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Abstract

The project aims to develop a system for generating paraphrases using transformer-based
models. Fine-tuning the pre-trained models on a large-scale dataset of sentence pairs, con-
sisting of source sentences and their corresponding paraphrases, and evaluation of their
performance on several benchmarks was performed. To accomplish the project’s objectives,
several tasks were undertaken, such as researching and allocating resources, collecting and
translating datasets, sampling, filtering, and analyzing the feasibility of the model. The
comprehensive approach employed in the project has enabled the development of a power-
ful tool for generating high-quality paraphrases, which could enhance the natural language
processing and generation capabilities of various applications. Moreover, this model excels
in utilizing mathematical and statistical metrics such as BLEU and ROUGE scores to accu-
rately assess paraphrasing. Additionally, the model demonstrated excellent performance on
different datasets, showcasing its ability to generalize across different types of test sets. But,
the zero-shot evaluation produced a result not so expected, suggesting a low recall score for
new sentences which highlighted the need for further improvements in the model. Similarly,
this model faces significant challenges such as entity mismatches, semantic and syntactic
differences, and exact match problems between the input sentences and their corresponding
generated sentences. Furthermore, the implementation of a web application enabled users to
input sentences and receive their paraphrases in real time, demonstrating the practicality of
our approach. Nonetheless, this research emphasizes the vast potential of advanced language

models to enhance natural language processing capabilities in low-resource languages.

Keywords: Natural Language Processing, Transformer, ROUGE, BLEU.
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1. Introduction

1.1 Background

Paraphrasing is a critical task in natural language processing (NLP) that involves the reword-
ing of a sentence while retaining its intended meaning. This task is particularly important
for tasks such as text summarization, machine translation, and data augmentation. With
the advent of transformer-based language models, such as BERT[1], BART[2], GPT|[3], and
T5[4], there has been a significant improvement in the quality of paraphrasing, particularly
in the English language. However, paraphrasing in other languages, such as Nepali, remains
a challenging task due to the lack of large-scale annotated data and limited research in this

area.

In this report, we present our efforts to fine-tune a transformer-based model, specifically the
m'T5 model, for paraphrasing in the Nepali language. Moreover, we evaluate the quality of
the generated paraphrases using both automatic and human evaluation methods and discuss
the potential applications of our model in Nepali language processing tasks. The transformer
architecture is based on the idea of self-attention, which allows the model to focus on different
parts of the input sequence at different timesteps in contrast to previous NLP models, which
typically used recurrent or convolutional layers to process input sequences. One of the key
advantages of the transformer architecture for paraphrasing is its ability to handle long-range
dependencies and capture global context which is often required for a deep understanding

of the underlying meaning and context of the original sentence.

In general, this project has been broadly divided into dataset, model, and analysis. Here,
the dataset consists of a combination of manually paraphrased data as a gold label and
machine-translated and processed datasets like Quora[5] and paraNMT[6] as a bronze label.
Further, various levels of sampling and filtering techniques were implemented for the removal

of the noise and irrelevant data to optimize the performance of the model on this dataset.

In our project, we undertook extensive fine-tuning and experimentation with the mT5-small
and mT5-base models [7] to improve the generation of paraphrases. Furthermore, we em-
ployed a back-translation method to conduct a comparative analysis. This approach allowed
us to explore various techniques and optimize the performance of our paraphrasing models.
Once the fine-tuning task on the pre-trained models was completed, a combination of top-k
sampling and top-p (nucleus) sampling techniques was used during the inference to generate

the paraphrases.



Regarding the quantitative analysis of our paraphrase models, the implementation of various
metrics like BLEU[8] and ROUGEI9] score enabled the possibility to compare the model-
generated paraphrase sentences with the dataset contained paraphrases for each input sen-
tence. Moreover, the BLEU score incorporates BLEU-2 and BLEU-4 while the ROUGE
score is reflected through ROUGE-1 and ROUGE-2.

In summary, our major goal is to develop a paraphrasing tool using a transformer model
which as a black-box model provides a paraphrase of the text(Devanagari script written in

the Nepali language) fed into the model.

1.2 Motivation

Paraphrasing is such a tedious job: a large-scale manual restructuring of sentences that best
fit the usage scenario is quite hard to execute. With millions of people having access to
similar types of research articles, blogs, papers, and generated text, issues like copyright
and plagiarism are inevitable. In the case of Nepali being a low-resource language, there is a
scarcity of annotated data and language models. This limits the development of high-quality

paraphrasing models for Nepali.

Moreover, our main goal is to contribute to the language community by providing valuable
resources that can improve language generation and understanding. These resources can be
applied in various ways, such as paraphrase generation, plagiarism detection, summarization,

and enhancing content quality.

1.3 Problem statement

Despite the growing importance of natural language processing (NLP) techniques in various
fields, the Nepali language lacks automated tools for paraphrasing. Unlike other languages
such as English and French, there are limited resources available in Nepali for services such

as summarization, sentiment analysis, and paraphrasing.

Developing a proper library and dataset in itself is a time-consuming and challenging process,
and the lack of open-source contributors in our market makes it even harder. While there
have been some projects in Nepali natural language processing, such as sentiment analysis,
there has been limited research and implementation on paraphrase generation or more over

in text generation.

Even while searching for resources related to Devanagari text, a significant lack of libraries,
datasets, and tools to support NLP was felt. This highlights the need for further development

and exploration of natural language processing techniques in the Nepali language.



1.4 Objectives

The major objectives of this project are as follows:

o To create a dependable dataset of the Nepali language.

« To make a sophisticated system for paraphrasing Nepali text in Devnagari Script.

1.5 Scope

o It can be used for the production and deployment of accurate, reliable, and user-friendly

Nepali paraphrasing tools.

o Paraphrasing models can be used to simplify complex technical jargon or academic

language for a non-expert audience without losing its originality.

e Dealing with the plagiarism issue while copying texts or rewriting similar texts by
presenting information from a source in a unique way while still giving credit to the

original author.

e Summarizing or simplifying for academic and professional purposes such as writing

business reports, marketing materials, journalism, etc.

e It can be used in multiple areas such as speech writing, presentation, and personal
communication, by making messages clear, concise, or engaging for better conveying

or varying messages in accordance with what resonates with the audience.

In short, the scope of paraphrasing is quite vast and it can be applied in various contexts

for better-conveying information and enhancing communication.



2. Literature Review

2.1 Related Work

The first-ever attempt in this field was made in 1983 [10].The paraphrasing approach used
was a syntactic one with a rule-based approach.In 2009[11], another rule-based approach was
proposed,which focused on automatically learning complex paraphrase patterns. Thesaurus-
based methods were also explored by Bolshakov and Gelbukh [12], and Kauchak and Barzilay[13].
The first-ever natural language generation-based approach dates back to 2003[14]. In 2004,
Quirk, Brockett and Dolan proposed a statistical machine learning theory based on gener-

ating sentence-level paraphrases [15].

More recently ,many neural network based techniques have been developed including a
stacked LSTM network for paraphrasegeneration|[16] and deep generative framework as varia-
tional autoencoder-based architecture augmented with sequence to sequence model[17]. The
latest findings depict Paraphrase generation and identification using the T5 base model[18].In
Nepali, researchers have developed a transformer encoder block inspired by the BERT ar-
chitecture, which they have named NepBerta[19]. Although sentiment analysis using neural
networks has been explored to some extent[20] [21], there has been a lack of progress in
the neural network approach to text generation. Despite the numerous advancements in the
field, little work has been carried out in the Nepali language, making it the first for the

paraphrase generation in the Nepali language.

2.2 Related Theory

2.2.1 Dataset Processing

A dataset in natural language processing (NLP) is a group of written or spoken language
examples that have been gathered and organized for the purpose of training and testing
different models. This dataset usually includes many documents or texts that can be broken
down into smaller units like words or sentences. These datasets are used to train and
evaluate machine learning models. To create a dataset for paraphrasing in the Devanagari
script, several approaches can be taken. One approach is to collect existing parallel corpora,
which consist of pairs of sentences in the source language and their translations in the target
language. These parallel corpora can be used to train machine learning models for different

NLP tasks such as paraphrase generation, summarization and so on. Another approach here



is to use rule-based methods for paraphrase generation where linguistic rules and patterns
are used to generate alternative sentences with similar meanings to the original text. For
example, synonyms can be substituted for words in the original sentence, or the sentence

structure can be modified to create a paraphrase.

2.2.2 Pytorch lightning

PyTorch Lightning is a lightweight wrapper library for PyTorch. It provides a high-level
interface for organizing PyTorch code into reusable and modular components. Its primary
aim is to simplify training deep learning models by providing a standard structure for writing
PyTorch code that is easy to read, debug, and scale. PyTorch Lightning offers a set of
abstractions for everyday deep-learning tasks such as training loops, validation, and testing.
It also handles low-level details such as distributed training, checkpointing, and logging.
PyTorch Lightning is designed to make it easier for researchers and practitioners to focus
on building and experimenting with deep learning models rather than worrying about the

details of implementing and managing the training process.

2.2.3 Transformer

A transformer is a type of deep learning model that was introduced in the paper ”Attention
Is All You Need” by Vaswani et al. in 2017. It is an architecture that primarily uses

self-attention mechanisms to process sequential data, such as natural language text.

Traditionally, RNNs were used for sequential data processing, but they suffer from issues like
vanishing gradients and difficulty in parallelization. Transformers overcome these limitations
by using a self-attention mechanism that allows the model to attend to different parts of the

input sequence while processing each token.

The core idea behind self-attention is to compute a weighted sum of the input sequence
tokens based on their importance with respect to a specific token. These importance weights
are learned during the training process and are used to compute a context vector for each
token. The context vectors are then fed through a feedforward neural network to obtain the

final output.

Transformers have been used in various natural language processing tasks such as language
modeling, machine translation, and text classification. They have also been applied in other

domains, such as computer vision and speech recognition.



2.2.4 Language Models

A language model is an Al system that can comprehend and generate human language. It
is trained on large datasets of text and employs statistical and machine learning methods to

predict the most likely words or phrases to follow in a given sentence or text.

Language models have diverse applications such as speech recognition, natural language
processing, machine translation, and text generation. They enhance the capabilities of search

engines, chatbots, and virtual assistants to comprehend and respond to user inquiries.

Various types of language models exist, including n-gram models, recurrent neural networks
(RNNs), and transformers, each with its unique strengths and weaknesses. These models

are deployed in specific contexts based on the application and the requirements at hand.

Here are some examples of language models:

o GPT-3 (Generative Pre-trained Transformer 3) developed by OpenAl.
« BERT (Bidirectional Encoder Representations from Transformers) developed by Google.

« ELMo (Embeddings from Language Models) developed by the Allen Institute for Ar-

tificial Intelligence.

o ULMFiT (Universal Language Model Fine-tuning) developed by Jeremy Howard and
Sebastian Ruder.

o XLNet (eXtreme MultiLingual Language Model) developed by Carnegie Mellon Uni-

versity and Google Brain.

« RoBERTa (Robustly Optimized BERT Pre-training Approach) developed by Facebook
AT Research.

« ALBERT (A Lite BERT) developed by Google Research and Toyota Technological
Institute in Chicago.

o T5 (Text-to-Text Transfer Transformer) developed by Google.
o MT5 (Multilingual Text-to-Text Transfer Transformer) developed by Google.
These models are among the most advanced and widely used language models today, and

they have contributed significantly to the field of natural language processing. Among these,

T5 and MT5 are the models of our concern.



2.24.1 T5

T5 is a transformer-based language model created by Google Al Language. It is a highly
flexible model that can perform a range of natural language processing tasks, including text

classification, question answering, language translation, and summarization.

T5’s "text-to-text” approach is one of its most notable features. This means that the input
and output text is transformed into a standard format before processing, allowing the model

to learn a diverse range of text-to-text transformations.

The T5 model utilizes a transformer architecture, which is a neural network design ideal for
sequential data such as text. It is comprised of several layers of self-attention and feedforward
neural networks, enabling it to capture intricate patterns and dependencies within the input

data.

To pre-train TH, a technique called "masked language modeling” is utilized. This involves
randomly masking words in the input text and training the model to predict the masked

words based on the context.

Once pre-trained, T5 can be fine-tuned for specific natural language processing tasks such
as machine translation or text classification. During fine-tuning, the model is trained on a
smaller dataset that is specific to the target task, enabling it to learn task-specific patterns

and improve its performance on that task.

T5 is a high-performing language model that has achieved state-of-the-art results on a range
of natural language processing benchmarks. As a result, it is widely used across many natural

language processing applications.

2.2.4.2 mT5

mT5 (Multilingual Translation Transformer) is a natural language processing (NLP) model
developed by Google. It is based on the Transformer architecture, which is a deep learning
model designed to process sequential data, such as text. MT5 is specifically designed for

machine translation and can translate between 100 different languages.

mTH is a multilingual model, meaning it can translate between any of the 100 supported lan-
guages. This makes it a powerful tool for communication and information exchange across
linguistic boundaries. Additionally, MT5 can be fine-tuned for specific domains or languages,

allowing for even more accurate translations.



One of the key features of mT5 is its ability to handle complex sentence structures and
idiomatic expressions. This is achieved through the use of contextual embeddings, which

capture the meaning of words based on their context in the sentence.

m'T5 also utilizes a pre-training and fine-tuning approach to improve its translation accuracy.
The model is first trained on a large corpus of text in multiple languages, allowing it to learn
the nuances of each language. It is then fine-tuned on specific translation tasks, further

improving its accuracy.

Overall, mT5 is a powerful tool for machine translation that can handle a wide variety of
languages and complex sentence structures. Its accuracy and flexibility make it a valuable

tool for communication, research, and business in multilingual contexts.

2.2.4.3 mBART

The mBART model is a multilingual extension of the BART model developed by Facebook
Al Tt is a language model capable of performing various natural language processing tasks,

such as machine translation and text generation, in multiple languages simultaneously.

The mBART model is trained on a large corpus of text data in multiple languages using a
combination of techniques, including masked language modeling and denoising autoencoding.
It uses a transformer-based architecture, which is a neural network architecture designed to

handle sequential data such as text.

One of the key advantages of the mBART model is its ability to handle multiple languages
simultaneously. This makes it particularly useful for multilingual applications, such as cross-

lingual transfer learning and machine translation.

The mBART model has achieved state-of-the-art results on various machine translation
benchmarks, outperforming previous multilingual models. It is also available in the Hugging
Face Transformers library, making it accessible to developers and researchers for a wide range

of natural language processing tasks.

2.2.4.4 Back Translation

Back-translation is a technique used in machine translation to improve the quality of trans-
lations by translating a text from the target language back into the source language. This
technique involves training a neural machine translation model on a parallel corpus (a set of

texts in the source and target languages) and then using the model to translate a text from

8



the target language back into the source language. The resulting text is then compared to
the original source text to identify errors and improve the quality of the translation. Back-
translation is a simple and effective way to generate additional training data for machine
translation models and has been shown to improve the quality of translations in several
studies. It is commonly used in both academic research and commercial machine translation

systems.

2.2.5 Tokenizer

A tokenizer is a program or a library that breaks text into tokens which are in fact the smaller
pieces of the text. Different types of tokenizers are available. Word tokenizers and character
tokenizers are the most common ones. Some of the widely used tokenizers by NLP researchers
are TreebankWorkTokenizer, TweetTokenizer, MWETokenizer, THTokenizer, mT5Tokenizer,
MBartTokenizer, AutoTokenizer, etc.

2.2.5.1 T5 Tokenizer

The T5 tokenizer is a type of tokenizer that is specially designed for use with the T5 trans-
former model. It uses subword tokenization to split words into smaller subword units, which

helps the model to process rare and out-of-vocabulary words more efficiently.

One of the unique features of the T5 tokenizer is that it is a text-to-text tokenizer. This
means that it converts both input and output text into a standardized text format prior to
processing. This approach enables the TH model to perform a wide range of text-to-text

transformations, which allows it to generalize better to new domains and tasks.

The T5 tokenizer can handle various input and output formats, including sequence-to-
sequence, text classification, and language modelling tasks. It also includes specialized tokens
that help the model to perform specific tasks, such as padding, masking, and delimiting the

input and output sequences.

Overall, the T5 tokenizer is an essential component of the T5 model’s high accuracy and

efficiency in performing various natural language processing tasks.
Here’s an example of how the T5 tokenizer works:
First, we initialize the TS tokenizer:

Let’s say we want to tokenize the following sentence:

"I love using T5 for natural language processing.”



First, we initialize the T5 tokenizer:
from transformers import THTokenizer

tokenizer = ThHTokenizer.from pretrained(’t5-small’)

Then, we use the tokenizer.encode method to tokenize the sentence:
text = "I love using TH for natural language processing.”

tokens = tokenizer.encode(text)

The output of tokens will be:

216, 3, 129, 1218, 93, 10751, 15, 847, 125, 3094, 531, 424, 1]

This is a list of token IDs, where each ID corresponds to a particular token in the T5 vo-

cabulary. We can use the tokenizer. decode method to convert these token IDs back into text:

decoded text = tokenizer.decode(tokens)

The output of decoded text will be:
'T love using T5 for natural language processing.</s>" Here, the </s> token is added by

the T5 tokenizer to indicate the end of the sequence.

2.2.5.2 mT5 Tokenizer

mThTokenizer is a tokenizer designed specifically for the multilingual transformer model
called "mT5” (multilingual T5), which is part of the family of T5 models developed by
Google. mT5 Tokenizer is used to preprocess text data before feeding it into the mT5 model

for tasks such as language translation, summarization, and question answering.

mT5Tokenizer is based on the Byte-Pair Encoding (BPE) algorithm, which is a data com-
pression technique that can also be used for tokenization. However, mT5Tokenizer uses a
variation of BPE called SentencePiece, which is designed specifically for multilingual mod-
els. SentencePiece is able to handle multiple languages by generating a shared vocabulary

of subword units that can be used across different languages.
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m'T5Tokenizer is implemented in Python using the Hugging Face Transformers library, which
provides a unified API for working with various transformer models. This tokenizer can be
used for both training and inference, and it can handle text data in multiple languages. Over-
all, mT5 Tokenizer is a useful tool for researchers and developers working with multilingual

natural language processing tasks using the mT5 model.

Here’s an example of how the mT5 tokenizer works with the input sentence:
" IGRGHIEw ST AITa0d! WIet TRYHT B+ 1"

First, we initialize the mT5 tokenizer:

from transformers import MT5Tokenizer

tokenizer = MT5Tokenizer.from_ pretrained(’google/mt5-small’)

Then, we use the tokenizer. encode method to tokenize the sentence:
text = "SERBHEH AT ATTEwD! WSt TRREHT B

tokens = tokenizer.encode(text)

The output of tokens will be:

22169, 19, 4250, 145, 6, 1336, 5957, 2686, 1747, 26, 186, 97, 309, 1]

This is a list of token IDs, where each ID corresponds to a particular token in the mT5
vocabulary. We can use the tokenizer.decode method to convert these token IDs back into

text:

decoded text = tokenizer.decode(tokens)

The output of decoded text will be:
'SEREH g SfAd ATFRTEw®! Wiefl TRIEHT B

.</s>" Here, the </s> token is added by the mT5 tokenizer to indicate the end of the

sequence.
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2.2.5.3 mBART Tokenizer

MBartTokenizer is a special type of tokenizer developed by Facebook Al. It is a multilingual
tokenizer specifically designed to work with the mBART model, which is a multilingual

extension of the BART (Bidirectional and Auto-Regressive Transformers) model.

The mBART Tokenizer is designed to process text data in multiple languages and can handle
both monolingual and multilingual text. It is a subword tokenizer that uses byte pair encod-
ing (BPE) to split words into smaller subword units, allowing it to handle out-of-vocabulary

and rare words more efficiently.

The mBART Tokenizer supports various input and output formats, including sequence-to-
sequence, text classification, and language modelling tasks. It also includes specialized tokens

for tasks such as padding, masking, and delimiting the input and output sequences.

One of the key advantages of the mBART Tokenizer is its ability to handle multiple languages
simultaneously. This makes it particularly useful for multilingual applications, such as cross-

lingual transfer learning and machine translation.

In summary, the mBART Tokenizer is a powerful multilingual tokenizer designed to work
with the mBART model, and its ability to process text data in multiple languages makes it

a valuable tool for various natural language processing tasks.

Here’s an example of how the mBART tokenizer works with the given input sentence in

Nepali:
First, we initialize the mBART tokenizer:
from transformers import MBartTokenizer

tokenizer = MBartTokenizer.from_ pretrained(’facebook /mbart-large-cc25’)

Then, we use the tokenizer. encode method to tokenize the sentence:
text = "HIIATE0DT AT Teb T RIS M8 Tl i feiven! ©1”

tokens = tokenizer.encode(text)

The output of tokens will be:
[100, 11618, 1548, 36317, 55, 1447, 1383, 307, 84, 1681, 1132, 37951, 32987, 98]

12



This is a list of token IDs, where each ID corresponds to a particular token in the mBART
vocabulary. We can use the tokenizer.decode method to convert these token IDs back into

text:

decoded__text = tokenizer.decode(tokens)

The output of decoded text will be:

yneq " HHTITEREDT AT Teh THRT RIS Ted I i fowe! &1”

Here, the »ne« token is added by the mBART tokenizer to indicate that the language of the

input sentence is Nepali.

2.2.6 Inference

In machine learning and artificial intelligence, the inference is the process of using a trained
model to predict or classify new, previously unseen data. During inference, the model takes
in input data and produces an output based on the patterns and relationships it has learned

from the training data. This output can be a predicted value, a label, or a sequence of values.

Inference is a crucial step in the machine learning workflow, as it allows models to be applied
to real-world problems. For example, a model trained to recognize objects in images can be
used to identify objects in new images, and a model trained to predict customer churn can

be used to identify which customers are likely to leave a business.

Inference can be performed in real-time, such as for live video or audio processing, or offline,
such as for batch processing of large datasets. Regardless of the use case, the objective of

inference is to use the trained model to generate accurate predictions on new data.

To summarize, inference is the process of using a trained model to make predictions on new

data and is an essential component of machine learning applications.

2.2.6.1 Top-k sampling

Top-k sampling is a popular text generation method used in natural language processing,
particularly in language modeling tasks. It is a variation of the more conventional approach

to text generation, known as beam search.

In top-k sampling, the model selects the k most likely next tokens from the probability dis-
tribution that the model generates for the current input. These k tokens are then utilized to
construct the probability distribution for the next token, from which the model samples gen-

erate the next token in the sequence. This method enables more diverse and captivating text
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generation, unlike beam search, which typically produces more conservative and repetitive

outputs.

The selection of k can vary depending on the desired level of diversity in the generated text.

Using a higher value of k results in a more diverse output but may also increase the likelihood

of nonsensical or ungrammatical text. Conversely, using a smaller value of k produces more

conservative output but may also lead to repetitive or predictable text.

Overall, top-k sampling is an effective technique for generating diverse and engaging text

output in natural language processing tasks.

The mathematical formula for top-k sampling is as follows:

Compute the probability distribution over the vocabulary for the next word given the

input and previous words. Let P be the probability distribution.
Sort the probability distribution in descending order.

Let S be the set of indices of the top k words with the highest probabilities. Let s(i)
be the i-th index in the set S.

Normalize the probability distribution over the set of words in S, so that the probabil-
ities sum up to 1. Let Q be the normalized probability distribution.

Q(si) = —kP(Si)
zlp(sj)

J

Sample the next word from the normalized distribution Q.

The parameter k controls the size of the reduced set of words to sample from. A larger
k value increases the diversity of the generated text, while a smaller k value results in

more conservative and repetitive output.

In summary, the formula for top-k sampling is:

Q(si) = M

iP(sj)

where P is the probability distribution over the vocabulary, S is the set of indices of
the top k words with the highest probabilities, s; is the i** index in the set S, and Q

is the normalized probability distribution over the set of words in S.

14



2.2.6.2 Top-p (nucleus) sampling

Top-p sampling is a text generation technique used in natural language processing, similar
to top-k sampling. This method is also known as nucleus sampling, where the model selects
from the most probable next tokens whose cumulative probability exceeds a certain threshold

value, p.

In contrast to top-k sampling, which selects the top-k tokens with the highest probability,
top-p sampling considers the cumulative probability of the tokens, where the least probable

tokens are discarded until the cumulative probability reaches the threshold p.

The selection of p determines the number of possible tokens that the model will consider for
generating the next token in the sequence. A smaller value of p leads to more conservative
and predictable outputs, while a larger value of p results in more diverse and unpredictable

outputs.

Top-p sampling is a useful method in scenarios where it’s important to maintain a balance
between diversity and coherence in generated text, such as dialogue generation or summa-
rization tasks. By limiting the selection of tokens based on cumulative probability, top-p
sampling allows for more control over the quality and diversity of generated text compared

to traditional methods like greedy search. The formula for top-p sampling is as follows:

o Compute the probability distribution over the vocabulary for the next word given the

input and previous words.
e Sort the probability distribution in descending order.
o Compute the cumulative probabilities of the sorted words.

o Select the smallest possible set of words whose cumulative probability exceeds p. Let
this set be denoted as S.

« Normalize the probability distribution over the set of words S so that the probabilities

sum up to 1.
o Sample the next word from the normalized distribution.
The parameter p controls the size of the set of words to sample from. A larger p-value

increases the diversity of the generated text, while a smaller p-value results in more conser-

vative and repetitive output.

Here is the mathematical formula for computing the set S:
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Let P be the sorted probability distribution, with p; being the probability of the 7*" word.

Let F(i) be the cumulative distribution function defined as:

F(i) = > p(i)

Then, the set S is defined as:

S=i:F@{)>p
where i denotes the index of the 7*" word in the sorted probability distribution P.

2.2.7 AdamW OPtimizer

AdamW is an optimizer that builds upon the popular Adam optimizer. It was proposed by
Loshchilov and Hutter in their 2017 paper "Fixing Weight Decay Regularization in Adam”.
The main difference between Adam and AdamW is the way they handle weight decay regu-

larization.

In Adam, weight decay is added to the gradient update during each iteration, which is
equivalent to L2 regularization. However, this can lead to suboptimal solutions, especially in
deep learning models. On the other hand, AdamW separates weight decay from the gradient

update, which can lead to better performance.

The AdamW optimizer adds weight decay to the loss function after each iteration instead
of directly modifying the gradient update. This allows the optimizer to update the weight

decay more effectively and prevent overfitting.

The formula for updating the parameters in AdamW is:

my
0, =0, 1 — A X 0,
t -1 Oé(\/v—t+€+ th)

where:

0;_1 is the parameter in the previous time step

« is the learning rate

m,; and v, are the first and second moments of the gradients, respectively, computed using
exponentially decaying averages

€ is a small value to prevent division by zero
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A is the weight decay coefficient
The main benefit of using AdamW is the improved generalization performance, especially in
deep neural networks with many layers. Additionally, AdamW has been shown to be more

robust to changes in hyperparameters and training conditions compared to other optimizers.

Overall, AdamW is a useful optimizer to consider for deep learning models, especially when

regularization is a concern.

2.2.8 Cross Entropy Loss

Cross entropy loss refers to the difference between two random variables. It is measured in
order to evaluate the difference in the information that they contain. This loss function is
used to calculate the accuracy of the machine learning or deep learning model by defining

the difference between the desired outcome and the estimated probability.

Cross-entropy loss is a commonly used loss function in classification tasks. It measures the
difference between the predicted probabilities and the actual probabilities of the classes. This
loss function is popular in classification tasks because it penalizes the model more heavily
for predictions that are farther from the true probabilities and less heavily for predictions

that are closer to the true probabilities, making it a good choice for achieving high accuracy.

In contrast, regression tasks involve predicting continuous numerical values such as the price
of a house or the age of a person. Mean squared error (MSE) loss is commonly used in

regression tasks to measure the difference between the predicted value and the actual value.

In classification tasks, the output is usually a set of probabilities assigned to each category.
The predicted class is then determined by selecting the class with the highest probability.

In contrast, the output of regression tasks is a continuous numerical value.

The formula to calculate cross-entropy loss is

1

v 2o

> (yslog(ps) + (1 = yi) log(1 — p))

=1

L=-—

where:

L is the cross entropy loss

N is the number of samples in the dataset

y is the actual target class (0 or 1)

p is the predicted probability of the target classs
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2.2.9 Visualization tools

2.2.9.1 Pandas

Pandas is a Python library that is widely used for data manipulation, analysis, and visu-
alization. It provides easy-to-use data structures and data analysis tools for working with
structured data, such as tabular data, time series, and other types of data. Pandas is built
on top of the NumPy library and can efficiently handle large datasets with millions of rows
and columns. Some of the key features of pandas include data cleaning, data transforma-
tion, merging and joining of datasets, grouping and aggregating data, and data visualization.
Pandas is a powerful tool for data scientists, analysts, and researchers who work with data

in Python.

2.2.9.2 CSV logger

As the name suggests itself, a CSV logger is a tool that logs data in Comma Separated Val-
ues(CSV) format. CSV is a file format used to store tabular data, for instance: spreadsheets,
database data, etc. A CSV logger takes the data from some input sources such as an ML
model in our case and writes this data to a CSV file. Each row in such a file represents a
single data point, where each value is separated by a comma. CSV loggers are most com-
monly used in scientific and engineering applications to track data over the time domain.
The resulting CSV files can be easily used for data analysis through software like Excel or

python.

2.2.10 Score analysis

2.2.10.1 NLTK

NLTK is a very popular python library used for working with human language data. It
contains libraries and programs for statistical language processing tasks. It is a powerful
NLPlibrary, which contains packages to make machines understand human language and
reply to it with an appropriate response. It is widely used in the education and research
sectors. It is widely used for exploring and analyzing text data. It also provides various
language resources for different languages. Such resources include text collections, lexicons,

and grammar for those languages. It also contains the libraries to calculate the bleu score and
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glue score which are useful for the evaluation of NLP tasks which will be further discussed

in later stages.

2.2.10.2 BLEU score

BLEU score is a metric mostly used to measure the quality of machine-generated text by
comparing it to one or more reference texts. It works by comparing the n-gram overlap
between the machine-generated text and the reference text, where n refers to the number
of consecutive words in a sequence. The higher the BLEU score, the closer the machine-
generated text is to the reference text. BLEU scores range from 0 to 1, with 1 indicating
a perfect match. While BLEU scores can provide a useful measure of machine generation
quality, they are not always an accurate reflection of how well a text generation model
performs for a given task or in a specific domain and should be used in conjunction with

other evaluation methods.

In our project, we have used the BLEU score metrics as one of the evaluation metrics to

compare the n-gram overlap between the labeled paraphrase with the generated paraphrase.

The formula for computing the BLEU score is as follows:

1 n
BLEU = BP — il i
U X exp (n Z-le og(p ))

where:
BP is a penalty term to account for the fact that shorter texts are favored over longer ones.
It is defined as:

BP =1,if MT_output_length > reference_ length
reference_length )

BP = 1—
exp/ ( MT output_length

otherwise, n is the length of the n-gram used for comparison (typically n = 4)

w; is the weight assigned to the i n-gram

p; is the precision of the i n-gram, which is defined as the number of times the 7! n-gram
appears in the model output that also appears in any of the reference text, divided by the
total number of i"® n-grams in the model output. The weights w; are usually set to 1/n so

that all n-grams are weighted equally. However, other weighting schemes can also be used.

BLEU-2 score BLEU-2 (also known as BLEU-2gram) measures the precision of 2-grams

(pairs of adjacent words) in the machine-generated output compared to the reference text.
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BLEU-4 score BLEU-4 (also known as BLEU-4gram) is similar to BLEU-2, but measures
the precision of 4-grams (sequences of four adjacent words) in the machine-generated text

output compared to the reference text.

In simple words, BLEU-2 uses a sequence of 2 words while Bleu-4 uses a sequence of 4
words. Generally, using longer n-grams in the calculation of the BLEU score tends to give
a more accurate measure of the quality of the machine translation. However, using longer
n-grams also requires more data and computational resources, and may not be feasible in all

situations.

2.2.10.3 ROUGE score

ROUGE score is a commonly used metric for evaluating the quality of text summarization
systems. It measures the similarity between a generated summary and a set of reference
summaries by computing the overlap of n-grams (contiguous sequences of words) between
them. The n-grams can be of different lengths, and typically ROUGE scores are reported
for different values of n (e.g., ROUGE-1 for unigrams, ROUGE-2 for bigrams, etc.). Higher
ROUGE scores indicate better summary quality, as the generated summary is more similar to
the reference summaries. ROUGE scores are widely used in research on text summarization
and have also been adopted as an evaluation metric in various competitions and challenges.
Such characteristics of Rouge score make it eligible to be used as one of the evaluation
metrics for our paraphrase generation model. ROUGE-1 and ROUGE-2 are two variants of
the ROUGE metric.

Here are the mathematical formulas for calculating the ROUGE scores:

ROUGE-N:

Let R be the set of n-grams in the reference summary, and G be the set of n-grams in the

generated summary. Then, the ROUGE-N score is computed as:

number__of overlapping n — grams_between_ R _and_G

ROUGE — N =

total_number_of n — grams_in_ R

ROUGE-L:

Let LCS be the length of the longest common subsequence between the reference and gen-
erated summaries, and let R be the number of words in the reference summary. Then, the
ROUGE-L score is computed as:
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RovGE - 1. 15

ROUGE-W:

Let WLCS be the weighted length of the longest common subsequence between the reference
and generated summaries, and let RW be the total weight of words in the reference summary.
Then, the ROUGE-W score is computed as:

WLCS

E — =
ROUG w TG

The weight of each word in the reference summary is typically set to 1 for consecutive matches
and 0.5 for non-consecutive matches. The weight of each word in the generated summary is
set to 1.

ROUGE-1 and ROUGE-2 are specific variants of the ROUGE-N score, where N is equal to

1 and 2, respectively.

ROUGE-1 score
ROUGE-1 measures the overlap of unigrams (single words) between the machine-generated

paraphrase and the reference paraphrase.

Let R be the set of unigrams (single words) in the reference summary, and G be the set of

unigrams in the generated summary. Then, the ROUGE-1 score is computed as:

ROUGE — 1 = number_of__overlapping_unigrams_between_R_and_G

total_number_of unigrams_in_R

ROUGE-2 score
ROUGE-2 measures the overlap of bigrams (pairs of adjacent words) between the two para-

phrases.

Let R be the set of bigrams (pairs of consecutive words) in the reference summary, and G

be the set of bigrams in the generated summary. Then, the ROUGE-2 score is computed as:

number_of overlapping bigrams_between_R_and_ G

ROUGE — 2 =
total_number of bigrams_in_R
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In both formulas, the number of overlapping n-grams refers to the count of n-grams that
appear in both the reference and generated summaries. The total number of n-grams in the
reference summary refers to the total count of n-grams in the reference summary, including

repeated n-grams.

2.2.11 Developent tools
2.2.11.1 HTML

The preferred markup language for documents intended to be viewed in a web browser is
HTML or HyperText Markup Language. It frequently benefits from tools like CSS and
programming languages like JavaScript.Instead of displaying the HTML tags, browsers use
them to interpret the content of the page.

2.2.11.2 CSS

A style sheet language called CSS is used to describe how a document is produced in a
markup language like HTML or XML. The purpose of CSS is to make it possible to separate

content from presentation, including layout, colors, and fonts.

2.2.11.3 Django

Django is a high-level Python web framework that follows the MVC architectural pattern. It
provides a robust set of tools and features for building web applications quickly and easily.
Some of the key features of Django include an ORM for database management, a built-
in admin interface for managing web application content, a templating engine for creating
dynamic web pages, and a URL routing system for mapping URLSs to views. Django also has
a strong emphasis on security, including protection against common web attacks. Django is
a popular choice for web developers due to its ease of use, scalability, and strong community

support.

2.2.11.4 VSCode

A source-code editor called Visual Studio Code (VSCodeworks with many different pro-
gramming languages, such as C++, Fortran, Go, Java, JavaScript, Node.js, Python, etc. Its
fundamental support consists of configurable snippets, code folding, bracket matching, and

syntax highlighting.
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2.2.11.5 Jupyter Notebook

Jupyter Notebook is an interactive computational environment used for creating notebook
documents. The application runs on the browser and presents a REPL (Read-Evaluate-Print
Loop) that contains an ordered list of input/output cells. These cells can contain code, text,
math formulas, plots, and other media. Jupyter Notebook can colloquially refer to two
different concepts, either the user-facing application to edit code and text, or the underlying

file format which is interoperable across many implementations.

2.2.11.6 Kaggle

Kaggle is an online platform that hosts a community of data scientists and machine learning
experts. It is a subsidiary of Google LLC that offers a range of tools and resources for
working with data, including access to published data sets, a web-based environment for
exploring and building models, collaboration features for working with other data scientists,

and opportunities to participate in data science competitions.

2.2.12 Model Deployment

Model deployment means putting a machine learning model into action by integrating it into
a system or application so that it can make predictions on new data. This process involves
preparing the model to work efficiently and accurately in a production environment, and
ensuring that it can handle many requests. Model deployment is an important step in the
machine learning process and requires careful planning, testing, and monitoring to ensure

that the model performs well and provides value to the business.

For the deployment of the paraphrase generation model, Joblib will be used. It is a powerful
Python library that can efficiently serialize and deserialize Python objects, including machine
learning models. By using Joblib, it is possible to save the trained model to disk and quickly

and easily load it back into memory when needed.
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3.

Methodology

3.1 Data preparation

3.1.1 Collection

As the first step of our project, Data collection was done by analyzing and identifying var-
ious datasets in English, Russian, and other languages including MSCOCO[22], ParaNMT,
Quora, MSRP[23], ParaSCI-ACL ParaSCI-Axiv[24], and Twitter URL, for modelling our

dataset.

3.1.1.1 Quora:

The Quora dataset is composed of question pairs in the English language. Quora dataset con-

sists of 404,351 rows and six columns id, qidl, qid2, questionl, question2, and is_duplicate.

(i.e. shape of 404351,6).

qid1:The id number of questionl.

qid2:The id number of question2.

Id: The serial id number of the dataset.

questionl:Different questions that were asked on the Quora website.
question2: Questions similar to question 1 that are asked on the quora website.

is_ duplicate: Binary representation of the dataset for duplicates on a row, where ‘0’

represents that they are not duplicates and ‘1’ represents they are duplicates.

questionl

question?2

What can make Physics easy to

learn?

How can you make physics easy

to learn?

How should I prepare for CA final

law?

How should one know that he/she
is completely prepared for the CA

final exam?

Table 3.1: Sample Data of Quora Dataset
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Out of the 404,351 question pairs in our dataset, 255,045 (63.08%) are labelled as negative
(0), while 149,306 (36.92%) are labelled as positive (1). There is a single missing value in the
‘questionl’ column and two in the ’question2’ column. Additionally, each question pair is
unique within the dataset, with 97.66% consisting of unique questions and 2.34% consisting

of repeated questions.

After conducting manual sampling to assess the quality of the data, we found that "ParaNMT"’,
"Quora’, and 'MSRP’ were the best fit for our model. We also collected small quantities of

data manually to compare human and computer paraphrasing.

3.1.1.2 ParaNMT:

ParaNMT is a dataset consisting of 50 million sentential paraphrase pairs in English. It
is divided into three sections: sentence, paraphrase, and metric value. The metric value

indicates the quality score of a sentence and its paraphrase, ranging from 0.35 to 1.

Example from ParaNMT dataset:

Sentence Paraphrase Metric
“Only yesterday “Yesterday Sammie 0.8452678124
Sammie sent that sent me out with
across with my dinner,” he said.

supper,” he said.
I was there. I was there and I saw 0.83601537078
it.

Table 3.2: Sample Data of ParaNMT Dataset

3.1.1.3 Microsoft Research Paraphrase Corpus (MSRP):

This dataset consists of pairs of paraphrased sentences sourced from various web news
sources. Each sentence in the corpus ranges from 7 to 35 words in length, with an av-
erage length of 21 words per sentence. Approximately 67% of the sentence pairs are marked
as paraphrased. It’s worth noting that no more than one sentence was extracted from any

given news article to ensure diversity in the dataset.

After conducting manual sampling to assess the quality of the data, we found that 'ParaNMT",
"Quora’, and 'MSRP’ were the best fit for our model. We also collected small quantities of

data manually to compare human and computer paraphrasing.
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Sentence

Paraphrase

PCCW’s chief operating officer,
Mike Butcher, and Alex Arena,
the chief financial officer, will

report directly to Mr So.

Current Chief Operating Officer
Mike Butcher and Group Chief
Financial Officer Alex Arena will

report to So.

The world’s two largest
automakers said their U.S. sales
declined more than predicted last
month as a late summer sales

frenzy caused more of an industry

Domestic sales at both GM and
No. 2 Ford Motor Co. declined
more than predicted as a late
summer sales frenzy prompted a

larger-than-expected industry

backlash.

backlash than expected.

Table 3.3: Sample Data of MSRP Dataset

3.1.2 Labelling

Different data collection methodologies, sources, and translations were utilized to obtain the
data present in the dataset. Further, to ensure a clear and concise representation of the data,
two major labelings were given to the data. Here, the human paraphrased data is labeled as

'Gold,” while the machine-converted datasets that have been filtered are labeled as 'Bronze.

3.1.2.1 Gold:

Gold data are the exact thousand data that were collected and paraphrased manually. This
dataset is divided equally into four specific domains(politics, sports, entertainment and eco-

nomics).
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GIGR)] CICRIE feofiss

SHTHTESTHT 1 EI CIRICEIRSE AR politics

ﬁ@?‘fi’:ﬁ”\ﬂlﬁ frererdt w@aﬁwaﬁﬁw economics
e Iep! ST ST RISTTRIT THRAT 3113
ISR gell G 81 | <fuan! |

31D HHEHT gferar feq | sferan el TRae sports
TRIIRT TR, FIATST, TfHE 3
qTfdhedT™ { ATfeayT Aifeasy 3 fagmT
| |

RERFT it W fa=<it qer et UMl | entertainment
EEICIMARRSISE]) ERIRICELINERIGE
Tl AT -gRMT T TV §76 it
e ‘ot T | RIS Tpd
SUIECI R TS |

Table 3.4: Sample of Gold Dataset

3.1.2.2 Bronze:

The Bronze label data consists of previously available data with minor modifications. For
instance, we used readily available English paraphrase data from ParaNMT, Quora, and
MSRP as our Bronze data. To obtain clean data, we further performed machine translation
and filtration on this data. This process helped to refine the Bronze data and improve its

overall quality.
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3.1.2.3 Translation

To translate, the non-duplicate positive labelled (1) data from the Quora dataset and sen-
tences with metric values ranging from 0.6 to 0.99 from ParaNMT were selected. Here, the

translation was done using the Google Translate API.

U4 9 ¥R

& PRIl Al e e |fSiell | auTs et ifdies e e

SIS Has? TRt 1S Hadg o7

oI Y IS URIETeDT ATH 3MH
CA B A< SFD! A SRl | QUi TR ISHDGD! BN ATaT
TR TS ? IS

Table 3.5: Sample Translation of Quora Dataset

I CIEDIE afesw

N

"f&Sl 7T I "R Il JeTs 0.28Y4CVTIREY
TIATS XY GHTR oI ™R 91fex
TSR, ST W | GOTSgHAN,” Iet |

q gl fou| q gl AU I Ho Ay 0.23£0943000z 9
G|

Table 3.6: Sample Translation of ParaNMT Dataset
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GIGR)] CICRIE]

PCCW®T T RS e I W ITRES S1ftheR A1d
qTSh FoR I Yol URHAT, G R X Fg 99 fa<iig Jifgart
fochia srfarart, e s Aieg RUIE | Terad wATel | RUIE e
T

foreenT S5 gl SFCMaReEHel M1 fb | M R

SHEwd! s fasht 1a Afg No. 2 Ford Motor Co. gﬁﬁ ?ﬁﬁ
3TFHT TRUDT =T §& T B fomht ST TR T I8t Tt
fope THTenT ST fehient T THTenT ST fehient
SHIGe! JTNTCATS NS WA I& | I~ SUET IRAT gal e
fafhar fean gfahaTers URa =)

Table 3.7: Sample Translation of MSRP Dataset

3.1.3 Sampling:
3.1.3.1 Quora:

To prepare the dataset for human evaluation, the dataset was divided into three parts:
[0:50,000), [50,000:100,000), and [100,000:149,307), based on an index. Further, random

thirty samples were selected from each part.

After analyzing the samples, it was found that 24, 22, and 27 question pairs from the first,
second, and third parts, respectively, were suitable for paraphrasing. This indicates that the
dataset remained usable even after translation (which accounted for 80.11% of the data) and

had yet to be filtered.

3.1.3.2 ParaNMT

To evaluate ParaNMT, we sampled it based on four metrics values, with 30 samples in
each range. The metric value ranges were [0.6-0.7), [0.7-0.8), [0.8-0.9), and [0.9-0.99), which

resulted in four small subsets.

We accepted 17, 11, 19, and 24 samples from the consecutive ranges, respectively. After

observing the statistics, we found that 77 samples were accepted, while 43 samples were
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rejected, resulting in an overall acceptance rate of 64.2%.

Upon comparison, we noticed that the acceptance rate for the first two ranges ([0.6-0.7) and
[0.7-0.8)) was lower than the next consecutive range, and the paraphrases in the metrics

range of over 0.95 were too similar to each other, so we rejected the data within that range.

In conclusion, the dataset consists of Nepali-converted sentences with metrics values ranging
from 0.8 to 0.95.

3.1.3.3 MSRP

For evaluation of the MSRP dataset, 30 samples were taken randomly from 74260 data out
of which 18 were selected while 12 were. were rejected. Our analysis concluded that this can

be used in our dataset.

g T feuites
qletol = U, g, SE qehaTd
&7 Wl Trentino-Alto Aldige:

Bolzano 9T,

Trento |
g qg q¥d W HA b | T 9¢ a¥pl W HA & | F9H
TS ? TS
2 BHTT Y UTSTS dldd | 2 BHMT 5 UIS+S HEATHD FfC
TS Hel e TS i dhicud
TPRP! ATER fol IRePTEH & &1?
HFP?

Table 3.8: Example of Random Samples With Remarks

3.1.4 Filtration

During the sampling process, we implemented filtering procedures to detect and remove
various elements such as characters, hyperlinks, HTML tags, alphabets, and digits from our

dataset. This helped to improve the quality and reliability of our data.
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3.1.4.1 First Filtration

id sentence 1 sentence 2 Remarks
1081112 MSN TR 6 | MSN SR 6 Hyperlink,
YR 91 6 TICIR JHIR English Digit,
EN e 1 English
GMTHT PST dT1C 3Yctsdy Characters
http://messen §ﬁ"€§,
ger. msn. WW
com/download/ | 3THRI
vbpreview.asp
1T SeAASD!
SULISERE:]
il
1725788. $21.6fafeRer | AThrawcel Special
I, U a9 $¢.9 fafaa=ar Characters,
e $ 19.7 fo=t are Rt English Digits
fafer=ar 10 B, 9 T g9
gfderdel, are | 3ffedr 9.3
wleal $ 21.4 | fafeld serept
fafermeT T D! B
3IHT 7T S CESLEassTal
3rmfe for| STFHTTHT
$0.% faferz=
S ©

Table 3.9: Sample of Data Before Filtering from MSRP Dataset

The filtering process removed special characters, including [+-/#*%Q.$'():;;><!| e=], as
well as alphabets (A-Z, a-z) and digits (0-9). However, a certain character such as ”?” was

retained since they serve as sentence-ending punctuation.

Furthermore, only sentences with a length between 4 and 24 words were included in the

dataset to ensure that it contains sentences of adequate length.
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3.1.4.2 Evaluation and Sampling

Sampling fifty data points from the MSRP, Quora, and ParaNMT datasets resulted in only
six, eighteen, and nine rejections, respectively. The most common reason for rejection across
all three datasets was the presence of sentences that were either meaningless, too similar to
other sentences, contained multiple sentences, or had significant deviations from the intended

meaning.

From MSRP, Quora and ParaNMT 779, 105550, and 71810 data remained after the first

level of filtration.

3.1.4.3 Final Filtration

Initially, we believed that we had successfully removed all unwanted characters from the
data. However, upon closer inspection, we discovered that certain unsupported characters,
such as \u200d and \u200f, remained hidden in the data. These characters appeared to
be fine in applications like Excel and Google Sheets, as well as within the data frame itself.
However, upon individual inspection of the data frame values, we detected these unsupported

characters and proceeded to remove them at this stage.

Later on, it was discovered that certain sentences with similar meanings but different wording
were translated as duplicates by Google API. To address this issue, similarity metrics were

used to identify and remove the duplicates.

3.1.5 Partition

To ensure the accuracy and generalization of the model, the dataset was divided into distinct
training, validation, and testing sets. This partitioning strategy enables an unbiased evalua-
tion of the model’s performance on unseen data. For the Quora dataset, 4053 pairs (3.8% of
the total data) were reserved as the test set, while the remaining data was partitioned into
a training set (80%) and a validation set (20%). This partitioning strategy ensures that the
model is trained on a sufficiently large dataset while also being evaluated on unseen data to

prevent overfitting.

Similarly, the ParaNMT dataset had 71,810 sentence pairs, with 2786 pairs reserved as the
test set. The test set was further partitioned into a training and validation set to ensure
an unbiased evaluation of the model’s performance on unseen data. Overall, this dataset
partitioning approach ensures that the models are trained and evaluated on a diverse dataset

while preventing overfitting.
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To prepare the datasets for model training and evaluation, the training and testing sets for
both Quora and ParaNMT were merged separately. This created a bronze train and test set,

with the bronze train set being used for fine-tuning the model.

Since the MSRP dataset is small, consisting of only 779 data points, it was used as the
bronze test set. Additionally, the gold dataset as a gold test set and bronze test set was used

for zero-shot evaluation.

Finally, the Quora and ParaNMT bronze test sets were split and merged for in-shot evalua-
tion. This approach allowed us to comprehensively evaluate the model’s performance across

various datasets and prepare it for deployment in real-world scenarios.

3.2 Fine tuning models

3.2.1 mT5

mT5 is a multilingual large pre-trained transformer model that was trained on a dataset
(mC4 corpus ) that contained text in 101 different languages including Nepali. As of now,

there are five variants of the mT5 model. mt5-small, mt5-base, mt5-large, mt5-x1, mt5-xxI.

We will be using mT5 over T5 as our model but why ? T5 and mT5 have the
same basic transformer architecture. The difference between these two is that T5 is trained
on the monolingual corpus (English) while mT5 is trained on the multilingual corpus(over
101 languages). Most importantly mT5 is useful for Nepali language sequence-to-sequence

generation. That’s why we have used the mT5 model over the T5 model in our project.

In this project, we first fine-tuned the mT5 model so that we could validate our dataset
and see the outcomes. Fine-tuning entails taking a pre-trained model and training it on
a smaller dataset specifying task. For the purpose of our project, we are mainly using a
small and base version of the mT5 model due to the limitation of hardware resources.mT5-
small is the smallest lightweight version of the mT5 model mainly suitable for low-resource
environments where computational resources are limited.mT5 small presents 300 million
trainable parameters in contrast to 580 million parameters for the mt5-base model which is

a slightly heavier version of the mT5 model compared to the small model.

3.2.1.1 mT5 small

Here for the purpose of our project, first we divided the fine-tuning task for paraphrasing

into two parts: one with prefix and one without prefix. Each is further trained three dif-
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ferent times for different datasets named quora, paranmt, and combine data of quora and
paranmt.For the training purpose we keep a similar hyperparameter for all training runs
to ensure consistency across the experiments. Here, after processing the data as previously
stated in the document, we tokenize our data using the mt5 small tokenizer. We set the
input maximum length for the tokenizer to 256 tokens, indicating that any input text larger
than that will be truncated. Along with padding with the maximum length, we have also
configured the addition of special tokens. The tokenizer aids in ensuring that the input to
the model is consistent and manageable by limiting the maximum input length and applying

truncation.

Hyperparameter choices were the following :

o Learning rate:le-4

o Weight decay:0.1

o Train batch size:16

« Validation batch size:8

o Gradient accumulation steps:16
e Input max length:256

e Output max length:128

o Adam epsilon:1le-8

The training process was optimized with careful consideration of the hyperparameters used.
A learning rate of le-4 and a weight decay of 0.1 were selected to ensure optimal perfor-
mance. Considering the limitation of resources, a batch size of 16 was utilized for training
purposes, and a batch size of 8 was adopted for validation. To speed up the training pro-
cess and reduce memory usage, a gradient accumulation technique was employed with a
step size of 16. The maximum length for the input and output sequences was set to 256
and 128, respectively. Finally, to optimize the model weights during training, the Adam
optimizer was used with a small epsilon value of 1e-8. Overall, these hyperparameters were
chosen carefully to balance model performance and training efficiency. Finally, after training
the model for a specified number of epochs we saved the best checkpoint based on the vali-

dation loss and used it for evaluating the performance of the fine-tuned model on the test set.
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3.2.1.2 mT5 base

To fine-tune the mT5 base model, a similar set of hyperparameters to those used for the mT5
small model above was selected, with the exception of adjusting the learning rate to 3e-4,
which was chosen based on careful consideration of the mT5 base model’s characteristics.
The maximum lengths for input and output sequences were kept the same as before at 256
and 128, respectively. Following the same procedure as before,the best checkpoint of the

model was saved, and evaluation was performed using it.

Train step loss:

Initially, the train step loss starts at 4 and subsequently decreases with each step, although
there are occasional increases. By the final step of our model training, the train step loss
converged to 0.6. The graph of the train step loss over the course of the training shows a clear
convergence of the loss values, which were initially relatively high but steadily decreased as
the model improved. Overall, these results suggest that the model has successfully learned
and adapted to the training data, resulting in improved performance. The fact that the train
step loss curve continues to decrease without flattening suggests that the loss is converging
even further. However, due to hardware limitations, we were forced to stop the training before
the loss could converge completely. Continuing training beyond 5 epochs could potentially
result in further convergence of the loss. Nonetheless, the curve clearly shows that the model
was continuing to learn and improve over time, indicating that further training could result

in even better performance.

3.2.2 Back-Translation

Back-translation is a technique used in machine translation to improve the quality of trans-
lations by translating a text from the target language back into the source language. This
technique involves training a neural machine translation model on a parallel corpus (a set of
texts in the source and target languages) and then using the model to translate a text from
the target language back into the source language. The resulting text is then compared to
the original source text to identify errors and improve the quality of the translation. Back-
translation is a simple and effective way to generate additional training data for machine
translation models and has been shown to improve the quality of translations in several
studies. It is commonly used in both academic research and commercial machine translation

systems.

In this project, we have used the back translation method as an alternative/optional method

for the generation of paraphrases of the Nepali language. Basically, back translation in
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Figure 3.1: Train step loss

our scenario means that we will convert our Nepali sentences into English sentences. The
obtained English sentences are then paraphrased using one paraphrasing tool. Then this

paraphrased English sentence is translated back into the Nepali language.

The basic idea here is that, when we convert the English language to Nepali in the second
phase, the sentence obtained is syntactically different from the initial Nepali sentence fed
into the back translation model. It is because when the English sentence is paraphrased, the
syntax and sentence structure of an English sentence is different from the non-paraphrased

one (original one). And the back-translation also follows the same sequence.

Translation model: For the translation from a Nepali sentence to an English sentence and

vice versa, we used the ‘translate’ method available in the transformers.

Paraphrase model: For the English sentence paraphrase mode, we searched for the best
paraphrase model available in the hugging face library and found that ‘Parrot Paraphraser’
is the model with the highest number of users in the NLP society. That’s why we used the

parrot paraphraser for paraphrasing our Nepali to English-translated sentences.
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3.3 Deployment

While using the large model for our paraphrasing task, considered utilizing joblib to dump
the model to disk and reload it into memory as necessary. It is important to save the model
for future use to make a prediction on unseen data. The saving of data is called Serialization

while restoring the data is called Deserialization.
Save : joblib.dump to serialize an object hierarchy
Load : joblib.load to deserialize a data stream

Inference is a crucial step in the machine learning workflow, as it allows models to be
applied to real-world prloblems. In our project, we have used the combination of top-k and

top-p samplings in order to generate the paraphrase of the input sentences.

While in theory, Top-p seems more elegant than Top-K, both methods work well in practice.
Top-p can also be used in combination with Top-K, which can avoid very low-ranked words
while allowing for some dynamic selection. That’s why we have used top-p in combination

with top-k in our inference code with the following values:

Top — k =40

Top —p=10.95

After dumping the large model, we loaded the model and passed the unseen sentences through
the inference code to generate the paraphrase. The frontend interface was built in HTML
and CSS while the backend was coded in Django. The sentence was accepted on one side of
the text area and the other text area was coded to generate the paraphrase of the sentence.

The pictorial representation can be seen below:
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Figure 3.2: User Interface
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4. System Block Diagram

Datasets

The above picture depicts our whole system.

Data Retrieval ———«+—————

Deployment and Monitoring

Data preprocessing and wrangling

Data Preparation

Fine tuning language
model

Model
Evaluation

and
Analysis

Figure 4.1: System Block Diagram
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5. Results

After the model is trained, comparative analyses of different models with different test data
were performed. Two types of analysis called quantitative and qualitative analysis were

performed. The overall sum of this two analysis are:

5.1 Quantitative analysis:

Quantitative analysis is a research method that employs mathematical and statistical tech-
niques to analyze and understand complex phenomena. In the realm of NLP, quantitative
analysis has become an essential tool for analyzing large datasets of text and extracting valu-
able insights that can be used to build intelligent systems that can understand and generate

human-like language.

5.1.1 Bleu2 score analysis

Set MT5 Backtranslation
e

TestSet | Small-without-prefix Small-with-prefix Base
Identity

Quora| Para | All Quora| Para | All All All

Quora 049 |- 0.54 1050 |- 0.54 | 0.55 0.46
From set

Para - 0.51 | 0.57 |- 0.48 | 0.58 | 0.63 0.49

Bronze | 0.36 | 040 |0.50 |0.36 |0.37 |0.51 | 0.58 0.52
Zero shot

Gold 042 (046 | 0.54 |043 (042 | 0.54 | 0.58 0.50

Table 5.1: Bleu2 score analysis table

For instance, let’s consider the Quora test set. In this particular evaluation, the model
achieved an impressive BLEU-2 score of 0.55, indicating its remarkable ability to generate
accurate rephrasings of the sentences that were given as input. Additionally, the model
demonstrated excellent performance on the ParaNMT (referred to as Para onwards and in
every table), Bronze, and Gold sets, showcasing its ability to generalize across different types
of test sets. Out of all the test sets, the mT5 base model performed the best on the Para set.
Overall, when compared to other models, the mT5 base model showed superior precision

across various test sets.
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Set MT5 Backtranslation
e

TestSet | Small-without-prefix Small-with-prefix Base
Identity

Quora| Para | All Quora| Para | All All All

Quora 0.40 |- 0.45 1041 |- 0.45 | 0.46 0.33
From set

Para - 043 | 0.49 | - 0.40 | 0.49 |0.54 0.37

Bronze | 026 |0.32 |0.49 | 026 |0.29 |0.42 | 0.48 0.38
Zero shot

Gold 031 (037 | 044 |032 |[040 |0.43 | 0.46 0.35

Table 5.2: Bleu4 score analysis table

5.1.2 Bleu4 score analysis

The bleud score analysis was conducted to evaluate the performance of different test sets
in the mT5 base and small models. The results showed that overall, the mT5 base model
performed better than the small model, except for the bronze set, where the small model
outperformed the base model. It is important to note that the bronze set without a prefix

in the small model contributed to its higher score.

Despite this exception, the mT5 base model demonstrated superior performance on all other
test sets. In particular, the para-test set yielded impressive results, indicating that the model

was able to accurately generate paraphrases of the sentences in the set.

Overall, these results highlight the impressive capabilities of the mT5 base model in generat-
ing high-quality paraphrases of various sentences across multiple test sets. While the small
model may have outperformed the base model on the bronze set, it is clear that the base
model is the more robust and reliable option for generating paraphrases to a diverse range

of sentences.

5.1.3 Rougel score analysis

After analyzing the BLUE-2 and BLEU-4 scores, we conducted a Rouge-1 score analysis
to evaluate the performance of different models on various test sets. The Quora test set
consistently performed well across all three models, including the mT5 small model with
and without prefix, and the mT5 base model, suggesting that the model’s performance on
this set is stable and reliable. The back-translation method did not perform well on any of
the test sets, which may indicate a low recall of words in generated paraphrases compared
to input sentences. However, the para test set achieved commendable scores in the Rougel

score analysis, demonstrating exceptional model performance on this particular set. The
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Set MT5 Backtranslation
e
) TestSet | Small-without-prefix Small-with-prefix Base
Identity
Quora| Para | All Quora| Para | All All All
Quora 0.40 | - 0.43 | 0.40 | - 0.43 | 0.43 0.27
From set
Para - 043 | 0.46 | - 0.40 | 0.46 | 0.48 0.28
Bronze | 023 |0.36 |0.38 024 [035 |0.39 |0.42 0.25
Zero shot
Gold 023 [0.35 1036 |024 |032 |0.36 |0.36 0.21

Table 5.3: Rougel score analysis table

zero-shot evaluations produced underwhelming results, suggesting a low recall score for new

sentences and highlighting the need for further improvements in the model.

5.1.4 Rouge2 score analysis

St MT5 Backtranslation
e
) TestSet | Small-without-prefix Small-with-prefix Base
Identity
Quora| Para | All Quora| Para | All All All
Quora 0.18 | - 0.20 | 0.18 |- 0.20 | 0.20 0.08
From set
Para - 0.21 0.23 | - 0.20 0.23 |0.24 0.08
Bronze | 0.09 |0.18 |0.19 |0.09 |0.17 | 0.20 | 0.21 0.07
Zero shot
Gold 0.08 |0.13 |0.14 |0.08 |0.11 |0.14 | 0.13 0.04

Table 5.4: Rouge2 score analysis table

In addition to the recall score for Rouge 1, we also evaluate the quality of our paraphrase by
measuring its recall score for bigram words using Rouge 2. This helps us determine how well
the generated paraphrase captures the meaning of the input sentence by looking at pairs of
consecutive words. The results show that there is a slight variation in the performance of
different models on different test sets. Specifically, the combined training data of Quora and
Para datasets performed well in both the mT5 small model with and without prefixes on the
gold test set. This indicates that the combined training data may be particularly effective

in generating paraphrases for various sentences in the gold test set.

However, the mT5 base model consistently outperformed other models on most test sets,

particularly on the Para test set.

In conclusion, it is important to consider a range of evaluation metrics when assessing the
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performance of different models. While the Rouge2 score analysis highlighted some variation
in performance, the overall results suggest that the mT5 base model is the best choice for

generating paraphrases.

5.2 Qualitative analysis

In the context of NLP and text-based evaluation, qualitative analysis refers to the examina-
tion and interpretation of the content, style, and context of machine-generated translations
or summaries. Unlike quantitative analysis, which relies on numerical metrics such as BLEU
and ROUGE scores, qualitative analysis involves analyzing the language itself and looking

for patterns, themes, and other meaningful insights.

Owing to the shortcomings of the mathematical model, quantitative analysis alone cannot
determine the quality of the generated paraphrases. Hence, in order to compare and evaluate
our finetuned models, we used human evaluation. Here, we conducted a human evaluation
on all three models developed: mT5-small without a prefix, mT5-base, and back-translation
method.

We run into a variety of errors during the assessment, including entity mismatch problems,
semantic and syntactic differences, and exact match problems between input sentences and
their respective generated sentences. The table below summarizes the human evaluation of

all the models on the test sets.
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Testset Input Paraphrase Remarks
gl DT USBl YR | U DT USSi 9eR Paraphrase with
Quora HERT ST TS HISI? | B o8] OIS Hag? | change in pronoun.
q HER GRIVETE 3RS | F Bl e Jag? Full meaning of sen-
e HI? tence not captured.
IHIEDD! T AP B | | SHIeod] &7 B Slight semantic dissim-
ParaNMT
ilarity.
b IS IRSHT PRI | NCHT T THAT? Paraphrased well.
THT?
Bronge facaft Q] IR Q'Fﬁ B | R faeeh Ug] MUR Q'T*ﬁ Paraphrase  obtained
¥ A =T itk 9ftier | © 99 a1 R0 IR B0 | with slight semantic
SR Bl difference.
s O3 a1 afbie 9 | 9w @ a1 afSe 9| Not captured the full
3T 3T EREIN =T | 3 I ferRgeor IR meaning of original sen-
TR tence but slightl change
in sentence structure
which gives sense of
parphrase.
o IS T8l APl g | S9el 8l 3Pl &7 | Slight change in pro-

AT T AR |

AT T TR |

noun.

I ol T
TG TRYEH! B |

el qRiTHTeT TR Ty
TG RG] B

Addition of pronoun
but semantic and syn-
tactic error are pre-

served.

Table 5.5: Sample analysis for mT5-small without prefix trained on all data
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Testset Input Paraphrase Explanation
5 9 HN fenemmr 9t | 7 SRt fAener T wfad | Paraphrased well.
uora —
Plrad g1 HIP? SRECT
QT FATRT JTFHT Tl | AT FATHT el 7 ¥l | Paraphrased well.
= ? AFS?
TR YA I AATS 8 | TR I ¥ HeATs | Paraphrased with one
ParaNMT
H% Tlﬂ@'\‘:[l A% "Ifiﬁ?{l word removal.
Qlf;laﬁl WNAR 3§ TS Qf!ﬂiﬁ RIR A% Semantically opposite
3q!hel '_-l"'lﬂgﬁ?{l 3HeT T HFIB Y sentence obtained.
B el oS dld T | Rafereer  srfdera Paraphrased good.
ronze .
el ST GeTa! | Biged P dells allerd
Zall T Heels GATD! |
RECo) QB% ad o fo | 39 QB% ad R & | Semantic meaning not
AP FITH  GFD | F AR T FH B | captured.
TR ot | g |
o e R wgR faey | {99 ff¥@rdr  WT | Perfectly paraphrased
o
CBEALIRTCRI S e IR AR
Rme|
IARH SRD JeT ™I | SRl T U7 UM | Perfectly paraphrased.

S A9 U BN
< T B

IMRDT SR T
PR g TP Bl

Table 5.6: Sample analysis for mT5H-base trained on all data
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Testset

Input

Paraphrase

Explanation

Quora

Aol 5 SHTee T ueTs
Aic fag ua?

A TEee f gRera!
AT A7 q AR

Entity mismatch prob-
lem but meaning is re-
tained along with sen-

tence structure.

qUTS & ST g5l Wl
& oTET UISg Al ?

9 foeft Sa wAt, foft
P Bl ?

Paraphrase  obtained
but change in semantic

structured.

ParaNMT

Precl =gy oA
gleffel fuTfaama! fofemr
QTSP BRI
BISPERCIEUIRN

Frecl g A
gleffel fuTfgama! fofmr
g TESH DR
ffecer amor |

Generated paraphrase
matches exactly with

the input.

TRR
erfer @ SF
STepTelT TS |

S e, BfR
T T eTTgRed
I35\

Entity mismatch prob-

lem.

Bronze

PR oRd 90
W HINATT SHd1 IR

3RE® fA|

BRRTATS e AN
f R SHP TR
SFREBATS TS AN
forn

Perfect paraphrase ob-

tained.

TfcRETel B! thfetTan!

GIATS THTH 37dtel T+
e |

SES I REL DR CIRS]

B Jeg  gfddcies
3t T Pt fareped e

Good paraphrase ob-
tained with few addi-

tional words.

Gold

el PRT TIPS el
T3eT fAfe3n are 3|

da  OifeRgdl  T3ed
fafsar T g

Paraphrased obtained
with slight semantic

difference.

gfeet TaeH  Ufdel

ar efeel Afd Sfea

TTe~STh! sy g9l ©

WIS 9T &

Paraphrased .

Table 5.7: Sample analysis for backtranslation
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mTH mT5-base Backtranslation
Tostset EM*| SE* | MM*| GE* | EM*| SE* | MM*| GE* | EM*| SE* | MM*| GE*
Quora 2 3 0 4 3 2 0 0 0 4 3 2
Para 9 1 1 6 3 0 0 0 5 1 3
Bronze 3 0 1 2 3 0 0 1 2 0 3
Gold 3 10 2 Is 2 3 0 0 0 4 1 5

Table 5.8: Error analysis table

*EM = Exactly Matched
*SE = Semantic Error
*MM = Entity Mismatch

*GE = Grammatical Error

As from the table, the mT5-small model contains a significant number of unwanted results
(EM*, SE*, MM* GE*) whereas the mT5-base model has a drastic improvement in this
aspect. The main difference between those is that the mT5-small model produced a total of 3
entity mismatches and 7 syntactic errors whereas the mT5-base model reduced those errors.
Also, there are a lot of exact match problems and semantic dissimilarity issues in all of the
mT5 small test sets, however, these issues are less prevalent in the mT5 base but continue to
exist there. For the mT5 base method, it was found that we can alleviate semantic problems
by training on a large language model with a high number of trainable parameters, as the

language understanding of these models is better than that of smaller models.

Human evaluation has shown that the back translation method has fewer errors than other
methods when an exact match is taken into account. However, it has a higher number of
grammatical errors when compared to other methods, indicating that our trained model
performs well in this aspect. The back-translation method performs worse than the base
model in all areas except for exact match errors, while compared to the mT5 small model,

the back-translation method performs significantly better.

Additionally, the exact match problem can be mitigated by running the generation process
multiple times for a given sentence until a satisfactory paraphrase is generated. During
testing, it was found that by running the generation process an average of three times for
given input in the base model, it is guaranteed to generate a paraphrase. Regarding the
other human evaluation data, it was found that the quality of paraphrases generated by the
back translation method and the mT5 base model were similar in quality, while the quality

of mT5 small model was not up to mark with the other two.
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6. Conclusion

In summary, we've developed a paraphrasing tool for the Nepali language using an MT5
base model that underwent training with diverse datasets and evaluation through BLEU
and ROUGE scores.

This powerful tool aims to enhance the writing and communication abilities of Nepali speak-
ers by providing them with accurate and effective paraphrasing options. Further, our findings
indicate that our tool can produce high-quality paraphrases in Nepali, making it an excel-
lent resource for multiple natural language processing applications. With this tool at their
fingertips, Nepali speakers can communicate more effectively and achieve greater success in

their writing endeavours.

Additionally, we conducted several experiments using both the MT5 small model and a back-
translation model. Our findings revealed that while the M'T5H base model successfully over-
came various errors present in the M'T5 small model, it still fell short of the well-developed
back-translation model in terms of performance. Despite this, our research has provided
valuable insights into the strengths and weaknesses of these different models and highlighted

the potential for future improvements.

Ultimately, our research illuminates the vast potential of advanced language models to en-
hance natural language processing capabilities in low-resource languages and break down lin-
guistic barriers. By demonstrating the effectiveness of our approach in overcoming linguistic
hurdles, we hope to inspire further innovation in this field and promote greater language

access and inclusion for all.
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7. Limitation

While doing this project, we faced many challenges and we have overcome many of them.
Some of the major challenges we faced during the accomplishment of our goal in this project

are as follows:

» Lack of good amount of data. Since we are one of the very few who have worked in the
field of Nepali language NLP field, it was a very tough job to find a sufficient amount
of data. However, we are proud that we will be counted among the ‘Data Creators’ in

this heavily unexplored field.

» Lack of computational power to train the model As our model is very heavy with more
than a billion parameters, the lack of enough computational power to train the model
was a huge challenge. We still feel that, with the availability of a better computational

engine, we can achieve even better results in this project.

There are some limitations of our project as well. We have created a good paraphrase
model for the Nepali language but we are yet to apply this model in a beneficiary
way. It will take some time for us to come up with an application-ready model for our
project. As this project is a sequence-to-sequence generation model, there is no exact
way to evaluate the performance of the model by a machine or a program. So, human
evaluation is the optimal way of evaluation. Also, we are yet not able to compare the
input sentence and output paraphrase semantically, which would be the best way for

the evaluation of the model.
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8. Future work

Efforts are currently underway to enhance the evaluation metrics for measuring semantic
and syntactic proficiency in the Nepali language. Future plans include the addition of new
data to the existing dataset and fine-tuning larger models to improve accuracy. To generate
more contextually appropriate paraphrases that account for the surrounding text, controlled
paraphrase generation is being developed. In addition, new tasks such as paraphrase iden-
tification and plagiarism detection are being introduced to enhance language processing

capabilities.
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