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Abstract 

Combine the prediction from multiple models to improve the overall performance of 

model is an ultimate task of Ensemble learning. Bagging and Boosting are two widely 

used ensemble learning techniques works based on numbers of classifiers 

combination to aggregate prediction. Performance of single classifier has limitation 

due to noise, bias and variance in dataset. By applying divide and conquer approach 

on ensemble methods helps to minimize those limitation which ultimately leads to 

performance improvement. Bagging is a bootstrap aggregation while boosting 

attempts to fit a sequence of weak learner's models to build a strong classifier. The 

performance of bagging and boosting has been analyzed on the basis of Accuracy, 

Precision, Recall and F1-Measures for Adult dataset with and without noise. The 

Gaussian noise distribution has used for noise addition on dataset due to CLT. The 

results show that on the basis of Accuracy, Recall, F1-Measures boosting outperforms 

bagging whereas in terms of Precision, bagging has better result. 

 

Keywords: Ensemble Learning, Bagging, Boosting, Gaussian Noise 
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Chapter 1:  

Introduction 

An ensemble is the art of combining a diverse set of individual learners/models 

together to improvise the stability and predictive power of the model. Ensemble 

learning techniques attempt to make the performance of the predictive models better 

by improving their accuracy. Ensemble basically trains a large number of models and 

then combines the predictions to come to a conclusion. The method of combining the 

classifiers depend upon the choice of models trained. Training a bunch of models and 

taking their result by using combining schema is a principal approach of Ensemble 

learning. This approach allows the production of better predictive performance 

compared to a single model. 

It is a procedure where multiple learner modules are applied on a dataset to extract 

multiple predictions, which are then combined into one composite prediction. The 

learning process is commonly broken down into two tasks as constructing a set of 

base learners from the training data and combining some or all of these models to 

form a unified prediction model. Ensemble methods attempt to improve forecasting 

bias and reducing variance by providing critical boost to forecasting abilities and 

decision-making accuracy. Where, Bias is a source of error in a model that causes it to 

over-generalize and underfit the data whereas variance is sensitivity to noise in the 

data that causes a model to over-fit. It is useful when there is uncertainty in choosing 

the best prediction model and when it is critical to avoid large prediction errors [16].  

Multiple classifier systems, also called ensemble learning have proven themselves to 

be very effective and extremely versatile in a broad spectrum of problem domains and 

real-world applications. Originally developed to reduce the variance thereby 

improving the accuracy of an automated decision-making system, ensemble systems 

have since been successfully used to address a variety of machine learning problems 

[13]. Combining outputs from multiple classifiers, known as ensemble learning, is one 

of the standard and most important techniques for improving classification accuracy 

in machine learning [3]. 
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1.1 Bagging Classifier 

Bagging refers to bootstrap aggregation i.e. repeating the sample with replacement 

and perform aggregation of results to be precise, which is a general-purpose 

methodology to reduce the variance of models. It is an ensemble meta-estimator that 

fits base classifiers each on random subsets of the original dataset and then aggregates 

their individual predictions either by voting or by averaging to form a final prediction. 

Each base classifier is trained in parallel with a training set which is generated by 

randomly drawing, with replacement, N data from the original training dataset, where 

N is the size of the original training set. The training set for each of the base 

classifiers is independent of each other. Bagging reduces overfitting (variance) by 

averaging or voting, however this leads to an increase in bias which is compensated 

by the reduction in variance though [8].  

1.2 Boosting Classifier 

Boosting is an ensemble modeling technique which attempts to build a strong 

classifier from the number of weak classifiers. The main principle of boosting is to fit 

a sequence of weak learner's models that are only slightly better than random guessing 

i.e. it is able to convert weak learners to strong learners. First, a model is built from 

the training data. Then the second model is built which tries to correct the errors 

present in the first model. This procedure is continued and models are added until 

either the complete training dataset is predicted correctly or the maximum numbers of 

models are added. Boosting being a sequential process, each subsequent model 

attempts to correct the errors of the previous model.  

It is a machine learning method based on the idea that a combination of weak learner 

can perform better than any of the simple classifiers alone. A weak learner (WL) is a 

learning algorithm capable of producing classifiers with probability of error strictly 

less than that of random guessing (0.5, in the binary case) where strong learner (SL) is 

able to yield classifiers with arbitrarily small error probability [6]. The algorithm 

process accordingly: 

Step 1: Base Learning combines each distribution and applies equal weight to them. 

Step 2: If any prediction occurs during the first base learning algorithm then pay high 

attention to that prediction error. 
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Step 3: Repeat step 2 until the limit of Base Learning algorithm has been reached or 

high accuracy. 

Step 4: Finally, it combines the entire weak learner to create one strong prediction 

true. 

1.3 Problem Definition 

Due to instability of single classifier it does not preforms well for all dataset. 

Generally, Single classifier performs better only when having large number of data. 

For neural learning technique, such models give good accuracy only with good 

parameters like number of hidden layers, activation function, and number of nodes in 

each layer etc. The advantage of using Ensemble model over single classifier is to 

improve the accuracy of algorithm as well as it is able to provide high stability for all 

type of dataset. The choice of Bagging and Boosting classifier over the rest is that it 

works based on combining schema. 

1.4 Objectives of Thesis 

The main objective of thesis is  

 To analyze the performance and to determine the accuracy level of Bagging 

and Boosting algorithm. 

 To determine the accuracy level of both the algorithms with and without 

noised dataset based on different number of base classifiers. 

1.5 Limitation of Thesis 

Although Ensemble learning classifier are Bagging, Boosting and stacking; the 

comparative analysis has been performed on only Bagging and Boosting classifier. It 

is due to the fact that these classifier techniques perform based on homogeneous base 

classifier. Whereas stacking classifier performs as heterogeneous base classifier. I.e. it 

works on different base classifier so the exact classifier numbers cannot be predicted. 

So, comparative analysis of all classifier altogether is not suitable. 

1.6 Thesis Organization 

The organization of this thesis is as follows: 

Chapter 1 describes the introduction, problem statement and objectives. 
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Chapter 2 describes the literature review of the existing researchers related to 

Ensemble Learning: Bagging and Boosting. 

Chapter 3 describes the algorithm and methodology of the Bagging and Boosting 

algorithms 

Chapter 4 contains the implementation overview of the algorithms with result 

analysis. 

Chapter 5 concludes the conclusion of thesis works. 
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Chapter 2:  

Background Study and Literature Review 

2.1 Background Study 

In 1990, the first boosting procedure was proposed by Schapire [15], where the key 

result is that weak and strong learnability are equivalent, in the sense that strong 

learning can be performed by combining WLs. Bagging is application of bootstrap 

procedure for having high-variance machine learning algorithm.it is a predictors for 

generating an aggregated predictor.  

2.2 Literature Review 

In [2], testing on real and simulated datasets using classification and regression trees 

and subset selection in linear regression show that bagging can give substantial gains 

in accuracy. The vital element in the instability of the prediction method is basically 

using single classifier. If perturbing the learning set can cause significant changes in 

the predictor constructed, then bagging can improve accuracy.  

In [12], the bagging and boosting with neural network and decision trees algorithm as 

base classifier was evaluated. The result shows that Bagging is almost always more 

accurate than a single classifier, it is sometimes much less accurate than Boosting. 

Meanwhile, Boosting can create ensembles that are less accurate than a single 

classifier – especially when using neural networks.  

In [5], the test and training error curves in an optical character recognition (OCR) 

problem as both a function of training set size and computational cost using neural-

based ensemble technique was implemented.  

In [1], the purpose of the study is to improve the understanding of why and when 

these algorithms, which use perturbation, reweighting, and combination techniques, 

affect classification error. By providing a bias and variance decomposition of the error 

shows how different methods and variants influence these two terms. The result 

shows that Bagging reduced variance of unstable methods, while boosting methods 

reduced both the bias and variance of unstable methods but increased the variance for 

Naive-Bayes, which was very stable. The voting methods lead large and significant 

reductions in the mean-squared errors.  
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In [14], the revision of the classifier selection methodology and evaluates the practical 

applicability of diversity measures in the context of combining classifiers by majority 

voting. A number of search algorithms are proposed and adjusted to work properly 

with a number of selection criteria including majority voting error and various 

diversity measures. The algorithms used a binary vector of classifier incidences, 

indicating exclusion (0) or inclusion (1) of the classifier in the combination, as a 

representation of the selection solution. Furthermore, a diversifying operator was 

applied to the populations of solutions, which prevented duplication of the same 

combinations found as a result of the search algorithms. The majority voting has then 

been applied to the best combinations returned by the algorithms and provided the 

basis for the assessment of different diversity measures used as selection criteria. The 

result shows that the better the correlation between the measure (selection criterion) 

and the combiner performance, the higher the performance of the selected 

combinations with optimal results.  

In [10], to improve the limited classification performance of the real SVM, SVM 

ensemble with bagging or boosting has been proposed. In bagging, each individual 

SVM is trained independently using the randomly chosen training samples via a 

bootstrap technique. In boosting, each individual SVM is trained using the training 

samples chosen according to the sample’s probability distribution that is updated in 

proportional to the errorless of the sample. Various simulation results for the IRIS 

data classification and the hand-written digit recognition, and the fraud detection 

shows that the proposed SVM ensemble with bagging or boosting outperforms a 

single SVM in terms of classification accuracy greatly.  

In [17], this paper has examined techniques for combining simple ensemble learning 

approaches with the aim of exploring the relationship between ensemble member 

diversity and ensemble error. The results strongly support the proposition that 

combining effective ensemble learning strategies is conducive to reducing test error.  

In [11], the evaluation of both neural networks and decision tree classification 

algorithms has been studied. The result shows that even though Bagging almost 

always produces a better classifier than any of its individual component classifiers and 

is relatively impervious to overfitting, it does not generalize any better than a baseline 

neural-network ensemble method. Also result shows that Boosting is a powerful 
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technique that can usually produce better ensembles than Bagging although it is more 

susceptible to noise and can quickly overfit a dataset. 

In [4], the effectiveness of randomization, bagging, and boosting for improving the 

performance of the decision-tree algorithm was proposed. The experiment shows that 

in situations with little or no classification noise, randomization is competitive with 

bagging but not as accurate as boosting. In situations with substantial classification 

noise, bagging is much better than boosting, and sometimes better than 

randomization.  

In [7], the demonstration of AdaBoost in many settings to improve the performance of 

a learning algorithm was implemented. When starting with relatively simple 

classifiers, the improvement can often lead to a composite classifier that outperforms 

more complex “one-shot” learning algorithm. For non-binary classification problems, 

boosting simple classifiers can only be done effectively if the more sophisticated 

pseudo-loss is used. Boosting combined with a complex algorithm may give the 

greatest improvement in performance when there is a reasonably large amount of data 

available.  

In [18], to address the issue of building a strong translation system using a group of 

weak translation systems generated from a single SMT (statistical machine 

translation) engine using a Bagging/Boosting-based approach was proposed. The 

experimental result shows that this approach is very useful in improving the 

translation accuracy of three state-of-the-art SMT systems, including a phrase-based 

system, a hierarchical phrase-based system and a syntax-based system.  
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Chapter 3: 

Methodology 

3.1 Bagging Classifier 

Bagging is one of the Ensemble construction techniques which is also known as 

Bootstrap Aggregation. Bootstrap is a sampling technique in which selects the “n” 

observations out of a population of “n” observations with replacement. It is the 

foundation of bagging technique. The selection process of training tuples among 

dataset is random. i.e., each observation can be chosen from the original population so 

that each observation is equally likely to be selected in each iteration of the 

bootstrapping process.   

After the bootstrapped samples are formed, separate models are trained with the 

bootstrapped samples. In real experiments, the bootstrapped samples are drawn from 

the training set, and the sub-models are tested using the testing set. The final output 

prediction is combined across the projections of all the sub-models [8]. 

Algorithm 1: Bagging 

Inputs:  

Training data    {     }          ,     {          };  

Supervised learning algorithm (Base Classifier); 

Integer T specifying ensemble size; 

Percent R to create bootstrapped training data. 

Do t = 1, ..., T 

1. Take a bootstrapped replica    by randomly drawing R% of S. 

2. Call Base Classifier with    and receive the hypothesis (classifier)   . 

3. Add    to the ensemble,         . 

End 

Ensemble Combination: Simple Majority Voting - Given unlabeled instance x 

1. Evaluate the ensemble    {          } on x. 
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2. Let        if    chooses class    , and 0 otherwise. 

3. Obtain total vote received by each class: 

      ∑     
 
      , c = 1, 2, …, C 

Output: Class with the highest    

 

Process Flow Diagram: 

Train Data

T1 T2 Tm Bootstrapping

C1 C2 Cm  Base Classifier

P1 P2 Pm PredictionsTest Data

Voting Majority  Voting

P Final Prediction

 

Figure 1: Bagging Processing 

3.2 Boosting Classifier 

Boosting is a form of sequential learning technique. The algorithm works by training 

a model with the entire training set, and subsequent models are constructed by fitting 

the residual error values of the initial model. It attempts to give higher weight to those 

observations that were poorly estimated by the previous model. Once the sequence of 

the models is created the predictions made by models are weighted by their accuracy 

scores and the results are combined to create a final estimation [6].   
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Algorithm 2: Boosting 

Inputs: 

Training data S = {     }          ,     {          }; 

Supervised learning algorithm (Base Classifier); 

Integer T specifying ensemble size. 

Initialize: 

         . 

Do t = 1, ..., T 

1. Draw training subset    from the distribution Dt. 

2. Train Base Classifier on    , receive hypothesis        

3. Calculate the error of    : 

     ∑      
 
                   

4. Calculate weight of   : 

       
    

  
 

5. Update sampling distribution: 

          
                      

  
 

   is a normalization factor, such that ∑        
 
      

End 

Weighted Majority Voting: Given unlabeled instance z, obtain total vote received by 

each class 

    ∑   
 
            

 ,           

Output: 

Class with the highest   . 
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Process Flow Diagram: 

Train Sample 1 Train Sample 2

C1 C2 Cm  Base Classifier

P1 P2 Pm
PredictionsTest Data

Weighted Majority Voting Weighted Majority  

Voting

P
Final Prediction

Train Sample m

Adjusted weighted 

Train Data
Weighted train data

Adjusted weighted 

Train Data

 

 Figure 2: Boosting Processing 

3.3 Implementation Method 

Three strategies need to be chosen to building an effective ensemble system. The 

three pillars of ensemble systems are:  

 Data sampling/selection;  

 Training member classifiers; and 

 Combining classifiers. 

3.3.1 Bagging and Boosting Classifier Implementation 

Decision Tree Algorithm as Base Classifier used for Bagging and Boosting classifier. 

i. Data preprocessing 

ii. Apply Bagging classifier described in sec.5.1 using Ten-fold cross-validation. 

Or 

iii. Apply Boosting Classifier described in sec.5.2 using Ten-fold cross-

validation. 
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3.4 Data Collection 

For this study a labeled dataset as Adult dataset
1
 (see sampled dataset in Appendix A): 

standard datasets for machine learning available at UCI machine learning repository is 

taken. And dataset Extraction was done by Barry Becker from the 1994 Census 

database. The dataset is designed to determine whether a person makes over 50K a 

year by using a class label as >50K & <=50K. It contains 14 independent and one 

dependent variable as Age, workclass, fnlwgt, education, education-num, marital-

status, occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week, 

native-country and income respectively with 48842 instances.  

3.5 Data Preprocessing 

Before data feeding to model transformation should be applied on dataset according to 

algorithm and needs. Whenever the data is gathered from different sources it is 

collected in raw format which might not be feasible for the analysis. Data 

Preprocessing is a technique that is used to convert the raw data into a clean dataset. 

Dataset should be transformed in such a way that more than one Machine Learning 

algorithms are executed in a dataset and best among them is chosen. 

The quality of data and the useful information that can be derived from data 

preprocessing has direct impact over the ability of model to learn. So before feeding 

the dataset it has to be preprocessed accordingly as handling Null values, 

Standardization, Handling categorical variable, Noise addition. 

3.6 Noise Addition: 

To implement both the algorithm in a noise is added in the dataset by using the 

Gaussian noise distribution method. It is a statistical noise having probability density 

function equal to that of the normal distribution, also known as the Gaussian 

distribution [19]. 

               
 

  √  
  

 
 (
        )

 

 

                                                 

1
 https://archive.ics.uci.edu/ml/datasets/Adult 

 

 

https://archive.ics.uci.edu/ml/datasets/Adult
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Where μ is the mean or expectation, σ
2
 is the variance. 

The distribution with μ=0 and σ
2
=1 is called the standard normal distribution or the 

unit normal distribution. It is widely used distribution function because of the CLT 

(Central Limit Theorem).  

3.7 Performance Evaluation Measures 

The analysis of both the algorithms has been measured with various parameters as 

Accuracy, Precision, F1-measure and Recall. This ultimately helps to choose the 

better one among both algorithms. All the parameter values are computed based on 

Confusion matrix as true positive (TP), True Negative (TN), False Positive (FP) and 

False Negative (FN). TP and TN are the correctly predicted positive values and 

correctly predicted negative values respectively. FP and FN are the total number of 

data when actual class is No and predicted class is Yes and when actual class is Yes 

and predicted class is No respectively. 

Accuracy: 

It is a ratio of correctly predicted observation to the total observations. It is the most 

intuitive quality performance measures for the effectiveness of the machine learning  

model [9]. Higher the accuracy betters the model. 

Mathematically it is calculated as: 

          
     

           
 

Precision: 

Precision is the ratio of correctly predicted positive observations to the total predicted 

positive observations. It highlights the correct positive predictions out of all the 

positive predictions. High precision indicates low false positive rate. Higher the 

precision better the results and measured [9] as: 

            
  

     
 

Recall (Sensitivity): 

Recall is the ratio of correctly predicted positive observations to the all observations 

in actual class. Recall highlights the sensitivity of the algorithm. It is the ability of the 

classifier to find all the positive samples. 
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Mathematically [9] calculated as: 

        
  

     
 

F1-Measure: 

F1 Score is the weighted average of Precision and Recall. Therefore, this score takes 

both false positives and false negatives into account. It tells how precise the classifier 

is i.e. how many instances it classifies correctly, and how robust it is i.e. it does not 

miss a significant number of instances. With high precision but low recall, the 

classifier is extremely accurate, but it misses a significant number of instances that are 

difficult to classify [9]. It is calculated as: 

              
                

                
 

 

  



15 

 

Chapter 4: 

Implementation and Analysis 

4.1 Implementation Tools 

4.1.1 Python Programming Language 

Python is a multi-paradigm, easy to learn and powerful programming language. 

Python is an interpreter, high-level, general-purpose programming language. Created 

by Guido van Rossum and first released in 1991. It lets system more quickly, 

integrated and effective. It has efficient high-level data structures and a simple but 

effective approach to object-oriented programming. Python’s elegant syntax and 

dynamic typing, together with its interpreted nature, make it an ideal language for 

scripting and rapid application development in many areas on most platforms. 

The Python interpreter and the extensive standard library are freely available. The 

Python interpreter is easily extended with new functions and data types implemented 

in C, C++ or other languages callable from C. Python is also suitable as an extension 

language for customizable applications. Python uses dynamic typing and a 

combination of reference counting and a cycle-detecting garbage collector for 

memory management.  It also features dynamic name resolution (late binding), which 

binds method and variable names during program execution. 

4.1.2 Anaconda  

Anaconda is a free, multiplatform and open-source distribution of the Python and R 

programming languages for scientific computing as data science, machine learning 

applications, large-scale data processing, predictive analytics, etc., that aims to 

simplify package management and deployment. Package versions are managed by the 

package management system Conda. It analyses the current environment including 

everything currently installed and together with any version limitations specified. 

With over 15 million users worldwide, it is the industry standard for developing, 

testing, and training on a single machine, enabling individual data scientists. It has 

more than 1,500 Python/R data science packages. It Manage libraries, dependencies, 

environments with Conda and also develop and train machine learning and deep 

learning models with scikit-learn, TensorFlow, and Theano. 



16 

 

4.1.3 Spyder IDE 

Spyder is an open source cross-platform integrated development environment (IDE) 

for scientific programming in the Python language. Initially created and developed by 

Pierre Raybaut in 2009, since 2012 Spyder has been maintained and continuously 

improved by a team of scientific Python developers and the community. it is a 

powerful scientific environment written in Python, for Python, and designed by and 

for scientists, engineers and data analysts. It features a unique combination of the 

advanced editing, analysis, debugging, and profiling functionality of a comprehensive 

development tool with the data exploration, interactive execution, deep inspection, 

and beautiful visualization capabilities of a scientific package.  

Spyder integrates with a number of prominent packages in the scientific Python stack, 

including NumPy, SciPy, Matplotlib, pandas, IPython, SymPy and Cython, as well as 

other open source software. Beyond its many built-in features, Spyder’s abilities can 

be extended even further via its plugin system and API. It can also be used as a PyQt5 

extension library, allowing you to build upon its functionality and embed its 

components. 

4.1.4 Sicikit-learn 

Scikit-learn are a Python module integrating classic machine learning algorithms in 

the tightly-knit scientific Python world (numpy, spicy, matplotlib). It aims to provide 

simple and efficient solutions to learning problems accessible to everybody and 

reusable in various contexts. 

4.1.5 Category Encoders 

It encodes categorical variables into numeric with different techniques. While ordinal, 

one-hot and hashing encoders have similar equivalents in the existing scikit-learn 

version. It is featured with dataframes, column configuration regardless of input type, 

compatible with sklearn. 

4.1.6 Matplotlib 

Matplotlib is a Python 2D plotting library. It can be used in Python scripts, 

IPython shells, Jupyter notebook, Spyder and web application server’s etc. it is used 

for plots generation, histograms, power spectra, bar charts, scatterplots, etc. 

http://ipython.org/
http://jupyter.org/
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4.2 Testing Environment 

The following hardware and software configuration was used to implement this thesis. 

Hardware Specification: 

• System  :  intel(R) Core(TM) i5-3210M CPU @2.50GHz 

• Hard Disk        :  500 GB. 

• RAM  :  8 GB. 

Software Specification: 

• Operating system :  Windows 10 Pro 

• Coding Language :  Python 

• Tools    :  Spyder 3.7 
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Table 1: Performance Measures of Bagging and Boosting based on no. of Classifier without Noise 

No. of 

Base 

Classifier 

Accuracy F1-Measure Precision Recall 

Bagging Boosting Bagging Boosting Bagging Boosting Bagging Boosting 

1 80.934 76.149 87.411 86.453 87.841 76.149 86.990 100.000 

2 78.759 81.923 85.133 88.840 91.059 83.782 79.942 94.565 

3 82.912 84.091 88.861 90.020 88.150 86.123 89.591 94.298 

4 81.818 84.257 87.758 90.176 89.995 85.860 85.639 94.960 

5 83.262 84.318 89.114 90.201 88.210 85.998 90.051 94.847 

6 82.672 84.760 88.473 90.418 89.555 86.690 87.424 94.493 

7 83.600 84.828 89.387 90.478 88.051 86.591 90.769 94.741 

8 83.194 85.012 88.920 90.632 89.216 86.429 88.630 95.275 

9 83.956 84.982 89.627 90.572 88.198 86.751 91.118 94.777 

10 83.753 84.840 89.329 90.393 89.308 87.301 89.357 93.743 

11 84.281 84.871 89.842 90.366 88.393 87.652 91.356 93.271 

12 83.814 84.883 89.417 90.384 88.993 87.574 89.851 93.399 

13 84.355 85.098 89.894 90.539 88.381 87.577 91.469 93.724 

14 83.937 85.111 89.514 90.550 88.958 87.574 90.091 93.750 

15 84.502 85.215 89.989 90.620 88.502 87.615 91.533 93.846 

16 83.888 85.258 89.502 90.645 88.742 87.662 90.281 93.849 

17 84.490 85.276 90.011 90.669 88.272 87.575 91.831 94.001 

18 84.453 85.258 89.886 90.654 88.992 87.585 90.810 93.960 

19 84.607 85.301 90.097 90.696 88.245 87.501 92.035 94.144 

20 84.380 85.221 89.859 90.638 88.809 87.501 90.940 94.024 

21 84.711 85.178 90.145 90.604 88.464 87.535 91.898 93.912 

22 84.435 85.172 89.910 90.599 88.720 87.535 91.140 93.904 

23 84.785 85.129 90.203 90.565 88.412 87.559 92.082 93.799 

24 84.810 85.160 90.151 90.579 88.994 87.619 91.344 93.759 

25 84.576 85.233 90.070 90.614 88.277 87.763 91.947 93.670 

26 84.459 85.258 89.931 90.612 88.684 87.912 91.226 93.499 

27 84.840 85.301 90.259 90.645 88.323 87.896 92.298 93.589 

28 84.521 85.412 89.985 90.729 88.621 87.856 91.399 93.807 

29 84.484 85.418 90.012 90.722 88.236 87.955 91.871 93.678 

30 84.453 85.461 89.944 90.744 88.565 88.024 91.375 93.646 
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Table 2: Performance Measures of Bagging and Boosting based on no. of Classifier with Noise 

No. of Base 

Classifier 

Accuracy F1-Measure Precision Recall 

Bagging Boosting Bagging Boosting Bagging Boosting Bagging Boosting 

1 77.008 76.021 84.851 86.376 84.995 76.021 84.709 100.000 

2 73.906 78.747 81.357 86.132 89.021 85.451 74.910 86.861 

3 79.069 79.177 86.366 86.159 85.542 87.072 87.210 85.291 

4 78.160 81.331 85.146 88.582 88.129 82.795 82.363 95.266 

5 80.371 80.666 87.280 87.641 86.013 85.227 88.588 90.457 

6 79.649 81.089 86.391 88.059 87.858 84.617 84.977 92.054 

7 80.832 81.327 87.637 88.304 85.964 84.268 89.381 92.907 

8 80.398 81.150 87.037 87.949 87.505 85.529 86.577 90.695 

9 81.607 81.323 88.161 88.021 86.316 85.884 90.094 90.347 

10 80.962 81.384 87.499 87.942 87.369 86.640 87.633 89.328 

11 81.561 81.611 88.147 88.155 86.195 86.357 90.195 90.073 

12 81.503 82.191 87.923 88.793 87.280 85.117 88.583 92.815 

13 81.803 82.594 88.323 88.970 86.228 85.854 90.529 92.336 

14 81.714 82.605 88.087 88.927 87.259 86.162 88.938 91.881 

15 82.191 82.590 88.588 88.916 86.366 86.163 90.934 91.857 

16 81.876 82.594 88.220 88.915 87.184 86.187 89.285 91.826 

17 82.237 82.578 88.606 88.897 86.460 86.225 90.868 91.745 

18 81.738 82.628 88.149 88.941 86.987 86.181 89.347 91.888 

19 82.156 82.670 88.566 88.969 86.342 86.207 90.915 91.922 

20 82.144 82.832 88.422 89.036 87.186 86.535 89.701 91.690 

21 82.164 82.836 88.577 89.059 86.316 86.411 90.970 91.887 

22 82.079 82.797 88.402 89.040 87.010 86.343 89.842 91.918 

23 82.313 82.747 88.677 89.008 86.375 86.308 91.108 91.887 

24 82.229 82.893 88.510 89.100 87.026 86.409 90.053 91.973 

25 82.436 83.004 88.753 89.168 86.466 86.494 91.171 92.018 

26 82.233 83.031 88.543 89.165 86.843 86.646 90.317 91.840 

27 82.594 83.123 88.870 89.224 86.465 86.700 91.419 91.907 

28 82.432 83.127 88.663 89.219 87.026 86.750 90.369 91.841 

29 82.432 83.127 88.751 89.213 86.472 86.792 91.161 91.781 

30 82.275 83.108 88.600 89.216 86.682 86.675 90.609 91.917 

 



20 

 

 

Figure 3: Accuracy Curve of Bagging and Boosting based on no. of base classifier without Noise 

 

Figure 4: Accuracy Curve of Bagging and Boosting based on no. of base classifier with Noise 
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Table 3: Performance Measures of Bagging and Boosting based on Data Size without 

Noise 

Data 

Size (%) 

Accuracy F1-Measures Precision Recall 

Bagging Boosting Bagging Boosting Bagging Boosting Bagging Boosting 

10 82.035 84.214 88.079 89.938 88.342 86.861 87.859 93.276 

20 83.737 85.012 89.401 90.515 89.169 87.780 89.651 93.449 

30 84.101 84.920 89.585 90.405 89.452 87.763 89.728 93.235 

40 83.684 84.390 89.327 90.107 89.122 87.137 89.543 93.327 

50 83.354 84.840 89.087 90.393 88.869 87.301 89.315 93.743 

60 83.584 84.889 89.213 90.482 89.091 86.746 89.346 94.582 

70 84.174 85.280 89.615 90.710 89.327 87.094 89.917 94.644 

80 84.383 85.231 89.742 90.669 89.633 87.230 89.857 94.407 

90 84.210 85.244 89.626 90.682 89.545 87.210 89.712 94.449 

 

Table 4: Performance measures of Bagging and Boosting based on Data Size with Noise 

Data 

Size (%) 

Accuracy F1-Measures Precision Recall 

Bagging Boosting Bagging Boosting Bagging Boosting Bagging Boosting 

10 79.362 81.174 86.471 87.787 85.789 86.197 87.233 89.527 

20 80.098 81.203 87.058 88.248 86.725 84.635 87.429 92.245 

30 79.955 80.252 86.914 87.283 86.566 85.745 87.276 88.896 

40 79.638 81.304 86.666 88.229 86.543 84.832 86.791 91.947 

50 80.178 80.878 87.007 87.734 86.810 85.727 87.209 89.876 

60 80.052 80.743 86.881 87.477 86.815 86.456 86.953 88.533 

70 81.068 81.603 87.552 88.115 87.406 86.504 87.703 89.802 

80 81.308 81.384 87.752 87.942 87.419 86.640 88.094 89.328 

90 81.231 81.842 87.671 88.330 87.567 86.369 87.780 90.457 
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Figure 5: Accuracy bar graph of Bagging and Boosting based on data size without Noise 

 

Figure 6: Accuracy bar graph of Bagging and Boosting based on data size with Noise 
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4.3 Results Analysis 

The result of bagging and boosting algorithms has been analyzed by Accuracy, F1-

Measure, Precision, and Recall parameters value with Adult dataset. 

From table 1 for dataset without noise, accuracy percentage of bagging ranges from 

78.7 - 84.8 and boosting ranges from 76.1 - 85.4. Also the percentage of Precision, 

Recall value and F1-measure of bagging ranges from 87.8 - 91.0, 79.9 - 92.3 and 85.1 

- 90.2 respectively. And for boosting the results are 76.1 - 88.0, 93.2 - 100, and 86.4 - 

90.7 accordingly. Results show that Accuracy, Recall and F1-measure have greater 

value for boosting. In terms of Precision bagging has higher value. 

From Table 2 for dataset with noise, Accuracy, Recall and F1-measure of boosting 

have higher percentage ranges from 76.0 - 83.1, 85.2 - 100 and 86.1 - 89.2 

respectively. Whereas bagging has higher precision value ranges from 84.9 - 89.0 in 

percentage. 

From Table 3, with various data size without noised dataset the boosting has higher 

value of the Accuracy, Recall and F1-measure in terms of percentages ranges from 

84.2 - 85.3, 93.2 - 94.6 and 89.9 - 90.6 respectively. Also the precision has higher 

value for the bagging ranges from 88.3 - 89.6 percentages. 

From Table 4, with noised dataset the percentage values of accuracy, recall and F1-

Measure of boosting has higher value ranges from 80.2 - 81.8, 88.5 - 92.2 and 87.2 - 

88.3 respectively. Also the Precision has higher value for the bagging ranges from 

85.7 - 87.5 percentages. 
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Chapter 5: 

Conclusion and Future Recommendation 

5.1 Conclusion 

An ensemble learning algorithm that is bagging algorithm and boosting algorithm 

have been studied and implemented as well. The Adult dataset is chosen for the study. 

The algorithms are implemented and analyzed with different performance evaluation 

parameters to determine better algorithm.  

From the obtained results, it can be concluded that in case of number of classifiers 

(>10) boosting algorithm outperforms over bagging algorithm in terms of accuracy, 

F1-measure, and recall for dataset with and without noise. It is due to the fact that 

boosting gives high preferences to misclassified data to reduce error iteratively by 

assigning higher weight for those classified data. Although in terms of precision value 

bagging is better. On the basis of different data size the obtained results of accuracy, 

F1-measure, and recall for dataset having noise and without noise shows that boosting 

performs better than that of bagging. Whereas in case of precision bagging 

outperforms than boosting. 

 

5.2 Future Recommendation 

In this work, decision tree algorithm is used as base classifier in bagging and weak 

learner in boosting. Different machine learning classification algorithm such as Naïve 

Bayes Classifier, CART (Classification And Regression Trees) etc. can be used to 

ensemble such base/weak classifiers. Also Parameter tuning like k-fold cross 

validation can be used in near future. 
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Appendix A 

 

Sample Dataset 

age 

 

workclass  fnlwgt 

 

education 

 

education-

num 

 

marital-

status 

 

occupation 

 

relationship  race  sex 

 

capital-

gain 

 

capital-

loss 

 

hours-

per-

week 

 native-

country 

 

income 

39  State-gov 77516 

 

Bachelors 13 

 Never-

married 

 Adm-

clerical 

 Not-in-

family  White  Male 2174 0 40 

 United-

States 

 

<=50K 

50 

 Self-

emp-not-

inc 83311 

 

Bachelors 13 

 

Married-

civ-

spouse 

 Exec-

managerial  Husband  White  Male 0 0 13 

 United-

States 

 

<=50K 

38  Private 215646  HS-grad 9 

 

Divorced 

 Handlers-

cleaners 

 Not-in-

family  White  Male 0 0 40 

 United-

States 

 

<=50K 

53  Private 234721  11th 7 

 

Married-

civ-

spouse 

 Handlers-

cleaners  Husband  Black  Male 0 0 40 

 United-

States 

 

<=50K 

28  Private 338409 

 

Bachelors 13 

 

Married-

civ-

spouse 

 Prof-

specialty  Wife  Black 

 

Female 0 0 40  Cuba 

 

<=50K 



 

28 

 

37  Private 284582  Masters 14 

 

Married-

civ-

spouse 

 Exec-

managerial  Wife  White 

 

Female 0 0 40 

 United-

States 

 

<=50K 

49  Private 160187  9th 5 

 

Married-

spouse-

absent 

 Other-

service 

 Not-in-

family  Black 

 

Female 0 0 16 

 

Jamaica 

 

<=50K 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

37  Private 280464 

 Some-

college 10 

 

Married-

civ-

spouse 

 Exec-

managerial  Husband  Black  Male 0 0 80 

 United-

States  >50K 

30  State-gov 141297 

 

Bachelors 13 

 

Married-

civ-

spouse 

 Prof-

specialty  Husband 

 Asian-

Pac-

Islander  Male 0 0 40  India  >50K 
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Appendix B 

 

Source Code 

import numpy as np 

import pandas as pd 

from sklearn import model_selection 

import category_encoders as ce 

from sklearn.ensemble import BaggingClassifier 

from sklearn import tree 

from sklearn.ensemble import AdaBoostClassifier 

from sklearn.model_selection import train_test_split, cross_validate 

 

split=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] 

seed=7 

kfold = model_selection.KFold(n_splits=10, random_state=seed) 

for s in split: 

  model1 = BaggingClassifier(tree.DecisionTreeClassifier(random_state=1), 

n_estimators=10) 

    results1 = cross_validate(model1, X_train, y_train, cv=kfold, scoring=['accuracy', 

'precision', 'recall', 'f1'])  

  model2 = AdaBoostClassifier(random_state=1, n_estimators=10) 

    results2 = cross_validate(model2, X_train, y_train, cv=kfold,scoring=['accuracy', 

'precision', 'recall', 'f1'])  

 

n_est=range(1, 31) 

for bc in n_est: 

model3 = BaggingClassifier(tree.DecisionTreeClassifier(random_state=1), 

n_estimators=bc) 

    results3 = cross_validate(model3, X_train, y_train, cv=kfold, scoring=['accuracy', 

'precision', 'recall', 'f1'])  
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    model4 = AdaBoostClassifier(random_state=1, n_estimators=bc)   

    results4 = cross_validate(model4, X_train, y_train, cv=kfold, scoring=['accuracy', 

'precision', 'recall', 'f1'])  


