
1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Cloud computing is a paradigm shift following the shift from mainframe to client–server in

the early 1980s. Details are abstracted from the users, who no longer have need for expertise

in, or control over, the technology infrastructure "in the cloud" that supports them. Cloud

computing describes a new supplement, consumption, and delivery model for IT services

based on the Internet, and it typically involves over-the-Internet provision of dynamically

scalable and often virtualized resources. It is a byproduct and consequence of the ease-of-

access to remote computing sites provided by the Internet. It is both a platform and type of

application. A cloud computing platform dynamically provisions, configures, reconfigures,

and de-provisions servers as needed [2]. Servers in the cloud can be physical machines or

virtual machines. Advanced clouds typically include other computing resources such as

storage area networks (SANs), network equipment, firewall and other security devices. These

cloud applications use large data centers and powerful servers that host Web applications and

Web services. Anyone with a suitable Internet connection and a standard browser can access

a cloud application. It is Internet-based computing, whereby shared resources, software, and

information are provided to computers and other devices on demand, like the electricity grid.

This frequently takes the form of web-based tools or applications that users can access and

use through a web browser as if it was a program installed locally on their own computer.

Clouds often appear as single points of access for all consumers' computing needs [3].

Commercial offerings are generally expected to meet quality of service (QoS) requirements

of customers, and typically include SLAs (Service Level Agreement).

1.2 Cloud computing characteristics

Cloud computing has five fundamental characteristics as follows:

Client

Application

Infrastructure

Server

Figure 1.1: A simple generalization of cloud computing system

2

 On-demand service: Cloud customers can demand computing capabilities such as

network storage.

 Broad network access: The cloud capabilities are available over the network and are

accessed by customers using platforms (e.g.: laptop, Smartphone).

 Resource pooling: Cloud provider’s computing resources are pooled to support

multiple users or multitenancy model.

 Rapid elasticity: The capabilities can be rapidly and elastically demanded. The

capabilities are appeared to be infinitely available to the customers and can be

purchased at any time.

 Measured service: Cloud system automatically controls and optimizes the resources

usage by leveraging metering capability to the specific type of service. (e.g.

Bandwidth, storage). Resource usage is controlled, monitored and reported providing

transparency for both cloud provider and customer.

1.3 Cloud computing services

Cloud computing services or cloud services are typically categorized into three types namely

Software as a Service (SaaS), Platforms as a Service (PaaS) and Infrastructure as a Service

(IaaS). These three categories offer different services to cloud customers. Usually, cloud

customers can demand on the type of services they require.

1.3.1 Software as a Service (SaaS)

In SaaS, customers are renting complete applications instead of purchasing and installing the

applications or software on their computers. SaaS provider hosts the applications and makes

the applications available over the network. SaaS applications are multi-tenant applications,

which mean that the applications are shared to multiple customers. However the applications

are logically unique for each customer. It is the responsibilities of the provider to secure

customers information in SaaS. Several examples of SaaS applications are online word

processing tools and web content delivery services. Companies that offer SaaS services

include Google and Salesforce.com

1.3.2 Platforms as a Service (PaaS)

In PaaS service, cloud provider offers a platform for development environment to the

customers to run their applications. The development platform is Application Programming

Interface (API) and is configurable remotely. The platform service includes configuration

3

management, deployment platform and development tools. Therefore, customers can run

their applications without having specialized administration skills. Further, the customers can

build and deploy their web applications without having to install any tools on their

computers. Similar to SaaS, PaaS provider is responsible for securing the leased services.

PaaS security spans between two software layers:

 Security of PaaS platform itself. For instance: runtime engine that is integrated in

PaaS service.

 Security of client applications which are running on PaaS platform. Therefore, the

PaaS provider is responsible for securing the platform and the customer's applications.

Companies that offer PaaS service include Microsoft Azure and Google App Engine.

1.3.3 Infrastructure as a Service (IaaS)

IaaS service offers virtual machines as well as other abstracted hardware and operating

system over the network. By renting IaaS service, the customers can use the latest

infrastructure technology and they do not have to concern with updating the technology .

Contrast to SaaS and PaaS, customers of IaaS are mainly responsible for securing the leased

infrastructure. Companies that offer this service include GoGrid, Flexiscale, and Amazon.

1.4 Cloud Deployment Models

Similar to type of service, cloud may be hosted and deployed in different fashions depending

on the use case. Cloud deployment models are as follows:

 Private cloud: In private cloud model, the cloud infrastructure is deployed merely for

single organization.

 Community cloud: In community cloud model, the cloud infrastructure is shared by

several organizations and supports a specific community that has shared concerns.

 Public cloud: In public cloud model, the cloud infrastructure is made available to

public or a large industry group. The cloud is owned by an organization that sells

service.

 Hybrid cloud: In hybrid model, the cloud infrastructure is a composition of two or

more clouds (private, community, or public).

4

Figure 1.2: Cloud computing overview model (NIST) [4]

1.5 Motivation

Cloud computing is a new technology which is gaining momentum rapidly but there are

many security concerns about this technology. Data security, privacy and insider attack are

some of the burning issues related to the cloud computing. Maintaining trust of cloud

customers to their cloud service is the main hurdle in the rapid expansion of cloud computing.

To make cloud computing more secure, SLA with additional security constraints can play a

vital role. Using SLA we can make a better user profile of a cloud customer, which will be

helpful in detecting an anomaly in the user behavior.

1.6 Objectives

The main Objectives of this work are:

 To create a classification algorithm based on the SLA agreement between users and CSP,

which will assign the class to cloud user’s logging session.

 To detect the masquerader based on the sum of weight of the k temporal activities that

is calculated dynamically.

 To find an relation of threshold weight with respect to k.

5

 To analyze and compare the performance Backpropagation algorithm with Support

Vector Machine.

1.7 Organization of Thesis

The rest of this thesis is organized as: chapter 2 gives a brief discussion of basic concept related

to this work, chapter 3 is a survey of the major existing masquerade detection systems, chapter 4

details the selection of basic input parameters, the implementation of the Backpropagation

Algorithm and Support vector Machine, chapter 5 presents the training and testing results, and

chapter 6 concludes the thesis, summarizing its achievements and further recommendations.

6

CHAPTER 2

BACKGROUND AND PROBLEM DEFINITION

2.1 Service Level Agreement

SLA is a written agreement about service levels offered by providers to customers. In the

context of this study, SLA is an agreement between cloud providers and cloud customers.

Main advantage of SLA is to gain common understanding of various issues including service

levels and responsibilities of provider and customer. The stated issues and service levels in

SLA depend on negotiation between provider and customer.

According to Chaves et al. SLA defines the “what” and not the “how”. It means in regards to

information security, SLA states what type of service levels customer should receive.

However it does not state how the service levels are achieved. SLA also provides information

about responsibilities of both cloud provider and customer towards unexpected events that

happen to the service. It is the serious issue to consider as it records a common understanding

about services, priorities, responsibilities, guarantees, and warranties between the cloud

provider and the costumers. According to SLA information zone [5], a regular SLA usually

includes:

Service delivered: It describes the services, how they are delivered and the possible or

unexpected disturbance within the time frame or system. This information should be very

detailed and accurate so we will get the information about what exactly is going to be

delivered.

Performance: Performance of the system is measured by monitoring and measuring the

services, which was offered whether it is as per the contract or not.

Problem management: It explained how the unplanned or unexpected incidents can be

occurred and how to solve and prevent them from future occurrence of such events.

Customer duties: It explains relationship the customer and provider has and also the

responsibilities that the customer has to follow and bear in the service delivery process.

Warrant & remedies: It covers topics such as service quality, third party claims and

exclusions.

7

Security: It is the most critical feature of any SLA where it is defined of which security

approaches must be followed and respected.

Disaster recovery: It is usually included in the security section and sometimes also in the

problem management area.

Termination: Termination at end of initial term after the contract period expires or if either

the customer or provider violates the contract or not satisfied with the performance.

As more and more consumers delegate their tasks to cloud providers, Service Level

Agreements (SLA) between consumers and providers emerge as a key aspect. Due to the

dynamic nature of the cloud, continuous monitoring on Quality of Service (QoS) attributes is

necessary to enforce SLAs [6]. Also numerous other factors such as trust (on the cloud

provider) come into consideration, particularly for enterprise customers that may outsource

its critical data. This complex nature of the cloud landscape demands SLAs that can ensure

QoS and maintain trust of consumers towards their cloud service. In this work a SLA is

proposed that contains some additional constraints that will be helpful in detecting

masquerader. Such as:

 Allocated User Devices

 Normal Cloud Service Usage Time

 Dummy Weight of events\activities

 Number of events in Temporal Sequence

 Threshold sum of temporal sequence

2.2 Security Concern

Like traditional computing environments, cloud computing brings risks and security concerns

to the business that need to be considered appropriately. Such risks and security concerns

include challenges in handling privileged user access, ensuring legal and regulatory

compliance, ensuring data security, maintaining data recovery, difficulty in investigating

illegal activities, and lack of assurance of long-term viability of the cloud provider. Due to

these challenges cloud customers therefore need to institute mechanisms to measure and

improve security of their information assets operating in the cloud.

8

2.3 Masquerader

In computer security, a masquerader is an intruder trying to impersonate a legitimate user. A

masquerade attack occurs when an illegitimate user tries to impersonate a legitimate user;

therefore, the masquerade user gets the privileges from the legitimate user account. The task

of detecting masquerade users is not easy since the masquerade user has yield the name and

password of a valid user (probably an administrator). However, detecting illegitimate users

could be done if information about the behaviour of the impersonate user is taken as a

characteristic pattern which is valid only for this user. Early and effective intrusion detection

is a critical factor in securing a computer system.

2.4 MAC Address

MAC, Media Access Control, address is a globally unique identifier assigned to network

devices, and therefore it is often referred to as hardware or physical address. MAC addresses

are 6-byte (48-bits) in length, and are written in MM:MM:MM:SS:SS:SS format [7]. The first

3-bytes are ID number of the manufacturer, which is assigned by an Internet standards body.

The second 3-bytes are serial number assigned by the manufacturer.

In this work we are proposing a SLA that includes the specification of devices through which

a cloud user accesses his/her cloud service account. MAC address of these devices is used to

identify whether a user is logged in with the specified device or not.

2.5 User Behaviour Profiling

Masquerader detection is the keeping track of anomaly in the regular user behaviour. A user

profile is a record of user-specific data that define the user's activities. Access control and

authentication are not sufficient to prevent potential intrusions from masqueraders which

already got the authorization to access system resources by obtaining an authorized user

identity illegally. User behaviour profiling can be used for the purpose of classification,

future behaviour prediction and masquerader detection. In this work we are creating a user

profile of a cloud computing service’s customer based upon the proposed SLA. The user

profile will be based upon user’s device, login time and the user activity during the logging

session.

9

2.6 Problem Definition

A user logs into cloud service account from a device that may or may not have been

registered in the SLA agreement between that cloud user and the CSP (cloud service

provider) .The user’s logging time, MAC address is recorded along with temporal sequence

activities in a log file.

Let, S = (a1, a2, a3, a4, a5, a6, a7, a8………………………., an) be the sequence of activities of a user

during the user session. This user session consists of many temporal sessions of length k as

shown in figure 2.1. If there are n activities in a session then there will be (n-k + 1) temporal

sessions. Cloud service provider has assigned a dummy weight on each of the

activities/events that is agreed on the SLA agreement. Such as:

 Deleting Contacts = 8

 Changing Passwords = 9

 Checking Mails = 5

 Transferring Data =10

 a1, a2, a3, a4, a5, a6, a7, a8 a9 an

 w1 w2 w3 w4 w5

Figure 2.1: User activity graph

The SLA also includes the threshold weight i.e. maximum tolerable weight of a temporal

sequence of length k, where threshold weight and k can vary. Temporal weights of temporal

sequences are computed in succession one after another and compared against the threshold

weight defined in SLA agreement. Based on the weight calculated in succession, user’s

logging time and MAC address of the user’s logging device; the session is classified as

normal or suspicious.

10

CHAPTER 3

LITERATURE REVIEW

3.1 Literature Review

Cloud Computing is a new paradigm. Many works have been done in this field for

intrusion and Masquerader detection. Hisham A.K and Fabrizio Baiardi in [8]

Created a Cloud Intrusion Detection Dataset (CIDD) including both knowledge and

behaviour based audit data using log analyzer and correlator system. Xijun Cheng

and Juanjuan Chen in [9] modeled user interests in cloud for masquerade detection

based on the how a user interacts with a computer system. This work is an attempt

to detect masquerader on the cloud based on the SLA agreement which is probably

first in this field. There has been a lot of research works that dealt the Masquerader

Detection in computer and computer network and various methods are proposed.

3.1.1 Information-Theoretic-based Approaches

Schonlau et al. first proposed a rather simple compression-based approach in [10], called the

Compression method. It is based on the premise that data from the same user compresses

more readily than mixed data from different users. The score of a testing block is defined as

the number of additional bytes needed to compress it when appended to the training data. The

score of a testing block is defined as the number of additional bytes needed to compress it

when appended to the training data. The UNIX command compress was applied, which is

based on the popular Lempel-Ziv algorithm [11]. In 2007 Evans et al. proposed a grammar-

inference algorithm called MDL compress [12] which uses Minimum Description Length

(MDL) principles from the theory of Kolmogorov Complexity and Algorithmic Information

Theory to model legitimate user activity and use the resulting grammar to detect

masqueraders. This algorithm is reported to produce results very similar to those of Schonlau

et al.’s Compression approach [6], though no quantitative results are available to our

knowledge.

3.1.2 Time based Inductive machine

TIM (Time –based Inductive machine was originally developed as a general purpose tool with

potential applications in many domains. TIM discovers temporal pattern [13] from

observations of a temporal process, where the patterns represents highly repetitive activities

11

and can be used for prediction with high accuracy.

3.1.3 Text Mining-based Approaches

Latendresse proposed in 2005 a text-mining approach [14] based on the Sequitur algorithm.

The Sequitur algorithm extracts hierarchical structures from a string by constructing a context-

free grammar [15]. For each user, a Sequitur grammar is generated to extract the repetitive

sequences of commands and their associated frequencies, and each testing block is compared

recursively with the legitimate user’s profile. This method achieved high detection with low

false alarm rates.

3.1.4 HMM-based Approaches

A Hidden Markov Model (HMM) is a statistical model where the modeled system is assumed

to be a Markov process with unobserved state. An HMM is defined in as a doubly stochastic

process with an underlying stochastic process[16] that is not observable (it is hidden), but can

only be observed through another set of stochastic processes that produce the sequence of

observed symbols. A Hidden Markov Model is used to construct user profiles, but the

approach is independent of the profile construction method. Each testing block gets a score

from every agent and, by means of a voting mechanism and a threshold value, the legitimacy

of that block is decided.

3.1.5 Naive Bayesian based Approaches

The Naive Bayesian classifier is one of the most popular classifiers in text classification. They

are simple, probabilistic classifiers known for their inherent robustness to noise and their fast

learning curve. It is generally used with the “bag of words” model, which profiles documents

based on word frequencies, ignoring the sequence information [17]. The Naive Bayesian

approach with online profile updating, using the bag of words model, performed remarkably

well and achieved one of the best detection results.

3.1.6 SVM-based Approaches

Support Vector Machines (SVMs) are a set of machine learning algorithms used for

classification and regression. SVM classifies data by constructing a separating hyperplane in

the n-dimensional feature space of training inputs, which maximizes the margin between them

[18]. Wang and Stolfo’s work in [19]introduced the application of one-class training for

masquerader detection.

12

3.1.7 BackPropagation Based Approach

Ryan used a back propagation neural network NNID (Neural Network Intrusion Detector) to

identify users simply by what commands and how often they use, called the ‘print’ of a user

[20]. The system administrator runs NNID at the end of each day to see if the user’s sessions

match their normal pattern. If not, an investigation can be launched. The NNID model is

implemented in a UNIX environment and consists of keeping logs of the commands

executed, forming command histograms for each user, and learning the user’s profiles from

these histograms

3.2 Classification

Given the example data {(xi,yi), i=1….n},where the xi is input vector and the yi is its

associated label or class. Then the classification task is to learn the discriminate function

y=f(x),

which correctly classify the example data and optimized so that it will make minimal error on

the classification of unseen data.

If the label ‘y’ is not discrete as above, then this task is called regression. Based on these

examples (xi, yi), one is particularly interested to predict the answer for other cases before

they are explicitly observed. Hence, learning is not only a question of remembering but also

of generalization to unseen cases.

3.3 Multilayer perceptrons

Multilayer perceptrons have been applied successfully to solve some difficult and diverse

problems by training them in a supervised manner with a highly popular algorithm known as

the error back-propagation algorithm. This algorithm is based on the error correction

learning rule. Basically, error back-propagation learning consists of two passes through the

different layers of the network: a forward pass and a backward pass. In the forward pass, an

activity pattern (input vector) is applied to the sensory nodes of the network, and its effect

propagates through the network layer by layer. Finally, a set of outputs is produced as the

actual response of the network. During the forward pass the synaptic weights of the networks

are all fixed. During the backward pass, on the other hand, the synaptic weights are all

adjusted in accordance with an error-correction rule. Specifically, the actual response of the

network is subtracted from a desired (target) response to produce an error signal. This error

signal is then propagated backward through the network, against the direction of synaptic

connections-hence the name "error back-propagation." The synaptic weights are adjusted to

13

make the actual response of the network move closer to the desired response in a statistical

sense. The learning process performed with the algorithm is called back-propagation

learning.

Figure 3.1: A Multilayer Perceptron with two hidden layers [21]

A multilayer perceptron has three distinctive characteristics:

i. The model of each neuron in the network includes a nonlinear activation function. The

important point to emphasize here is that the nonlinearity is smooth (i.e., differentiable

everywhere). A commonly used form of nonlinearity that satisfies this requirement is a

sigmoidal nonlinearity [21]defined by the logistic function:

 1

yj = 1 + exp(-vj) (3.1)

Here vj is the induced local field (i.e., the weighted sum of all synaptic inputs plus the bias)

of neuron j, and yj is the output of the neuron. The presence of nonlinearities is important

because otherwise the input-output relation of the network could be reduced to that of a

single-layer perception.

ii. The network contains one or more layers of hidden neurons that are not part of the input or

output of the network. These hidden neurons enable the network to learn complex tasks by

extracting progressively more meaningful features from the input patterns (vectors).

iii. The network exhibits a high degree of connectivity, determined by the synapses of the

network. A change in the connectivity of the network requires a change in the population of

synaptic connections or their weights.

14

It is through the combination of these characteristics together with the ability to learn from

experience through training that the multilayer perceptron derives it computing power.

3.3.1 BackPropagation Algorithm

A typical Back Propagation Neural Network (BPNN) start as a network of nodes arranged in

three layers--the input, hidden, and output layers. The architecture of BPNN is same as MLP

and the learning rule applied is BP algorithm. There is no theoretical limit on number of

hidden layers but there are just one or two. The input and output layers serve as nodes to

buffer input and output for the model, respectively, and the hidden layer serves to provide a

means for input relations to be represented in the output.

Before any data has been run through the network, the weights for the nodes are random,

which has the effect of making the network much like a newborn's brain--developed but

without knowledge. When the connections of the network are going forward the architecture

is called Feed Forward neural network.

Input:

 D, a data set consisting of the training tuples and their associated target value;

 l, the learning rate;

 network, a multilayer feed forward network

Output: A trained neural network

Method:

 Initialize all weights and biases in network;

 while terminating condition is not satisfied

 {

 for each training sample X in D

{

// Propagate the inputs forward:

for each input layer j

 Oj = Ij; //output of an input unit is its actual input value

 for each hidden or output layer unit j

{

Ij = ∑wijOi + Өj; //compute the net input of unit j with respect to

previous input layer, i

15

 Oj = 1

1+e
-Ij

 ;

 }

 // compute the output of each unit j

// Backpropagate the errors:

 for each unit j in the output layer

 Errj = Oj(1 - Oj)(Tj - Oj); // compute the error

 for each unit j in the hidden layers

 Errj = Oj(1 - Oj) ∑k Errkwjk; // compute the error

for each weight wij in network

{

∆wij = (l)ErrjOi; // weight increment

 wij = wij +∆wij; // weight update

}

for each bias Өj in network

{

∆Өj = (l)Errj ; // bias increment

Өj = Өj +∆Өj; // bias update

}

}}

3.4 Support Vector Machine

This is the supervised machine learning approach that can be used for both classification and

regression. In their basic form, SVM construct the hyperplane in input space that correctly

separate the example data into two classes. This hyperplane can be used to make the

prediction of class for unseen data. The hyperplane exist for the linearly separable data [1].

This can be illustrated with figure 3.2.

16

The equation for general hyperplane can be written as

 (3.2)

Where x is point vector, w is a weight vector and b is bias. The hyperplane should separate

training data{(xi,yi), i=1….n and yi (+1,-1)} in such way that . The two

plane H1 and H2 are supporting hyperplane. We can see that there exist so many hyperplans

that can separate the training data correctly but the SVM find one hyperplane that maximize

the margin between two supporting hyperplanes. It finds the w and b such that the distance

(margin) between H1 and H2 is maximum. This can be formulated as optimization problem

as

Minimize f=

 (3.3)

Subject to constraints

This can be solved by the variant of quadratic programming technique.

3.4.1 Kernel Trick

To deal with nonlinear separation, the same formulation and techniques as for the linear case

are still used. We only transform the input data into another space (usually of a much higher

dimension) so that a linear decision boundary can separate positive and negative examples in

the transformed space. The transformed space is called the feature space. The original data

space is called the input space [1] .

Figure 3.2: Support Vector Machine

17

φ
o

o

x

x

x

o

Φ(o)

Φ(x)

Φ(o)

Φ(o)

Φ(x)

Φ(x)

The basic idea is to map the data in the input space X to a feature space F via a nonlinear

mapping “”,

After the mapping, the original training data set {(x1, y1), (x2, y2), …, (xr, yr)} becomes:

 {((x1), y1), ((x2), y2), …, ((xr), yr)}

Then perform linear separation in this feature space. Geometric interpretation is shown in

figure 2.2.

The potential problem with this explicit data transformation and then applying the linear

SVM is that it may suffer from the curse of dimensionality. The number of dimensions in the

feature space can be huge with some useful transformations even with reasonable numbers of

attributes in the input space. This makes it computationally infeasible to handle. Fortunately,

explicit transformation is not needed. In SVM, this is done through the use of kernel

functions, denoted by K,

 K(x, z) = (x) (z)

For example let us take Polynomial kernel

 K(x, z) = x z
d

Let us compute the kernel with degree d = 2 in a 2-dimensional space: x = (x1, x2) and z = (z1,

z2).

This shows that the kernel x z
2
 is a dot product in a transformed feature space.

)(

:

xx

FX

Figure 3.3: Feature Mapping [1]

Input Space Feature Space

18

,)()(

)2()2(

2

)(

2222

2222

22

1

22

11

22

1

22

11

2

1

2

1

2

11

2

zx

zx

zz,z,zxx,x,x

zxzxzxzx

zxzx

3.4.2 Optimization

Many situations arise in machine learning where we would like to optimize the value of some

function. It turns out that in the general case, finding the global optimum of a function can be

a very difficult task. However, for a special class of optimization problems, known as convex

optimization problems, we can efficiently find the global solution in many cases. Here,

“efficiently” has a both practical and theoretical connotation: it means that we can solve

many real-world problems in a reasonable amount of time, and it means that theoretically we

can solve problems in time that depends only polynomially on the problem size.

A convex optimization problem is an optimization problem of the form

minimize f(x)

subject to x C

where f is a convex function, C is a convex set, and x is the optimization variable. A linearly

constrained optimization problem with a quadratic objective function is called a quadratic

program (QP). The general quadratic program can be written as

Minimize f(x) = cx +1/2 x
T
Q x

Subject to Ax ≤ b and x ≥0

where c is an n-dimensional row vector describing the coefficients of the linear terms in the

objective function, and Q is an (n ×n) symmetric matrix describing the coefficients of the

quadratic terms. If a constant term exists it is dropped from the model. As in linear

programming, the decision variables are denoted by the n-dimensional column vector x, and

the constraints are defined by an (m×n) A matrix and an m-dimensional column vector b of

right-hand-side coefficients. We assume that a feasible solution exists and that the constraint

region is bounded.

19

CHAPTER 4

IMPLEMENTATION

4.1 Proposed SLA

In this work we are proposing a SLA with additional constraints than a traditional SLA.

These additional constraints are assignment of dummy weight for each activity/event in the

cloud service, length of the temporal sequence k, threshold weight of the temporal activities,

device likely to be used to access cloud service and time frame within which a customer is

likely use his cloud service account.

4.1.1 Assignment of Dummy Weight

There are so many activities that a user can do in a cloud service as shown in figure 5.1. In

this work we are working with only 16 activities and these activities are categorized into two

categories, normal and critical. Each activity in each category is associated with a dummy

weight. We have assigned weight 1 to 8 to the activities in the normal category and 9 to 16 to

the activities in the critical category.

Figure 4.1: A glimpse of Salesforce.com (Saas)

4.1.2 Length of Temporal Sequence (k)

Selecting the length of the temporal sequence is crucial in classifying the user session and to

create a user profile. A user session may have more than one temporal sequence. As per our

20

best knowledge, we are first to apply temporal sequence length k in a masquerade detection

approach. We have chosen k = 5; as the minimum length of the temporal sequence and we

increased the length of temporal sequence to 6 and 7.

4.1.3 Selection of Threshold weight of Temporal Sequence

Suppose (a1, a2, a3 ….an) is a user session with n activities in the session. There are (n-k+1)

temporal sequences in a n activity session. Choosing the right threshold weight for each

temporal sequence is crucial for classifying a user session.

Let (a1, a2, a3 ….ak) is a temporal sequence and total weight of temporal sequence be Wtm

We have chosen threshold weight, Wth as the product of k and weight of first activity

belonging to the critical category. This threshold weight is less than or equal to the sum of all

the combinations involving k critical category activities. Comparison between Wtm and Wth

along with other constraints determines whether a session is normal or suspicious.

Wth = k x C1st (4.2)

Where, k is temporal sequence and C1st is the weight of first activity of the critical category.

4.1.4 Device and Time Frame

In this SLA, cloud costumers specify at least two devices, from which they are most likely to

log into their cloud service account. MAC address of these devices is recorded in the SLA

agreement. We use 1 to simulate a user accessing from the device specified in SLA and 0 for

those who are not. Similarly cloud costumers together with CSP agree upon on a time frame,

within which frame he/she is most likely to use the cloud service. We use 1 to simulate a user

accessing cloud service within the time frame specified in SLA and 0 for those who are not.

4.2 Creation of Training and Testing Data

We have used MSNBC data set to create user profile in this work. MSNBC dataset contains

989818 user sessions, ranging from single activity to 345 activities per session. The dataset is

filtered by removing very short and very long sessions. Then sessions are created of uniform

length. The resultant dataset is then divided to make user profile of 50 users having 1000

session per user. Sample of MSNBC dataset is given below.

1 1

21

2

3 2 2 4 2 2 2 3 3

5

1

6 7 7 7 6 6 8 8 8 8

6 9 4 4 4 10 3 10 5 10 4 4 4

1 1 1 11 1 1 1

12 12

1 1

8 8 8 8 8 8

6

2

4.2.1 BackPropagation propagation Training and Testing Data

Each user profile containing 1000 session is taken and MAC address (0 and 1) and time (0

and 1) is added randomly. The resulting sessions with MAC address and time factor is then

fed to the classification algorithm to label the session; 1 for normal session and 0 for

suspicious session. The data are then normalized using min-max normalization [22] to keep

values between 0 and 1. The sample of training data is shown below.

1 0 0.75 0.45 0.75 0.45 0.45 0.75 0.45 0.75 0.45 0.75 0.45 0.75 0.8 0.8 0.8 0.75 0.75 0

1 1 0.15 0.2 0.15 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.15 0.15 0

0 1 0.3 0.3 0.6 0.6 0.6 0.6 0.2 0.2 0.2 0.2 0.6 0.7 0.7 0.6 0.45 0.45 0.45 0

0 0 0.5 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0

1 0 0.75 0.75 0.75 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0

1 1 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 1

0 1 0.65 0.15 0.15 0.15 0.2 0.15 0.15 0.35 0.35 0.35 0.35 0.35 0.35 0.15 0.15 0.4 0.4 1

4.2.2 SVM Training and Testing Data

Each user profile containing 1000 session is taken and MAC address (0 and 1) and time (0

and 1) is added randomly. The resulting sessions with MAC address and time factor is then

fed to the classification algorithm to label the session, 1 for normal and -1 for suspicious

session. A feature vector is constructed using the resulting session where there are altogether

18 features. Feature 1 to 16 represents the activities whose value is the number of occurrence

of particular activity in a session. Whereas feature 17 and 18 has binary values representing

the true or false condition of MAC address and time frame. The training data sample is

shown below.

-1 13:9 14:6 3:1 17:1 18:0

-1 2:4 7:5 13:6 1:1 17:1 18:1

1 2:3 4:5 7:4 8:4 17:0 18:1

-1 7:1 13:12 14:3 17:0 18:0

-1 1:2 5:2 6:7 15:4 17:1 18:0

1 1:7 2:4 4:1 6:1 11:1 16:1 17:1 18:1

22

4.3 Classification Algorithm based on SLA Agreement

Input:

 k, no of temporal activities

 wth, threshold weight

n, no of events\activities done by the user done user during the user session.

 add, MAC Address of the user’s login device

sadd , MAC address of allocated device of particular user in SLA

 ltime ,users logging time

 stime, time frame of user in SLA

Output: classification of the cloud login session into two classes

Method:

 //compute the temporal weights

 For(j=0;j<=n-k+1;j++)

 {

 w=0;

 For(i=0;i<=k-1;i++)

 {

 w = w + aw[j+i]; //events with their respective weight

 }

 // compare time, address and weight to classify session

 if(add = = sadd && ltime = = within(stime) && wtm<= wth)

 classify as normal session

else if(add = = sadd && ltime = = within(stime) && wtm >= wth)

 classify as suspicious session

 else if(add != sadd && ltime = = within(stime) && wtm <= wth)

 classify as normal session

 else if(add != sadd && ltime = = within(stime) && wtm >= wth)

 classify as suspicious session

else if(add = = sadd && ltime != within(stime) && wtm >= wth)

 classify as suspicious session

 else if(add = = sadd && ltime != within(stime) && wtm <= wth)

23

 classify as normal session

 else if(add != sadd && ltime != within(stime) && wtm <= wth)

 classify as suspicious session

 else if(add != sadd && ltime != within(stime) && wtm >= wth)

 classify as suspicious session

}

4.3 System Architecture for Masquerader Detection in Cloud Based on

SLA

4.4 ANN Learning: Back Propagation Algorithm

The back propagation algorithm cycles through two distinct passes, a forward pass followed

by a backward pass through the layers of the network. The algorithm alternates between these

passes several times as it scans the training data.

4.4.1 Forward Pass: Computation of outputs of all the neurons in the network

The algorithm starts with the first hidden layer using as input values the independent

variables of a case from the training data set. The neuron outputs are computed for all

SLA with agreed Parameters

Training data constructed from

previous cloud user session

Training the network

With Backpropagation algorithm

Neural Network

Classified

user

session

User session

as testing

data

Figure 4.2: System Architecture for Masquerader Detection Based on SLA

24

neurons in the first hidden layer by performing the relevant sum and activation function

evaluations. These outputs are the inputs for neurons in the second hidden layer. Again the

relevant sum and activation function calculations are performed to compute the outputs of

second layer neurons.

4.4.2 Backward pass: Propagation of error and adjustment of weights

This phase begins with the computation of error at each neuron in the output layer. A popular

error function is the squared difference between Ok the output of node k and Yk the target

value for that node. The target value is just 1 for the output node corresponding to normal

session and 0 for the suspicious session. The new value of the weight wjk of the connection

from node j to node k is given by:

wnewjk= woldjk+(n)Errj. (4.3)

Here n is an important tuning parameter that is chosen by trial and error by repeated runs on

the training data. Typical values for n are in the range 0.1 to 0.9 [23]. The backward

propagation of weight adjustments along these lines continues until we reach the input layer.

At this time we have a new set of weights on which we can make a new forward pass when

presented with a training data observation

4.5 Considerations for choosing Network Structure

There are many ways that feed forward neural networks can be constructed. It depends upon

the number of neurons in the input, hidden and output layers.

4.5.1 The Input Layer:

The input layer to the neural network is the channel through which the external environment

presents a pattern to the neural network. Once a pattern is presented to the input layer of the

neural network the output layer will produce another pattern. The input layer represents the

condition for which we are training the neural network for. Here we have used a input layer

consisting of 18 neurons.

4.5.2 The Output Layer:

The output layer of the neural network actually presents a pattern to the external

environment. Whatever patter is presented by the output layer can be directly traced back to

the input layer. If the neural network is to be used to classify items into groups, then it is

25

often preferable to have one output neurons for each group that the item is to be assigned

into. If the neural network is to perform noise reduction on a signal then it is likely that the

number of input neurons will match the number of output neurons [23]. Here we have one

output layer whose value is 0 or 1; where 1 signifies the normal session whereas 0 signifies

suspicious session.

4.5.3 The Number of Hidden Layers:

Neural networks with two hidden layers can represent functions with any kind of shape [23].

There is currently no theoretical reason to use neural networks with any more than two

hidden layers. Further for many practical problems there's no reason to use any more than one

hidden layer [23]. To calculate the weight changes in the hidden layer the error in the output

layer is back-propagated to these layers according to the connecting weights. This process is

repeated for each sample in the training set.

4.6 Parameters to be considered to build BP algorithm

Initial weight range(r): It is the range usually between [-r, r], weights are initialized between

these range. These weights are used in calculating bias.

Number of Nodes in Hidden Layer: Selecting the number of hidden layers and the number

of nodes is largely a matter of trial and error [23]. Through hit and trial method, we have used

2 hidden layers in this work, where first hidden layer consist of 6 neurons and second hidden

layer consists of 5 neurons

Number of Epochs: An epoch is one sweep through all the records in the training set.

Increasing this number improves the accuracy of the model, but at the cost of time, and

decreasing this number decreases the accuracy, but takes less time [23] .

Step size (Learning rate) for gradient descent: This is the multiplying factor for the error

correction during back propagation; it is roughly equivalent to the learning rate for the neural

network. A low value produces slow but steady learning; a high value produces rapid but

erratic learning. Values for the step size typically range from 0.1 to 0.9 [23].

Error tolerance: The error in a particular iteration is back propagated only if it is greater

than the error tolerance. Typically error tolerance is a small value in the range 0 to 1 [23].

26

Hidden layer sigmoid: The output of every hidden node passes through a sigmoid function.

Standard sigmoid function is logistic; the range is between 0 and 1 [23].

Output layer sigmoid: Standard sigmoid function is logistic; the range is between 0 and 1.

Critical error: The desired error (MSE) for stopping network training. If the actual error is

equal to or less than this error, the training will be terminated.

4.7 PHP

In this work we have used PHP to implement classification algorithm and BackPropagation

algorithm. PHP is an open source server-side scripting language used in Web development to

produce dynamic Web pages. It is one of the first developed server-side scripting languages

to be embedded into an HTML source document rather than calling an external file to process

data. The code is interpreted by a Web server with a PHP processor module which generates

the resulting Web page. It has also evolved to include a command-line interface capability

and can be used in standalone graphical applications.

4.7 SVM Light Tool

In this work SVM Light tool is used to implement SVM. SVM Light is a C program by

Thorsten Joachim’s that implements a support vector machine. SVM Light is used for the

problem of pattern recognition, for the problem of classification, for the problem of

regression and for the problem of ranking the function. It includes two efficient estimation

methods for both error rate and precision/recall. One is svm_learn for training and other is

svm_classification.

4.8 SVM Algorithm for Training

INPUT: A user profile file containing 1000 session

OUTPUT: Learn a model (SVM model)

1. Read a user session

2. Construct support vector for a session.

3. Do step 1 and step 2 for all session.

4. Use SVM light (SVMlearn.exe) to learn the model.

5. Stop.

27

4.9 SVM Algorithm for Testing

1. Read a user session

2. Construct vector for a session.

3. Use SVM light (SVM classify.exe) to classify the session.

4. Stop.

28

CHAPTER 5

TESTING AND ANALYSIS

5.1 Backpropagation Algorithm Training and Testing

We prepared testing data containing 100 sessions using same procedures as used in preparing

training data. Altogether 50 test data were used; one for each user. Test data contained

sessions of various length as shown in the figure 5.1.

Figure 5.1: Sample of test data for BP Algorithm

Figure 5.2: Prediction made by BPNN on testing data

29

5.2 SVM Training and Testing

We prepared testing data containing 100 sessions using same procedures as used in preparing

training data. Altogether 50 test data were used; one for each user. Test data contained

sessions of various length as shown in the figure 5.2.

Figure 5.3: Sample of testing data for SVM

Figure 5.4: SVM learning with Training data

Figure 5.5: Classifying test data with SVM

30

5.3 Evaluation Metrics

False Positive Rate: - False positive rate measures the proportion of legitimate session that

gets misclassified as suspicious.

Detection Rate: - Detection Rate measures the proportion of all sessions that were correctly

classified.

5.4 Experimental Results

User BackPropagation Algorithm SVM

Detection rate

(%)

False Positive

Rate (%)

Detection

Positive Rate

(%)

False Alarm

Rate (%)

User1 80 0 89 8

User2 83 0 92 1

User3 87 1 89 2

User4 90 0 89 3

User5 87 2 87 1

User6 90 7 87 2

User7 90 6 88 2

User8 92 6 89 2

User9 83 5 81 4

User10 82 0 88 5

User11 85 5 92 1

User12 83 0 90 2

User13 86 3 82 2

User14 84 8 91 3

User15 84 0 91 4

User16 89 0 88 2

User17 83 0 89 3

User18 84 0 85 4

User19 84 0 87 0

User20 84 4 82 5

User21 89 0 85 4

User22 82 0 96 4

User23 88 0 93 1

User24 90 2 87 4

User25 86 6 90 2

User26 88 5 92 1

User27 90 6 84 1

User28 91 2 85 2

31

User29 85 0 93 2

User30 87 1 84 3

User31 85 6 82 3

User32 90 2 87 2

User33 81 0 85 5

User34 86 1 83 3

User35 84 3 91 1

User36 81 0 82 3

User37 85 5 91 3

User38 88 4 82 2

User39 88 0 91 1

User40 87 0 96 3

User41 84 0 85 2

User42 83 3 86 6

User43 87 6 91 4

User44 88 2 86 5

User45 86 0 87 2

User46 82 0 80 6

User47 88 0 88 3

User48 86 0 92 4

User49 91 0 88 1

User50 86 0 92 1

Average 86.04 2.02 87.8 2.8

Table 5.1: Detection rate and False alarm rate of each user (k=5)

We increased the value of k to 6 and 7and observed the detection rate and false alarm rate,

which is presented below in Table 5.2.

k BackPropagation SVM

Detection Rate

(%)

False Positive

Rate (%)

Detection Rate

(%)

False Positive

Rate (%)

5 86.04 2.02 87.8 2.8

6 87.34 0.9 88.96 2.83

7 89.42 2.28 90.06 2.94

Table 5.2: Detection rate and False alarm rate of BP and SVM

32

Figure 5.6: Column chart showing performance of SVM and BP Algorithm

0

10

20

30

40

50

60

70

80

90

100

5 6 7

BackPropagation
Detection Rate (%)

BackPropagation False
Alarm Rate (%)

SVM Detection Rate (%)

SVM False Alarm Rate (%)

33

CHAPTER 6

CONCLUSION AND RECOMMENDATION

 6.1 Conclusion

With Cloud Computing becoming a popular term on the Information Technology (IT)

market, security and accountability has become important issues to highlight. In our research

we focused on security risks with Cloud Computing and the associated services. The main

concern of this work was to assess the risk of cloud computing and to implement a new

methodology in detecting masqueraders involving SLA agreement between cloud computing

users and CSPs. This work also proposed a new SLA by mutual consent of CSP and cloud

costumers, which will be helpful in detecting masquerades, insider attack. We also compared the

efficiency of BackPropagation Algorithm with SVM; we found out that SVM has a better

detection rate with a higher false alarm rate compared to the BackPropagation Algorithm.

6.2 Future Work

Masquerade detection systems are not cent percent accurate. The classification accuracy of

Backpropagation and SVM in this research work can be further improved with better estimation

of threshold weight and length of temporal sequence. This research can be extended further with

more number of activities in the real world implementation. Furthermore the detection rate of

SVM can be increased by constructing feature vector that represents sequence based information

more precisely as in string Kernel.

34

References

[1] J. S. T. N. Christianini, "An Introduction to Support Vector Machines and Other

Kernel-based Learning Methods," Cambridge University press, 2002.

[2] R. Kaur, "Cloud computing," vol. 2, 2011.

[3] A. G. Christos A. Yfoulis, "Honoring SLAs on cloud computing services: a control

perspective," 2009.

[4] "The NIST definition of Cloud," Special publication by U.S Department of

Commerce, 2011.

[5] SLA information zone. Available: http://www.sla-zone.co.uk/

[6] A. R. Pankesh Patel, Amit Sheth, "Service Level Agreement in Cloud Computing,"

2010.

[7] MAC Address. Available: http://en.wikipedia.org/wiki/MAC_address

[8] F. B. Hisham A.Kholidy, "CIDD: A Cloud Intrusion Detection Dataset For Cloud

Computing and Masquerede Attacks," IEEE:NInth International Conference Of

Information Technology-New Generations, 2012.

[9] X. C. J. Chen, "Modeling User Interests Based on Cloud Model for Masquerade

Detection," IEEE, 2009.

[10] M. Schonalu, Dumouchel, W.,Karr, "Computer Intrusion:Detectiong masqueraders,"

pp. 58-74, 2001.

[11] T. A. Welch, "A Technique for high performance data compression. IEEE Computer

17(6)," pp. 8-19, 1984.

[12] S. E. Evans, E. Markham, S. Impson, J. Laczo, "Mdlcompress for intrusion detection:

Signature inference and masquerade attack.," Military Communications Conference,

2007.

[13] K. C. Henry S.Teng, Stephen C-Y Lu, "Adaptive Real-Time Anamoly Detection

Using Inductively Genereated sequential Patterns " 1990.

[14] M. Latendresse, "Masquerade Detection via Customized Grammars," 2005.

[15] I. H. W. Craig G. Nevill-Manning, "Identifying Hierarchical Structure in Sequences:A

linear-time algorithm," 1997.

[16] S. B. Bockler, Bateman, "An introduction to hidden markov models.Current protocols

in bioinformatics," 2007.

[17] K. N. Andrew McCallum, "A Comparison of Event Models for Naive Bayes Text

Classication," 1998.

[18] C. J. C. Burges, "A tutorial on support vector machines for pattern recognition.," pp.

121-167, 1998.

[19] K. W. S. J. Stolfo, "One-Class Training for Masquerade Detection," 2003.

[20] M.-J. L. Jake Ryan, Risto Miikkulainen, "Intrusion Detection with Neural Networks,"

1997.

[21] S. Haykin, NEURAL NETWORKS A Comprehensive Foundation:Second Edition, pp

201-222.

[22] D. A. S. T.Jayalakshmi, "Statistical Normalization and Back Propagation for

Classification," 2011.

[23] Y. P. K. Amit Ganatra, Gaurang Panchal, Chintan Gajjar, "Initial Classification

Through Back Propagation In a Neural NetworkFollowing Optimization Through GA

to evaluate fitness of an algorithm," 2011.

http://www.sla-zone.co.uk/
http://en.wikipedia.org/wiki/MAC_address

35

APPENDIX A

 Activities/Events and their respective weight

1. Normal Activities

a. Checking Notifications 1

b. Creating Documents 2

c. Editing Dashboard 3

d. Updating Products 4

e. Updating Groups 5

f. Creating Leads 6

g. Using Terminal 7

h. Writing Reports 8

2. Critical Activities

a. Checking Email 9

b. Deleting Contacts 10

c. Editing profiles 11

d. Editing Files 12

e. Transferring Files 13

f. Updating Contracts 14

g. Database Update 15

h. Checking Accounts 16

36

APPENDIX B

Implementation of Classification Algorithm in PHP

<?php

$infile = "./traindata/backpro/macntime/k9/td$c.txt";

$myfile = "./traindata/backpro/classified/k9/tr$c.txt";

$handle=fopen($infile,"r");

$fhandle=fopen($myfile,"w");

while(!feof($handle))

{

$line=fgets($handle);

$delet=trim($line);

$arr=(explode(' ',$delet));

$num=count($arr);

print("Number of array elements is:$num");

print ("</br>");

$var=weightcal($arr);

print "</br>";

fwrite($fhandle,$delet.$var);

fwrite($fhandle,"\n");

}

}

function weightcal($arr)

{

$th=45;

$k=5;

$j=0;

$num=count($arr);

37

$wt=array();

do

{

 $w=0;

 $l=0;

 $m=0;

 do

 {

 $w=$w+$arr[$j+$l];

 $l++;

 }while($l<=$k-1);

 array_push($wt,$w);

 $j++;

}while($j<($num-$k+1));

$high=max($wt);

//for($a=0;$a<14;$a++)

//{

 if($high>=$th && $arr[0]==1 && $arr[1]==1)

 return " 0";

 else if($high<$th && $arr[0]==1 && $arr[1]==1)

 return " 1";

 else if($high>=$th && $arr[0]==0 && $arr[1]==1)

 return " 0";

 else if($high<$th && $arr[0]==0 && $arr[1]==1)

 return " 1";

 else if($high>=$th && $arr[0]==1 && $arr[1]==0)

 return " 0";

38

 else if($high<$th && $arr[0]==1 && $arr[1]==0)

 return " 1";

 else if($high>=$th && $arr[0]==0 && $arr[1]==0)

 return " 0";

 else if($high<$th && $arr[0]==0 && $arr[1]==0)

 return " 0";

 else

 return " 0";

}

?>

Implementation of BackPropagation Algorithm

<?php

error_reporting(E_STRICT);

define("_RAND_MAX",32767);

class BackPropagation

{

/Output of each neuron

public $output=null;

//delta error value for each neuron

public $delta=null;

//Array of weights for each neuron

public $weight=null;

//Num of layers in the net, including input layer

public $numLayers=null;

//Array num elments containing size for each layer

public $layersSize=null;

//Learning rate

39

public $beta=null;

// Momentum

public $alpha=null;

// Storage for weight-change made in previous epoch

public $prevDwt=null;

// Data

public $data=null;

// Test Data

public $testData=null;

// N lines of Data

public $NumPattern=null;

// N columns in Data

public $NumInput=null;

public function __construct($numLayers,$layersSize,$beta,$alpha)

{

 $this->alpha=$alpha;

 $this->beta=$beta;

 // Set no of layers and their sizes

 $this->numLayers=$numLayers;

 $this->layersSize=$layersSize;

 // Seed and assign random weights

 for($i=1;$i<$this->numLayers;$i++)

 {

 for($j=0;$j<$this->layersSize[$i];$j++)

 {

 for($k=0;$k<$this->layersSize[$i-1]+1;$k++)

40

 {

 $this->weight[$i][$j][$k]=$this->rando();

 }

 // bias in the last neuron

 $this->weight[$i][$j][$this->layersSize[$i-1]]=-1;

 }

 }

 // initialize previous weights to 0 for first iteration

 for($i=1;$i<$this->numLayers;$i++)

 {

 for($j=0;$j<$this->layersSize[$i];$j++)

 {

 for($k=0;$k<$this->layersSize[$i-1]+1;$k++)

 {

 $this->prevDwt[$i][$j][$k]=(double)0.0;

 }

 }

 }

}

public function rando()

{

 return (double)(rand())/(_RAND_MAX/2) - 1;

}

// sigmoid function

public function sigmoid($inputSource)

{

 return (double)(1.0 / (1.0 + exp(-$inputSource)));

41

}

// mean square error

public function mse($target)

{ $mse=0;

 for($i=0;$i<$this->layersSize[$this->numLayers-1];$i++)

 {

 $mse+=($target-$this->output[$this->numLayers-1][$i])*($target-$this

 ->output[$this->numLayers-1][$i]);

 }

 return $mse/2;

}

// returns i'th outputput of the net

public function Out($i)

{

 return $this->output[$this->numLayers-1][$i];

}

// This function takes the input to the net and finds the output of each neuron

public function ffwd($inputSource)

{

 $sum=0.0;

 // assign content to input layer

 for($i=0;$i<$this->layersSize[0];$i++)

 {

 $this->output[0][$i]=$inputSource[$i];

 }

 // assign output (activation) value to each neuron using sigmoid function

 for($i=1;$i<$this->numLayers;$i++)

42

 {

 for($j=0;$j<$this->layersSize[$i];$j++)

 {

 $sum=0.0;

 for($k=0;$k<$this->layersSize[$i-1];$k++)

 {

 $sum+=$this->output[$i-1][$k]*$this->weight[$i][$j][$k];

 }

 // Apply bias

 $sum+=$this->weight[$i][$j][$this->layersSize[$i-1]];

 // Apply sigmoid function

 $this->output[$i][$j]=$this->sigmoid($sum);

 }

 }

}

// Backpropagate errors from outputput layer back till the first hidden layer

public function bpgt($inputSource,$target)

{

 //Update the output values for each neuron

 $this->ffwd($inputSource);

 /// FIND DELTA FOR OUPUT LAYER (Last Layer)

 for($i=0;$i<$this->layersSize[$this->numLayers-1];$i++)

 {

 $this->delta[$this->numLayers-1][$i]=$this->output[$this->numLayers-1][$i]*(1-

$this ->output[$this->numLayers-1][$i])*($target-$this->output[$this->numLayers-1][$i]);

43

 }

 //FIND DELTA FOR HIDDEN LAYERS

 for($i=$this->numLayers-2;$i>0;$i--)

 {

 for($j=0;$j<$this->layersSize[$i];$j++)

 {

 $sum=0.0;

 for($k=0;$k<$this->layersSize[$i+1];$k++)

 {

 $sum+=$this->delta[$i+1][$k]*$this->weight[$i+1][$k][$j];

 }

 $this->delta[$i][$j]=$this->output[$i][$j]*(1-$this-

>output[$i][$j])*$sum;

 }

 }

 //MOMENTUM (Alpha)

 for($i=1;$i<$this->numLayers;$i++)

 {

 for($j=0;$j<$this->layersSize[$i];$j++)

 {

 for($k=0;$k<$this->layersSize[$i-1];$k++)

 {

 $this->weight[$i][$j][$k]+=$this->alpha*$this

 ->prevDwt[$i][$j][$k];

 }

 $this->weight[$i][$j][$this->layersSize[$i-1]]+=$this->alpha*$this

 ->prevDwt[$i][$j][$this->layersSize[$i-1]];

 }

44

 }

 //ADJUST WEIGHTS (Using Steepest Descent)

 for($i=1;$i<$this->numLayers;$i++)

 {

 for($j=0;$j<$this->layersSize[$i];$j++)

 {

 for($k=0;$k<$this->layersSize[$i-1];$k++)

 {

 $this->prevDwt[$i][$j][$k]=$this->beta*$this-

>delta[$i][$j]*$this ->output[$i-1][$k];

 $this->weight[$i][$j][$k]+=$this->prevDwt[$i][$j][$k];

 }

 /* --- Apply the corrections */

 $this->prevDwt[$i][$j][$this->layersSize[$i-1]]=$this->beta*$this

 ->delta[$i][$j];

 $this->weight[$i][$j][$this->layersSize[$i-1]]+=$this

 ->prevDwt[$i][$j][$this->layersSize[$i-1]];

 }

 }

}

public function Run($data,$testData)

{

 /* --- Threshhold - thresh (value of target mse, training stops once it is achieved) */

 $Thresh = 0.0001;

 $numEpoch = 200000;

 $MSE=0.0;

 $NumPattern=count($data); // Lines

 $NumInput=count($data[0]); // Columns

45

 $logfile="./result/k5/log21.txt";

 $lhandle=fopen($logfile,"w");

 /*Start training: looping through epochs and exit when MSE error < Threshold */

 echo "Network Training Started....";

 echo "</br>";

 for($e=0;$e<$numEpoch;$e++)

 {

 /* -- Backpropagate */

 $this->bpgt($data[$e%$NumPattern],$data[$e%$NumPattern][$NumInput-

1]);

 $MSE=$this->mse($data[$e%$NumPattern][$NumInput-1]);

 if($e==0)

 {

 echo "\nFirst epoch Mean Square Error: $MSE";

 echo "</br>";

 }

 if($MSE < $Thresh)

 {

 echo "Threshold value achieved in ".$e." iterations.";

 echo "</br>";

 echo "MSE: ".$MSE;

 echo "</br>";

 break;

 echo "</br>";

 }

 }

 echo "Last epoch Mean Square Error: $MSE";

46

 echo "</br>";

 echo "</br>";

 echo "Testing Data..Prediction";

 echo "Testing Data..Prediction";

 echo "</br>";

 $test=array();

 for ($i = 0 ; $i < 100; $i++)

 {

 $this->ffwd($testData[$i]);

 $ii=count($testData[$i]);

 echo "</br>";

 for($j=0;$j<$ii;$j++)

 {

 echo $testData[$i][$j];

 echo " ";

 }

 echo "=>";

 $lg=(double)$this->Out(0);

 echo $lg;

 if($lg>0.5)

 {

 fwrite($lhandle,1);

 array_push($test,1);

 fwrite($lhandle,"\n");

 }

 else

 {

47

 fwrite($lhandle,0);

 array_push($test,0);

 fwrite($lhandle,"\n");

 }

 }

 $count=0;

 $clfile="./testdata/backpro/classified/k5/tr1.txt";

 $chandle=fopen($clfile,"r");

 $carray=array();

 while(!feof($chandle))

 {

 $cline=fgets($chandle);

 $ss=trim($cline);

 $carr=explode(" ",$ss);

 array_push($carray,$carr[12]);

 }

 for($c=0;$c<100;$c++)

 {

 if($test[$c]==$carray[$c])

 {

 $count++;

 }

 }

 echo "</br>";

 $wt="Total Correct Prediction is: $count";

 echo "</br>";

 fwrite($lhandle,$wt);

48

 echo "$wt";

 echo "</br>";

 echo "Training and Testing Concluded";

}

}

//traindata

$trainfile="./traindata/backpro/final/k5/merge1.txt";

$tandle=fopen($trainfile,"r");

$data=array();

while(!feof($tandle))

{

 $tline=fgets($tandle);

 $arr1=explode(" ",$tline);

 array_push($data,$arr1);

}

//testdata

$testfile="./testdata/backpro/test/final1.txt";

$handle=fopen($testfile,"r");

$testData=array();

while(!feof($handle))

{

 $line=fgets($handle);

 $arr=explode(" ",$line);

 array_push($testData,$arr);

}

$layersSize=array(18,6,5,1);

$numLayers = count($layersSize);

49

// Learning rate – beta and momentum beta

$beta = 0.3; $alpha = 0.1;

// Creating the net

bp=new BackPropagation($numLayers,$layersSize,$beta,$alpha);

$bp->Run($data,$testData);

?>

