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Abstract

The idea of super resolution and image upsampling have taken the field of computer vi-

sion by storm. New methods to upsample a grainy and low resolution videos are now the

new chase. Our research is focused on upsampling a CCTV video through the use of deep

learning techniques. Video superresolution often show sub-par results because they tend to

have more components to process than their image counterparts, namely temporal dimension

apart from the usual spatial dimension. In this research, we have studied these components

and developed a pipeline that effectively processes the spatio-temporal information through

optical flow, backed up by novel deep learning based VSR practices such as feature align-

ment, aggregation and upsampling. We examined and improved the pipeline based on the

BasicVSR architecture and developed a model of our own by introducing residual in resid-

ual dense blocks. The new model RD-BasicVSR, was successful in surpassing the results of

BasicVSR in both PSNR and SSIM metrics at same experimental settings.

Keywords: VSR, Basic VSR CNN, Spatial upsampling, Spatio-temporal upsampling,

Residual Blocks, Optical Flow
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1. Introduction

1.1 Background

Computer vision is a field of computer science which tries to make the machine understand

human perception of an image. A machine sees an image as a simple grid of numbers

crammed together in a sequence. This grid of number, pixels, is what determines the reso-

lution of an image. The greater the number of pixels, the better the quality of the image as

perceived by a human eye and the better the detail.

With improvement in technology we are able to render large number of pixels. A pixel size

of 2k has become customary whereas 4k is sought after. The only thing limiting us to using

smaller images is the size and speed with with we can render these images. To get better

detail researchers started working on compression algorithms like JPEG and PNG, rendering

methods were improved and lastly artificial intelligence entered the fray with deep learning

techniques utilizing CNN [1], [2],[3], [4] , GAN [5], [6], [7],[8], [9], [10] and diffusion models

[11], [12].

Aforementioned methods work well on still images however there is much room for improve-

ment in the domain of videos as you not only have to consider spatial presence of features in

images but also the temporal constraint needs to be factored in. The size and computation

requirements of videos also exceed that of images. For high end devices, the quality of video

is indiscernible for human eyes. For images and videos taken from CCTV footage the quality

is not satisfactory compared to what technology has achieved in other general use cases.

1.2 Problem Statement

The quality of CCTV videos is not satisfactory and comes at a considerable cost of equip-

ments. Even with the advancement of deep learning in the field of computer vision, upscaling

a video into higher definition has not become a primary part of application and remains a

active research problem. The clear difference in the quality we intend to dive upon the prob-

lem of spatio-temporal upsampling of videos focusing on how the literature and research can

be useful in CCTV footages. With the use of novel Deep Learning methods, we propose to

design a system that improves the quality of videos that are captured by ordinary CCTV.
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1.3 Objectives

• Improve the quality of CCTV videos through spatio-temporal upscaling

• Improve the perceived quality of videos

1.4 Scope

The principal perk of this project is that it bridges the gap that prohibits dozens of effective

image super resolution models to work just as effective in the field of videos upsampling.

The final end product will provide a system that will increase the resolution of live incoming

CCTV videos. However, the project offers much more than that. The system can be im-

plemented in computationally medium and high range mobile devices and PCs to upsample

the recordings and live videos. It can also be extended to be used as a part of gaming and

VFX designing to improve the quality of animation and rendering.

Apart from direct applications in products, the research conducted in this project will defi-

nitely provide much needed aid to the study of related factors and elements that contribute

to the improvement of Video based generative models by targeting the existing shortcomings

in the field and proposing the changes.

1.5 Organization of Report

The project report is organized into six chapters. After this introductory chapter, chapter

two describes the underlying literature in the field of image and video super resolution

using deep learning methods like convolutional networks, generative adversarial networks

and diffusion model.

Chapter three describes the relevant theory necessary to understand the project. Image and

video super resolution, convolutional neural network and their construction, bilinear and

bicubic methods of upsampling and downsampling.

The fourth chapter describes the crux of the project and how we upsample a low resolution

video to higher resolution. It is achieved through a series of computation on the image

frames of the video namely, propagation, alignment and aggregation steps. This chapter

also includes the datasets, training settings and the metrics we used for evaluation.

In chapter five we have presented the results of our research and the essential discussions

that go with those obtained results. The upsampled results of the video, perceived difference

2



in quality between BasicVSR and our model RD-BasicVSR is included in this chapter.

In the last chapter we summarize our research project and discuss the recurring limitations.

Future work describes how we can improve upon the limitations moving forward in the same

area of research.
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2. Literature Review

The field of upsampling videos for better quality is not a novel one. The quality of video is

determined by the resolution of frame images and the frame rate of an image. A standard

CCTV has 30 frames per second while its resolution depends on camera quality, with varying

ranges(generally 2MP-8MP) according to the manufacturer. In most use cases however

CCTV captures are of low resolution(2MP or lower) resulting in grainy videos.

The improvement of such videos can thus be done through image upscaling and super reso-

lution techniques, a popular domain in computer vision. The most basic attempts to super

resolution include interpolations like nearest neighbour, bilinear and bicubic interpolations

which increase the number of pixels by specifying pixel values based on nearest neighbour or

interpolating a group of pixels around a known pixel value. Advancement and improvement

of shading techniques are used in video games to upsample the quality of video without

affecting the player’s experience.[13]

Dong et. al [14] proposed Single Image Super Resolution (SISR) which aims at retrieving

a high resolution (HR) image from a low resolution (LR) input. It originally used deep

convolutional neural networks for the task. Ever since, a lot of architectures and strategies

have been involved for developing better models. Later on, Generative models such as GANs

and Diffusion models were involved that resulted in massive boost in performance of these

models. SRGAN [15] and ESRGAN [8] are two such widely popular models that took the

field by the storm.

The transition of such methods from images to videos has been relatively slower. The

aforementioned models were all used in this process but the results expected due to their

massive success in image based systems could not be replicated. The problem in learning

and upsampling spatio-temporal images turned out to be one of the main issues. Chu et.

al [16] proposed a self-supervised model for GAN based video generation addressing this

issue. Although the output was pretty stable, the model suffered from sub-optimal details

in videos.

Wang et. al [17] proposed EDVR in 2019 that incorporated components to capture large

motion and preserve important features using spatial and temporal attention. Similarly,

they proposed BasicVSR [18] in 2021 to exploit additional dimensions needed for video

4



super resolution. These papers are effective for video upsampling tasks but they fall short

to address the live feed upsampling, which is the goal in most live surveillance systems such

as CCTV cameras.

Figure 2.1: Architecture and components of BasicVSR

Liu et. al [19] studied several novel video upsampling techniques by categorizing them

into seven different categories based on the methods they employed to leverage information

contained in the video frames. The key takeaways from the survey provide detailed insights

on working of a number of super-resolution architectures and their weak points that will

eventually be used as topics of research for our project. Video super-resolution are the video

counterparts of image super-resolution techniques, and are thus derived from different image

based methods such as the ones using Convolutional Neural Networks, Residual Networks,

Recurrent Neural Networks and Generative models based methods [19].

The two basic frameworks for existing VSR techniques [18] [20] [21] are sliding-window

and recurrent. Previous techniques [22] in the sliding window architecture execute spatial

warping for alignment and forecast the optical flow between low resolution (LR) frames.

Subsequent methods use an implicit alignment strategy that is more advanced. Deformable

5



convolutions (DCNs) [23] [24], for instance, are used by TDAN [25] to align several frames

at the feature level. DCNs are additionally utilized by EDVR [17] in a multi-scale manner

for more precise alignment. DUF [26] uses dynamic upsampling filters to implicitly handle

motions. Some strategies adopt a recurrent framework. A hidden state adaption module

and a recurrent detail structural block are suggested by RSDN [27] to increase robustness to

appearance change and error accumulation. The aforementioned studies have led to many

new and sophisticated components to address the propagation and alignment problems in

VSR. RRN [28] adopts a residual mapping between layers with identity skip connections to

ensure a fluent information flow and preserve the texture information over long periods.

Learning temporal coherence along with spatial flow is the most important step in video

super resolution. Optical flow based methods have been used for quite some time in VSR

projects. The majority of the traditional optical flow algorithms, which date back to Horn

and Schunck (1981) [29], have aimed to reduce hand-crafted energy terms for picture align-

ment and flow smoothness [30] [31]. Other cutting-edge techniques, such as DC Flow [32] and

EpicFlow [33], further take advantage of image boundary and segment cues to enhance flow

interpolation amid sparse matches. Recently, end-to-end deep learning techniques enabling

quicker inference were proposed [34] [35].

The drawback of traditional approaches is that they frequently erroneously assume the image

brightness change and the spatial organization of the flow. Many techniques concentrate

on increasing robustness by altering the assumptions. The main benefit of studying flow

computation is that we don’t have to manually adjust these presumptions [36]. Instead, the

learnt network incorporates the fluctuation in image brightness and spatial smoothness. The

concept of employing a spatial pyramid also has a lengthy history, going back to [37], with

its earliest application in the formulation of the classical flow appearing in [38].

Stacking residual-in-residual dense blocks (RRDB) has shown improved performance in SR

problems and has been adopted by many SR methods such as [39] and RealESRGAN [40]

[41]. RRDB blocks have been used in vanilla form and in their 2D forms in different image

super resolution works. It was initially proposed by Wang et. al. [8] as a mechanism

to improve generator’s performance in GAN based networks. It has been demonstrated

that removing BN layers improves performance and lowers computing cost for a variety of

PSNR-oriented activities, including SR [42] and deblurring. Moreover, deleting BN layers

aids in enhancing generalization potential as well as lowering computational complexity and

memory utilization. This block has been used in our project as an alternative to vanilla

residual blocks proposed in the BasicVSR paper.

6



3. Related Theory

3.1 Image Super-Resolution

Image Super-Resolution refers to the task of enhancing the resolution of an image from LR

(Low Resolution) to HR (High Resolution). It can be thought of as an Image to Image

translation task. Deep learning techniques have been fairly successful in solving the problem

of image and video super-resolution. It is an important class of image processing techniques

in computer vision and image processing and enjoys a wide range of real-world applications,

such as medical imaging, satellite imaging, surveillance and security, astronomical imaging,

amongst others.

Figure 3.1: LR image on the left & corresponding HR image generated using SRResNet[5]
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3.2 Video Super-Resolution

Video Super-Resolution is a technique that enhances the resolution of low-resolution videos

to a higher resolution version. This technique is useful when working with old or low-

quality video footage. In deep learning, video superresolution is achieved using convolutional

neural networks. These networks are effective at processing images and videos by learning

to recognize patterns through multiple layers of convolutional filters.

To perform video superresolution using deep learning, a CNN or Transformer based model

is trained on a dataset of low-resolution and high-resolution video pairs. The network learns

to map low-resolution video frames to their corresponding high-resolution frames during

training. After training, the model can be used to superresolve new low-resolution videos by

passing each frame through the network.

3.3 CNN (Convolutional Neural Networks)

Convolutional Neural Networks CNN have become a cornerstone in the field of computer

vision and are widely used in various applications, including image and video superresolution.

CNNs are a type of artificial neural network that are inspired by the structure and function

of the visual cortex in animals. In a CNN, an input image or video is passed through a series

of convolutional layers that apply filters to extract relevant features. The output of each

convolutional layer is then passed through a non-linear activation function, such as ReLU,

to introduce non-linearity in the model. This allows the CNN to learn complex relationships

between input and output data.

CNNs are widely used in super resolution applications, where the goal is to generate a high-

resolution image from a low-resolution input. By training on pairs of low-resolution and

high-resolution images, a CNN can learn to extract features from the low-resolution input

and use them to generate a high-resolution output. This makes CNNs an effective tool for a

wide range of image processing tasks, including super resolution.

Several CNN-based approaches have been proposed for video superresolution, including those

that use deep architectures with skip connections, attention mechanisms, and adversarial loss

functions. Some notable works include DUF-Net [26], TDAN [25], and BasicVSR [18].

8



3.4 Bicubic Downsampling

Bicubic downsampling is a technique used to reduce the size of an image by resampling it

using a bicubic interpolation function. The process involves averaging the values of adjacent

pixels in the original image to generate new pixels in the downsampled image. The bicubic

interpolation function is used to generate these new pixels by fitting a 2D cubic polynomial

to a set of neighbouring pixels in the original image.

Figure 3.2: Bicubic Interpolation

The first stage of downsampling involves interpolating the values of each row in the grid

using a cubic spline interpolation, such as the Catmull-Rom spline. This results is a set of

intermediate values, which are then used in the second stage of interpolation to estimate the

value of the point of interest.

3.5 Bilinear Upsampling

Bilinear upsampling is a technique used to increase the resolution of an image by resampling

it using a bilinear interpolation function. The process involves generating new pixels in the

upsampled image by averaging the values of adjacent pixels in the original image. It works

by fitting a 2D plane to four neighboring pixels in the original image and using this plane

to generate new pixel values in the upsampled image. The new pixel values are calculated

as weighted averages of the neighboring pixel values, with the weights determined by the

distance between the new pixel and each of the four neighboring pixels.

9



Figure 3.3: Bilinear Interpolation Figure 3.4: Bilinear Upsampling

Interpolating for P from four neighbouring points, first linear interpolation is done in the

x-direction for the two rows. This yields,

f(x, y1) =
x2 − x

x2 − x1

f(Q11) +
x− x1

x2 − x1

f(Q21) (3.5.1)

f(x, y2) =
x2 − x

x2 − x1

f(Q12) +
x− x1

x2 − x1

f(Q22) (3.5.2)

To obtain the desired estimate, interpolation in the y-direction is performed as follows,

f(x, y) =
y2 − y

y2 − y1
f(x, y1) +

y − y1
y2 − y1

f(x, y2) (3.5.3)
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4. Methodology

The process of upsampling a video involves a series of image manipulations and the use of

modules to abstract these steps. The overall procedure can be summarized into four main

phases, namely propagation, alignment, aggregation and upsampling. Propagation specifies

how the information in a video sequence is leveraged and deals with the transfer of features

from one frame to another. Our architecture involves the use of a bidirectional propagation

network, which allows the features to be propagated forward and backward in time indepen-

dently. The alignment phase, which was inspired by the BasicVSR [18] technique, involves

the computation of optical flow for spatial alignment of features using a pretrained Spynet

[36] model, rather than optical flow for image alignment. During the aggregation step in

BasicVSR, the features extracted from multiple frames are concatenated along the channel

dimension to generate a single set of features for each frame. Finally, the upsampling step

comprises the four-fold bilinear upsampling of the re-calculated features from the previous

stage, as well as the separate computation of pixel shuffle twice to upsample the image four

times. The results of the bilinear and pixel shuffle procedures are combined to determine

the final output of the overall process.

BasicVSR utilizes a number of features such as bidirectional propagation, feature alignment,

aggregation and upsampling [18]. These features have been found to be very useful in cap-

turing the spatio-temporal domains associated with video dataset. These elements led to

the usage of the BasicVSR model in our research.

4.1 Propagation

Propagation is one of the most influential components in VSR. It specifies how the infor-

mation in a video sequence is leveraged. The proposed bidirectional propagation method of

BasicVSR incorporates propagation of features in forward and backward direction in time

independently. This eventually solves two main problems seen in traditional local and uni-

directional propagation: loss of information of distant frames using sliding window approach

in local propagation and imbalanced reception of information in unidirectional propagation.

These problems have been verified by significant drop in PSNR values, some as much as 0.5

dB compared to the bidirectional approach [18].
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Figure 4.1: Shared architecture of BasicVSR and RD-BasicVSR

hb
i = Fb(xi, xi+1, h(i+ 1)b) (4.1.1)

hf
i = Ff (xi, xi−1, h(i− 1)f ), (4.1.2)

In BasicVSR [18], the bidirectional propagation network consists of flow estimation mod-

ule, spatial warping and residual blocks. Our project proposes a novel architecture with a

combination of RRDB and Residual blocks in series. Similarly, ESRGAN [8] propose some

improvements over the generator section from the general super resolution section of SRGAN

[15], namely removal of Batch Normalization layer and replacement of original basic block

with Residual in Residual Dense Block to further improve the quality generated images. Our

architecture combines these two elements from the aforementioned implementations into a

single unit.

4.1.1 Residual Blocks

Residual blocks have become a fundamental building block in many deep neural network

architectures due to their ability to improve gradient flow and facilitate the training of

deep networks. In the context of image and video superresolution, residual blocks have
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Figure 4.2: Forward and backward propagation branches in BasicVSR

Figure 4.3: Forward and backward propagation branches in RD-BasicVSR

been used to effectively extract and propagate features through the network, enabling the

generation of high-quality output frames. The propagation block consists of optical flow

estimation denoted by ’S’ in the block diagram, spatial warping ’W’ and a residual block

Rf , in BasicVSR, whereas the the RD-BasicVSR model consists of RRDB block in place of

the residual block in BasicVSR.

A residual block is a building block that contains one or more convolutional layers and a
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Figure 4.4: Residual block used in BasicVSR

residual connection. The residual connection allows the gradient to flow through the network

more efficiently, improving the training process and avoiding the vanishing gradient problem.

In video superresolution, residual blocks can be used to extract features from input frames

and generate high-quality output frames by propagating features across multiple layers.

[42].

Residual blocks have been used in various video superresolution methods, including but

not limited to, Recursive Residual Network RRN, Residual Dense Network RDN, and Deep

Recursive Residual Network DRRN. By utilizing residual blocks, video superresolution meth-

ods have been able to achieve state-of-the-art performance and generate high-quality output

frames with improved visual quality and structure.

4.1.2 RRDB(Residual in residual dense blocks)

Residual in Residual Dense Block (RRDB) is an enhancement of Residual Dense Block.

The basic idea behind the RRDB is to add an additional residual connection to the original

RDN architecture. This residual connection allows the network to better capture long-range

dependencies and improve the quality of the output.

The RRDB architecture is composed of several layers, each of which is made up of dense

blocks. A dense block is a group of convolutional layers, which are connected in a densely
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connected manner. Each dense block is followed by a residual connection, which ensures

that the output of the block is added to the original input [42].

Figure 4.5: Illustration of a Dense block from ESRGAN

A single dense block has been shown in Figure 4.5. It consists of four blocks with each block

consisting of a convolutional block and an LRelu block stacked together. The initial input

is also concatenated to the computed output at the end.

Figure 4.6: Single RRDB

An RRDB block, as explained in the ESRGan paper [41], consists of 3 dense blocks de-

scribed above stacked together, with individual input concatenated to their outputs forming

a residual structure. It is shown in figure 4.5. Finally, the RRDB module described in our ar-

chitecture for propagation consists of a residual block and two RRDB blocks described above

and as shown in figure 6. In essence, there are a total of 64 convolutional blocks in BasicVSR

model while our proposed architecture consists of only 30 convolutional blocks.

In the RRDB architecture, the residual connection is added to the output of the dense block,
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Figure 4.7: RRDB block used in our model

which is then passed through another set of convolutional layers. This process is repeated

several times, resulting in a highly complex architecture that can capture subtle details and

improve the quality of the output. It is particularly well-suited for video superresolution

tasks because it can help to generate high-quality outputs by effectively capturing the tem-

poral dependencies between frames.

4.2 Alignment

Alignment is another important factor addressed in BasicVSR and used in our research.

Spatial alignment plays an important role in VSR as it is responsible for aligning highly

related but misaligned images/features for subsequent aggregation. Alignment can be car-

ried out in three different ways for VSR works: without alignment, image alignment and

feature alignment. The paper presents suboptimal performance of using without alignment

approach, supported by difference in PSNR values. Similarly, the image alignment approach,

that performs alignment by computing optical flow and warping images prior to restoration,

also performs quite poorly as compared to feature level alignment [18].

BasicVSR uses an optical flow approach for spatial alignment, which performs warping on

the features instead of images level before eventually being fed to the residual blocks. For-

mally, it can be represented as:

sb,fi = S(xi, xi±1), (4.2.1)

h
b,f

i = W (hb,f
i±1, s

b,f
i ), (4.2.2)

hb,f
i = Rb,f (xi, h

b,f

i ), (4.2.3)

where, S andW denote the flow estimation and spatial warping modules respectively whereas

Rb,f denotes a stack of residual blocks.

Optical flow is the general method to capture this component in VSR. To calculate optical
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flow, we use a neural network based model, SPyNet to calculate the motion vector of the

pixels. Understanding the motion or flow of frames requires more than simple convolutional

networks that process spatial information. Optical flow is one such method for processing

inter-frame information. BasicVSR utilized deep learning techniques to estimate the optical

flow [18]. The use of the spatial pyramid network [36] (SPyNet) solves the temporal learning

problem in two ways: it uses a spatial pyramid and convolutional filters to estimate the

temporal structure and uses traditional approaches to determine the long-range correlations

in frames [36].

4.2.1 Optical Flow

Optical flow is a technique used in computer vision to estimate the motion of objects between

frames of a video sequence. It refers to the apparent motion of pixels in an image or video

sequence due to the motion of the objects in the scene.

The concept of optical flow is based on the assumption that pixels in an image or video

sequence move in a smooth and continuous way, and that the brightness of a pixel remains

constant over time. By analyzing the changes in brightness values of pixels between frames,

optical flow algorithms can estimate the motion vectors of objects in the scene.

In video superresolution, optical flow is used to estimate the motion vectors between ad-

jacent frames, which can then be used to align the low-resolution frames and generate a

high-resolution output frame. It allows for the reconstruction of high-resolution images or

videos from low-resolution ones by utilizing the information from neighboring frames. By

estimating the motion between frames, it is possible to warp the low-resolution frames to a

high-resolution grid that can then be used to generate a high-resolution image or video.

4.2.2 SpyNet

Figure 4.8: SpyNet module [36]
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We use SpyNet block to estimate the optical flow in our proposed model [36]. SpyNet

introduces machine learning to address the weaknesses of earlier flow estimation models which

improves performance over the classical slower models and also reduces memory requirements

to make the application more suited to embedded and mobile devices. Here, we use deep

neural networks at each level of the spatial pyramid and train them to estimate a flow update

at each level. This approach means that each network has less work to do than a fully generic

flow method that has to estimate arbitrarily large motions. At each pyramid level we assume

that the motion is small (on the order of a pixel) [36].

In figure 10, ’G’ refers to the training neural network, which computes a residual flow that

propagates to next lower levels of pyramids in turn, to finally obtain flow ’V’ at the highest

resolution.

4.3 Aggregation and Upsampling

Aggregation and Upsampling is another main component of the architecture. During the

aggregation step in BasicVSR, the features extracted from multiple frames of the input

video are concatenated along the channel dimension to generate a single set of features

for each frame of the output high-resolution video. This concatenation operation allows

the network to use information from multiple frames and combine the aligned features to

generate better-quality high-resolution frames. Upsampling block utilizes the information

from previous blocks to enhance the quality of individual frames to produce high resolution

output frames. The intermediate information produced from the Optical Flow module is

passed through Convolutional blocks and a Pixel Shuffle module to produce HR output.

Similarly, the LR input frames are also scaled four times using Bilinear Upsampling to

generate HR frames. The final frames are then obtained by combining the results of the two

upsampling processes.

4.3.1 Pixel Shuffle

Pixel shuffle is a technique used in deep neural networks for image and video superresolution,

which can increase the spatial resolution of an image by rearranging the pixels in a low-

resolution feature map. Pixel shuffle is a type of upsampling method that involves three

steps: subpixel convolution, reshaping, and shuffling.

In the first step, a subpixel convolutional layer is applied to the low-resolution feature map

to increase the number of channels. The subpixel convolutional layer is designed to learn the

upsampling filter that transforms a low-resolution feature map into a high-resolution feature

map. The output of the subpixel convolutional layer is a high-resolution feature map with a
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larger number of channels.

Figure 4.9: PixelShuffle final step[43]

In the second step, the high-resolution feature map is reshaped by rearranging the pixels into

a block structure. The block size corresponds to the desired scale factor, which determines

the level of upsampling. For example, a block size of 2x2 would correspond to a scale factor

of 2x.

In the final step, the reshaped high-resolution feature map is shuffled by swapping the po-

sitions of the pixels within each block. This shuffling operation effectively spreads out the

high-frequency information that was learned by the subpixel convolutional layer, resulting

in a higher-resolution image.

4.4 Dataset and Settings

Two datasets have been used in the experiments in the model. REDS [44] and 160 CCTV

footages extracted from MEVA dataset [45] are used for training, validation and testing

purposes. Out of all the 270 folders available in the REDS dataset, folders 000, 011, 015

and 020 have been separated as testing datasets. And handpicked four videos from MEVA

dataset have been seperated for testing purpose for finetuned model. The entirety of the

remaining dataset has been used for training purposes. A subset of the training dataset,

folders 000,001,006,017 has further been partitioned as a validation set. The videos we used

for training consist of 24 frames per second and are five seconds in length for the REDS
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dataset and 30 frames per second for the MEVA dataset. 30 frames per second is a standard

recording frame rate for CCTV cameras.

Figure 4.10: Image from REDS dataset Figure 4.11: Image from REDS dataset

Figure 4.12: Image from MEVA dataset Figure 4.13: Image from MEVA dataset

In our approach, we utilize pre-trained SPyNet model for flow estimation. The initial learn-

ing rates for flow estimator is set to 2.5∗10−5, while the learning rate for all other modules is

set to 2∗10−4. We run a total of 350K iterations and freeze the weights of the flow estimator

for the first 50,000 iterations. We use a batch size of 4 and the input LR frames are in a

patch size of 64×64. When training, we use a sequence of 15 frames as inputs, and loss is

computed for the 15 output images. The Charbonnier loss is used as loss function.

4.5 Metrics

We used following metrics to validate our designed architecture. The metrics are inspired

from the BasicVSR paper [18] and are general methods to evaluate components involving

images and videos.

4.5.1 PSNR (Peak Signal-to-Noise Ratio)

PSNR is a commonly used metric for measuring the quality of reconstructed or compressed

images and videos. It measures the ratio of the peak signal power to the power of the noise

in the image or video.

PSNR is calculated by comparing the original, high-quality image or video to the compressed
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or reconstructed version of the image or video. The difference between the two is measured

in terms of the MSE, which is the average of the squared differences between the pixel values

of the two images or videos.

PSNR = 10. log10(
MAX2

I

MSE
) (4.5.1)

which can be simplified to

PSNR = 20. log10(MAXI)− 10. log10(MSE) (4.5.2)

where,

MAXI=Maximum Possible Value of each pixel

MSE=Mean Squared Error

The PSNR value is expressed in dB which is a logarithmic scale that ranges from 0 to infinity.

A higher PSNR value indicates a higher quality reconstructed or compressed image or video,

and vice versa. A PSNR value of 30 dB or higher is generally considered to be of high quality,

while a value below 20 dB is considered to be of low quality.

While PSNR is a widely used metric for image and video quality assessment, it has some

limitations. For example, it doesn’t always reflect how humans perceive the quality of an

image or video. Additionally, it assumes that all errors are equally important, which may not

be the case in certain applications. Therefore, other metrics such as Structural Similarity

Index (SSIM) and Perceptual Quality Assessment (PQA) are often used in conjunction with

PSNR to provide a more comprehensive assessment of image and video quality.

4.5.2 SSIM (Structural Similarity Index)

SSIM is a widely used image quality metric that measures the similarity between two images,

particularly in terms of structural information. It is often used in conjunction with other

metrics like PSNR to provide a more comprehensive assessment of image quality.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4.5.3)

where,

µx is the average of x

µy is the average of y

σ2
x is the variance of x

σ2
y is the variance of y
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σxy is the covariance of x and y

c1 = (k1L)
2, c2 = (k2L)

2 are two variables to stabilize the division with weak denominator

L the dynamic range of the pixel-values(2bits per pixel − 1)

k1 = 0.01 and k2=0.03 by default

The SSIM metric is based on the idea that the perceived quality of an image depends on its

structural information, luminance, and contrast. SSIM compares two images by calculating

three components: luminance (brightness), contrast (image depth), and structure (spatial

arrangement of pixels). The luminance component measures the average brightness of the

images, while the contrast component measures the difference in the range of pixel values

between the images. The structure component measures the similarity of the patterns in the

images. The SSIM score is obtained by calculating the product of these three components,

with higher scores indicating greater similarity between the images. The SSIM score ranges

between 0 and 1, with a value of 1 indicating perfect similarity.

SSIM has several advantages over other image quality metrics like PSNR. It correlates bet-

ter with human perception of image quality, is more robust to compression artifacts, and

can better distinguish between images that are perceptually similar but have different pixel

values.

4.5.3 Charbonnier Loss

Charbonnier Loss is a loss function used in image processing tasks, particularly in image

restoration and superresolution, to measure the difference between the output image and

the target image.

L =
1

N

N∑
i=0

ρ(yi − zi) (4.5.4)

where ρ(x) =
√
x2 + ϵ2, ϵ = 1 ∗ 10−8,

zi denotes the ground-truth HR frame, and

N denotes to the number of pixels.

The Charbonnier loss function is defined as the square root of the sum of the squared

pixel differences between the target image and the output image, raised to a power of p,

where p is typically set to 0.5 or 1. The function is more robust than the traditional L2

loss function because it is less sensitive to outliers, which can occur in real-world image

processing tasks.
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Compared to other loss functions like MSE, Charbonnier loss can lead to better image qual-

ity by preserving edges and texture details. This is because the Charbonnier loss function

places less emphasis on large pixel differences and more emphasis on small pixel differences.
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5. Results and Discussion

To train our model, we followed a two-phase approach: pretraining and finetuning. Initially,

we trained the model on the REDS dataset for 300k iterations using the settings described

earlier. We then finetuned the model on the CCTV dataset for 50k iterations keeping the

initial learning rate 2 ∗ 10−5.

We recorded the log of our training and validation sets in Wandb.ai.

Figure 5.1: Validation Charbonnier Loss

Figure 5.1 illustrates training progress over the last 350 iterations after loading a saved

checkpoint. The horizontal axis represents the iteration number, while the vertical axis shows

the Charbonnier loss. The graph shows the validation curve, indicating an overall downward

trend with occasional fluctuations which suggests that the model is making steady progress

towards convergence.

Figure 5.2 illustrates the SSIM index of the model over the last 350 iterations after loading a

saved checkpoint. The horizontal axis represents the iteration number, while the vertical axis

shows the SSIM index. The graph shows an overall upward trend with occasional fluctuations

which suggests that model’s performance on the validation dataset is gradually improving
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Figure 5.2: Validation SSIM Index Curve

over time.

Figure 5.3: Validation PSNR Index Curve

Figure 5.3 illustrates the PSNR index of the model over 350 iterations from a saved check-

point. The horizontal & vertical axes represent number of iterations & PSNR value respec-

tively. The graph shows an overall upward trend with occasional fluctuations which suggests

that model’s performance on the validation dataset is gradually improving over time.
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5.1 Quantitative Comparison with the State of the Art

Table 5.1: Quantitative Comparison in terms of PSNR and SSIM on REDS4 dataset

Model PSNR SSIM

Bicubic 26.14 0.7292

TOFlow [30] 27.98 0.7990

DUF [26] 28.63 0.8251

RBPN [46] 30.09 0.8590

PFNL [47] 29.63 0.8502

EDVR-M [17] 30.53 0.8699

BasicVSR [18] 29.287 0.8665

RD-BasicVSR(ours) 29.52 0.8758

Observing the table 5.1, it is evidently clear that our proposed model outperforms many

of the state-of-the-art models, for the REDS4 dataset. The PSNR and SSIM values of our

model at 29.52 and 0.8758 show results closer to the state-of-the-art BasicVSR model and

thus is an effective tool in VSR literature. The output on validation frames of REDS dataset

an out-of-the-wild inference on CCTV footage. The output generated is produced by our

baseline model and not by the fine tuned model.

Table 5.2: Quantitative result obtained on CCTV test dataset

Model PSNR SSIM

RD-BasicVSR (ours) 33.88 0.9505

Even though the training input images are of 64x64, for inference and deployment we can

input images/video of any size. There will obviously be similar increase in requirements of

the inference machine. When run on NVIDIA RTX 3060 the inference time was 20.8 seconds

for 150 frames, which accounts to about 140ms per frame for frames of size 64x64 upsampled

by four times. However this value is influenced by the size of the low resolution frames and

takes longer for upsampling 320x180 to 1280x720.

Figure 5.4, 5.5, 5.6, 5.7 show the comparison of a low-resolution image (left) with the same

image after being upscaled by our model (right). The image on the right demonstrates the

effectiveness of our model in increasing the resolution and restoring details that were lost in
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the original low-resolution image. The upscaled image shows sharper edges and more visible

details, resulting in a visually more appealing and higher-quality image.

Figure 5.4: The low resolution image from MEVA dataset(left) upscaled by our model(right)

Figure 5.5: The low resolution image from REDS dataset(left) upscaled by our model(right)

Figure 5.6: The low resolution test image(left) upscaled by our model(right)
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Figure 5.7: The low resolution test image(left) upscaled by our model(right)

5.2 Qualitative Comparison with BasicVSR

Qualitative comparison of BasicVSR with RD-BasicVSR(ours) yields a more clearer picture

of the improvement in the perceived quality of video frames. In the real world scenario, per-

ception plays a stronger role in determining the quality of image processing algorithms.

Figure 5.8: The back of a vehicle

Figure 5.8 shows the quality comparison of the back of an automobile. It is evident that the

upsampled images are significantly better at distinguishing separate regions. The improve-

ment is even more evident when a localized portion of the frame is taken into account. For

example in Figure 5.9, the letter at the back of the van is clearly distinguishable in both
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Figure 5.9: Focus on the number

upsampled images however the texture in RD-BasicVSR is smoother and free from artifacts

than in BasicVSR.

Figure 5.10: Monitoring Traffic

Figure 5.10 is from a CCTV footage of a heavy traffic area, at first glance both BasicVSR

and RD-BasicVSR seem to have similar results rightfully as the quantitative metrics for both

are pretty close to one another. On closer inspection(Figure 5.11) it is clear that there is

Figure 5.11: Headlight comparison

better contrast on the upsampled frame from RD-BasicVSR.

RD-BasicVSR also shows improvement over BasicVSR in terms of curves and edges. Figure

5.12 is a body cam image from a street in Thamel. Both models have significantly improved

the quality of output frames, however RD-BasicVSR’s output seems much less grainer than
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Figure 5.12: Body Cam

BasicVSR’s. On closer inspection of the tapestry, it can be seen on Figure 5.13 that the

Figure 5.13: Contrasting curves

contrast at curves are much better pronounced in our model. The model is capable of

retaining vivid details even on videos that it has not directly been trained on.

Figure 5.14: Tiger Painting from Reds Dataset

Similarly on videos with high contrast within itself RD-BasicVSR clearly provides a better

perceived quality. The contours on the tiger painting(Figure 5.14) seen in one of the videos

of REDS dataset illustrates it clearly.
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6. Epilogue

6.1 Conclusion

Video quality upsampling and super resolution falls at the relatively less explored spectrum

of computer vision. The research work focuses on the impact of less explored spatio-temporal

domain of video superresolution and the techniques used to process such information. Using

optical flow for recording the temporal information among frames, along with modern tech-

niques such as pixel shuffle, aggregation, feature alignment. The analysis and aggregation

of these tools using novel deep learning based architectures, led to the development of our

model, RD-BasicVSR, which performs remarkably well on the CCTV data. The developed

model not only shows close to state-of-the-art results but also promises an effective tool to

improve quality of low-scale CCTV footages.

6.2 Limitations

Some limitations and challenges that were evident during our architecture and model devel-

opment and application have been enumerated below:

1. Inference time: Despite the effort to develop a ‘light-weight’ model, our model still

has high inference time (run time). This is especially important considering the fact

that our model is supposed to upsample CCTV footages, which require near perfect

runtime with minimal delay. However, for tasks other than CCTV upsampling, the

inference time does not pose a great threat to the model.

2. Training duration: Sufficient training time is essential for success of any deep learning

based project. Due to lack of abundant training resources, our model could not be

trained to its full potential, especially considering the training time of the used baseline

model, BasicVSR. A greater training period could lead to better model performance.

3. Lack of CCTV focused resources: VSR models discussed in this research are designed

for general upsampling uses. This brings forward problems such as lack of well-curated

dataset, proper baseline models designed for quick run-time purposes etc. Lack of

literature in CCTV focused research is clear due to these reasons.
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4. Difficulty in detecting error: The evaluation metrics for computer vision based image

and video projects involve noise and similarity based metrics. These metrics are asso-

ciated with clarity of generated outputs. For sensitive applications and those requiring

information extraction from image frames and videos while using our model in produc-

tion, it is difficult to observe the performance of model.

6.3 Future Works

Video super-resolution is an active research area, and there are several directions for future

research and optimization for our project. Possible future works may include the following

areas.

1. Real-time super-resolution: We could investigate methods for achieving real-time super-

resolution, which could be useful for applications such as video surveillance or live

streaming. This would require research for less complex network architecture to de-

velop a light-weight model with lesser inference time.

2. Fine-tuning the existing model: The existing model could be fine-tuned by training it

on a larger dataset or incorporating more training data to improve its performance.

3. Exploring different loss functions: Different types of loss functions such as perceptual

loss, adversarial loss, or content loss may be investigated to enhance the quality of the

output images.

4. Tailor video super-resolution models: The project could be used as a baseline to

build tailored video super-resolution models that can generate high-resolution video

sequences from low-resolution inputs from different fields.

5. Evaluating the performance of the model on different datasets: The performance of

the model on different datasets, especially those that have different characteristics and

features, could be evaluated to test its generalization ability.
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