

Tribhuvan University

Institute of Science and Technology

Comparative Analysis on Ensemble Learning: Bagging and Boosting

Dissertation

Submitted to

Central Department of Computer Science and Information Technology

Kirtipur, Kathmandu, Nepal

In Partial Fulfillment of the Requirements

For the Master's Degree in Computer Science and Information Technology

By

Bhoj Raj Adhikari

T.U Registration No: 5-2-33-20-2011

T.U. Examination Roll No: 305/073

January, 2020

Supervisor

Mr. Bikash Balami

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Student's Declaration

I hereby declare that I am the only author of this work and no sources other than listed here

have been used in this work.

Bhoj Raj Adhikari

Date: January, 2020

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Supervisor's Recommendation

I hereby recommend that this dissertation is prepared under my supervision by Mr. Bhoj Raj

Adhikari entitled "Comparative Analysis on Ensemble Learning: Bagging and

Boosting" be accepted as in fulfilling partial requirement for the completion of Master’s

Degree of Science in Computer Science and Information Technology.

Asst. Prof. Bikash Balami

Central Department of Computer Science and Information Technology

Tribhuvan University, Kathmandu Nepal

(Supervisor)

Date: January, 2020

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

LETTER OF APPROVAL

We certify that, we have read this dissertation and in our opinion it is satisfactory in the scope

and quality as a dissertation in partial fulfillment for the requirement of Master's Degree in

Computer Science and Information Technology.

Evaluation Committee

 ________________________ ______________________

Asst. Prof. Bikash Balami Asst. Prof. Nawaraj Paudel

Central Department of Computer Science & Head of Department

Information Technology Central Department of Computer Science &

 Tribhuvan University Information Technology

 (Supervisor) Tribhuvan University

____________________ ____________________

 External Examiner Internal Examiner

i

Acknowledgement

Firstly, I would like to express my sincere gratitude to my respected teacher as well as

my research supervisor, Mr. Bikash Balami, Assistant Professor, Central Department

of Computer Science & Information Technology (CDCSIT), Tribhuvan University for

boosting my morale with his valuable suggestions and strong guidelines throughout

this research work in tackling with various difficulties. Without his assistance and

dedicated involvement in every step throughout the process, this research work would

have never been accomplished.

I would also like to express warm thanks to respected Head of Department Asst. Prof.

Nawaraj Paudel for providing me favorable environment in conducting the research. I

am sincerely grateful to entire group of Professors, Lecturers of the Department for

their valued inspiration and encouragement.

I would like to express my sincere thanks to my colleagues Mr. Bikash Regmi,

Kshitiz Bhatt, Sushil Banstola and all my well-wishers who directly and indirectly

helped me to complete this work.

Last but not least I must express my very profound gratitude to Sister Boma Adhikari

and my parents for providing me with unfailing support and continuous

encouragement through the process of writing this thesis.

Bhoj Raj Adhikari

CDCSIT, TU

ii

Abstract

Combine the prediction from multiple models to improve the overall performance of

model is an ultimate task of Ensemble learning. Bagging and Boosting are two widely

used ensemble learning techniques works based on numbers of classifiers

combination to aggregate prediction. Performance of single classifier has limitation

due to noise, bias and variance in dataset. By applying divide and conquer approach

on ensemble methods helps to minimize those limitation which ultimately leads to

performance improvement. Bagging is a bootstrap aggregation while boosting

attempts to fit a sequence of weak learner's models to build a strong classifier. The

performance of bagging and boosting has been analyzed on the basis of Accuracy,

Precision, Recall and F1-Measures for Adult dataset with and without noise. The

Gaussian noise distribution has used for noise addition on dataset due to CLT. The

results show that on the basis of Accuracy, Recall, F1-Measures boosting outperforms

bagging whereas in terms of Precision, bagging has better result.

Keywords: Ensemble Learning, Bagging, Boosting, Gaussian Noise

iii

Table of Contents

Acknowledgement .. i

Abstract .. ii

List of Tables ... v

List of Figures ... vi

List of Abbreviations ... vii

Chapter 1: ... 1

Introduction .. 1

1.1 Bagging Classifier ... 2

1.2 Boosting Classifier .. 2

1.3 Problem Definition .. 3

1.4 Objectives of Thesis .. 3

1.5 Limitation of Thesis .. 3

1.6 Thesis Organization ... 3

Chapter 2: ... 5

Background Study and Literature Review ... 5

2.1 Background Study ... 5

2.2 Literature Review .. 5

Chapter 3: ... 8

Methodology .. 8

3.1 Bagging Classifier ... 8

3.2 Boosting Classifier .. 9

3.3 Implementation Method .. 11

3.3.1 Bagging and Boosting Classifier Implementation 11

3.4 Data Collection .. 12

3.5 Data Preprocessing .. 12

iv

3.6 Noise Addition: ... 12

3.7 Performance Evaluation Measures .. 13

Chapter 4: ... 15

Implementation and Analysis .. 15

4.1 Implementation Tools ... 15

4.1.1 Python Programming Language .. 15

4.1.2 Anaconda ... 15

4.1.3 Spyder IDE... 16

4.1.4 Sicikit-learn .. 16

4.1.5 Category Encoders ... 16

4.1.6 Matplotlib ... 16

4.2 Testing Environment ... 17

4.3 Results Analysis .. 23

Chapter 5: ... 24

Conclusion and Future Recommendation .. 24

5.1 Conclusion ... 24

5.2 Future Recommendation ... 24

REFERENCES .. 25

Appendix A .. 27

Appendix B .. 29

v

List of Tables

Table 1: Performance Measures of Bagging and Boosting based on no. of Classifier

without Noise ... 18

Table 2: Performance Measures of Bagging and Boosting based on no. of Classifier

with Noise .. 19

Table 3: Performance Measures of Bagging and Boosting based on Data Size without

Noise .. 21

Table 4: Performance measures of Bagging and Boosting based on Data Size with

Noise .. 21

vi

List of Figures

Figure 1: Bagging Processing .. 9

Figure 2: Boosting Processing ... 11

Figure 3: Accuracy Curve of Bagging and Boosting based on no. of base classifier

without Noise ... 20

Figure 4: Accuracy Curve of Bagging and Boosting based on no. of base classifier

with Noise .. 20

Figure 5: Accuracy bar graph of Bagging and Boosting based on data size without

Noise .. 22

Figure 6: Accuracy bar graph of Bagging and Boosting based on data size with Noise

.. 22

vii

List of Abbreviations

CLT Central Limit Theorem

FN False Negative

FP False Positive

IDE Integrated Development Environment

OCR Optical Character Recognition

SL Strong Learner

SMT Statistical Machine Translation

SVM Support Vector Machine

TN True Negative

TP True Positive

WL Weak learner

1

Chapter 1:

Introduction

An ensemble is the art of combining a diverse set of individual learners/models

together to improvise the stability and predictive power of the model. Ensemble

learning techniques attempt to make the performance of the predictive models better

by improving their accuracy. Ensemble basically trains a large number of models and

then combines the predictions to come to a conclusion. The method of combining the

classifiers depend upon the choice of models trained. Training a bunch of models and

taking their result by using combining schema is a principal approach of Ensemble

learning. This approach allows the production of better predictive performance

compared to a single model.

It is a procedure where multiple learner modules are applied on a dataset to extract

multiple predictions, which are then combined into one composite prediction. The

learning process is commonly broken down into two tasks as constructing a set of

base learners from the training data and combining some or all of these models to

form a unified prediction model. Ensemble methods attempt to improve forecasting

bias and reducing variance by providing critical boost to forecasting abilities and

decision-making accuracy. Where, Bias is a source of error in a model that causes it to

over-generalize and underfit the data whereas variance is sensitivity to noise in the

data that causes a model to over-fit. It is useful when there is uncertainty in choosing

the best prediction model and when it is critical to avoid large prediction errors [16].

Multiple classifier systems, also called ensemble learning have proven themselves to

be very effective and extremely versatile in a broad spectrum of problem domains and

real-world applications. Originally developed to reduce the variance thereby

improving the accuracy of an automated decision-making system, ensemble systems

have since been successfully used to address a variety of machine learning problems

[13]. Combining outputs from multiple classifiers, known as ensemble learning, is one

of the standard and most important techniques for improving classification accuracy

in machine learning [3].

2

1.1 Bagging Classifier

Bagging refers to bootstrap aggregation i.e. repeating the sample with replacement

and perform aggregation of results to be precise, which is a general-purpose

methodology to reduce the variance of models. It is an ensemble meta-estimator that

fits base classifiers each on random subsets of the original dataset and then aggregates

their individual predictions either by voting or by averaging to form a final prediction.

Each base classifier is trained in parallel with a training set which is generated by

randomly drawing, with replacement, N data from the original training dataset, where

N is the size of the original training set. The training set for each of the base

classifiers is independent of each other. Bagging reduces overfitting (variance) by

averaging or voting, however this leads to an increase in bias which is compensated

by the reduction in variance though [8].

1.2 Boosting Classifier

Boosting is an ensemble modeling technique which attempts to build a strong

classifier from the number of weak classifiers. The main principle of boosting is to fit

a sequence of weak learner's models that are only slightly better than random guessing

i.e. it is able to convert weak learners to strong learners. First, a model is built from

the training data. Then the second model is built which tries to correct the errors

present in the first model. This procedure is continued and models are added until

either the complete training dataset is predicted correctly or the maximum numbers of

models are added. Boosting being a sequential process, each subsequent model

attempts to correct the errors of the previous model.

It is a machine learning method based on the idea that a combination of weak learner

can perform better than any of the simple classifiers alone. A weak learner (WL) is a

learning algorithm capable of producing classifiers with probability of error strictly

less than that of random guessing (0.5, in the binary case) where strong learner (SL) is

able to yield classifiers with arbitrarily small error probability [6]. The algorithm

process accordingly:

Step 1: Base Learning combines each distribution and applies equal weight to them.

Step 2: If any prediction occurs during the first base learning algorithm then pay high

attention to that prediction error.

3

Step 3: Repeat step 2 until the limit of Base Learning algorithm has been reached or

high accuracy.

Step 4: Finally, it combines the entire weak learner to create one strong prediction

true.

1.3 Problem Definition

Due to instability of single classifier it does not preforms well for all dataset.

Generally, Single classifier performs better only when having large number of data.

For neural learning technique, such models give good accuracy only with good

parameters like number of hidden layers, activation function, and number of nodes in

each layer etc. The advantage of using Ensemble model over single classifier is to

improve the accuracy of algorithm as well as it is able to provide high stability for all

type of dataset. The choice of Bagging and Boosting classifier over the rest is that it

works based on combining schema.

1.4 Objectives of Thesis

The main objective of thesis is

 To analyze the performance and to determine the accuracy level of Bagging

and Boosting algorithm.

 To determine the accuracy level of both the algorithms with and without

noised dataset based on different number of base classifiers.

1.5 Limitation of Thesis

Although Ensemble learning classifier are Bagging, Boosting and stacking; the

comparative analysis has been performed on only Bagging and Boosting classifier. It

is due to the fact that these classifier techniques perform based on homogeneous base

classifier. Whereas stacking classifier performs as heterogeneous base classifier. I.e. it

works on different base classifier so the exact classifier numbers cannot be predicted.

So, comparative analysis of all classifier altogether is not suitable.

1.6 Thesis Organization

The organization of this thesis is as follows:

Chapter 1 describes the introduction, problem statement and objectives.

4

Chapter 2 describes the literature review of the existing researchers related to

Ensemble Learning: Bagging and Boosting.

Chapter 3 describes the algorithm and methodology of the Bagging and Boosting

algorithms

Chapter 4 contains the implementation overview of the algorithms with result

analysis.

Chapter 5 concludes the conclusion of thesis works.

5

Chapter 2:

Background Study and Literature Review

2.1 Background Study

In 1990, the first boosting procedure was proposed by Schapire [15], where the key

result is that weak and strong learnability are equivalent, in the sense that strong

learning can be performed by combining WLs. Bagging is application of bootstrap

procedure for having high-variance machine learning algorithm.it is a predictors for

generating an aggregated predictor.

2.2 Literature Review

In [2], testing on real and simulated datasets using classification and regression trees

and subset selection in linear regression show that bagging can give substantial gains

in accuracy. The vital element in the instability of the prediction method is basically

using single classifier. If perturbing the learning set can cause significant changes in

the predictor constructed, then bagging can improve accuracy.

In [12], the bagging and boosting with neural network and decision trees algorithm as

base classifier was evaluated. The result shows that Bagging is almost always more

accurate than a single classifier, it is sometimes much less accurate than Boosting.

Meanwhile, Boosting can create ensembles that are less accurate than a single

classifier – especially when using neural networks.

In [5], the test and training error curves in an optical character recognition (OCR)

problem as both a function of training set size and computational cost using neural-

based ensemble technique was implemented.

In [1], the purpose of the study is to improve the understanding of why and when

these algorithms, which use perturbation, reweighting, and combination techniques,

affect classification error. By providing a bias and variance decomposition of the error

shows how different methods and variants influence these two terms. The result

shows that Bagging reduced variance of unstable methods, while boosting methods

reduced both the bias and variance of unstable methods but increased the variance for

Naive-Bayes, which was very stable. The voting methods lead large and significant

reductions in the mean-squared errors.

6

In [14], the revision of the classifier selection methodology and evaluates the practical

applicability of diversity measures in the context of combining classifiers by majority

voting. A number of search algorithms are proposed and adjusted to work properly

with a number of selection criteria including majority voting error and various

diversity measures. The algorithms used a binary vector of classifier incidences,

indicating exclusion (0) or inclusion (1) of the classifier in the combination, as a

representation of the selection solution. Furthermore, a diversifying operator was

applied to the populations of solutions, which prevented duplication of the same

combinations found as a result of the search algorithms. The majority voting has then

been applied to the best combinations returned by the algorithms and provided the

basis for the assessment of different diversity measures used as selection criteria. The

result shows that the better the correlation between the measure (selection criterion)

and the combiner performance, the higher the performance of the selected

combinations with optimal results.

In [10], to improve the limited classification performance of the real SVM, SVM

ensemble with bagging or boosting has been proposed. In bagging, each individual

SVM is trained independently using the randomly chosen training samples via a

bootstrap technique. In boosting, each individual SVM is trained using the training

samples chosen according to the sample’s probability distribution that is updated in

proportional to the errorless of the sample. Various simulation results for the IRIS

data classification and the hand-written digit recognition, and the fraud detection

shows that the proposed SVM ensemble with bagging or boosting outperforms a

single SVM in terms of classification accuracy greatly.

In [17], this paper has examined techniques for combining simple ensemble learning

approaches with the aim of exploring the relationship between ensemble member

diversity and ensemble error. The results strongly support the proposition that

combining effective ensemble learning strategies is conducive to reducing test error.

In [11], the evaluation of both neural networks and decision tree classification

algorithms has been studied. The result shows that even though Bagging almost

always produces a better classifier than any of its individual component classifiers and

is relatively impervious to overfitting, it does not generalize any better than a baseline

neural-network ensemble method. Also result shows that Boosting is a powerful

7

technique that can usually produce better ensembles than Bagging although it is more

susceptible to noise and can quickly overfit a dataset.

In [4], the effectiveness of randomization, bagging, and boosting for improving the

performance of the decision-tree algorithm was proposed. The experiment shows that

in situations with little or no classification noise, randomization is competitive with

bagging but not as accurate as boosting. In situations with substantial classification

noise, bagging is much better than boosting, and sometimes better than

randomization.

In [7], the demonstration of AdaBoost in many settings to improve the performance of

a learning algorithm was implemented. When starting with relatively simple

classifiers, the improvement can often lead to a composite classifier that outperforms

more complex “one-shot” learning algorithm. For non-binary classification problems,

boosting simple classifiers can only be done effectively if the more sophisticated

pseudo-loss is used. Boosting combined with a complex algorithm may give the

greatest improvement in performance when there is a reasonably large amount of data

available.

In [18], to address the issue of building a strong translation system using a group of

weak translation systems generated from a single SMT (statistical machine

translation) engine using a Bagging/Boosting-based approach was proposed. The

experimental result shows that this approach is very useful in improving the

translation accuracy of three state-of-the-art SMT systems, including a phrase-based

system, a hierarchical phrase-based system and a syntax-based system.

8

Chapter 3:

Methodology

3.1 Bagging Classifier

Bagging is one of the Ensemble construction techniques which is also known as

Bootstrap Aggregation. Bootstrap is a sampling technique in which selects the “n”

observations out of a population of “n” observations with replacement. It is the

foundation of bagging technique. The selection process of training tuples among

dataset is random. i.e., each observation can be chosen from the original population so

that each observation is equally likely to be selected in each iteration of the

bootstrapping process.

After the bootstrapped samples are formed, separate models are trained with the

bootstrapped samples. In real experiments, the bootstrapped samples are drawn from

the training set, and the sub-models are tested using the testing set. The final output

prediction is combined across the projections of all the sub-models [8].

Algorithm 1: Bagging

Inputs:

Training data { } , { };

Supervised learning algorithm (Base Classifier);

Integer T specifying ensemble size;

Percent R to create bootstrapped training data.

Do t = 1, ..., T

1. Take a bootstrapped replica by randomly drawing R% of S.

2. Call Base Classifier with and receive the hypothesis (classifier) .

3. Add to the ensemble, .

End

Ensemble Combination: Simple Majority Voting - Given unlabeled instance x

1. Evaluate the ensemble { } on x.

9

2. Let if chooses class , and 0 otherwise.

3. Obtain total vote received by each class:

 ∑

 , c = 1, 2, …, C

Output: Class with the highest

Process Flow Diagram:

Train Data

T1 T2 Tm Bootstrapping

C1 C2 Cm Base Classifier

P1 P2 Pm PredictionsTest Data

Voting Majority Voting

P Final Prediction

Figure 1: Bagging Processing

3.2 Boosting Classifier

Boosting is a form of sequential learning technique. The algorithm works by training

a model with the entire training set, and subsequent models are constructed by fitting

the residual error values of the initial model. It attempts to give higher weight to those

observations that were poorly estimated by the previous model. Once the sequence of

the models is created the predictions made by models are weighted by their accuracy

scores and the results are combined to create a final estimation [6].

10

Algorithm 2: Boosting

Inputs:

Training data S = { } , { };

Supervised learning algorithm (Base Classifier);

Integer T specifying ensemble size.

Initialize:

 .

Do t = 1, ..., T

1. Draw training subset from the distribution Dt.

2. Train Base Classifier on , receive hypothesis

3. Calculate the error of :

 ∑

4. Calculate weight of :

5. Update sampling distribution:

 is a normalization factor, such that ∑

End

Weighted Majority Voting: Given unlabeled instance z, obtain total vote received by

each class

 ∑

 ,

Output:

Class with the highest .

11

Process Flow Diagram:

Train Sample 1 Train Sample 2

C1 C2 Cm Base Classifier

P1 P2 Pm
PredictionsTest Data

Weighted Majority Voting Weighted Majority

Voting

P
Final Prediction

Train Sample m

Adjusted weighted

Train Data
Weighted train data

Adjusted weighted

Train Data

 Figure 2: Boosting Processing

3.3 Implementation Method

Three strategies need to be chosen to building an effective ensemble system. The

three pillars of ensemble systems are:

 Data sampling/selection;

 Training member classifiers; and

 Combining classifiers.

3.3.1 Bagging and Boosting Classifier Implementation

Decision Tree Algorithm as Base Classifier used for Bagging and Boosting classifier.

i. Data preprocessing

ii. Apply Bagging classifier described in sec.5.1 using Ten-fold cross-validation.

Or

iii. Apply Boosting Classifier described in sec.5.2 using Ten-fold cross-

validation.

12

3.4 Data Collection

For this study a labeled dataset as Adult dataset
1
 (see sampled dataset in Appendix A):

standard datasets for machine learning available at UCI machine learning repository is

taken. And dataset Extraction was done by Barry Becker from the 1994 Census

database. The dataset is designed to determine whether a person makes over 50K a

year by using a class label as >50K & <=50K. It contains 14 independent and one

dependent variable as Age, workclass, fnlwgt, education, education-num, marital-

status, occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week,

native-country and income respectively with 48842 instances.

3.5 Data Preprocessing

Before data feeding to model transformation should be applied on dataset according to

algorithm and needs. Whenever the data is gathered from different sources it is

collected in raw format which might not be feasible for the analysis. Data

Preprocessing is a technique that is used to convert the raw data into a clean dataset.

Dataset should be transformed in such a way that more than one Machine Learning

algorithms are executed in a dataset and best among them is chosen.

The quality of data and the useful information that can be derived from data

preprocessing has direct impact over the ability of model to learn. So before feeding

the dataset it has to be preprocessed accordingly as handling Null values,

Standardization, Handling categorical variable, Noise addition.

3.6 Noise Addition:

To implement both the algorithm in a noise is added in the dataset by using the

Gaussian noise distribution method. It is a statistical noise having probability density

function equal to that of the normal distribution, also known as the Gaussian

distribution [19].

 √

 (
)

1
 https://archive.ics.uci.edu/ml/datasets/Adult

https://archive.ics.uci.edu/ml/datasets/Adult

13

Where μ is the mean or expectation, σ
2
 is the variance.

The distribution with μ=0 and σ
2
=1 is called the standard normal distribution or the

unit normal distribution. It is widely used distribution function because of the CLT

(Central Limit Theorem).

3.7 Performance Evaluation Measures

The analysis of both the algorithms has been measured with various parameters as

Accuracy, Precision, F1-measure and Recall. This ultimately helps to choose the

better one among both algorithms. All the parameter values are computed based on

Confusion matrix as true positive (TP), True Negative (TN), False Positive (FP) and

False Negative (FN). TP and TN are the correctly predicted positive values and

correctly predicted negative values respectively. FP and FN are the total number of

data when actual class is No and predicted class is Yes and when actual class is Yes

and predicted class is No respectively.

Accuracy:

It is a ratio of correctly predicted observation to the total observations. It is the most

intuitive quality performance measures for the effectiveness of the machine learning

model [9]. Higher the accuracy betters the model.

Mathematically it is calculated as:

Precision:

Precision is the ratio of correctly predicted positive observations to the total predicted

positive observations. It highlights the correct positive predictions out of all the

positive predictions. High precision indicates low false positive rate. Higher the

precision better the results and measured [9] as:

Recall (Sensitivity):

Recall is the ratio of correctly predicted positive observations to the all observations

in actual class. Recall highlights the sensitivity of the algorithm. It is the ability of the

classifier to find all the positive samples.

14

Mathematically [9] calculated as:

F1-Measure:

F1 Score is the weighted average of Precision and Recall. Therefore, this score takes

both false positives and false negatives into account. It tells how precise the classifier

is i.e. how many instances it classifies correctly, and how robust it is i.e. it does not

miss a significant number of instances. With high precision but low recall, the

classifier is extremely accurate, but it misses a significant number of instances that are

difficult to classify [9]. It is calculated as:

15

Chapter 4:

Implementation and Analysis

4.1 Implementation Tools

4.1.1 Python Programming Language

Python is a multi-paradigm, easy to learn and powerful programming language.

Python is an interpreter, high-level, general-purpose programming language. Created

by Guido van Rossum and first released in 1991. It lets system more quickly,

integrated and effective. It has efficient high-level data structures and a simple but

effective approach to object-oriented programming. Python’s elegant syntax and

dynamic typing, together with its interpreted nature, make it an ideal language for

scripting and rapid application development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available. The

Python interpreter is easily extended with new functions and data types implemented

in C, C++ or other languages callable from C. Python is also suitable as an extension

language for customizable applications. Python uses dynamic typing and a

combination of reference counting and a cycle-detecting garbage collector for

memory management. It also features dynamic name resolution (late binding), which

binds method and variable names during program execution.

4.1.2 Anaconda

Anaconda is a free, multiplatform and open-source distribution of the Python and R

programming languages for scientific computing as data science, machine learning

applications, large-scale data processing, predictive analytics, etc., that aims to

simplify package management and deployment. Package versions are managed by the

package management system Conda. It analyses the current environment including

everything currently installed and together with any version limitations specified.

With over 15 million users worldwide, it is the industry standard for developing,

testing, and training on a single machine, enabling individual data scientists. It has

more than 1,500 Python/R data science packages. It Manage libraries, dependencies,

environments with Conda and also develop and train machine learning and deep

learning models with scikit-learn, TensorFlow, and Theano.

16

4.1.3 Spyder IDE

Spyder is an open source cross-platform integrated development environment (IDE)

for scientific programming in the Python language. Initially created and developed by

Pierre Raybaut in 2009, since 2012 Spyder has been maintained and continuously

improved by a team of scientific Python developers and the community. it is a

powerful scientific environment written in Python, for Python, and designed by and

for scientists, engineers and data analysts. It features a unique combination of the

advanced editing, analysis, debugging, and profiling functionality of a comprehensive

development tool with the data exploration, interactive execution, deep inspection,

and beautiful visualization capabilities of a scientific package.

Spyder integrates with a number of prominent packages in the scientific Python stack,

including NumPy, SciPy, Matplotlib, pandas, IPython, SymPy and Cython, as well as

other open source software. Beyond its many built-in features, Spyder’s abilities can

be extended even further via its plugin system and API. It can also be used as a PyQt5

extension library, allowing you to build upon its functionality and embed its

components.

4.1.4 Sicikit-learn

Scikit-learn are a Python module integrating classic machine learning algorithms in

the tightly-knit scientific Python world (numpy, spicy, matplotlib). It aims to provide

simple and efficient solutions to learning problems accessible to everybody and

reusable in various contexts.

4.1.5 Category Encoders

It encodes categorical variables into numeric with different techniques. While ordinal,

one-hot and hashing encoders have similar equivalents in the existing scikit-learn

version. It is featured with dataframes, column configuration regardless of input type,

compatible with sklearn.

4.1.6 Matplotlib

Matplotlib is a Python 2D plotting library. It can be used in Python scripts,

IPython shells, Jupyter notebook, Spyder and web application server’s etc. it is used

for plots generation, histograms, power spectra, bar charts, scatterplots, etc.

http://ipython.org/
http://jupyter.org/

17

4.2 Testing Environment

The following hardware and software configuration was used to implement this thesis.

Hardware Specification:

• System : intel(R) Core(TM) i5-3210M CPU @2.50GHz

• Hard Disk : 500 GB.

• RAM : 8 GB.

Software Specification:

• Operating system : Windows 10 Pro

• Coding Language : Python

• Tools : Spyder 3.7

18

Table 1: Performance Measures of Bagging and Boosting based on no. of Classifier without Noise

No. of

Base

Classifier

Accuracy F1-Measure Precision Recall

Bagging Boosting Bagging Boosting Bagging Boosting Bagging Boosting

1 80.934 76.149 87.411 86.453 87.841 76.149 86.990 100.000

2 78.759 81.923 85.133 88.840 91.059 83.782 79.942 94.565

3 82.912 84.091 88.861 90.020 88.150 86.123 89.591 94.298

4 81.818 84.257 87.758 90.176 89.995 85.860 85.639 94.960

5 83.262 84.318 89.114 90.201 88.210 85.998 90.051 94.847

6 82.672 84.760 88.473 90.418 89.555 86.690 87.424 94.493

7 83.600 84.828 89.387 90.478 88.051 86.591 90.769 94.741

8 83.194 85.012 88.920 90.632 89.216 86.429 88.630 95.275

9 83.956 84.982 89.627 90.572 88.198 86.751 91.118 94.777

10 83.753 84.840 89.329 90.393 89.308 87.301 89.357 93.743

11 84.281 84.871 89.842 90.366 88.393 87.652 91.356 93.271

12 83.814 84.883 89.417 90.384 88.993 87.574 89.851 93.399

13 84.355 85.098 89.894 90.539 88.381 87.577 91.469 93.724

14 83.937 85.111 89.514 90.550 88.958 87.574 90.091 93.750

15 84.502 85.215 89.989 90.620 88.502 87.615 91.533 93.846

16 83.888 85.258 89.502 90.645 88.742 87.662 90.281 93.849

17 84.490 85.276 90.011 90.669 88.272 87.575 91.831 94.001

18 84.453 85.258 89.886 90.654 88.992 87.585 90.810 93.960

19 84.607 85.301 90.097 90.696 88.245 87.501 92.035 94.144

20 84.380 85.221 89.859 90.638 88.809 87.501 90.940 94.024

21 84.711 85.178 90.145 90.604 88.464 87.535 91.898 93.912

22 84.435 85.172 89.910 90.599 88.720 87.535 91.140 93.904

23 84.785 85.129 90.203 90.565 88.412 87.559 92.082 93.799

24 84.810 85.160 90.151 90.579 88.994 87.619 91.344 93.759

25 84.576 85.233 90.070 90.614 88.277 87.763 91.947 93.670

26 84.459 85.258 89.931 90.612 88.684 87.912 91.226 93.499

27 84.840 85.301 90.259 90.645 88.323 87.896 92.298 93.589

28 84.521 85.412 89.985 90.729 88.621 87.856 91.399 93.807

29 84.484 85.418 90.012 90.722 88.236 87.955 91.871 93.678

30 84.453 85.461 89.944 90.744 88.565 88.024 91.375 93.646

19

Table 2: Performance Measures of Bagging and Boosting based on no. of Classifier with Noise

No. of Base

Classifier

Accuracy F1-Measure Precision Recall

Bagging Boosting Bagging Boosting Bagging Boosting Bagging Boosting

1 77.008 76.021 84.851 86.376 84.995 76.021 84.709 100.000

2 73.906 78.747 81.357 86.132 89.021 85.451 74.910 86.861

3 79.069 79.177 86.366 86.159 85.542 87.072 87.210 85.291

4 78.160 81.331 85.146 88.582 88.129 82.795 82.363 95.266

5 80.371 80.666 87.280 87.641 86.013 85.227 88.588 90.457

6 79.649 81.089 86.391 88.059 87.858 84.617 84.977 92.054

7 80.832 81.327 87.637 88.304 85.964 84.268 89.381 92.907

8 80.398 81.150 87.037 87.949 87.505 85.529 86.577 90.695

9 81.607 81.323 88.161 88.021 86.316 85.884 90.094 90.347

10 80.962 81.384 87.499 87.942 87.369 86.640 87.633 89.328

11 81.561 81.611 88.147 88.155 86.195 86.357 90.195 90.073

12 81.503 82.191 87.923 88.793 87.280 85.117 88.583 92.815

13 81.803 82.594 88.323 88.970 86.228 85.854 90.529 92.336

14 81.714 82.605 88.087 88.927 87.259 86.162 88.938 91.881

15 82.191 82.590 88.588 88.916 86.366 86.163 90.934 91.857

16 81.876 82.594 88.220 88.915 87.184 86.187 89.285 91.826

17 82.237 82.578 88.606 88.897 86.460 86.225 90.868 91.745

18 81.738 82.628 88.149 88.941 86.987 86.181 89.347 91.888

19 82.156 82.670 88.566 88.969 86.342 86.207 90.915 91.922

20 82.144 82.832 88.422 89.036 87.186 86.535 89.701 91.690

21 82.164 82.836 88.577 89.059 86.316 86.411 90.970 91.887

22 82.079 82.797 88.402 89.040 87.010 86.343 89.842 91.918

23 82.313 82.747 88.677 89.008 86.375 86.308 91.108 91.887

24 82.229 82.893 88.510 89.100 87.026 86.409 90.053 91.973

25 82.436 83.004 88.753 89.168 86.466 86.494 91.171 92.018

26 82.233 83.031 88.543 89.165 86.843 86.646 90.317 91.840

27 82.594 83.123 88.870 89.224 86.465 86.700 91.419 91.907

28 82.432 83.127 88.663 89.219 87.026 86.750 90.369 91.841

29 82.432 83.127 88.751 89.213 86.472 86.792 91.161 91.781

30 82.275 83.108 88.600 89.216 86.682 86.675 90.609 91.917

20

Figure 3: Accuracy Curve of Bagging and Boosting based on no. of base classifier without Noise

Figure 4: Accuracy Curve of Bagging and Boosting based on no. of base classifier with Noise

21

Table 3: Performance Measures of Bagging and Boosting based on Data Size without

Noise

Data

Size (%)

Accuracy F1-Measures Precision Recall

Bagging Boosting Bagging Boosting Bagging Boosting Bagging Boosting

10 82.035 84.214 88.079 89.938 88.342 86.861 87.859 93.276

20 83.737 85.012 89.401 90.515 89.169 87.780 89.651 93.449

30 84.101 84.920 89.585 90.405 89.452 87.763 89.728 93.235

40 83.684 84.390 89.327 90.107 89.122 87.137 89.543 93.327

50 83.354 84.840 89.087 90.393 88.869 87.301 89.315 93.743

60 83.584 84.889 89.213 90.482 89.091 86.746 89.346 94.582

70 84.174 85.280 89.615 90.710 89.327 87.094 89.917 94.644

80 84.383 85.231 89.742 90.669 89.633 87.230 89.857 94.407

90 84.210 85.244 89.626 90.682 89.545 87.210 89.712 94.449

Table 4: Performance measures of Bagging and Boosting based on Data Size with Noise

Data

Size (%)

Accuracy F1-Measures Precision Recall

Bagging Boosting Bagging Boosting Bagging Boosting Bagging Boosting

10 79.362 81.174 86.471 87.787 85.789 86.197 87.233 89.527

20 80.098 81.203 87.058 88.248 86.725 84.635 87.429 92.245

30 79.955 80.252 86.914 87.283 86.566 85.745 87.276 88.896

40 79.638 81.304 86.666 88.229 86.543 84.832 86.791 91.947

50 80.178 80.878 87.007 87.734 86.810 85.727 87.209 89.876

60 80.052 80.743 86.881 87.477 86.815 86.456 86.953 88.533

70 81.068 81.603 87.552 88.115 87.406 86.504 87.703 89.802

80 81.308 81.384 87.752 87.942 87.419 86.640 88.094 89.328

90 81.231 81.842 87.671 88.330 87.567 86.369 87.780 90.457

22

Figure 5: Accuracy bar graph of Bagging and Boosting based on data size without Noise

Figure 6: Accuracy bar graph of Bagging and Boosting based on data size with Noise

23

4.3 Results Analysis

The result of bagging and boosting algorithms has been analyzed by Accuracy, F1-

Measure, Precision, and Recall parameters value with Adult dataset.

From table 1 for dataset without noise, accuracy percentage of bagging ranges from

78.7 - 84.8 and boosting ranges from 76.1 - 85.4. Also the percentage of Precision,

Recall value and F1-measure of bagging ranges from 87.8 - 91.0, 79.9 - 92.3 and 85.1

- 90.2 respectively. And for boosting the results are 76.1 - 88.0, 93.2 - 100, and 86.4 -

90.7 accordingly. Results show that Accuracy, Recall and F1-measure have greater

value for boosting. In terms of Precision bagging has higher value.

From Table 2 for dataset with noise, Accuracy, Recall and F1-measure of boosting

have higher percentage ranges from 76.0 - 83.1, 85.2 - 100 and 86.1 - 89.2

respectively. Whereas bagging has higher precision value ranges from 84.9 - 89.0 in

percentage.

From Table 3, with various data size without noised dataset the boosting has higher

value of the Accuracy, Recall and F1-measure in terms of percentages ranges from

84.2 - 85.3, 93.2 - 94.6 and 89.9 - 90.6 respectively. Also the precision has higher

value for the bagging ranges from 88.3 - 89.6 percentages.

From Table 4, with noised dataset the percentage values of accuracy, recall and F1-

Measure of boosting has higher value ranges from 80.2 - 81.8, 88.5 - 92.2 and 87.2 -

88.3 respectively. Also the Precision has higher value for the bagging ranges from

85.7 - 87.5 percentages.

24

Chapter 5:

Conclusion and Future Recommendation

5.1 Conclusion

An ensemble learning algorithm that is bagging algorithm and boosting algorithm

have been studied and implemented as well. The Adult dataset is chosen for the study.

The algorithms are implemented and analyzed with different performance evaluation

parameters to determine better algorithm.

From the obtained results, it can be concluded that in case of number of classifiers

(>10) boosting algorithm outperforms over bagging algorithm in terms of accuracy,

F1-measure, and recall for dataset with and without noise. It is due to the fact that

boosting gives high preferences to misclassified data to reduce error iteratively by

assigning higher weight for those classified data. Although in terms of precision value

bagging is better. On the basis of different data size the obtained results of accuracy,

F1-measure, and recall for dataset having noise and without noise shows that boosting

performs better than that of bagging. Whereas in case of precision bagging

outperforms than boosting.

5.2 Future Recommendation

In this work, decision tree algorithm is used as base classifier in bagging and weak

learner in boosting. Different machine learning classification algorithm such as Naïve

Bayes Classifier, CART (Classification And Regression Trees) etc. can be used to

ensemble such base/weak classifiers. Also Parameter tuning like k-fold cross

validation can be used in near future.

25

REFERENCES

[1] Bauer, E. and Kohavi, R., An Empirical Comparison of Voting Classification

Algorithms: Bagging, Boosting, and Variants, Machine Learning, vol. 36, pp.

105–139, 1999.

[2] Breiman, L., Bagging Predictors, Machine Learning, vol. 24, pp. 123–140,

1996.

[3] Bryll, R., Gutierrez-Osuna, R. and Queka, F., Attribute bagging: improving

accuracy of classifier ensembles by using random feature subsets, Pattern

Recognition, vol. 36, pp. 1291-1302, 2003.

[4] Dietterich, T. G., An Experimental Comparison of Three Methods for

Constructing Ensembles of Decision Trees: Bagging, Boosting, and

Randomization, Machine Learning, vol.40, pp. 139–157, 2000.

[5] Drucker, H., Cortes, C., Jackel, L. D. and Vapnik, V., Boosting and Other

Ensemble Methods, Neural Computation, vol. 6, pp. 1289-1301, 1994.

[6] Ferreira, A. J. and Figueiredo, M. A. T., Boosting Algorithms: A Review of

Methods, Theory, and Applications, Springer, pp. 35-85, 2012.

[7] Freund, Y. and Schapire, R. E., Experiments with a New Boosting Algorithm,

Machine Learning: Proceedings of the Thirteenth International Conference,

1996.

[8] geeksforgeeks.org, ML Bagging Classifier [Online].

 Available: https://www.geeksforgeeks.org/ml-bagging-classifier/. [Accessed:

12
th

 December 2019].

[9] Goutte, C. and Gaussier, E., A Probabilistic Interpretation of Precision, Recall

and F-Score, with Implication for Evaluation, Lecture Notes in Computer

Science, vol. 3408, pp. 345-359, April 2005.

[10] Kim, H.-C., Pang, S., Je, H.-M., Kim, D. and Bang, S. Y., Constructing support

vector machine ensemble, Pattern Recognition, vol. 36, no. 12, pp. 2757–2767,

December 2003.

26

[11] Maclin, R. and Opitz, D., An Empirical Evaluation of Bagging and Boosting,

The Fourteenth National Conference on Artificial Intelligence, Providence,

Rhode Island, 1997.

[12] Opitz, D. and Maclin, R., Popular Ensemble Methods: An Empirical Study,

Journal of Artificial Intelligence Research, 1999, vol. 11, pp. 169-198.

[13] Polikar, R., Ensemble Learning, Springer, pp. 1-34, 2012.

[14] Ruta, D. and Gabrys, B., Classifier selection for majority voting, Information

Fusion, vol. 6, pp. 63–81, 2005.

[15] Schapire, R. E., The Strength of Weak Learnability, Machine Learning, vol. 5,

pp. 197-227, 1990.

[16] Steinki, O. and Mohammad, Z., Introduction To Ensemble Learning [pdf].

Available:

https://pdfs.semanticscholar.org/96bc/9c947bee74e6adf6c6ae9a2aece93596d35

0.pdf. [Accessed: 10
th

 December 2019].

[17] Webb, G. I. and Zheng, Z., Multistrategy Ensemble Learning: Reducing Error

by Combining Ensemble Learning Techniques, IEEE Transactions on

Knowledge and Data Engineering, vol. 16, no. 8, pp. 980-991, August 2004.

[18] Xiao, T., Zhu, J. and Liu, T., Bagging and Boosting statistical machine

translation systems, Artificial Intelligence, vol. 195, pp. 496–527, 2013.

[19] Zahir, A. H. and Mahmood, A. A., Real-time white noise generation using the

TMS320C6713 DSP starter kit, Int. J. Reasoning-based Intelligent Systems, vol.

4, no. 4, pp. 214-220, 2012.

27

Appendix A

Sample Dataset

age

workclass fnlwgt

education

education-

num

marital-

status

occupation

relationship race sex

capital-

gain

capital-

loss

hours-

per-

week

 native-

country

income

39 State-gov 77516

Bachelors 13

 Never-

married

 Adm-

clerical

 Not-in-

family White Male 2174 0 40

 United-

States

<=50K

50

 Self-

emp-not-

inc 83311

Bachelors 13

Married-

civ-

spouse

 Exec-

managerial Husband White Male 0 0 13

 United-

States

<=50K

38 Private 215646 HS-grad 9

Divorced

 Handlers-

cleaners

 Not-in-

family White Male 0 0 40

 United-

States

<=50K

53 Private 234721 11th 7

Married-

civ-

spouse

 Handlers-

cleaners Husband Black Male 0 0 40

 United-

States

<=50K

28 Private 338409

Bachelors 13

Married-

civ-

spouse

 Prof-

specialty Wife Black

Female 0 0 40 Cuba

<=50K

28

37 Private 284582 Masters 14

Married-

civ-

spouse

 Exec-

managerial Wife White

Female 0 0 40

 United-

States

<=50K

49 Private 160187 9th 5

Married-

spouse-

absent

 Other-

service

 Not-in-

family Black

Female 0 0 16

Jamaica

<=50K

.

.

.

37 Private 280464

 Some-

college 10

Married-

civ-

spouse

 Exec-

managerial Husband Black Male 0 0 80

 United-

States >50K

30 State-gov 141297

Bachelors 13

Married-

civ-

spouse

 Prof-

specialty Husband

 Asian-

Pac-

Islander Male 0 0 40 India >50K

29

Appendix B

Source Code

import numpy as np

import pandas as pd

from sklearn import model_selection

import category_encoders as ce

from sklearn.ensemble import BaggingClassifier

from sklearn import tree

from sklearn.ensemble import AdaBoostClassifier

from sklearn.model_selection import train_test_split, cross_validate

split=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

seed=7

kfold = model_selection.KFold(n_splits=10, random_state=seed)

for s in split:

 model1 = BaggingClassifier(tree.DecisionTreeClassifier(random_state=1),

n_estimators=10)

 results1 = cross_validate(model1, X_train, y_train, cv=kfold, scoring=['accuracy',

'precision', 'recall', 'f1'])

 model2 = AdaBoostClassifier(random_state=1, n_estimators=10)

 results2 = cross_validate(model2, X_train, y_train, cv=kfold,scoring=['accuracy',

'precision', 'recall', 'f1'])

n_est=range(1, 31)

for bc in n_est:

model3 = BaggingClassifier(tree.DecisionTreeClassifier(random_state=1),

n_estimators=bc)

 results3 = cross_validate(model3, X_train, y_train, cv=kfold, scoring=['accuracy',

'precision', 'recall', 'f1'])

30

 model4 = AdaBoostClassifier(random_state=1, n_estimators=bc)

 results4 = cross_validate(model4, X_train, y_train, cv=kfold, scoring=['accuracy',

'precision', 'recall', 'f1'])

