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Abstract 

Classification has been called the most influential development in Data Mining and Machine 

Learning in the past decade. The idea of classification is to find the class of the unknown 

objects based on their attributes. 

In this thesis, the performance of decision tree based classification methods is analysed with 

feature selection methods; Chi-square and Relief. The feature selection process chooses 

optimal subset of features according to objective function. These feature selection method 

helps to remove unnecessary attributes from the high dimensional dataset, thus improves the 

efficiency of the classification algorithms. The performance of feature section methods; Chi-

square and Relief were compared in Tree based classification methods; C4.5, CART, LMT 

and Random Tree. The study shows that the Chi-square feature selection method is more 

suitable while using with LMT followed by C4.5, Random Tree and CART respectively. In 

case Relief based feature selection method LMT gives the best result followed by CART, 

C4.5 and Random Tree respectively. 

Keywords: Feature selection, Chi-square, Relief, C4.5, CART, LMT, Random Tree. 
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Chapter 1 Introduction 

1.1 Introduction 

Data mining is defined as the process of discovering patterns in data. One of the most used task 

in data mining is classification. Classification is the most powerful technique used for data 

analysis. Classification is supervised learning paradigm in which object are assigned into a 

predefined group or class based on a number of observed attributes related to that object. There 

are many industrial problems identified as classification problems such as Stock market 

prediction, Weather forecasting, Bankruptcy prediction, Medical diagnosis, Speech 

recognition, Character recognitions [1]. There are no. of classification technique which can be 

categorize as follows: 

 

 

 

  

 

 

 

Figure 1.1: Classification techniques 

The dataset used for classification might have large dimension with noisy data. When the data 

analysis task such as classification is directly applied into the large dataset having high 

dimension and noisy data the performance of classification method degrades. In order to 

increase performance, the high dimensions of the dataset are first reduced into lower dimension 

using feature selection method then apply classification algorithms [2]. 

Feature selection has been an active and fruitful field of research area in pattern recognition, 

machine learning, statistics and data mining communities [3]. The main objective of feature 

selection is to choose a subset of input variables by eliminating features, which are irrelevant 

or of no predictive information. Feature selection has proven in both theory and practice to be 

effective in enhancing learning efficiency, increasing predictive accuracy and reducing 

complexity of learned results [4, 5]. Feature selection in supervised learning has a main goal 

of finding a feature subset that produces higher classification accuracy. Even though several 

models exist for feature selection process only few will be suitable for an environment of the 

application. Thus it is necessary to study the suitability for attribute selection methods.  
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1.2 Thesis Organisation 

Introduction part of this dissertation work focuses on Classification techniques along with 

feature selection. 

The rest of the material in this study is organized into subsequent five chapters. 

Chapter 2 provides background study required for dissertation. In this chapter problem of using 

classification techniques without using feature selection is given, problem statement is 

formulated and how this study response those issues is mentioned. 

Chapter 3 contains previous literature allied to this work in detail under literature review. In 

this chapter detailed description about classification method and feature selection techniques 

are discussed. 

Chapter 4 provides an implementation overview of the work using WEKA and Eclipse tool.  

Chapter 5 includes the performance measure of HFEE method with different other ensemble 

methods. The result of the study is shown in tabular form as well as in graphs. 

Finally, the concluding remarks and further recommendations are outlined in chapter 6. 
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Chapter 2 Background study and Problem Formulation 

2.1 Classification 

Classification is a data mining function that assigns items in a collection to target categories or 

classes. The goal of classification is to accurately predict the target class for each case in the 

data. For example, a classification model could be used to identify loan applicants as low, 

medium, or high credit risks. 

A classification task begins with a data set in which the class assignments are known. For 

example, a classification model that predicts credit risk could be developed based on observed 

data for many loan applicants over a period of time. In addition to the historical credit rating, 

the data might track employment history, home ownership or rental, years of residence, number 

and type of investments, and so on. Credit rating would be the target, the other attributes would 

be the predictors, and the data for each customer would constitute a case. 

Formally, A typical supervised classification problem has a database of the form: D = (x1, y1), 

(x2, y2), . . . , (xn, yn). Here x values are typically vectors of the form: x = <x1, . . . , xn>whose 

components can be discrete or real valued. These components are the attributes (or features) of 

the database. The objective is to infer the unknown function (or relation) y = f (x), where the y 

value is drawn from a discrete set of classes C = {C1, . . . , Ck} that characterize the given 

data.(taken from Computational Intelligence and Feature selection.) 

2.2 Dimension Reduction 

 

Data mining algorithms search for meaningful patterns in raw data sets. The Data Mining 

process requires high computational cost when dealing with large data sets. Reducing 

dimensionality (the number of attributed or the number of records) can effectively cut this cost. 

These techniques reduce the higher dimensional dataset into the lower dimensional dataset. 

The low-dimensional representation is referred to as the embedding of the dataset. 

Furthermore, an effective dimension reduction method also removes noisy features and inter-

features correlations [6]. 

Thus dimension reduction is the pre-processing step which reduces the dimension of the dataset 

so that the data mining algorithms performs efficiently. 

It can be seen that there are four major reasons for performing dimension reduction: 

1. Decreasing the learning (model) cost; 
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2. Increasing the learning (model) performance; 

3. Reducing irrelevant dimensions; 

4. Reducing redundant dimensions. 

There are two techniques for reducing the dimension of the datasets: 

1. Feature selection 

2. Feature extraction 

2.2.1 Feature Selection 

Feature selection is the process which chooses the subset of features from the total number of 

available features that are relevant. Feature selection is studied intensively in the theoretical 

field such as machine learning for its vast applications in gene expression microarray analysis, 

image analysis and text processing [7]. Feature selection is of crucial importance in above 

areas, since it helps improve the prediction performance of machine learning models by 

eliminating noisy variables, provide simpler models that facilitate better interpretation. 

Generally, the approaches of feature selection can be divided into three types: filters, wrappers 

and embedded methods [8]. 

 

2.2.1.1 Filters 

Filters estimate a relevance index for each feature to measure how relevant a feature is to the 

target. Then filters rank features by their relevance indices and perform search according to the 

ranks or based on some statistical criterion e.g. significance level. The most distinguishing 

characteristic of filters is that the relevance index is calculated based solely on a single feature 

without considering the values of other features. Such implementation implies that filters 

assume orthogonally between features which usually is not true in practice. Therefore, filters 

omit any conditional dependence (or independence) that might exist, which is known to be one 

of the weaknesses of filters, since they might miss optimal subset of features. 

There are various heuristics to design relevance indices for filters, including univariate 

prediction error rate (i.e. evaluate the relevance of a feature as how accurate the prediction is 

using only itself), correlation-based (e.g. Pearson coefficient, signal to noise ratio), distances 

between distributions (K-L divergence, Jeffreys-Matusita distance), information theory 

(mutual information, Minimum Description Length (MDL)), decision trees (C45, CART), 

Relief (a class of filters incorporating sample relations into feature selection). 

2.2.1.2 Wrappers 
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Instead of ranking every single feature, wrappers rank feature subsets by the prediction 

performance of a classifier on the given subset, which were first proposed by Kohavi and John 

(1997). Unlike filters, wrappers can be used to search through all possible subsets of features 

and explore the mutual information between features. After choosing a classifier (preferably 

consistent), wrappers evaluate the prediction performance either by cross-validation or 

theoretical performance bounds. Other than the choices of classifiers, wrappers differ in the 

underlying search strategies. Exhaustively searching combinatorial subsets is NP-hard and is 

prone to over fitting. Therefore, greedy search strategies are generally preferred, such as 

sequential forward selection or backward elimination. 

2.2.1.3 Embedded  

Embedded methods select features based on criterions that are generated during the learning 

process of a specific classifier. In contrast to wrappers, they do not separate the learning from 

the feature selection part, i.e. the selected features are sensitive to the structures of the 

underlying classifiers. For this reason, in most cases, the feature selected by one embedded 

methods might not be suitable for others. 

2.2.2 Feature Extraction 

Feature reduction refers to the mapping of the original high-dimensional data onto a lower 

dimensional space. In mathematical terms, the problem can be stated as follows: given the p-

dimensional random variable x = (x1,..............., xp)
T find a lower dimensional representation of it, 

s = (s1,........, sk)
T with k <= p, that captures the content in the original data, according to some 

criterion. 

Taxonomy of dimensionality reduction algorithm is divided into convex and non-convex 

technique. Convex techniques optimize an objective function that does not contain any local 

optima, whereas non-convex techniques optimize objective functions that do contain local 

optima [8]. 

a. Convex 

 PCA 

 Isomap 

 Kernel PCA 

 Diffusion maps 

b. Non-convex 

 Sammon mapping 

 Autoencoder 
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2.3 Problem Formulation 

2.3.1 Problem Statement 

Decision tree induction is the learning of decision trees from class-labelled training tuples. A 

decision tree is a flowchart-like tree structure, where each internal node denotes a test on an 

attribute, each branch represents an outcome of the test, and each leaf node holds a class label 

[9]. The structure of Decision tree mainly depends upon the selection of attributes during the 

construction of the branches of tree. When feature selection method applied to the dataset 

before decision tree based classification algorithms gives different decision tree structure. 

Hence, the classification result may vary. Also different decision tree based algorithms gives 

different decision tree and different feature selection methods gives different subsets of 

features. Thus the problem is to find which feature selection method performs well on which 

decision tree based classification method. 

2.3.2 Objectives 

The main objectives of this thesis are 

 To analyse the performance of feature selection methods in Decision tree based 

classification methods. 

 To determine the best combination of feature selection methods with decision tree 

based classification method. 
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Chapter 3 Literature Review & Methodology 

3.1 Literature Review 

3.1.1 Decision Tree Induction 

A decision tree is a classifier expressed as a recursive partition of the instance space [10]. The 

decision tree consists of nodes that form a rooted tree, meaning it is a directed tree with a node 

called “root” that has no incoming edges. All other nodes have exactly one incoming edge. A 

node with outgoing edges is called an internal or test node. All other nodes are called leaves 

(also known as terminal or decision nodes). In a decision tree, each internal node splits the 

instance space into two or more subspaces according to a certain discrete function of the input 

attributes values. In the simplest and most frequent case, each test considers a single attribute, 

such that the instance space is partitioned according to the attribute’s value. In the case of 

numeric attributes, the condition refers to a range. 

Each leaf is assigned to one class representing the most appropriate target value. Alternatively, 

the leaf may hold a probability vector indicating the probability of the target attribute having a 

certain value. Instances are classified by navigating them from the root of the tree down to a 

leaf, according to the outcome of the tests along the path. 

 

Attribute Selection measures 

During tree construction, attribute selection measures [9] are used to select the attribute that 

best partitions the tuples into distinct classes. Attribute selection measures are also known as 

splitting rules because they determine how the tuples at a given node are to be split. The 

attribute selection measure provides a ranking for each attribute describing the given training 

tuples. The attribute having the best score for the measure is chosen as the splitting attribute 

for the given tuples. Popular measures of attribute selection are given as follows:  

 Information gain 

 Gain ratio 

 Gini index 

The notation used herein is as follows. Let D, the data partition, be a training set of class-

labelled tuples. Suppose the class label attribute has m distinct values defining m distinct 

classes, Ci (for i = 1, ........,m). Let Ci,D be the set of tuples of class Ci in D. Let |Dj| and | Ci,D| 

denote the number of tuples in D and Ci,D, respectively. 
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Information gain 

This measure is based on pioneering work by Claude Shannon on information theory, which 

studied the value or “information content” of messages. Let node N represents or hold the tuples 

of partition D. The attribute with the highest information gain is chosen as the splitting attribute 

for node N. This attribute minimizes the information needed to classify the tuples in the 

resulting partitions and reflects the least randomness or “impurity” in these partitions. Such an 

approach minimizes the expected number of tests needed to classify a given tuple and 

guarantees that a simple tree is found. 

The expected information needed to classify a tuple in D is given by 

  Info(D) =−∑ 𝑝𝑚
𝑖=1 ilog2(pi)       .....................................................................(3.1) 

Where pi is the probability that an arbitrary tuple in D belongs to class Ci and is estimated by 

|Ci,D|/|D|. 

Let us consider Attribute A can be used to split D into v partitions or subsets, {D1, D2, ...,Dv}, 

where Dj contains those tuples in D that have outcome aj of A. These partitions would 

correspond to the branches grown from node N. The amount of extra information needed to 

after the partitioning in order to arrive at an exact classification is given by 

InfoA (D) =∑
|𝐷𝑗|

|𝐷|

𝑣
𝑗=1  * Info (Dj)   .................................................................(3.2) 

Information gain is defined as the difference between the original information requirement and 

the new requirement. That is, 

Gain(A) = Info(D) - InfoA (D)   ....................................................................(3.3) 

Gain ratio 

Gain ratio is an extension of information gain, which attempts to overcome the biasness to 

select the attribute having many outcomes. It applies a kind of normalization to information 

gain using a “split information” value defined analogously with Info(D) as  

SplitInfoA(D) = - ∑
|𝐷𝑗|

|𝐷|

𝑣
𝑗=1  * log2(

|𝐷𝑗|

|𝐷|
).........................................................(3.4) 

The gain ratio is defined as 

GainRatio(A) = Gain(A) / SplitInfo(A) ........................................................(3.5) 

The attribute with the maximum gain ratio is selected as the splitting attribute. 

Gini Index 

The Gini index considers a binary split for each attribute. The Gini index measures the impurity 

of D, a data partition or set of training tuples, as 
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Gini(D) = 1- ∑ 𝑝𝑖
2𝑚

𝑖=1   ......................................................................(3.6) 

Where pi is the probability that a tuple in D belongs to class Ci and is estimated by |Ci,D|/|D|. 

The sum is computed over m classes. 

Also, let a binary split on A partitions D into D1 and D2, the gini index of D given that 

partitioning is  

GiniA(D) = 
|𝐷1|

|𝐷|
 Gini(D1)+

|𝐷2|

|𝐷|
 Gini(D2)  ..........................................(3.7) 

Then, the reduction in impurity that would be incurred by a binary split on a discrete- or 

continuous-valued attribute A is 

Gini(A) = Gini(D ) - GiniA(D)  ………………………………….(3.8) 

The attribute that maximizes the reduction in impurity is selected as the splitting attribute. 

Tree pruning 

When decision trees are built, many of the branches may reflect noise or outliers in the training 

data. Tree pruning attempts to identify and remove such branches, with the goal of improving 

classification accuracy on unseen data. There are two common approaches to tree pruning: Pre 

pruning, and Post pruning 

In the pre pruning [9] approach, a tree is “pruned” by halting its construction early (e.g., by 

deciding not to further split or partition the subset of training tuples at a given node). Upon 

halting, the node becomes a leaf. The leaf may hold the most frequent class among the subset 

tuples or the probability distribution of those tuples. 

The second and more common approach is post pruning [9], which removes sub trees from a 

“fully grown” tree. A sub tree at a given node is pruned by removing its branches and replacing 

it with a leaf. The leaf is labelled with the most frequent class among the sub tree being 

replaced. Examples of post pruning methods are: Cost complexity, pessimistic pruning, 

minimum description length principle etc. 

Cost-complexity 

This approach considers the cost complexity of a tree to be a function of the number of leaves 

in the tree and the error rate of the tree. It starts from the bottom of the tree. For each internal 

node, N, it computes the cost complexity of the sub tree at N, and the cost complexity of the 

sub tree at N if it were to be pruned (i.e., replaced by a leaf node). The two values are compared. 

If pruning the sub tree at node N would result in a smaller cost complexity, then the sub tree is 

pruned. Otherwise, it is kept. A pruning set of class-labelled tuples is used to estimate cost 

complexity. This set is independent of the training set used to build the unpruned tree and of 
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any test set used for accuracy estimation. The algorithm generates a set of progressively pruned 

trees. In general, the smallest decision tree that minimizes the cost complexity is preferred. 

Pessimistic pruning 

It is similar to the cost complexity method in that it also uses error rate estimates to make 

decisions regarding sub-tree pruning. Pessimistic pruning, however, does not require the use 

of a prune set. Instead, it uses the training set to estimate error rates. 

3.1.1.1 C4.5 

C4.5 [11] is an evolution of ID3, presented by Quinlan in 1993. It uses gain ratio as splitting 

criteria. Pessimistic pruning is performed after the growing phase. 

3.1.1.2 CART 

CART [12] stands for Classification and Regression Trees. It is characterized by the fact that 

it constructs binary trees, namely each internal node has exactly two outgoing edges. The splits 

are selected using the Gini index criteria and the obtained tree is pruned by cost–complexity 

Pruning. 

3.1.1.3 LMT 

A logistic model tree [13] basically consists of a standard decision tree structure with logistic 

regression functions at the leaves. More formally, a logistic model tree consists of a tree 

structure that is made up of a set of inner or non-terminal nodes N and a set of leaves or terminal 

nodes T. Let S denote the whole instance space, spanned by all attributes that are present in the 

data. Then the tree structure gives a disjoint subdivision of S into regions St, and every region 

is represented by a leaf in the tree: 

                                        S= ⋃ 𝑆𝑡𝑡∊𝑇 ,    St∩ 𝑆𝑡′= ø    for t ≠𝑡′ 

Unlike ordinary decision trees, the leaves t ∊T have an associated logistic regression function 

ft instead of just a class label. The regression function ft takes into account a subset Vt ∊V of all 

attributes present in the data (where we assume that nominal attributes have been binarized for 

the purpose of regression), and models the class membership probabilities as 

   Pr(G = j | X= x) = 
𝑒𝐹𝑗(𝑥)

∑ 𝑒𝐹𝑘(𝑥)
𝐽
𝑘=1

   .........................................................(3.9) 

where, 

Fj(x) = 𝛼0
𝑗
 + ∑ 𝛼𝑣

𝑗
𝑣𝜖𝑉𝑡  * v   ............................................................ (3.10) 

And J represents the no. of classes. Given estimates for the class probabilities, LMT classify 

unseen instances by  
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   j* = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗

𝑃𝑟⁡(𝐺 = 𝑗|𝑋 = 𝑥) .................................................(3.11) 

The model represented by the whole logistic model tree is then given by 

f(x) = ∑ 𝑓𝑡∊𝑇 t(x) *I(x∊ St)   .............................................................(3.12) 

where, I(x∊ St) is 1 if x∊ St and 0 otherwise. 

Fitting a logistic regression model means estimating the parameter vectors⁡𝛼𝑗. Friedman et al. 

propose the LogitBoost [14] algorithm for fitting logistic regression models by maximum 

likelihood. 

3.1.1.4 Random Tree 

Random tree construct a decision tree by randomly choosing an attribute for each node. It does 

not employ pruning method. Choosing a random attribute is done using linear congruential 

method. 

3.1.2 Feature Selection 

Feature selection is the process which chooses the subset of features from the total number of 

available features that are relevant. Feature selection is studied intensively in the theoretical 

field such as machine learning for its vast applications in gene expression microarray analysis, 

image analysis and text processing [15]. Generally, the approaches of feature selection can be 

divided into three types: filters, wrappers and embedded methods. 

L.Ladha et al. [8] published a paper “Feature selection methods and Algorithms” which 

describes different types of features selection methods. They present an empirical comparison 

of feature selection methods and its algorithms.  

3.1.2.1 Filters 

Filters estimate a relevance index for each feature to measure how relevant a feature is to the 

target. Then filters rank features by their relevance indices and perform search according to the 

ranks or based on some statistical criterion e.g. significance level. There are various heuristics 

to design relevance indices for filters, including univariate prediction error rate (i.e. evaluate 

the relevance of a feature as how accurate the prediction is using only itself), correlation-based 

(e.g. Pearson coefficient, signal to noise ratio), distances between distributions (K-L 

divergence, Jeffreys-Matusita distance), information theory (mutual information, Minimum 

Description Length (MDL)), Relief (a class of filters incorporating sample relations into feature 

selection). 
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Chi-square (χ2) method 

This method measure the lack of independence between a term and the category. Chi-Squared 

[1] is the common statistical test that measures divergence from the distribution expected if 

one assumes the feature occurrence is actually independent of the class value. In statistics, the 

χ2 test is applied to test the independence of two events. In feature selection, the two events 

are occurrence of the term and occurrence of the class. Feature selection using the χ2 statistic 

is analogous to performing a hypothesis test on the distribution of the class as it relates to the 

values of the feature in question. The null hypothesis is that there is no dependency; each value 

is as likely to have instances in any one class as any other class. The χ2 statistic quantifies the 

difference between observed and expected counts for each pair of values; it is defined as 

follows: 

Let under the null hypothesis X1 and X2 are assumed to be independent, then the expected 

frequency for each pair of values is given as 

ei,j = 

𝑛𝑖
1𝑛𝑗

2

𝑛
 .................................................................(3.13) 

where,  

𝑛𝑖
1 represents the no. of counts that have  the values i in X1 

𝑛𝑗
2represents the no.of counts that have  the values j in X2 

i represents the possible values in X1 

j represents the possible values in X2 

n represents the total no. of counts. 

The χ2 statistic quantifies the difference between observed and expected counts for each pair 

of values; it is defined as follows: 

χ2 = ∑ ∑
(𝑛𝑖𝑗−𝑒𝑖𝑗)

2

𝑒𝑖𝑗
𝑗𝑖 ........................................................... (3.14) 

The larger this chi-squared statistic, the more unlikely it is that the distribution of values and 

classes are independent; that is, they are related, and the feature in question is relevant to the 

class. 
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RELIEF 

Kira and Rendell describe an algorithm called RELIEF [16] that uses instance based learning 

to assign a relevance weight to each feature. Each feature’s weight reflects its ability to 

distinguish among the class values. Features are ranked by weight and those that exceed a user- 

specified threshold are selected to form the final subset. The algorithm works by randomly 

sampling instances from the training data. For each instance sampled the nearest instance of 

the same class (nearest hit) and opposite class (nearest miss) is found. An attribute’s weight is 

updated according to how well its values distinguish the sampled instance from its nearest hit 

and nearest miss. An attribute will receive a high weight if it differentiates between instances 

from different classes and has the same value for instances of the same class. However, this 

method only works for binary classification problem. RELIEF is further extended by Igor 

Kononenko [17] to support multi-classification problem. 

Consider training data S with size n having features {f1, f2, f3,..........., fp}. An instance X is 

denoted by p-dimensional vector {x1, x2, x3,........, xp}, where xj denotes the value of feature fj 

of instance X.   

Given training data S, sample size m, and a threshold of relevancy τ, Relief detects those 

features which are statistically relevant to the target concept. τ encodes a relevance threshold 

(0 ≤ τ≤ 1). The value of τ should be chosen such that τ ≤ 1/√𝛼𝑚 , where 𝛂 is the probability of 

rejecting the hypothesis when it is true. It assumes the scale of every feature is either nominal 

(including boolean) or numerical (integer or real). Differences of feature values between two 

instances X and Y are defined by the following function diff. 

 

When xk and yk are nominal, 

diff(xk, yk) = {
0⁡⁡⁡⁡⁡⁡if⁡xk⁡and⁡yk⁡are⁡the⁡same⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
1⁡⁡⁡⁡⁡⁡if⁡xk⁡and⁡yk⁡are⁡the⁡different⁡⁡⁡⁡⁡⁡

.................................(3.15) 

When xk and yk are numerical, 

diff(xk, yk) = ( xk,- yk ) /nuk                                                          ............................(3.16) 

where, nuk is a normalization unit to normalize the values of diff into the interval [0, l]. 

The weight of the feature is updated by the following function: 

Wi = Wi – diff (xi, near-hit)2 + diff (xi, near-miss)2          ..........................(3.17) 

 

Algorithm: 

RELIEF(S, p, m, τ) 

Input: S, training set; p, the set of conditional 
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features; m, sample size; τ, weight threshold value 

Output: R, the feature subset 

(1) R←{} 

(2) foreach Wa, Wa←0 

(3) foreach i = 1 to m 

(4)  choose an object X from Srandomly 

(5) calculate X’s nearHit (nH) and nearMiss (nM) 

(6)  foreach j = 1 to p  

(7)   Wj←Wj −d(xj, nHj)/m+d(xj, nMj)/m 

(8) foreach j = 1...|C| 

(9) if Wj ≥ τ;    R←R U { j } OR select the k top most features having high relevance 

(10) return R 

 

Gopala Krishna Murthy Nookalaet al.[18] performed comparative analysis of 14 different 

classification algorithms and their performance has been evaluated by using 3 different cancer 

data sets. The results indicate that none of the classifiers outperformed all others in terms of 

the accuracy when applied on all the 3 data sets. Most of 

the algorithms performed better as the size of the data set is increased.  

D. L. Gupta et al. [19] analyse the different tree based classification method; 48, Random Forest 

(RF), Reduce Error Pruning (REP) and Logistic Model Tree (LMT) to classify the 

“WEATHER NOMINAL” open source Data Set. It is found that RF had highest accuracy 

followed by REM and LMT and then J48 respectively. 

M. Vasantha and Subbiah Bharathy [20] published a paper which analyse the performance of 

correlation and consistency based feature selection methods with tree based classifications 

methods in Mammogram dataset. 
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3.2 Methodology 

3.2.1 Research Methodology 

Research is a careful study performed to find out new things in a systematic way. In a scientific 

method of research at first problem is formulated then output information is generated from 

collected input data and output is analyzed and finally the result is generalized. This dissertation 

work is truly scientific and flows in the same way. The main exploration of this dissertation 

focuses on determining the best tree based classification method for filter feature selection 

techniques: Chi-square method and Relief. In this dissertation first Chi-square and Relief 

methods will applied to datasets to reduce the dimension then C4.5, CART, LMT, Random tree 

are used for classification. The data needed to conduct the experiment will be taken UCI [21] 

machine learning repository. Output information gathered is analyzed in a quantitative 

approach. Finally, conclusion will be drawn using the empirical analysis of captured datasets. 

3.2.2 Evaluation metrics 

Let D = {D1,D2, . . . ,Dk } denote a partitioning of the testing points based on their true class 

labels, where 

Dj= {xi∈D |yi= Cj} 

Let ni= |Di| denote the size of true class Ci. 

Let R = {R1,R2, . . . ,Rk } denote a partitioning of the testing points based on the predicted 

labels, that is, 

Rj = {xi∈D |ŷi= Cj} 

Let mj= |Rj| denote the size of the predicted class Cj. 

R and D induce a k × k contingency table N, also called a confusion matrix, defined as follows: 

N( i ,j ) = ni j= |Ri∩ Dj| = |{xa∈ D | ŷa =Ci and ya = Cj}| 

where 1 ≤ i, j ≤ k. The count ni j denotes the number of points with predicted class ci whose 

true label is Cj. Thus, ni i (for 1 ≤ i ≤ k) denotes the number of cases where the classifier agrees 

on the true label Ci . The remaining counts ni j, with i ≠j, are cases where the classifier and true 

labels disagree. 

Following parameters were used for the validation classification algorithm: 

3.2.2.1 Precision 

The class-specific precision of the classifier M for class Ci is given as the fraction of correct 

predictions over all points predicted to be in class Ci 

acci= preci= ni i / mi                            ...........................................(3.18) 
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where mi is the number of examples predicted as Ci by classifier M. The higher the precision 

on class Ci the better the classifier. 

3.2.2.2 Recall 

The class-specific coverage or recall of M for class Ci is the fraction of correct predictions over 

all points in class Ci : 

coveragei = recalli = ni i / ni           ............................................(3.19) 

where ni is the number of points in class Ci . The higher the recall the better the classifier. 

3.2.2.3 F-measure 

The class-specific F-measure tries to balance the precision and recall values, by computing 

their harmonic mean for class ci : 

Fi =  2ni i / ni + mi            .............................................(3.20) 
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Chapter 4 Implementation 

4.1 Tools used 

All the algorithms are implemented in Java language using Eclipse IDE with the partial use of 

WEKA’s libraries. 

4.1.1 Programming language 

For the implementation of proposed algorithm Java Programming Language is used. Java is a 

general-purpose, concurrent, class-based, object-oriented computer programming language 

that is specifically designed to have as few implementation dependencies as possible. One 

characteristic of Java is portability, which means that computer programs written in the Java 

language must run similarly on any hardware/operating-system platform. This is achieved by 

compiling the Java language code to an intermediate representation called Java bytecode, 

instead of directly to platform-specific machine code. Java bytecode instructions are analogous 

to machine code, but they are intended to be interpreted by a virtual machine written 

specifically for the host hardware. End-users commonly use a Java Runtime Environment 

installed on their own machine for standalone Java applications, or in a Web browser for Java 

applets. 

Java is a robust language. It provides many safeguards to ensure reliable code. It has strict 

compile time and run time checking for data types. It is designed as a garbage-collected 

language ease the programmers virtually all memory management problems. Java also 

incorporates the concepts of exception handling which captures series errors and eliminates 

any risk of crashing the system. 

4.1.2 Eclipse IDE 

Eclipse is an integrated development environment which contains base workspace and an 

extensible plug-in system for customizing the environment. Eclipse SDK is free and open 

source software mostly written in Java. The initial software development can extend its ability 

by installing plug-ins written for Eclipse Platform, such as development toolkits for other 

programming languages, and can write and contribute their own plug-in modules. 

The Eclipse SDK includes the Eclipse Java development tools, offering an IDE with a built-in 

incremental Java compiler and a full model of the Java source files. This allows advanced 

refactoring techniques and analysis. Eclipse implements the graphical elements of the Java 

toolkit called SWT. It provides the Rich client platform for developing general purpose 

applications.  
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4.1.3 WEKA Workbench 

The WEKA workbench is a collection of state-of-the-art machine learning algorithms and data 

pre-processing tools [22]. It includes virtually all the ML algorithms. It provides extensive 

support for the whole process of experimental data mining, including preparing the input data, 

evaluating learning schemes statistically, and visualizing the input data and the result of 

learning. As well as a variety of learning algorithms, it includes a wide range of pre-processing 

tools. This diverse and comprehensive toolkit is accessed through a common interface so that 

its users can compare different methods and identify those that are most appropriate for the 

problem at hand. 

WEKA was developed at the University of Waikato in New Zealand; the name stands for 

Waikato Environment for Knowledge Analysis. The system is written in Java and distributed 

under the terms of the GNU General Public License. It runs on almost any platform and has 

been tested under Linux, Windows, and Macintosh operating systems—and even on a personal 

digital assistant. It provides a uniform interface to many different learning algorithms, along 

with methods for pre- and post-processing and for evaluating the result of learning schemes on 

any given dataset. 

4.2 Chi-square module 

for (int i = 0; i < numClasses; i++)  

{ 

for (int j = 0; j  < numValues; j++)  

{ 

additions[j][i] + = (columnSums[i] / sum) * counts[k][j][numClasses]; 

      } 

} 

for (int i = 0; i < numClasses; i++)  

{ 

for (int j = 0; j  < numValues; j++)  

{ 

additions[j][i]+= (counts[k][j][i] / sum) * counts[k][numValues][numClasses]; 

      } 

 } 

 

// Make new contingency table 
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double[][] newTable = new double[numValues][numClasses]; 

for (int i = 0; i < numValues; i++)  

{ 

for (int j = 0; j < numClasses; j++)  

{ 

 newTable[i][j] = counts[k][i][j] + additions[i][j]; 

              } 

} 

counts[k] = newTable; 

// Compute chi-squared values 

m_ChiSquareds = new double[data.numAttributes()]; 

for (int i = 0; i < data.numAttributes(); i++) { 

if (i != classIndex) { 

        m_ChiSquareds[i] = ContingencyTables. 

chiVal(ContingencyTables.reduceMatrix(counts[i]), false);  

      } 

    } 

  } 

 

4.3 Relief module 

for (int i = 0; i < totalInstances; i++) { 

if (totalInstances == m_numInstances) { 

        z = i; 

      } 

else { 

        z = r.nextInt()%m_numInstances; 

      } 

 

if (z < 0) { 

z *= -1; 

      } 

 

if (!(m_trainInstances.instance(z).isMissing(m_classIndex))) { 

        // first clear the knn and worst index stuff for the classes 
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for (int j = 0; j < m_numClasses; j++) { 

          m_index[j] = m_stored[j] = 0; 

 

for (int k = 0; k < m_Knn; k++) { 

            m_karray[j][k][0] = m_karray[j][k][1] = 0; 

          } 

        } 

findKHitMiss(z); 

updateWeightsDiscreteClass(z); 

      } 

    } 

 

    // now scale weights by 1/m_numInstances (nominal class) or 

    // calculate weights numeric class 

for (int i = 0; i < m_numAttribs; i++) {if (i != m_classIndex) { 

if (m_numericClass) { 

        m_weights[i] = m_ndcda[i]/m_ndc -  

          ((m_nda[i] - m_ndcda[i])/((double)totalInstances - m_ndc)); 

      } 

else { 

        m_weights[i] *= (1.0/(double)totalInstances); 

      } 

    } 

    } 
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Chapter 5 Data collection and Analysis 

 

5.1 Data Collection 

All the data used for this research are primary data taken from UCI [23] machine learning 

repository. Table below summarizes the benchmark dataset used for the analysis of the 

algorithm. 

S.N Name Instances Attributes Classes 

1 Breast-cancer 286 9 2 

2 Car 1728 6 4 

3 Cmc 1473 9 3 

4 Credit 690 15 2 

5 Credit-g 1000 20 2 

6 Dermatology 362 34 6 

7 Diabetes 768 8 2 

8 Glass 210 13 7 

9 Hepatitis 155 19 2 

10 House-votes-84 435 16 2 

11 Ionosphere 351 34 2 

12 Iris 150 4 3 

13 Labor 57 16 2 

14 Mammographic_masses 980 6 2 

15 Optdigits 1797 64 10 

16 Segment-challenge 1500 19 7 

17 Soybean 683 35 19 

18 Spect 267 22 2 

19 Wine 178 13 3 

20 Zoo 101 17 7 

 

Table 5.1: List of Datasets 

5.1.1 Training & Testing data 

For each dataset 30% of instances of dataset are used for training and rest of the instances are 

used for testing. 
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Sample of Training data 

1, 0, 0.99539, -0.05889, 0.85243, 0.02306, 0.83398,  0.37708, 1, 0.03760, 0.85243, -0.17755, 

0.59755, -0.44945, 0.60536,  0.38223, 0.84356, -0.38542, 0.58212, -0.32192, 0.56971, -

0.29674, 0.36946,  0.47357, 0.56811, -0.51171, 0.41078, -0.46168, 0.21266, 0.34090, 0.42267, 

-0.54487, 0.18641, -0.45300, g 

1, 0, 1, -0.18829, 0.93035, -0.36156, -0.10868, -0.93597, 1,  0.04549, 0.50874, -0.67743, 

0.34432, -0.69707, -0.51685, -0.97515, 0.05499, -0.62237, 0.33109, -1, -0.13151, -0.45300, -

0.18056,  0.35734, -0.20332, -0.26569, -0.20468, -0.18401, -0.19040,  0.11593, -0.16626, -

0.06288, -0.13738, -0.02447, b 

1,0,1,-0.03365,1,0.00485,1,-

0.12062,0.88965,0.01198,0.73082,0.05346,0.85443,0.00827,0.54591,0.00299,0.83775,-

0.13644,0.75535,-0.08540,0.70887,-0.27502,0.43385,-0.12062,0.57528,-0.40220,0.58984,-

0.22145,0.43100,-0.17365,0.60436,-0.24180,0.56045,-0.38238,g 

1,0,1,-0.45161,1,1,0.71216,-1,0,0,0,0,0,0,-1,0.14516,0.54094,-0.39330,-1,-0.54467,-

0.69975,1,0,0,1,0.90695,0.51613,1,1,-0.20099,0.25682,1,-0.32382,1,b 

Figure 5.1.1 (a): Sample data of Ionosphere dataset used for training 

 

b, 30.83, 0, u, g, w, v, 1.25, t, t, 01, f, g, 00202, 0, + 

a, 58.67, 4.46, u, g, q, h, 3.04, t, t, 06, f, g, 00043, 560, + 

a, 24.50, 0.5, u, g, q, h, 1.5, t, f, 0, f, g, 00280, 824, + 

b, 20.67, 5.29, u, g, q, v, 0.375, t, t, 01, f, g, 00160, 0, - 

b, 34.08, 6.5, u, g, aa, v, 0.125, t, f, 0, t, g, 00443, 0, - 

Figure 5.1.1 (b): Sample data of Credit dataset used for training 

 

Sample of Testing data 

1,0,1,-0.14754,1,0.04918,0.57377,-0.01639,0.65574,0.01639,0.85246,-

0.03279,0.72131,0,0.68852,-0.16393,0.19672,-0.14754,0.65558,-

0.17176,0.67213,0.03279,1,-0.29508,0.31148,-0.34426,0.52385,-0.20325,0.32787,-

0.03279,0.27869,-0.44262,0.49180,-0.06557,b 
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1,0,0.98182,0,0.88627,0.03131,0.86249,0.04572,0.80000,0,0.69091,0.04545,0.79343,0.0843

6,0.77118,0.09579,0.62727,0.25455,0.68182,0.12727,0.70674,0.12608,0.68604,0.13493,0.74

545,0.22727,0.64581,0.15088,0.67273,0.02727,0.60715,0.16465,0.58840,0.17077,g 

1,0,1,0.06843,1,0.14211,1,0.22108,1,-0.12500,1,0.39495,1,0.48981,1,0.58986,-

0.37500,1,1,0,1,0.92001,1,1,1,1,1,1,1,0.25000,1,1,1,1,g 

0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,-1,0,0,1,1,1,-1,1,-1,0,0,0,0,0,0,b 

Figure 5.1.1 (c): Sample data of Ionosphere dataset used for testing 

 

b, 31.67, 16.165, u, g, d, v, 3, t, t, 09, f, g, 00250, 730, + 

a, 23.42, 0.79, y, p, q, v, 1.5, t, t, 02, t, g, 00080, 400, + 

b, 21.50, 9.75, u, g, c, v, 0.25, t, f, 0, f, g, 00140, 0, - 

b, 49.58, 19, u, g, ff, ff, 0, t, t, 01, f, g, 00094, 0, - 

a, 27.67, 1.5, u, g, m, v, 2, t, f, 0, f, s, 00368, 0, - 

Figure 5.1.1 (d): Sample data of Credit dataset used for testing 

 

5.2 Experiment & Result 

5.2.1 Experimental setup 

The aim is to experimentally determine the effectiveness of filter based feature selection 

method; chi-square and Relief in Decision tree based classification methods. 

The experiments were performed using Intel (R) Core (TM) i5-3230M CPU @ 2.60GHz 2.60 

GHz with 4.00 GB RAM in 64-bit Windows 8 Operating System. 

The feature selection method; chi-square and relief are applied to above 20 enlisted datasets 

shown in Table 5.1 taken from the UCI Repository of Machine learning Database to reduce 

their dimension. The decision tree based classification method is then applied to these reduced 

dataset and their performance is measured in terms of accuracy, precision, recall and F-

measure. 

The result of the experiment is shown in following tables. 

 

5.2.2 Evaluation metrics Result 
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5.2.2.1 Precision 

S.N       Algorithm 

Dataset 

C4.5 Cart LMT Random 

Tree 

1 Breast-cancer 0.683 0.712 0.727 0.689 

2 Car 0.763 0.744 0.790 0.766 

3 Cmc 0.514 0.564 0.541 0.481 

4 Credit 0.840 0.826 0.840 0.803 

5 Credit-g 0.696 0.693 0.730 0.634 

6 Dermatology 0.799 0.831 0.836 0.818 

7 Diabetes 0.742 0.730 0.761 0.679 

8 Glass 0.614 0.62 0.587 0.609 

9 Hepatitis 0.313 0.716 0.849 0.828 

10 House-votes-

84 

0.959 0.957 0.959 0.942 

11 Ionosphere 0.872 0.874 0.844 0.844 

12 Iris 0.959 0.952 0.959 0.952 

13 Labor 0.820 0.85 0.9 0.9 

14 Mammographi

c_masses 

0.825 0.83 0.831 0.834 

15 Optdigits 0.832 0.759 0.932 0.759 

16 Segment-

challenge 

0.926 0.944 0.941 0.915 

17 Soybean 0.754 0.839 0.910 0.807 

18 Spect 0.724 0.701 0.662 0.715 

19 Wine 0.861 0.912 0.984 0.917 

20 Zoo 0.734 0.437 0.737 0.639 

 Average 0.757 0.773 0.815 0.775 

 

Table: 5.2.2.1(a): Precision Result in Chi-square reduced dataset 
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S.N       Algorithm 

Dataset 

C4.5 Cart LMT Random 

Tree 

1 Breast-cancer 0.699 0.686 0.695 0.633 

2 Car 0.763 0.744 0.790 0.766 

3 Cmc 0.504 0.534 0.549 0.455 

4 Credit 0.836 0.840 0.840 0.836 

5 Credit-g 0.685 0.694 0.727 0.673 

6 Dermatology 0.914 0.909 0.916 0.839 

7 Diabetes 0.742 0.743 0.776 0.645 

8 Glass 0.631 0.615 0.579 0.608 

9 Hepatitis 0.778 0.778 0.806 0.767 

10 House-votes-

84 

0.954 0.959 0.959 0.934 

11 Ionosphere 0.872 0.876 0.854 0.873 

12 Iris 0.959 0.952 0.959 0.952 

13 Labor 0.820 0.9 0.9 0.9 

14 Mammographi

c_masses 

0.832 0.83 0.829 0.795 

15 Optdigits 0.810 0.834 0.925 0.754 

16 Segment-

challenge 

0.930 0.940 0.950 0.939 

17 Soybean 0.772 0.800 0.922 0.798 

18 Spect 0.713 0.719 0.725 0.702 

19 Wine 0.861 0.915 0.984 0.891 

20 Zoo 0.762 0.685 0.737 0.720 

 Average 0.789 0.795 0.820 0.771 

 

Table: 5.2.2.1(b): Precision Result in Relief reduced dataset 
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Fig: 5.2.2.1(c) Graph showing average precision 

The above graph shows that the average precision value of LMT method is higher than all the 

other methods. When Chi-square feature selection is applied LMT method gives the average 

precision value of 0.815 which is 5.5%, 4.2%, and 4%, greater than C4.5, CART, and Random 

Tree method respectively. Similarly, when Relief feature selection method is used LMT gives 

the average precision value of 0.82 which is 3.1%, 2.2%, and 4.9 % greater than C4.5, CART, 

and Random Tree method respectively. 

5.2.2.2 Recall 

 

S.N       Algorithm 

Dataset 

C4.5 Cart LMT Random 

Tree 

1 Breast-cancer 0.712 0.726 0.741 0.716 

2 Car 0.768 0.794 0.807 0.780 

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

C4.5 Cart LMT Random Tree

A
V

ER
A

G
E 

P
R

EC
IS

IO
N

CLASSIFICATION ALGORITHM

Chisquare Relief



27 

 

3 Cmc 0.516 0.513 0.536 0.478 

4 Credit 0.826 0.826 0.826 0.803 

5 Credit-g 0.697 0.693 0.731 0.617 

6 Dermatology 0.790 0.831 0.835 0.815 

7 Diabetes 0.740 0.730 0.766 0.686 

8 Glass 0.605 0.62 0.52 0.533 

9 Hepatitis 0.739 0.716 0.835 0.807 

10 House-votes-

84 

0.958 0.957 0.959 0.941 

11 Ionosphere 0.870 0.874 0.841 0.841 

12 Iris 0.952 0.952 0.952 0.943 

13 Labor 0.825 0.85 0.9 0.9 

14 Mammographi

c_masses 

0.819 0.830 0.829 0.832 

15 Optdigits 0.826 0.759 0.93 0.756 

16 Segment-

challenge 

0.926 0.944 0.94 0.913 

17 Soybean 0.803 0.839 0.904 0.785 

18 Spect 0.717 0.701 0.647 0.706 

19 Wine 0.856 0.912 0.984 0.912 

20 Zoo 0.845 0.437 0.817 0.704 

 Average 0.789 0.774 0.815 0.773 

 

Table 5.2.2.2(a): Recall Result in Chi-square reduced dataset 

 

S.N       Algorithm 

Dataset 

C4.5 Cart LMT Random 

Tree 

1 Breast-cancer 0.701 0.701 0.716 0.652 

2 Car 0.768 0.794 0.807 0.786 

3 Cmc 0.491 0.518 0.531 0.453 

4 Credit 0.832 0.826 0.826 0.834 

5 Credit-g 0.693 0.701 0.721 0.634 
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6 Dermatology 0.902 0.902 0.906 0.823 

7 Diabetes 0.697 0.727 0.781 0.647 

8 Glass 0.627 0.593 0.593 0.58 

9 Hepatitis 0.697 0.697 0.752 0.752 

10 House-votes-

84 

0.954 0.957 0.957 0.934 

11 Ionosphere 0.870 0.874 0.854 0.873 

12 Iris 0.952 0.952 0.952 0.943 

13 Labor 0.825 0.9 0.9 0.9 

14 Mammographi

c_masses 

0.830 0.830 0.829 0.795 

15 Optdigits 0.808 0.831 0.924 0.750 

16 Segment-

challenge 

0.930 0.94 0.950 0.936 

17 Soybean 0.804 0.816 0.919 0.8 

18 Spect 0.692 0.717 0.711 0.679 

19 Wine 0.856 0.912 0.984 0.888 

20 Zoo 0.845 0.746 0.817 0.732 

 Average 0.789 0.797 0.822 0.770 

 

Table 5.2.2.2(b): Recall Result in Relief reduced dataset 
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Fig: 5.2.2.1(c) Graph showing average recall 

Above graph shows the recall value obtained by different referenced algorithms. The average 

recall value of LMT method after applying chi-square feature selection algorithm is 0.815 

which is 2.6%, 4.1%, and 4.2% greater than C4.5, CART, and Random Tree method 

respectively. When Relief feature selection method is applied to the dataset and then above 

decision tree based classification method are used for classification, LMT gives the recall value 

0.822 which is 3.3%, 2.5%, and 5.2% greater than C4.5, CART, and Random Tree respectively. 

5.2.2.3 F-measure 

 

S.N       Algorithm 
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C4.5 Cart LMT Random 

Tree 
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3 Cmc 0.514 0.517 0.538 0.481 

4 Credit 0.826 0.826 0.826 0.803 

5 Credit-g 0.697 0.703 0.730 0.634 

6 Dermatology 0.790 0.811 0.820 0.818 

7 Diabetes 0.740 0.728 0.763 0.679 

8 Glass 0.605 0.587 0.511 0.609 

9 Hepatitis 0.739 0.746 0.841 0.828 

10 House-votes-

84 

0.958 0.958 0.958 0.948 

11 Ionosphere 0.870 0.874 0.842 0.844 

12 Iris 0.952 0.952 0.952 0.952 

13 Labor 0.817 0.855 0.9 0.9 

14 Mammographi

c_masses 

0.816 0.83 0.829 0.834 

15 Optdigits 0.826 0.759 0.930 0.759 

16 Segment-

challenge 

0.925 0.944 0.940 0.915 

17 Soybean 0.767 0.828 0.905 0.807 

18 Spect 0.719 0.706 0.652 0.715 

19 Wine 0.855 0.911 0.984 0.917 

20 Zoo 0.784 0.265 0.737 0.639 

 Average 0.782 0.769 0.808 0.777 

 

Table 5.2.2.3(a): F-measure Result in Chi-square reduced dataset 

 

S.N       Algorithm 

Dataset 

C4.5 Cart LMT Random 

Tree 

1 Breast-cancer 0.700 0.691 0.697 0.640 

2 Car 0.763 0.767 0.797 0.768 

3 Cmc 0.495 0.522 0.536 0.452 

4 Credit 0.833 0.826 0.826 0.835 

5 Credit-g 0.689 0.697 0.724 0.649 
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6 Dermatology 0.901 0.900 0.903 0.826 

7 Diabetes 0.705 0.732 0.776 0.646 

8 Glass 0.625 0.561 0.570 0.582 

9 Hepatitis 0.726 0.726 0.772 0.759 

10 House-votes-

84 

0.954 0.958 0.958 0.934 

11 Ionosphere 0.871 0.874 0.854 0.873 

12 Iris 0.952 0.952 0.952 0.952 

13 Labor 0.817 0.9 0.9 0.9 

14 Mammographi

c_masses 

0.830 0.83 0.829 0.794 

15 Optdigits 0.807 0.831 0.924 0.747 

16 Segment-

challenge 

0.930 0.94 0.951 0.937 

17 Soybean 0.777 0.800 0.919 0.784 

18 Spect 0.700 0.718 0.715 0.684 

19 Wine 0.855 0.911 0.984 0.887 

20 Zoo 0.791 0.704 0.767 0.712 

 Average 0.786 0.792 0.818 0.768 

 

Table 5.2.2.3(b): F-measure Result in Relief reduced dataset 
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Figure 5.2.2.3(c): Graph showing Average F-measure 

 

Graph 5.2.2.3(c) shows that the average F-measure value of the LMT method is higher than all 

other referenced algorithms. LMT method gives the average F-measure value 0.808 which is 

2.6%, 3.9%, and 3.1% greater than the C4.5, CART, and Random Tree algorithm when Chi-

square is used as feature selection technique. When Relief is used as feature selection method, 

LMT gives 0.818 average f-measure value which is 3.2%, 2.6%, and 5% greater than C4.5, 

CART, and Random Tree respectively. 
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Chapter 6 Conclusion and Future Work 

6.1 Conclusion 

The result of the experimental study indicates that Chi-square and Relief based feature selection 

methods are more suitable when applied with the LMT classification method. Chi-square 

feature selection method gives the best result when applied with LMT classification method 

followed by C4.5, Random Tree and CART respectively. In case Relief based feature selection 

method LMT gives the best result followed by CART, C4.5 and Random Tree respectively. 

6.2 Future Work 

The result of the classification method also depends upon the nature of the datasets. Thus, 

furthermore analysis can be done on these feature selection method using nature of the datasets. 
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Appendix 

(Code for Implementation) 

 

import java.util.*; 

import java.io.*; 

import weka.classifiers.trees.J48; 

import weka.classifiers.trees.LMT; 

import weka.classifiers.trees.RandomTree; 

import weka.classifiers.trees.SimpleCart; 

import weka.core.*; 

import weka.attributeSelection.*; 

import weka.classifiers.Classifier; 

import weka.classifiers.Evaluation; 

import weka.classifiers.MultipleClassifiersCombiner; 

import weka.filters.Filter; 

import weka.filters.SimpleFilter; 

import weka.filters.unsupervised.attribute.RandomSubset; 

public class AlgoComparison { 

 public static int noofinstance; 

 public static int traininstance; 

 public static int testinstance; 

  

 public Instances gettraindata(Instances reducedataset) 

 { 

  noofinstance =reducedataset.numInstances(); 

  //System.out.println("Total instances:"+noofinstance); 

  traininstance=(noofinstance*30)/100; 

  //System.out.println("Number of trainig instance:"+traininstance); 

  testinstance=noofinstance-traininstance; 

  Instances traindata=new Instances(reducedataset,0,traininstance); 

  //System.out.println(traindata); 

  return(traindata); 

   

 } 

 public Instances gettestdata(Instances reducedataset) 

 { 

  Instances testdata=new Instances(reducedataset,traininstance,testinstance); 

  return(testdata); 

 } 

 public  Instances executeRelief(Instances randdataset) throws Exception 

 { 

  int noofattriselect=randdataset.numAttributes()*50/100; 

  ReliefFAttributeEval eval=new ReliefFAttributeEval(); 
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  AttributeSelection attri=new AttributeSelection(); 

  eval.setNumNeighbours(10); 

  eval.setSampleSize(-1); 

  eval.setSeed(1); 

  //eval.setSigma(2); 

  //eval.setWeightByDistance(false); 

  Ranker ran=new Ranker(); 

  ran.setGenerateRanking(true); 

  ran.setNumToSelect(noofattriselect); 

   

  ran.setThreshold(0.0); 

  attri.setEvaluator(eval); 

  attri.setSearch(ran); 

  attri.SelectAttributes(randdataset); 

  //System.out.println(attri.toResultsString());  

  Instances reducedataset=new 

Instances(attri.reduceDimensionality(randdataset)); 

  return reducedataset; 

   

 } 

 public Instances executeChisquare(Instances randdataset) throws Exception 

 { 

  int noofattriselect=randdataset.numAttributes()/2; 

  ChiSquaredAttributeEval eval=new ChiSquaredAttributeEval(); 

  AttributeSelection attri=new AttributeSelection(); 

  Ranker ran=new Ranker(); 

  ran.setGenerateRanking(true); 

  ran.setNumToSelect(noofattriselect); 

   

  ran.setThreshold(0.0); 

  attri.setEvaluator(eval); 

  attri.setSearch(ran); 

  attri.SelectAttributes(randdataset); 

  //System.out.println(attri.toResultsString());  

  Instances reducedataset=new 

Instances(attri.reduceDimensionality(randdataset)); 

  return reducedataset; 

   

 } 

 public J48 trainC45Classifier(Instances traindata) throws Exception 

 { 

  J48 C45=new J48(); 

  C45.setConfidenceFactor(0.25f); 

  C45.setMinNumObj(2); 
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  C45.setDebug(false); 

  C45.setNumFolds(3); 

  C45.setSeed(1); 

  C45.buildClassifier(traindata); 

  return(C45); 

 } 

 public SimpleCart trainCartClassifier (Instances traindata) throws Exception 

 { 

  SimpleCart Cart =new SimpleCart(); 

  Cart.setDebug(false); 

  Cart.setMinNumObj(2.0); 

  Cart.setNumFoldsPruning(3); 

  Cart.setSeed(1); 

  Cart.setSizePer(1.0); 

  Cart.buildClassifier(traindata); 

  return(Cart); 

 } 

 public LMT trainLMTClassifier (Instances traindata)throws Exception 

 { 

  LMT Lmt= new LMT(); 

  Lmt.setDebug(false); 

  Lmt.setNumBoostingIterations(-1); 

  Lmt.setMinNumInstances(15); 

  Lmt.setWeightTrimBeta(0.0); 

  Lmt.buildClassifier(traindata); 

  return(Lmt); 

 } 

 public RandomTree trainRandomClassifier(Instances traindata)throws Exception 

 { 

  RandomTree RT = new RandomTree(); 

  RT.setKValue(0); 

  RT.setMaxDepth(0); 

  RT.setMinNum(1.0); 

  RT.setNumFolds(0); 

  RT.setSeed(1); 

  RT.buildClassifier(traindata); 

  return (RT); 

 } 

 public int[] predictClass_C45(Instances reducedataset,J48 C45) throws Exception 

 { 

   

  Instances testdata=new Instances(gettestdata(reducedataset)); 

   

  double[] pred=new double[testinstance]; 
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  int[] prediction=new int[testinstance]; 

   

  for(int j=0;j<testdata.numInstances();j++) 

  { 

   pred[j]=C45.classifyInstance(testdata.instance(j)); 

    

   // Converting the doubel type result into integer type 

   prediction[j]=(int)pred[j]; 

    

   //System.out.println("Classified as:"+(int)pred[j]); 

   //System.out.println("Correct 

class:"+(int)testdata.instance(j).value(testdata.classIndex)); 

   //System.out.println("Classified 

as:"+testdata.classAttribute().value((int)pred[j]));      

  

  } 

  return(prediction);  

 } 

 public int[] predictClass_CART(Instances reducedataset,SimpleCart Cart) throws 

Exception 

 { 

   

  Instances testdata=new Instances(gettestdata(reducedataset)); 

   

  double[] pred=new double[testinstance]; 

  int[] prediction=new int[testinstance]; 

   

  for(int j=0;j<testdata.numInstances();j++) 

  { 

   pred[j]=Cart.classifyInstance(testdata.instance(j)); 

    

   // Converting the doubel type result into integer type 

   prediction[j]=(int)pred[j]; 

    

   //System.out.println("Classified as:"+(int)pred[j]); 

   //System.out.println("Correct 

class:"+(int)testdata.instance(j).value(testdata.classIndex)); 

   //System.out.println("Classified 

as:"+testdata.classAttribute().value((int)pred[j]));      

  

  } 

  return(prediction);  

 } 

 public int[] predictClass_LMT(Instances reducedataset,LMT Lmt) throws Exception 
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 { 

   

  Instances testdata=new Instances(gettestdata(reducedataset)); 

   

  double[] pred=new double[testinstance]; 

  int[] prediction=new int[testinstance]; 

   

  for(int j=0;j<testdata.numInstances();j++) 

  { 

   pred[j]=Lmt.classifyInstance(testdata.instance(j)); 

    

   // Converting the doubel type result into integer type 

   prediction[j]=(int)pred[j]; 

    

   //System.out.println("Classified as:"+(int)pred[j]); 

   //System.out.println("Correct 

class:"+(int)testdata.instance(j).value(testdata.classIndex)); 

   //System.out.println("Classified 

as:"+testdata.classAttribute().value((int)pred[j]));      

  

  } 

  return(prediction);  

 } 

 public int[] predictClass_RandomTree(Instances reducedataset,RandomTree RT) 

throws Exception 

 { 

   

  Instances testdata=new Instances(gettestdata(reducedataset)); 

   

  double[] pred=new double[testinstance]; 

  int[] prediction=new int[testinstance]; 

   

  for(int j=0;j<testdata.numInstances();j++) 

  { 

   pred[j]=RT.classifyInstance(testdata.instance(j)); 

    

   // Converting the doubel type result into integer type 

   prediction[j]=(int)pred[j]; 

    

   //System.out.println("Classified as:"+(int)pred[j]); 

   //System.out.println("Correct 

class:"+(int)testdata.instance(j).value(testdata.classIndex)); 
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   //System.out.println("Classified 

as:"+testdata.classAttribute().value((int)pred[j]));      

  

  } 

  return(prediction);  

 } 

  

 public void printPrediction(int[] pred,Instances reducedataset,Classifier CL) throws 

Exception 

 { 

  System.out.println("Number of testing instances:"+testinstance); 

  Instances testdata=new Instances(gettestdata(reducedataset)); 

  Evaluation eval=new Evaluation(reducedataset); 

  eval.evaluateModel(CL, testdata); 

  double [][]conmatrix=new 

double[reducedataset.numClasses()][reducedataset.numClasses()]; 

  conmatrix=eval.confusionMatrix(); 

  for(int a=0;a<reducedataset.numClasses();a++) 

  { 

   for(int b=0;b<reducedataset.numClasses();b++) 

   { 

    System.out.print((int)conmatrix[a][b]); 

    System.out.print("   "); 

   } 

   System.out.println(); 

  } 

  System.out.println(conmatrix.toString()); 

  //System.out.println(eval.toSummaryString()); 

  System.out.println("Precision:"+eval.weightedPrecision()); 

  System.out.println("Recall:"+eval.weightedRecall()); 

  System.out.println("F-measure:"+eval.weightedFMeasure()); 

  System.out.println("Accuracy:"+eval.pctCorrect()); 

  //System.out.println(eval.toClassDetailsString()); 

   

  /*for(int j=0;j<testdata.numInstances();j++) 

  { 

   System.out.print((j+1)); 

   System.out.print(" - "); 

   System.out.print(testdata.instance(j).toString(testdata.classIndex())); 

   System.out.print(" - "); 

   System.out.print(testdata.classAttribute().value((int)pred[j])); 

   System.out.print(" - "); 

   if(pred[j]==testdata.instance(j).classValue()) 

    System.out.print("Yes"); 
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   else 

    System.out.print("No"); 

   System.out.println(); 

  }*/ 

 } 

 public void Relief_C45(Instances randdataset) throws Exception 

 { 

  int[]prediction=new int[testinstance]; 

  Instances reducedataset=new Instances(executeRelief(randdataset)); 

  Instances traindata=new Instances(gettraindata(reducedataset)); 

  J48 C45 = new J48(); 

  C45=trainC45Classifier(traindata); 

  prediction=predictClass_C45(reducedataset,C45); 

  printPrediction(prediction,reducedataset,C45); 

 } 

  

 public void Relief_CART(Instances randdataset) throws Exception 

 { 

  int[]prediction=new int[testinstance]; 

  Instances reducedataset=new Instances(executeRelief(randdataset)); 

  Instances traindata=new Instances(gettraindata(reducedataset)); 

  SimpleCart Cart=new SimpleCart(); 

  Cart=trainCartClassifier(traindata); 

  prediction=predictClass_CART(reducedataset,Cart); 

  printPrediction(prediction,reducedataset,Cart); 

 } 

 public void Relief_LMT(Instances randdataset) throws Exception 

 { 

  int[]prediction=new int[testinstance]; 

  Instances reducedataset=new Instances(executeRelief(randdataset)); 

  Instances traindata=new Instances(gettraindata(reducedataset)); 

  LMT Lmt=new LMT(); 

  Lmt=trainLMTClassifier(traindata); 

  prediction=predictClass_LMT(reducedataset,Lmt); 

  printPrediction(prediction,reducedataset,Lmt); 

 } 

  

 public void Relief_RandomTree(Instances randdataset) throws Exception 

 { 

  int[]prediction=new int[testinstance]; 

  Instances reducedataset=new Instances(executeRelief(randdataset)); 

  Instances traindata=new Instances(gettraindata(reducedataset)); 

  RandomTree RT=new RandomTree(); 

  RT=trainRandomClassifier(traindata); 
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  prediction=predictClass_RandomTree(reducedataset,RT); 

  printPrediction(prediction,reducedataset,RT); 

 } 

  

 public void Chisquare_C45(Instances randdataset) throws Exception 

 { 

  int[]prediction=new int[testinstance]; 

  Instances reducedataset=new Instances(executeChisquare(randdataset)); 

  Instances traindata=new Instances(gettraindata(reducedataset)); 

  J48 C45 = new J48(); 

  C45=trainC45Classifier(traindata); 

  prediction=predictClass_C45(reducedataset,C45); 

  printPrediction(prediction,reducedataset,C45); 

 } 

 public void chisquare_CART(Instances randdataset) throws Exception 

 { 

  int[]prediction=new int[testinstance]; 

  Instances reducedataset=new Instances(executeChisquare(randdataset)); 

  Instances traindata=new Instances(gettraindata(reducedataset)); 

  SimpleCart Cart=new SimpleCart(); 

  Cart=trainCartClassifier(traindata); 

  prediction=predictClass_CART(reducedataset,Cart); 

  printPrediction(prediction,reducedataset,Cart); 

 } 

 public void chisquare_LMT(Instances randdataset) throws Exception 

 { 

  int[]prediction=new int[testinstance]; 

  Instances reducedataset=new Instances(executeChisquare(randdataset)); 

  Instances traindata=new Instances(gettraindata(reducedataset)); 

  LMT Lmt=new LMT(); 

  Lmt=trainLMTClassifier(traindata); 

  prediction=predictClass_LMT(reducedataset,Lmt); 

  printPrediction(prediction,reducedataset,Lmt); 

 } 

 public void chisquare_RandomTree(Instances randdataset) throws Exception 

 { 

  int[]prediction=new int[testinstance]; 

  Instances reducedataset=new Instances(executeChisquare(randdataset)); 

  Instances traindata=new Instances(gettraindata(reducedataset)); 

  RandomTree RT=new RandomTree(); 

  RT=trainRandomClassifier(traindata); 

  prediction=predictClass_RandomTree(reducedataset,RT); 

  printPrediction(prediction,reducedataset,RT); 

 } 
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 public static void main(String [] args) throws Exception{ 

  BufferedReader inputFile = new BufferedReader(new 

FileReader("C:/Users/Rajesh/Desktop/New folder (2)/diabetes.arff")); 

  Instances dataset=new Instances(inputFile); 

  int i=dataset.classIndex(); 

  dataset.setClassIndex(i); 

   

  //Randomizing the dataset 

  int seed=1; 

  Random rand=new Random(seed); 

  Instances randdataset=new Instances(dataset); 

  randdataset.randomize(rand); 

   

  AlgoComparison algo=new AlgoComparison(); 

  algo.Chisquare_C45(randdataset); 

  algo.chisquare_CART(randdataset); 

  algo.chisquare_LMT(randdataset); 

  algo.chisquare_RandomTree(randdataset); 

  algo.Relief_C45(randdataset); 

  algo.Relief_CART(randdataset); 

  algo.Relief_LMT(randdataset); 

  algo.Relief_RandomTree(randdataset); 

 } 

} 

 

 

Code ReliefFAttributeEval.java 
 

 

 import java.util.Enumeration; 

 import java.util.Random; 

 import java.util.Vector; 

 import weka.attributeSelection.ASEvaluation; 

 import weka.attributeSelection.AttributeEvaluator; 

  

 import weka.core.Instance; 

 import weka.core.Instances; 

 import weka.core.Option; 

 import weka.core.OptionHandler; 

  

 import weka.core.TechnicalInformationHandler; 

 import weka.core.Utils; 

publicabstractclassReliefFAttributeEvalextends ASEvaluation implements 

AttributeEvaluator, OptionHandler, TechnicalInformationHandler { 
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 /** The training instances */ 

 private Instances m_trainInstances; 

 

 /** The class index */ 

 privateintm_classIndex; 

 

 /** The number of attributes */ 

 privateintm_numAttribs; 

 

 /** The number of instances */ 

 privateintm_numInstances; 

 

 /** Numeric class */ 

 privatebooleanm_numericClass; 

 

 /** The number of classes if class is nominal */ 

 privateintm_numClasses; 

 

 /**  

    * Used to hold the probability of a different class val given nearest 

    * instances (numeric class) 

    */ 

 privatedoublem_ndc; 

 

 /**  

    * Used to hold the prob of different value of an attribute given 

    * nearest instances (numeric class case) 

    */ 

 privatedouble[] m_nda; 

 

 /** 

    * Used to hold the prob of a different class val and different att 

    * val given nearest instances (numeric class case) 

    */ 

 privatedouble[] m_ndcda; 

 

 /** Holds the weights that relief assigns to attributes */ 

 privatedouble[] m_weights; 

 

 /** Prior class probabilities (discrete class case) */ 

 privatedouble[] m_classProbs; 

 

 /**  

    * The number of instances to sample when estimating attributes 

    * default == -1, use all instances 

    */ 

 privateintm_sampleM; 

 

 /** The number of nearest hits/misses */ 
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 privateintm_Knn; 

 

 /** k nearest scores + instance indexes for n classes */ 

 privatedouble[][][] m_karray; 

 

 /** Upper bound for numeric attributes */ 

 privatedouble[] m_maxArray; 

 

 /** Lower bound for numeric attributes */ 

 privatedouble[] m_minArray; 

 

 /** Keep track of the farthest instance for each class */ 

 privatedouble[] m_worst; 

 

 /** Index in the m_karray of the farthest instance for each class */ 

 privateint[] m_index; 

 

 /** Number of nearest neighbours stored of each class */ 

 privateint[] m_stored; 

  

 /** Random number seed used for sampling instances */ 

 privateintm_seed; 

  

 privatedouble[] m_weightsByRank; 

 privateintm_sigma; 

  

 /** Weight by distance rather than equal weights */ 

 privatebooleanm_weightByDistance; 

 

 

  

 public ReliefFAttributEval () { 

 resetOptions(); 

   } 

 

 public Enumeration<Option> listOptions () { 

     Vector<Option> newVector = new Vector<Option>(4); 

 newVector 

       .addElement(new Option("\tSpecify the number of instances to\n" 

         + "\tsample when estimating attributes.\n" 

         + "\tIf not specified, then all instances\n" 

         + "\twill be used.", "M", 1 

         , "-M <num instances>")); 

 newVector. 

 addElement(new Option("\tSeed for randomly sampling instances.\n" 

        + "\t(Default = 1)", "D", 1 

        , "-D <seed>")); 

 newVector. 

 addElement(new Option("\tNumber of nearest neighbours (k) used\n" 

        + "\tto estimate attribute relevances\n" 
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        + "\t(Default = 10).", "K", 1 

        , "-K <number of neighbours>")); 

 newVector. 

 addElement(new Option("\tWeight nearest neighbours by distance\n", "W" 

        , 0, "-W")); 

 newVector. 

 addElement(new Option("\tSpecify sigma value (used in an exp\n" 

        + "\tfunction to control how quickly\n" 

        + "\tweights for more distant instances\n" 

        + "\tdecrease. Use in conjunction with -W.\n" 

        + "\tSensible value=1/5 to 1/10 of the\n" 

        + "\tnumber of nearest neighbours.\n" 

        + "\t(Default = 2)", "A", 1, "-A <num>")); 

 return  newVector.elements(); 

   } 

 

 

  

 publicvoid setOptions (String[] options) 

 throws Exception 

   { 

     String optionString; 

 resetOptions(); 

 setWeightByDistance(Utils.getFlag('W', options)); 

 optionString = Utils.getOption('M', options); 

 

 if (optionString.length() != 0) { 

 setSampleSize(Integer.parseInt(optionString)); 

     } 

 

 optionString = Utils.getOption('D', options); 

 

 if (optionString.length() != 0) { 

 setSeed(Integer.parseInt(optionString)); 

     } 

 

 optionString = Utils.getOption('K', options); 

 

 if (optionString.length() != 0) { 

 setNumNeighbours(Integer.parseInt(optionString)); 

     } 

 

 optionString = Utils.getOption('A', options); 

 

 if (optionString.length() != 0) { 

 setWeightByDistance(true); // turn on weighting by distance 

 setSigma(Integer.parseInt(optionString)); 

     } 

   } 
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 publicvoid setSigma (int s) 

 throws Exception 

   { 

 if (s <= 0) { 

 thrownew Exception("value of sigma must be > 0!"); 

     } 

 

 m_sigma = s; 

   } 

 

 publicint getSigma () { 

 returnm_sigma; 

   } 

 publicvoid setNumNeighbours (int n) { 

 m_Knn = n; 

   } 

 

 publicint getNumNeighbours () { 

 returnm_Knn; 

   } 

 

 

 publicvoid setSeed (int s) { 

 m_seed = s; 

   } 

 

 publicint getSeed () { 

 returnm_seed; 

   } 

 

 

 publicvoid setSampleSize (int s) { 

 m_sampleM = s; 

   } 

 

 

 publicint getSampleSize () { 

 returnm_sampleM; 

   } 

 

 

 publicvoid setWeightByDistance (boolean b) { 

 m_weightByDistance = b; 

   } 

 

 publicboolean getWeightByDistance () { 

 returnm_weightByDistance; 

   } 
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 public String[] getOptions () { 

 String[] options = new String[9]; 

 int current = 0; 

 

 if (getWeightByDistance()) { 

 options[current++] = "-W"; 

     } 

 

 options[current++] = "-M"; 

 options[current++] = "" + getSampleSize(); 

 options[current++] = "-D"; 

 options[current++] = "" + getSeed(); 

 options[current++] = "-K"; 

 options[current++] = "" + getNumNeighbours(); 

 options[current++] = "-A"; 

 options[current++] = "" + getSigma(); 

 

 while (current < options.length) { 

 options[current++] = ""; 

     } 

 

 return  options; 

   } 

 

 

  

 public String toString () { 

     StringBuffer text = newStringBuffer(); 

 

 if (m_trainInstances == null) { 

 text.append("ReliefF feature evaluator has not been built yet\n"); 

     } 

 else { 

 text.append("\tReliefF Ranking Filter"); 

 text.append("\n\tInstances sampled: "); 

 

 if (m_sampleM == -1) { 

 text.append("all\n"); 

       } 

 else { 

 text.append(m_sampleM + "\n"); 

       } 

 

 text.append("\tNumber of nearest neighbours (k): " + m_Knn + "\n"); 

 

 if (m_weightByDistance) { 

 text.append("\tExponentially decreasing (with distance) " 

       + "influence for\n" 

       + "\tnearest neighbours. Sigma: " 

       + m_sigma + "\n"); 
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       } 

 else { 

 text.append("\tEqual influence nearest neighbours\n"); 

       } 

     } 

 

 return  text.toString(); 

   } 

 

 

  

 publicvoid buildEvaluator (Instances data) 

 throws Exception 

   { 

 int z, totalInstances; 

     Random r = newRandom(m_seed); 

 

 if (data.checkForStringAttributes()) { 

 thrownew Exception("Can't handle string attributes!"); 

     } 

 

 m_trainInstances = data; 

 m_classIndex = m_trainInstances.classIndex(); 

 m_numAttribs = m_trainInstances.numAttributes(); 

 m_numInstances = m_trainInstances.numInstances(); 

 

 if (m_trainInstances.attribute(m_classIndex).isNumeric()) { 

 m_numericClass = true; 

     } 

 else { 

 m_numericClass = false; 

     } 

 

 if (!m_numericClass) { 

 m_numClasses = m_trainInstances.attribute(m_classIndex).numValues(); 

     } 

 else { 

 m_ndc = 0; 

 m_numClasses = 1; 

 m_nda = newdouble[m_numAttribs]; 

 m_ndcda = newdouble[m_numAttribs]; 

     } 

 

 if (m_weightByDistance) // set up the rank based weights 

       { 

  m_weightsByRank = newdouble[m_Knn]; 

 

  for (int i = 0; i <m_Knn; i++) { 

  m_weightsByRank[i] =  

  Math.exp(-((i/(double)m_sigma)*(i/(double)m_sigma))); 
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  } 

       } 

 

 // the final attribute weights 

 m_weights = newdouble[m_numAttribs]; 

 // num classes (1 for numeric class) knn neighbours,  

 // and 0 = distance, 1 = instance index 

 m_karray = newdouble[m_numClasses][m_Knn][2]; 

 

 if (!m_numericClass) { 

 m_classProbs = newdouble[m_numClasses]; 

 

 for (int i = 0; i <m_numInstances; i++) { 

 m_classProbs[(int)m_trainInstances.instance(i).value(m_classIndex)]++; 

       } 

 

 for (int i = 0; i <m_numClasses; i++) { 

 m_classProbs[i] /= m_numInstances; 

       } 

     } 

 

 m_worst = newdouble[m_numClasses]; 

 m_index = newint[m_numClasses]; 

 m_stored = newint[m_numClasses]; 

 m_minArray = newdouble[m_numAttribs]; 

 m_maxArray = newdouble[m_numAttribs]; 

 

 for (int i = 0; i <m_numAttribs; i++) { 

 m_minArray[i] = m_maxArray[i] = Double.NaN; 

     } 

 

 for (int i = 0; i <m_numInstances; i++) { 

 updateMinMax(m_trainInstances.instance(i)); 

     } 

 

 if ((m_sampleM>m_numInstances) || (m_sampleM< 0)) { 

 totalInstances = m_numInstances; 

     } 

 else { 

 totalInstances = m_sampleM; 

     } 

 

 // process each instance, updating attribute weights 

 for (int i = 0; i < totalInstances; i++) { 

 if (totalInstances == m_numInstances) { 

         z = i; 

       } 

 else { 

         z = r.nextInt()%m_numInstances; 

       } 
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 if (z < 0) { 

 z *= -1; 

       } 

 

 if (!(m_trainInstances.instance(z).isMissing(m_classIndex))) { 

 // first clear the knn and worst index stuff for the classes 

 for (int j = 0; j <m_numClasses; j++) { 

 m_index[j] = m_stored[j] = 0; 

 

 for (int k = 0; k <m_Knn; k++) { 

 m_karray[j][k][0] = m_karray[j][k][1] = 0; 

           } 

         } 

 

 findKHitMiss(z); 

 

 if (m_numericClass) { 

 updateWeightsNumericClass(z); 

         } 

 else { 

 updateWeightsDiscreteClass(z); 

         } 

       } 

     } 

 

 for (int i = 0; i <m_numAttribs; i++) {if (i != m_classIndex) { 

 if (m_numericClass) { 

 m_weights[i] = m_ndcda[i]/m_ndc -  

    ((m_nda[i] - m_ndcda[i])/((double)totalInstances - m_ndc)); 

       } 

 else { 

 m_weights[i] *= (1.0/(double)totalInstances); 

       } 

 

     } 

     } 

   } 

 

 publicdouble evaluateAttribute (int attribute) 

 throws Exception 

   { 

 returnm_weights[attribute]; 

   } 

 

 

 /** 

    * Reset options to their default values 

    */ 

 protectedvoid resetOptions () { 
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 m_trainInstances = null; 

 m_sampleM = -1; 

 m_Knn = 10; 

 m_sigma = 2; 

 m_weightByDistance = false; 

 m_seed = 1; 

   } 

 

 

  

 privatedouble norm (double x, int i) { 

 if (Double.isNaN(m_minArray[i]) ||  

  Utils.eq(m_maxArray[i], m_minArray[i])) { 

 return  0; 

     } 

 else { 

 return  (x - m_minArray[i])/(m_maxArray[i] - m_minArray[i]); 

     } 

   } 

 

 

 /** 

    * Updates the minimum and maximum values for all the attributes 

    * based on a new instance. 

    * 

    * @param instance the new instance 

    */ 

 privatevoid updateMinMax (Instance instance) { 

 for (int j = 0; j <m_numAttribs; j++) { 

 if ((m_trainInstances.attribute(j).isNumeric()) && 

  (!instance.isMissing(j))) { 

  if (Double.isNaN(m_minArray[j])) { 

  m_minArray[j] = instance.value(j); 

  m_maxArray[j] = instance.value(j); 

  } 

  else { 

  if (instance.value(j) <m_minArray[j]) { 

  m_minArray[j] = instance.value(j); 

    } 

  else { 

  if (instance.value(j) >m_maxArray[j]) { 

  m_maxArray[j] = instance.value(j); 

      } 

    } 

  } 

       } 

     } 

   } 

 

 



55 

 

 privatedouble attributeDiff (int attrib, int first, int second) { 

 double temp, d; 

 

 // Nominal attribute 

 if (m_trainInstances.attribute(attrib).isNominal()) { 

 if (m_trainInstances.instance(first).isMissing(attrib) ||  

  m_trainInstances.instance(second).isMissing(attrib)) { 

  temp = (1.0 - (1.0/((double)m_trainInstances. 

    attribute(attrib).numValues()))); 

       } 

 else { 

  if (m_trainInstances.instance(first).value(attrib) !=  

  m_trainInstances.instance(second).value(attrib)) { 

  temp = 1.0; 

  } 

  else { 

  temp = 0.0; 

  } 

       } 

     } 

 else 
 // Numeric attribute 

       { 

  if (m_trainInstances.instance(first).isMissing(attrib) && 

  m_trainInstances.instance(second).isMissing(attrib)) { 

  temp = 1.0; // maximally different 

  } 

  else {if (m_trainInstances.instance(first).isMissing(attrib)) { 

    d = norm(m_trainInstances.instance(second).value(attrib), attrib); 

 

  if (d < 0.5) { 

      d = 1.0 - d; 

    } 

 

  temp = d; 

  } 

  else {if (m_trainInstances.instance(second).isMissing(attrib)) { 

    d = norm(m_trainInstances.instance(first).value(attrib), attrib); 

 

  if (d < 0.5) { 

      d = 1.0 - d; 

    } 

 

  temp = d; 

  } 

  else { 

    d = norm(m_trainInstances.instance(first).value(attrib), attrib) -  

  norm(m_trainInstances.instance(second).value(attrib), attrib); 

 

  if (d < 0.0) { 
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  d *= -1.0; 

    } 

 

  temp = d; 

  } 

  } 

  } 

       } 

 

 return  temp; 

   } 

 

 privatedouble diff (int first, int second) { 

 int i, j; 

 double temp = 0; 

 

 for (i = 0; i <m_numAttribs; i++) { 

 if (i != m_classIndex) { 

  temp += attributeDiff(i, first, second); 

       } 

     } 

 

 return  temp; 

   } 

 

 privatevoid updateWeightsNumericClass (int instNum) { 

 int i, j; 

 double temp; 

 int[] tempSorted = null; 

 double[] tempDist = null; 

 double distNorm = 1.0; 

 

 // sort nearest neighbours and set up normalization variable 

 if (m_weightByDistance) { 

 tempDist = newdouble[m_stored[0]]; 

 

 for (j = 0, distNorm = 0; j <m_stored[0]; j++) { 

  // copy the distances 

  tempDist[j] = m_karray[0][j][0]; 

  // sum normalizer 

  distNorm += m_weightsByRank[j]; 

       } 

 

 tempSorted = Utils.sort(tempDist); 

     } 

 

 for (i = 0; i <m_stored[0]; i++) { 

 // P diff prediction (class) given nearest instances 

 if (m_weightByDistance) { 

  temp = attributeDiff(m_classIndex, instNum,  
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         (int)m_karray[0][tempSorted[i]][1]); 

  temp *= (m_weightsByRank[i]/distNorm); 

       } 

 else { 

  temp = attributeDiff(m_classIndex, instNum, (int)m_karray[0][i][1]); 

  temp *= (1.0/(double)m_stored[0]); // equal influence 

       } 

 

 m_ndc += temp; 

 

 // now the attributes 

 for (j = 0; j <m_numAttribs; j++) { 

  if (j != m_classIndex) { 

  // P of different attribute val given nearest instances 

  if (m_weightByDistance) { 

  temp = attributeDiff(j, instNum,  

      (int)m_karray[0][tempSorted[i]][1]); 

  temp *= (m_weightsByRank[i]/distNorm); 

    } 

  else { 

  temp = attributeDiff(j, instNum, (int)m_karray[0][i][1]); 

  temp *= (1.0/(double)m_stored[0]); // equal influence 

    } 

 

  m_nda[j] += temp; 

 

  // P of different prediction and different att value given 

  // nearest instances 

  if (m_weightByDistance) { 

  temp = attributeDiff(m_classIndex, instNum,  

      (int)m_karray[0][tempSorted[i]][1]) *  

  attributeDiff(j, instNum, (int)m_karray[0][tempSorted[i]][1]); 

  temp *= (m_weightsByRank[i]/distNorm); 

    } 

  else { 

  temp = attributeDiff(m_classIndex, instNum,  

      (int)m_karray[0][i][1]) *  

  attributeDiff(j, instNum, (int)m_karray[0][i][1]); 

  temp *= (1.0/(double)m_stored[0]); // equal influence 

    } 

 

  m_ndcda[j] += temp; 

  } 

       } 

     } 

   } 

 

 privatevoid updateWeightsDiscreteClass (int instNum) { 

 int i, j, k; 

 int cl; 
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 doublecc = m_numInstances; 

 double temp, temp_diff, w_norm = 1.0; 

 double[] tempDistClass; 

 int[] tempSortedClass = null; 

 double distNormClass = 1.0; 

 double[] tempDistAtt; 

 int[][] tempSortedAtt = null; 

 double[] distNormAtt = null; 

 // get the class of this instance 

 cl = (int)m_trainInstances.instance(instNum).value(m_classIndex); 

 

 // sort nearest neighbours and set up normalization variables 

 if (m_weightByDistance) { 

 // do class (hits) first 

 // sort the distances 

 tempDistClass = newdouble[m_stored[cl]]; 

 

 for (j = 0, distNormClass = 0; j <m_stored[cl]; j++) { 

  // copy the distances 

  tempDistClass[j] = m_karray[cl][j][0]; 

  // sum normalizer 

  distNormClass += m_weightsByRank[j]; 

       } 

 

 tempSortedClass = Utils.sort(tempDistClass); 

 // do misses (other classes) 

 tempSortedAtt = newint[m_numClasses][1]; 

 distNormAtt = newdouble[m_numClasses]; 

 

 for (k = 0; k <m_numClasses; k++) { 

  if (k != cl) // already done cl 

    { 

  // sort the distances 

  tempDistAtt = newdouble[m_stored[k]]; 

 

  for (j = 0, distNormAtt[k] = 0; j <m_stored[k]; j++) { 

  // copy the distances 

  tempDistAtt[j] = m_karray[k][j][0]; 

  // sum normalizer 

  distNormAtt[k] += m_weightsByRank[j]; 

      } 

 

  tempSortedAtt[k] = Utils.sort(tempDistAtt); 

    } 

       } 

     } 

 

 if (m_numClasses> 2) { 

       w_norm = (1.0 - m_classProbs[cl]); 

     } 
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 for (i = 0; i <m_numAttribs; i++) { 

 if (i != m_classIndex) { 

  // first do k nearest hits 

  for (j = 0, temp_diff = 0.0; j <m_stored[cl]; j++) { 

  if (m_weightByDistance) { 

      temp_diff +=  

  attributeDiff(i, instNum, 

        (int)m_karray[cl][tempSortedClass[j]][1])* 

        (m_weightsByRank[j]/distNormClass); 

    } 

  else { 

      temp_diff += attributeDiff(i, instNum, (int)m_karray[cl][j][1]); 

    } 

  } 

 

  // average 

  if ((!m_weightByDistance) && (m_stored[cl] > 0)) { 

    temp_diff /= (double)m_stored[cl]; 

  } 

 

  m_weights[i] -= temp_diff; 

  // now do k nearest misses from each of the other classes 

  temp_diff = 0.0; 

 

  for (k = 0; k <m_numClasses; k++) {if (k != cl) // already done cl 

    { 

  for (j = 0, temp = 0.0; j <m_stored[k]; j++) { 

  if (m_weightByDistance) { 

   temp +=  

   attributeDiff(i, instNum,  

     (int)m_karray[k][tempSortedAtt[k][j]][1])* 

     (m_weightsByRank[j]/distNormAtt[k]); 

        } 

  else { 

   temp += attributeDiff(i, instNum, (int)m_karray[k][j][1]); 

        } 

      } 

 

  if ((!m_weightByDistance) && (m_stored[k] > 0)) { 

  temp /= (double)m_stored[k]; 

      } 

 

  // now add temp to temp_diff weighted by the prob of this  

  // class 

  if (m_numClasses> 2) { 

        temp_diff += (m_classProbs[k]/w_norm)*temp; 

      } 

  else { 

        temp_diff += temp; 
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      } 

    } 

  } 

 

  m_weights[i] += temp_diff; 

       } 

     } 

   } 

 

 

 /** 

    * Find the K nearest instances to supplied instance if the class is numeric, 

    * or the K nearest Hits (same class) and Misses (K from each of the other 

    * classes) if the class is discrete. 

    * 

    * @param instNum the index of the instance to find nearest neighbours of 

    */ 

 privatevoid findKHitMiss (int instNum) { 

 int i, j; 

 int cl; 

 double ww; 

 double temp_diff = 0.0; 

 

 for (i = 0; i <m_numInstances; i++) {if (i != instNum) { 

       temp_diff = diff(i, instNum); 

 

 // class of this training instance or 0 if numeric 

 if (m_numericClass) { 

  cl = 0; 

       } 

 else { 

  cl = (int)m_trainInstances.instance(i).value(m_classIndex); 

       } 

 

 // add this diff to the list for the class of this instance 

 if (m_stored[cl] <m_Knn) { 

  m_karray[cl][m_stored[cl]][0] = temp_diff; 

  m_karray[cl][m_stored[cl]][1] = i; 

  m_stored[cl]++; 

 

  // note the worst diff for this class 

  for (j = 0, ww = -1.0; j <m_stored[cl]; j++) { 

  if (m_karray[cl][j][0] > ww) { 

  ww = m_karray[cl][j][0]; 

  m_index[cl] = j; 

    } 

  } 

 

  m_worst[cl] = ww; 

       } 
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 else 
  /* if we already have stored knn for this class then check to 

  see if this instance is better than the worst */ 

  { 

  if (temp_diff <m_karray[cl][m_index[cl]][0]) { 

  m_karray[cl][m_index[cl]][0] = temp_diff; 

  m_karray[cl][m_index[cl]][1] = i; 

 

  for (j = 0, ww = -1.0; j <m_stored[cl]; j++) { 

  if (m_karray[cl][j][0] > ww) { 

   ww = m_karray[cl][j][0]; 

   m_index[cl] = j; 

        } 

      } 

  m_worst[cl] = ww; 

    } 

  } 

     } 

     } 

   } 

 

 } 

 


