developing distributed applications over the network.

2. To develop a distributed resource-sharing and computing platform.

3. To support seamless resource sharing between both homogeneous and heterogeneous

systems (based on similar or dissimilar OS) i.e. develop the framework to be system-

agnostic.

1.4 Scope

The proposed framework can be adopted by programmers, from a small group of people

to an entire team to develop distributed applications from multi-user applications (like a

collaborative whiteboard, and paint) to distributed resource sharing and computing. Some of

the examples of the project can be a collaborative whiteboard, paint, or computing expensive

parallelizable tasks such as a Mandelbrot set. For practical purposes, we will limit the

presentation scope to a small LAN consisting of a limited number of computers.

1.4.1 Academic study/research

Academic research is a crucial scope of our project. By sharing our framework implemen-

tation with other researchers, they can benefit from the study of distributed algorithms,

2



optimization techniques, networking protocols, mutual exclusion policies, and more. Aca-

demic research often requires the use of specialized hardware or software and involves working

with smaller datasets that do not require the complexity of established frameworks such as

Hadoop or MapReduce. Our customizable framework with an easy-to-use API, thus, has

an important scope in academia. Furthermore, frameworks like Hadoop and MapReduce do

not support a general model of programming, with no notion of variables.

1.4.2 Comparision of scope with existing frameworks

There are various distributed computing frameworks like Hadoop and MapReduce. However,

there are several key differences between these technologies and our framework. Hadoop

and MapReduce are designed specifically for processing large data sets in a distributed

environment, whereas our framework more general-purpose and can be used for a wider

range of distributed computing tasks. Hadoop and MapReduce rely on a batch processing

model, where data is processed in discrete batches rather than in real-time. Our framework

supports distributed function calls in a more real-time or on-demand fashion.

3



2. Literature Review

Apache Hadoop[1], a software framework, allows for the distributed processing of large data

sets across clusters of computers. It facilitates the processing of big data using the MapRe-

duce programming model. MapReduce program is composed of a mapping procedure, which

performs filtering, sorting, and other operations on data and a reduce method, which per-

forms the summary operation (averaging the result of all computations). Hadoop only sup-

ports batch processing and doesn’t explicitly provide real-time processing for streaming data.

It doesn’t support caching and imposes higher latency on data processing.

The Dryad[2] distributed engine is a project at Microsoft Research developed as a general-

purpose runtime for the execution of data-parallel applications. The basic working concept

behind Dryad is the division of execution resources on the basis of a directed, acyclic graph

known as the ’job graph’ - the vertices representing computation nodes and the edges repre-

senting communication channels. The Job Manager (JM) is responsible for monitoring the

overall status of executing vertices and the state of computation regarding how much data

has been read and written on its channels. A Dryad job is itself a chain of processes with

each process piping its output to the next process in the chain. Components like the Name

Server (NS) maintain the list of available vertices while each computer runs a Daemon as a

proxy for managing shared processes.

Apache Spark[3] is another distributed, open-source, distributed processing system used

for large data processing. The main component of Apache Spark is RDDs which are collec-

tions of objects that are spread across the cluster. The independent parts can be split across

the cluster, then the computation is performed in a single node and finally, the overall result

is reduced to a single structure. All those details are abstracted out, and the programmer

interacts with the data as if they are in a single node.

”A high-level framework for network-based resource sharing”[4] by James E. White pro-

poses an application-independent, resource-independent framework for resource sharing built

on the distributed design techniques within ARPA Computer Network and outlines an al-

ternative to the approach used by ARPANET system builders since the 1970s. It intro-

duces current software approaches to resource sharing with Host-Host Protocols and various

function-oriented protocols by which processes deliver and receive specific services via IPC.

Such hands-on resource-sharing protocols like TELNET have inherent limitations which are

addressed by protocols that simplify and standardize the dialogue between user and server

4



processes. FTP is one such family of protocols that follow a command/response format. On

the basis of such principles, the paper formally defines a machine-independent, application-

independent request/reply format of communication and the idea of modeling resources as

a collection of procedures. The idea behind function dispatching is derived from the original

paper for RPC, ’Implementing Remote Procedure Calls’[5].

Gluster [6] implemented RPC by sending the entire Go source file and dynamically linking

it. However, it can only be implemented in Unix-based operating systems, and if the linking

fails error cannot be propagated back to the programmer, and the node might crash without

proper error handling.

2.1 Related theory

2.1.1 Distributed System

A distributed system is a collection of autonomous computing elements that appears to its

users as a single coherent system. A computing element, which we will generally refer to as

a node, can be either a hardware device or a software process.[7]

Distributed Systems are characterized by their properties of concurrency, independent

failures, and having no global clock. They are used in a wide range of applications like Web

search, Simulation, File Sharing, and many more.

2.1.2 Fault Tolerance

The ability of a system to keep running uninterruptedly when one or more of its components

fail is referred to as fault tolerance.

In the context of a distributed system, [8] Fault tolerance is the dynamic method that’s

used to keep the interconnected systems together and sustain reliability and availability

in distributed systems. The hardware and software redundancy methods are the known

techniques of fault tolerance in a distributed system. The hardware methods ensure the

addition of some hardware components such as CPUs, communication links, memory, and

I/O devices while in the software fault tolerance method, specific programs are included

to deal with faults. An efficient fault tolerance mechanism helps in detecting faults and if

possible recovering from them.

2.1.3 Transmission Control Protocol

Transmission Control protocol, a compliment of the Internet Protocol, is a common protocol

that enables applications running on different nodes on the network to effectively and reliably

send and receive data from one another. An important feature of this protocol is the fact
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that it is connection-oriented and requires a connection to be established between the two

parties before data is sent or received. It implements features of flow control, error control

as well as congestion control.

2.1.4 Race Condition and Mutual Exclusion

In distributed systems, mutual exclusion and race conditions are two related concepts that

are important to understand for building correct and efficient concurrent/parallelly executing

inter-node processes.

Mutual exclusion is a technique used to prevent multiple nodes from modifying shared

resources at the same time. If multiple nodes attempt to modify a shared resource simul-

taneously, the program may encounter race conditions, a condition in which the system’s

behavior becomes dependent on the timing of uncontrollable events. In a distributed sys-

tem, race conditions can be more prevalent since processes may be executed concurrently on

different machines and may not have a consistent view of the shared resource. Race condi-

tions can lead to data inconsistencies or errors and can be difficult to detect and resolve.

To prevent this, mutual exclusion is used to ensure that only one thread can access a

shared resource at any given time, while all other threads must wait until the resource is

released. This can be achieved using synchronization primitives such as locks, semaphores,

or monitors.

2.1.5 FIFO Message Queue

In multi processing environment, for two-way communication, the order of the message sent

from one node to another is essential. First In First Out (FIFO) message queue retains

the order of the message and operates in a first-out fashion. This approach ensures that

if a backlog of messages builds up, the oldest messages are processed first. This removes

the necessity for maintaining absolute timestamps for individual requests and ensures the

processing of requests in the correct order.

6



3. Methodology

3.1 Description of the Working Principle

The developed framework acts as an abstraction over all the low-level OS system calls and

networking aspects needed for distributed application development. Developers will be able

to focus on writing programs for this machine while remaining ignorant of the physical net-

work underneath and OS-specific system calls. A task can be submitted in the network using

our own protocol for distributed task management. By separating into independent different

layers, the framework remains flexible enough for developers to optimize the application for

their own purpose.

3.1.1 Low level OS layer

This layer of the framework deals directly with the OS. This core part of the framework

is being implemented in ‘The C++ Programming Language‘ and will directly interact with

OS for retrieving resource information and managing the filesystem. This layer needs to be

implemented for each target platform we wish to support.

Distributed File System (GutFS)

A distributed network file system named Guthi File System (GutFS) has been implemented.

It allows seamless syncing and sharing of files and resources across connected nodes. Each

connected node maintains three different components on per node basis locally:

1. Global Root Structure

This structure maintains the node’s view of the entire network file system.

2. Local File System

This component maintains the node’s own file system.

3. Cache

It caches the recent file fetched and updates accordingly.

Each file is maintained as a structure containing three fields :

• Unique file name

7



• IPv4 address of the owning node

• Timestamp of the latest change

Whenever a file has to be fetched, the timestamp corresponding to the file is fetched from the

network. If only the timestamp is greater than the one stored in the cache, the whole content

is fetched again and cached with the updated timestamp. Otherwise, the one available in

the cache is used.

The Following series of operations occurs when a local file is changed :

• The node’s own local file system is updated.

• The node requests all node’s local filesystems and syncs with its own view of the global

root structure.

• Local filesystem is merged with global root structure.

• Global root structure is broadcasted along with RootStructureUpdated message over

the network.

Multi-Level Caching

To avoid re-fetching the unchanged contents frequently, a multi-level caching system has

been implemented. It operates on two levels :

• If the current RAM usage of the node is less than 80 percent, the content is cached in

RAM.

• If the current RAM usage of the node is greater than 80 percent, the content is cached

in the disk.

• If current RAM usage is less than 80 percent and there is content cached in the disk,

they are moved to RAM

Resource Manager

In a distributed system, different nodes may need to monitor other nodes for the dispatching

of functions. The status of nodes is obtained from the operating system and passed to all

the connected nodes.

8



3.1.2 Networking layer

The network stack is implemented in the Golang programming language because of its rich

support for concurrency. The networking layer includes client discovery and routing, passing

of runtime information of the system communication between the nodes, transferring files,

caching, dispatching of tasks, and node failure detection.

Communication Establishment Protocol Between Nodes

In the realm of network communication, the establishment of a connection between two nodes

is a critical process that underlies the exchange of information. To initiate this process, one

node sends a connection request to the other, prompting the receiving node to respond with

an acknowledgment and its relevant node information. Upon receipt of this acknowledgment,

a persistent TCP connection is established between the two nodes, which can sub-

sequently be leveraged for data transmission without incurring the overhead associated with

repeated connection establishment attempts. By minimizing the frequency of connection re-

quests, this approach enables a more efficient and reliable mode of communication between

network nodes. It is worth noting that such connections are subject to termination when

the exchange of data is complete or due to various other factors that may interfere with the

connectivity between nodes.

Network Message Format

A specified message format is used for communication between nodes. First, four bytes

of the message include the length of the total message. This allows the receiving node to

read a fixed amount of bytes from the TCP connection object. The next 24 bytes of the

message are the type of message that is transmitted. Then, the remaining bytes contain all

the gob-encoded messages.

9



Figure 3.1: Connection initiation protocol: This figure provides an overview of connection

establishment steps between nodes. The parameter isReplys indicates whether it is a connection

reply to the ConnectionReply should be sent. If isReply is true then an acknowledgment is not sent

by the receiving node.
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Figure 3.2: Network Message Format - Header + Payload: Illustration of the format of the

message along with their respective size
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Message Type Content of the Message

getnodes Request for the node information

node Node information

echo Message for pinging node

echo reply Reply of ping message

connect Connection Request

connection reply Reply of the connection request

get mem info Request of the Memory Information

get cpu info Request of the CPU information

cpuinfo CPU Information

meminfo Memory Information

get fs Request of the global filesystem

filesystem Global Filesystem in the node

variable Entire variable structure

array Array of variables

indexed array Array of variables with start and final index

symbol table All the variables present in the current node

token request sk Request for the token, so that node can execute critical section

get var Request for variable

validity info Invalidation Signal for the nodes

function dispatch Function information and

func state State of the function

func completed Event Signalling completion of function requested

Table 3.1: Message header: Type fields and their corresponding follow-up content type

12



Distributed Variable

Our framework is designed to provide programmers with a flexible and efficient method of

creating and sharing distributed variables across multiple nodes. By utilizing a hashing

mechanism to generate integer-based storage names (i.e. symbol tables), we can

optimize the storage of distributed variables without sacrificing functionality or performance.

Along with the value, and id, distributed variables also contain the type of variable which

can be obtained using the reflection capability of the Go programming language. This allows

safety and proper error propagation making the program easier to debug.

Arbitrary Variable Types

To ensure that our distributed variables can be used with any data type, we have imple-

mented them as type interface . While this provides programmers with greater flexibility,

it also requires that caution be exercised when using these variables, as any attempts to

cast them to a different type can result in runtime errors. Although Go generics are a safer

and faster alternative to interface, they were not suitable for our implementation, as the

type of variable cannot be known at compile time when passing it to another node. As a

result, we believe that our decision to use interface strikes a balance between flexibility and

performance, while also ensuring the safety and integrity of our distributed variables

Optimization

One of the main issues of distributed variables is to, sharing of the value between nodes.

When a variable is updated in one node, its value should be propagated to all the nodes

connected to it. However, sending the value of every variable every time is very expensive.

So, instead of sending a variable every time when it is updated, we send an in-

validation message for that particular variable to all the nodes. The size of the

invalidation message is small compared to the message when sending the entire variable.

When another node tries to access the invalidated value, it requests the variable from the

source node and receives the variables.
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Figure 3.3: Variable Invalidation Protocol: When a node changes the value of a variable,

invalidation is sent to all the connected nodes. Then, when another node tries to read the updated

variable, it requests the value from the source node.
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Distributed Mutual Exclusion

In a distributed system environment, concurrent access to shared variables may result in race

conditions that can have detrimental effects on system performance and reliability. While

traditional mutex and semaphore-based approaches have been used to address this challenge

in non-distributed systems, such approaches are not suitable for distributed systems due to

the absence of shared memory.

To overcome this limitation, we have implemented the Suzuki Kasami Algorithm [9]

for achieving mutual exclusion of algorithms between nodes. This algorithm is particularly

well-suited for use in distributed systems where communication delay is unpredictable. Our

decision to adopt the Suzuki Kasami Algorithm over the Ricart and Agrawala algorithm [10]

was driven by the former’s optimal message-passing paradigm, which enables it to deliver

superior performance in distributed systems with unpredictable communication delays.

By utilizing the Suzuki-Kasami Algorithm in our distributed system, we have success-

fully achieved mutual exclusion of algorithms between nodes so they can truly implement

algorithms correctly without any race conditions.

Internode Function Call

Our framework allows programmers to make function calls from one node to another node

provided that the function signature exists in both nodes. This allows programmers to

develop a complete distribution system. The motive is to implement remote procedure calls

over the main network without requiring the overhead of using a separate RPC server. Key

points considered while implementing the dispatch mechanism include,

1. Abstraction: Remote function calls are abstracted enough that the user doesn’t

realize it is being made remotely i.e. from a user’s perspective, the function runs as if

it were running in the local machine.

2. Arbitrary Function Invocation: Our framework has ensured that functions of any

signature can be invoked on any external node provided that the function definition is

available on both nodes. Due to the statically typed nature of Go and the complexity

constraints in generating functions at runtime, any function that is required for remote

dispatch must be provided at compile time.

3. Network Latency: The performance of function dispatch is calculated considering

the effect of network latency and persistent connections are used to account for the

intermittent change in distributed variables.
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4. Error Handling: Invalid function calls are properly handled and it is ensured that

the core process is not halted unless explicitly provided a termination interrupt occurs.

To make sure these requirements are fulfilled, the following approaches were taken,

1. Reflection: For working with function definitions, we have used the reflection feature

of the Go programming language to work with dispatch at runtime 1. The Package

’reflect’ of the Go standard library implements run-time reflection, allowing a program

to manipulate objects with arbitrary types. This feature is used to compare and call

arbitrary functions, thus fulfilling one of our key requirements.

2. Network-Wide Global Function Store: The reflection features are used to main-

tain a global store of all remotely ’callable’ functions. Every node has a copy of this

function store and only the functions added to this store can be invoked dynamically.

3. Error Handling at Run Time: Reflection panics are impossible to handle when

they occur due to their pure run-time nature. As a result, a lot of type checks are

made at different stages of the function calls to ensure the main program loop does

not crash.

Serialization of Message

Before sending data over the network, the message needs to be serialized. For serialization,

we used Golang’s internal Gob encoding 2 protocol. The primary reasons for using Gob

encoding for serialization (over traditional serializations such as JSON or XML) include,

1. Efficiency: Gob encoding is fast and efficient for Go data types and structures.

2. Type Safety: Encoded data contains information about its type and structure within

itself, so we don’t need to send in data type details. This also ensures type safety as

we automatically enforce type compatibility between the encoder and the decoder.

3. Custom Types: Since Gob supports the encoding of custom types based on interface

details, it is ideal for our frameworks that use many custom structures and types.

4. Efficient Pointer Encoding: Gob encoding flattens pointers automatically i.e. it

can encode and decode pointers to values without changing the code structure.

1 Go reflection: https://pkg.go.dev/reflect
2 Gob Encode: https://go.dev/blog/gob
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Node Failure Detection and Handling

Distributed systems face a significant challenge in detecting node failures due to the absence

of a dedicated link between nodes. Furthermore, there is also the question of how to exactly

handle a node failure after it has been detected.

Failure Detection

First, to address the challenge of failure detection, our framework employs a continuous

echo message transmission mechanism to all connected nodes, followed by a wait for a

reply from each node. In the event that a reply is not received within a 10-second interval,

the corresponding node is deemed to be disconnected. This approach provides a reliable and

low-overhead means of detecting node failures in a distributed system environment.

Failure Handling

Notably, different distributed systems may require distinct approaches for handling node

failures. To cater to this requirement, our framework offers flexibility to programmers by

enabling the binding of a callback function that will be invoked in the event of a node

failure. By providing this functionality, our framework empowers programmers to design cus-

tom node failure handling mechanisms that align with their specific distributed system needs.

Function Call and Node Failure

We have exposed a function that allows programmers to bind the state to the progress

of a remotely executing function. The state is then sent to every other node in the

system to ensure that it is available in the event of a node failure. This approach ensures

that, in the event of a node failure, the next dispatch of the function can resume from the

state where the failed node left off. We tested the effectiveness of this technique in a variety

of scenarios and found that it is a reliable way to handle node failures in a distributed sys-

tem. However, we acknowledge that this technique may not be necessary or appropriate for

every use case. As a result, we have made the state-binding mechanism an extension case

for our distributed resource-sharing framework rather than an internal feature. This allows

programmers to choose whether or not to use this technique based on the specific needs of

their application.

The combination of our continuous echo message transmission mechanism and the ability

to bind a callback function, along with state management for function call resumption from

point of execution failure, represents a robust approach to addressing node failure detection
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and handling in distributed systems.

Time synchronization

Time synchronization is one of the most critical factors that determine the pipeline of exe-

cution in distributed systems. For any sequence of events that needs to happen sequentially,

we must establish an order based on a clock synchronized across all system nodes. Since we

do not use a dedicated time server for our implementation in order to adhere to peer-to-peer

system design as closely as possible, we use an external NTP clock to synchronize events

between systems.

Figure 3.4: Time Synchronization Mechanism using NTP: Each node syncs its local clock

with a remote NTP server, thus ensuring there is eventual consistency in local network time.

The implementation details for time synchronization can be enumerated as,

1. Fetch Time From Remote NTP Server: The framework maintains a list of remote

NTP servers that return accurate time. The basic approach is to use time from the

first server that is up and running. The time fetching is done every 10-15 seconds

(arbitrarily decided) since servers do not respond well to continuous polling.

2. Node-Specific Global Clock: Since we are using an external clock, the nodes each

have their own global clock state which is updated every second depending on one of

two cases - (a) fetch time from NTP server at time t or, (b) locally increment the time

every second.
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The global clock time is used for any time-ordered events for distributed processing. The

NTP client was written in Go, the implementation details for which is derived from the RFC

5905 document specifying the NTP Protocol[11].
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4. System design

4.1 Requirement Specification

4.1.1 Functional Requirements

• A node should be able to connect to the network by providing its address and port

• A node should be able to access the shared resources of another node

• A user of the framework should be able to use it to execute a computational task on

multiple nodes

• A user of the framework should be able to utilize the distributed file system in their

application

• A user should be able to see the current network information and the status of all

nodes connected to it.

• A user should be able to see the resource information provided by each node in the

resource manager.

4.1.2 Non-Functional Requirements

• The low-level abstractions should be hidden from the user

• The framework should be as generic as far as possible to the user application

• The framework should be scalable in terms of the addition of nodes

A component-based approach has been followed to develop the proposed framework i.e.

parts of the system that will perform the related tasks are grouped into a single component.

Components involved include caching system, resource manager, node discovery and connec-

tion component, task schedular and dispatcher, memory pool, thread pool, and a component

wrapping OS-specific functionalities.

The lower level layer of the framework is written in C++ while the upper layer is im-

plemented in Go. Communication between two layers is managed in a strict client-server

fashion where communication is non-blocking and bi-directional.
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4.2 Components and Interactions

4.2.1 Interaction between low-level OS layer and Networking Layer

The communication between the Go runtime that handles the networking stuff and the C++

runtime that handles low-level OS-specific features is governed by a client-server architecture.

The C++ runtime manifests itself as a daemon listening to the events from the OS and client

(Go runtime) and responds to the message accordingly. The communication between the

daemon and the client is bi-directional and non-blocking.

4.2.2 Daemon-Client Interaction

Daemon implemented in C++ and Go runtime strictly communicates in a client-server fash-

ion. The communication is non-blocking and bi-directional.

The client and servers (daemon, in this case) communicate by following a specific protocol.

The protocol is named as Guthi Protocol and is specified as follows:

• The first 5 bytes of any message between client and server should be followed by 5

magic bytes: 0x47 0x55 0x54 0x48 0x49

• The next byte contains the type of message that follows. It is defined by the enumer-

ation:

Command Value

GetFile 0

CheckIfInCache 1

RequestFileMetadata 2

NoSuchResourceExists 3

TrackedFileChanged 4

TrackThisFile 5

EchoMessage 6

Continuation 7

InvalidRequest 8

GetCachedFile 9

ResetConnection 10

MessageNone Other

Table 4.1: EMessage enum values and description
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• The next 2 byte contains the length of the message in little-endian order (least signif-

icant byte followed by most significant byte).

• The remaining n bytes (where n is the length received in the previous step) contain

message-specific metadata.

For demonstration, an echo message request containing a ”Hello World” message is

transferred as the following stream of bytes:

0x47 0x55 0x54 0x48 0x49 0x06 0x0B 0x00 ’H’ ’e’ ’l’ ’l’ ’o’ ’ ’ ’W’ ’o’ ’r’ ’l’ ’d’
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Figure 4.1: Component Interaction (single node view): Overview of the interaction of differ-

ent components of the system. Multiple nodes communicate with each other through the network

and communication is handled by Go runtime. C++ Runtime is responsible for resource various

OS system calls, queries of resource usage of the system, and management of the filesystem. Go

and C++ Runtime communicate through foreign FFI calls provided by the stable C ABI from the

Go runtime and FIFO Queue.
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4.3 UML Diagrams

Figure 4.2: Sequence Diagram for Distributed Variable Read and Write Operation.

When a node changes the value of a variable, invalidation is sent to all the connected nodes. Then,

when another node tries to read the updated variable, it requests the value from the source node
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Figure 4.3: Sequence Diagram for Inter-node Function Call. If the function call fails due to

node failure, the execution is resumed from the state right before failure on any other node which

is available.
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Figure 4.4: Sequence Diagram for Node Failure Detection. An echo message is sent to all

the nodes, and if the response is not received in the next 10 seconds, then the node is considered

failed.
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4.4 Languages and Tools

C++

C++ is a general-purpose, compiled language developed by Bjarne Stroustrup and was

initially released in 1985 as an addition to the C language. One of the appealing features of

C++ is the fact that it provides the programmer access to low-level system resources. The

low-level components like resource management, File System, Caching, and OS call wrappers

are implemented in C++.

Go

Go 1 is a high-level programming language developed by Google. Go was chosen as the

programming language for implementing the Network platform because of its rich support

for concurrency and reflection. Upper-layer networking components like client discovery,

routing, runtime information sharing, and file transfer are written in Golang.

CMake

CMake 2 is an open-source, cross-platform, meta-build system to build software. CMake is

not a build system itself; it generates another system’s build files. It supports directory hier-

archies and applications that depend on multiple libraries. It provides a proper abstraction

for building projects with different configurations.

Javascript

JavaScript (JS) 3 is a lightweight, interpreted, or just-in-time compiled programming lan-

guage with first-class functions. While it is most well-known as the scripting language for

Web pages, many non-browser environments also use it, such as Node.js, Apache CouchDB

and Adobe Acrobat. JavaScript is a prototype-based, multi-paradigm, single-threaded, dy-

namic language, supporting object-oriented, imperative, and declarative styles. The interface

to view the network information provided to the user, the interface to connect a new node

to the network, and the resource monitoring graphs in this project are written in Javascript.

1 Go: https://go.dev/
2 CMake: https://cmake.org/
3 JS MDN: https://developer.mozilla.org/en-US/docs/Web/JavaScript
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5. Results & Discussion

5.1 Analysis of Different Algorithm

Effect of Persistent Connection

With the initial implementation of our project, we established connections between nodes

every time we needed to pass some data at that very instant (non-persistent connection). We

later developed a version that cached connections for future use, thus effectively establishing

a persistent connection. We compared the result of performance between the persistent

connection and non-persistent connection for the rendering of mandelbrot in two different

nodes.
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Figure 5.1: Plot of time taken to render Mandelbrot set of different sizes with persistent and non-

persistent connection
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The performance difference between the two cases is very much drastic. The difference

in performance is even more when the complexity of the application increases.

Effect of Number of nodes in the speed of computation

We tested the effect on computation time as the number of nodes changes. The results

demonstrated that there is a decrease in computation time with an increase in the number

of nodes. However, the findings also suggest that this relationship is not linear, as further

increasing the number of nodes leads to an increase in total time. This outcome could be

attributed to the potential overhead associated with network communication as the number

of nodes increases. Overall, these findings highlight the importance of carefully considering

the number of nodes in a distributed computing system to optimize performance.
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Figure 5.2: Effect of number of nodes on the speed of Mandelbrot rendering

5.2 Network Visualization Interface

An Interface to visualize the Network has been created as a web application. It enables each

node to view the current information of the network. The interface also enables a new node
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to connect to the network by providing its address and port.

5.2.1 Home

The main index provides general information on the functionalities of the interface.

Figure 5.3: Network Visualization Home: User Interface of the home page for the network

visualization page.

5.2.2 Self Node Information

The Self page provides information about the user’s own node like name, id, address, and

port.

5.2.3 Nodes

The Nodes page provides information about the nodes connected to the network like their

name, id, address and port.
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Figure 5.4: Network Visualization Self : The Self page provides information of name, id, address,

and port of the user’s own node
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Figure 5.5: Network Visualization Nodes: Nodes tab enables a new node to connect to the

network as well as view general information about other nodes
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5.2.4 Memory

The Memory page provides information about the memory load and CPU usage of each node

connected to the network. This information is provided as a resource monitor graph.

Figure 5.6: Network Visualization Memory and CPU: This tab provides information about

the memory load and CPU load of each of the nodes connected.

5.3 Rendering of Mandelbrot Set

We implemented the rendering process of the Mandelbrot set using our framework in multiple

nodes. An array of distributed variables is created for each pixel of the image. Along, with

that, a node failure handler callback function was added, which stores the state of the nodes
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that has been already computed by the failed node, so that it can be dispatched once another

node has been connected.

(a) (b)

(c)

Figure 5.7: (a) Mandelbrot Set Computed in First Node (b) Mandelbrot Set Computed in Second

Node (c) Complete Image of mandelbrot set obtained from both nodes

5.4 Distributed Whiteboard

The distributed whiteboard will be our second application of the framework besides Man-

dlebrot rendering. While the Mandelbrot was a demonstration of the distributed function

call, the whiteboard is a presentation of the filesystem portion (GutFS) of our framework.

The basic workflow of the whiteboard can be summarised as follows,
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1. Whiteboard - ElectronJS App: The whiteboard is locally an app written using

ElectronJS that features a simple canvas supporting draw feature using different colors.

This can be run locally without connecting to the network.

2. Making Changes (Locally): Any changes made to the canvas are propagated to a

locally stored file in base64 format, where any new changes overwrite the old changes.

3. Propagating Changes (Across Nodes): The file, to which the canvas changes are

saved, is tracked by our framework’s filesystem daemon. If any changes are made to

the file by any node, then the changed file is sent to all nodes. Overwrites are made

based on the newest made changes.

4. Displaying Changes - Node Listener: A separate listener is implemented to listen

for changes to the changed file and reload it to the app. We have written this func-

tionality in NodeJS which integrates seamlessly with the ElectronJS App, although

the implementation detail is left up to the programmer. Any HTTP server that can

re-render the changed file can be used for this portion.

Figure 5.8: White Board Basic User Interface (Single Node Screenshot)

35



6. Conclusion

To summarize our report, the concept of our project has been derived from the need to utilize

the computation power of systems connected in a network and we have been able to achieve a

desirable output through our distributed framework. The background knowledge and theory

required to establish a knowledge base have been provided, along with the methodology

and mindset that is required to put that knowledge into practice for our framework. The

implementation provides a fast, secure, and reliable way of communicating with nodes in

a network, exchanging files, invoking functions, synchronizing timestamps, and more. The

applications developed over our framework have been developed with an academic purpose

in mind, with both the Mandlebrot rendering and Distributed Whiteboard intended to serve

as examples for further research into mathematical computing and graphics rendering/file

sharing respectively in distributed systems. Naturally, some rigorous analysis remains, along

with changes proposed in our future enhancements. Overall, research can benefit from the

algorithms and techniques implemented for this project, which can lead to new discoveries

and advancements in the field of distributed computing study.
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7. Limitations and Future enhancement

7.1 Limitations

Although a working framework was created, it still has some limitations. Some of the

drawbacks and limitations of this framework are:

• Multiple Mutual Exclusion Algorithm: Currently, only one algorithm for the

platform-level distributed mutual exclusion is provided. However, it can be inefficient

for multiple use cases.

• Absence of internal logs: The framework does not provide logs of all internal events

that could have been useful for programmers to debug their applications.

• Presence of Bindings in multiple languages: Currently, our framework exists for

only the Go programming language and that can inherently come with limitations of

the Go programming language.

• Conflict resolution for distributed filesystem: There is no concrete algorithm in

place for conflict resolution to mutual edits to a distributed file other than prioritizing

the latest timestamp. Operational transformation [12], a popular algorithm for sup-

porting functionalities in advanced collaborative software systems, is currently being

looked at as an alternative for this particular use case.

• Scalability: The framework has been developed with academic research in mind, so

it doesn’t scale well to the industry requirements of data processing.

7.2 Enhancements

• API Exposure: Exposing API for cross-language development is a crucial future en-

hancement that can open up the framework’s usage to multiple research projects. The

filesystem portion of the project is already language-independent due to its abstract

nature, however, functionalities like remote function dispatch can be developed for use

through multiple languages and tools.

• Callback Functions: Currently callback functions are used in the case of node failure

handling, however, they can be extended to be executed in case of other events as well

(node connection, distributed variable modification, and others).
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• Task Scheduling: Functions can be set up to dispatch at a later time from invocation.

Furthermore, a regularly scheduled dispatch can be integrated as a functionality of the

system.

• Variable Access Optimizations: Variable access analysis can be done to minimize

overhead to the system. For example, variable changes may not be propagated to

nodes which do not actually require it’s particular usage at the moment, thus saving

network bandwidth.
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