SPECIES DIVERSITY AND ENVIRONMENTAL CORRELATES OF FARMLAND DEPENDENT BIRDS IN NAWALPUR, NEPAL

Entry 33 M.Sc. Zoo Dept Ecology and Environ Signature . Ann Date: 2077 12 30 2021 04 12.

Pabitra Regmi

T.U. Registration No: 5-2-0019-0501-2013 T.U. Exam Roll.no: Zoo 578/074 Batch: 2074

A Thesis Submitted

In partial fulfillment of the requirement for the award of the degree of Master of Science in Zoology with special paper Ecology and Environment

Submitted to

Central Department of Zoology Institute of Science and Technology Tribhuvan University Kirtipur, Nepal April 2021

DECLARATION

I hereby declare that the work presented in this thesis entitled "Species diversity and environmental correlates of farmland dependent birds in Nawalpur, Nepal" has been done by myself, and has not been submitted elsewhere for the award of any other degree. All the sources of the information have been specifically acknowledged by references to the author(s) or institution(s).

Date: 12 April 2021

.....

Pabitra Regmi

...

पत्र सख्या .-च.नं. Ref.No.:-

RECOMMENDATION

This is to recommend that the thesis entitled "Species diversity and environmental correlates of farmland dependent birds in Nawalpur, Nepal" has been carried out by Pabitra Regmi for the partial fulfillment of the requirements for the Degree of Master of Science in Zoology with special paper 'Ecology and Environment'. This is her original work and has been carried out under my supervision. To the best of my knowledge, this thesis work has not been submitted for any other degree in any institutions.

Date: 12 April 2021

Supervisor Bishnu Prasad Bhattarai, PhD Assistant Professor Central Department of Zoology Tribhuvan University Kirtipur, Kathmandu, Nepal

iii

Central De?.

पत्र संख्या :-च.नं. Ref.No.:-

LETTER OF APPROVAL

North

On the recommendation of the supervisor Assistant Professor Dr. Bishnu Prasad Bhattarai, this thesis submitted by Pabitra Regmi entitled "Species diversity and environmental correlates of farmland dependent birds in Nawalpur, Nepal" is approved for the examination in partial fulfillment of the requirement for the Master's Degree of Science in Zoology with special paper "Ecology and Environment".

iv

Date: 12 April 2021

Head of Department Professor Tej Bahadur Thapa, PhD Central Department of Zoology Tribhuvan University Kirtipur, Kathmandu, Nepal

कीतिपुर, काठमाडी, नेपाल । Kirtipur, Kathmandu, Nepal.

पत्र संख्या :-च.नं. Ref.No.:-

CERTIFICATE OF ACCEPTANCE

This thesis submitted by Pabitra Regmi entitled "Species diversity and environmental correlates of farmland dependent birds in Nawalpur, Nepal" has been approved as a partial fulfillment of the requirements of Master's Degree of Science in Zoology with special paper "Ecology and Environment".

Supervisor Bishnu P. Bhattarai,PhD Assistant. Professor Central Department of Zoology Tribhuvan University

External Examiner Jhamak Bahadur Karki, PhD Vice Principle Kathmandu Forestry College

Date of Examination: 1st July 2021

EVALUATION COMMITTEE 1

Head of Department Tej Bahadur Thapa, PhD Professor Central Department of Zoology Tribhuvan University

Internal Examiner Laxman Khanal, PhD Assistant. Professor Central Department of Zoology Tribhuvan University

v

ACKNOWLEDGEMENTS

For and foremost I would like to express my deep sense of sincere gratitude and deep respect to my honorable supervision Dr. Bishnu Prasad Bhattarai, Asst. Professor of Central Department of Zoology, for his constant guidance, keen supervision and encouragement throughout the study and preparation of the thesis work.

I am grateful to Prof Dr. Tej Bahadur Thapa, Department Head of Central Department of Zoology for recommendation and permission as well as for providing valuable suggestions and academic support to complete this assignment. I would like to extend my sincere gratitude to Mr. Jagan Nath Adhikari, Asst. Professor of Department of Zoology, Birendra Multiple Campus, Bharatpur Chitwan for his support during field work, data analysis and other technical supports.

I am highly grateful to Rastrapati Chure-Terai Madhesh Conservation and Development Committee for their thesis grant as the support for my work.

Likewise, I would like to thanks my senior Naresh Pandey for his help during data analysis and my friends Parwati Tiwari, Yureshiya Wagle and Binod Bhattarai for their support and help during field survey and the preparations of this thesis work.

Last but not least, I would like to express my sincere thanks to my parents, family, friends and my brother Mr. Ganesh Regmi who journeyed with me in every step during field work and encouraged me with the best wishes. I am equally thankful to all the helping hands having direct or indirect involvement in preparation of present work.

> Pabitra Regmi Roll No: 578/074

TABLE OF CONTENTS

DECLARATION	
RECOMMENDATION	
CERTIFICATE OF ACCEPTANCE	
ACKNOWLEDGEMENTS	
LISTS OF TABLES	
LISTS OF FIGURES	
ABSTRACT	
1. INTRODUCTION	
1.1 Background	
1.2. Rationale of the study	
1.3. Objectives of the study	
1.3.1. General objective	
1.3.2. Specific objectives	
2. LITERATURE REVIEW	
2.1. Bird richness and diversity5	
2.2. Environmental factors affecting bird diversity	
3. MATERIALS AND METHODS8	
3.1. Study area9	
3.1. Study area	
3.1. Study area 9 3.2. Data collection 9 3.2.1. Preliminary survey 9	
3.1. Study area 9 3.2. Data collection 9 3.2.1. Preliminary survey 9 3.3.2. Bird survey 10	
3.1. Study area 9 3.2. Data collection 9 3.2.1. Preliminary survey 9 3.3.2. Bird survey 9 3.3.2. Bird survey 10 3.3. Environmental Variables 10	
3.1. Study area 9 3.2. Data collection 9 3.2.1. Preliminary survey 9 3.3.2. Bird survey 9 3.3.2. Bird survey 10 3.3.1. Habitats variables 10 3.3.1. Habitats variables 10	
3.1. Study area 9 3.2. Data collection 9 3.2.1. Preliminary survey 9 3.3.2. Bird survey 9 3.3.2. Bird survey 10 3.3.1. Habitats variables 10 3.3.1. Disturbance variable 10	
3.1. Study area 9 3.2. Data collection 9 3.2.1. Preliminary survey 9 3.3.2. Bird survey 9 3.3.2. Bird survey 10 3.3. Environmental Variables 10 3.3.1. Habitats variables 10 3.3.1. Disturbance variable 10 3.3.3. Feeding guild classification 11	
3.1. Study area93.2. Data collection93.2.1. Preliminary survey93.3.2. Bird survey93.3.2. Bird survey103.3. Environmental Variables103.3.1. Habitats variables103.3.1. Disturbance variable103.3.3. Feeding guild classification113.4. Data analysis11	
3.1. Study area93.2. Data collection93.2.1. Preliminary survey93.3.2. Bird survey93.3.2. Bird survey103.3. Environmental Variables103.3.1. Habitats variables103.3.1. Disturbance variable103.3.3. Feeding guild classification113.4. Data analysis113.4.1. Diversity index11	
3.1. Study area 9 3.2. Data collection 9 3.2.1. Preliminary survey 9 3.3.2. Bird survey 9 3.3.1. Bird survey 10 3.3.1. Habitats variables 10 3.3.1. Disturbance variable 10 3.3.3. Feeding guild classification 10 3.4. Data analysis 11 3.4.1. Diversity index 11 3.4.2. Evenness index 12	
3.1. Study area 9 3.2. Data collection 9 3.2.1. Preliminary survey 9 3.3.2. Bird survey 9 3.3.4. Data strables 10 3.3.5. Feeding guild classification 10 3.4.1. Diversity index 11 3.4.2. Evenness index 11 3.3.3. Simpson's Index (D) 12	
3.1. Study area 9 3.2. Data collection 9 3.2.1. Preliminary survey 9 3.2.2. Bird survey 9 3.3.2. Bird survey 9 3.3.1. Disturbance variables 10 3.3.1. Disturbance variable 10 3.3.3. Feeding guild classification 10 3.4.1. Diversity index 11 3.4.2. Evenness index 11 3.4.3. Simpson's Index (D) 12 3.3.4. Climatic data 13	
3.1. Study area93.2. Data collection93.2.1. Preliminary survey93.3.2. Bird survey93.3.2. Bird survey103.3. Environmental Variables103.3.1. Habitats variables103.3.1. Disturbance variable103.3.3. Feeding guild classification103.4. Data analysis113.4.1. Diversity index113.4.2. Evenness index123.3.3. Simpson's Index (D)123.3.4. Climatic data133.3.5. Environmental correlates of bird diversity14	

4.1. Species diversity	14
4.1.1. Status of birds in farmland	14
4.1.2. Seasonal status of birds in farmlands	15
4.1.3. Bird diversity	15
4.1.4. Seasonal bird diversity	15
4.1.5 Feeding guild	
4.2. Environmental factors affecting the bird diversity.	17
4.2.1. Habitat and disturbance variable	17
4.2.2. Environmental parameters	
4.3. Conservation priority	19
4.4. Conservation status	20
5. DISCUSSION	22
5.1. Species richness and diversity	22
5.2. Factors affecting bird diversity	22
6. CONCLUSION AND RECOMMENDATION	24
7. REFERENCES	25
APPENDICES	35
I. List of birds with scientific name, orders, family, and migratory status, IL	JCN
status and feeding guild	35
PHOTOGRAPHS	

viii

LISTS OF TABLES

Table 1. Environmental variables and their codes used
Table 2. Orders of birds recorded along with number of family and species recorded in
Farmland14
Table 3. Diversity indices of birds in different Season
Table 4. Generalized linear model (GLM) with Poisson distribution and identity link
function test showing the effects of environmental factors of different seasons on bird
species richness in farmland of Nawalpur in rainy season17
Table 5. Generalized linear model (GLM) with Poisson distribution and identity link
function test showing the effects of environmental factors of different seasons on bird
species richness in farmland of Nawalpur in summer season18
Table 6. Generalized linear model (GLM) with Poisson distribution and identity link
function test showing the effects of environmental factors of different seasons on bird
species richness in farmland of Nawalpur in winter season
Table 7. Generalized linear model (GLM) with Poisson distribution and identity link
function test showing the effects of environmental parameters of different seasons on bird
species richness in farmland of Nawalpur19
Table 8. List of Threatened Birds species recorded on the Farmland of Nawalpur20

ix

LISTS OF FIGURES

Figure 1. Map of the study area with grids and sampled points9
Figure 2. Seasonal species richness of the birds15
Figure 3. Species richness in different feeding guild16
Figure 4. Conservation Status according IUCN Category
Figure 5. Local Status of birds according Local Category

х

ACRONYMS AND ABBREVIATIONS

BCN	Bird Conservation Nepal
CBS	Central Bureau of Statistics
CCA	Canonical Correspondence Analysis
CITIES	Convention on International Trade in Endangered Species of Wild Fauna
CR	Critically Endangered
DHM	Department of Hydrology and Meteorology
DNPWC	Department of National Parks and Wildlife Conservation
EN	Endangered
GLM	Generalized Linear Model
GPS	Global Positioning System
IBA	Important Biodiversity and Bird Area
IUCN	International Union for Conservation of Nature and Natural Resources
LC	Least Concern
NRBD	National Redlist Bird Databook
NT	Near Threatened
VU	Vulnerable

ABSTRACT

The increase in change in farming practices, result in habitat destruction or alteration, the greatest threats to biodiversity. Birds found around or in the farm utilizing different crops for foraging and some nesting in the hedges near the farm area are known as farmland dependent birds. Bird richness in agricultural lands are considered to be a good indicator for good state of wildlife and healthy condition of plants and invertebrate on which they feed. This study aims to explore the species diversity and environmental factors affecting the diversity of farmland dependent birds. Data was collected from the centroid point of the randomly selected 72 grids of size 500m by 500m. The birds were recorded at the circle of 50m radius for 20 minutes by using visual encounter method. The environmental variables (distance to nearest forest, distance to nearest water body, distance to nearest tree, distance to nearest village distance and number of people presence) were also collected within the circle. The data was analyzed using standard statistical tools. Generalized linear model (GLM) was performed to examine the relation of birds with different environmental variables. A total of 123 bird species were recorded in the farmland of Nawalpur during this study, where eighty three species in summer season, seventy seven species in rainy season and sixty nine species in winter seasons were recorded. The species diversity was higher during summer than rainy and winter. The significant impact in species richness of birds with distance to nearest forest, distance to nearest water body, precipitation (mean) and temperature (mean) was found. Distance to nearest forest, distance to nearest water body, precipitation (mean) have negative correlation with species richness in all three season but temperature has positive association with species richness in all three season whereas distance to highway has positive correlation with species richness in winter seasons. Distance to village was not important compared to other factors for bird diversity. Thus farmland of Nawalpur supports higher species richness of farmland dependent birds.

1. INTRODUCTION

1.1 Background

Nepal represents about 9% of the world's known bird species (Grimmett *et al.*, 2016a). This high avian diversity is enhanced by the location of Nepal at the border of Palearctic and Oriental realm supporting tropical to alpine bio-climatic regions. At present 886 species of birds have been recorded in Nepal which is 9% of total birds species found worldwide (DNPWC, 2019; BCN, 2020). Among them 42 species of birds are globally threatened, 35 species are globally near threatened and 167 species are nationally threatened (Inskipp *et al.*, 2017).

Birds have been integral to human since prehistory. Birds and their diversity acts as a strong bio-indicator signal (Joshi and Bhatt, 2015) and represent the health of ecosystem and status of biodiversity as a whole (Gregory and van Strien, 2010). Birds occupy many levels of tropic webs from mid-level consumers to top predators. Diversity as a whole includes species richness, abundance, and evenness of a particular area. Understanding patterns of diversity in an area is important in conservation of species (Goddard *et al.*, 2010).

Farmland is now considered the world's widespread habitat (Bird International, 2008). The expansion of agriculture, results in habitat destruction, the greatest threats to the world's biodiversity (Bird International, 2008). Rise of farming practices, such as destruction of grasslands loss of crop diversity and excessive use of pesticides and chemical fertilizers, has led to the degradation of agricultural and semi-natural habitats. Agricultural intensification and expansion is regarded as the main threat to globally threated species, affecting 87% of these entire worldwide species (van der Weijden *et al.*, 2010).

Agri-ecosystem is consider as the important habitat for bird that provide foraging and breeding grounds (Flohre *et al.*, 2011). Birds are known as the key species in an agricultural ecosystem to maintain the ecological balance (Manning *et al.*, 2006). Farmland dependent birds are found in the farm for foraging and make nest in the hedges found near the farm area (Benton *et al.*, 2003). Farmland dependent bird populations decline have been principally attributed to the intensification of agriculture. Agricultural practices for "bird-friendly" include using more diverse crop rotation, stopping use of pesticides, and creating more heterogeneous landscape and are expected to create more food resources and nesting habitats for birds (Wilcox *et al.*, 2014). Farmlands plains are most important for farmlands dependent bird (Wretenberg *et al.*, 2010).

Bird richness in agricultural lands are considered to be a good indicator of the good state of wildlife and the countryside because they occupy a large range of habitats. A healthy condition of plants is signified by healthy bird population as well as healthy invertebrates on which they feed (Gregory and van Strien, 2010). As the farmland dependent birds are closely associated with human and human settlements but the farmers and local aren't aware about its importance (Tscharntke *et al.*, 2005). The birds are ecologically as well as economically important as they help in pollination, control of harmful pests, dispersal and make the matrix within which other wildlife habitats coexist (Whelan *et al.*, 2008). The main problems for farmland dependent birds are agricultural changes like growing cash crops for income with same expense of paddy which has been grown traditionally in Nepal. Over-use of chemical fertilizers for good production of crops, and the raise of agriculture by reducing uncultivated field changes and corners, which made valuable habitat for birds and other wildlife (Inskipp and Baral, 2010).

Farmland dependent bird species are highly susceptible to changes in farming practices that impact the farmland habitats (Ó hUallacháin *et al.*, 2015). Habitat loss, degradation and fragmentation are the most important threats followed chemical poisoning, over-exploitation, climate change, invasion of invasive or alien species, intensification of agriculture, disturbance and limited conservation measures and research are also responsible for decrease or extinction of the species (Inskipp *et al.*, 2017). To facilitate bird conservation and management Birdlife international has identified 27 Important Bird Areas (IBA) and 5 potential IBAs for Nepal (BCN, 2021).

1.2. Rationale of the study

The unique biodiversity found in the farmlands is nowhere present in the protected area system of Nepal (Grimmett *et al.*, 2016b). Over the years, the farmer's tolerance to existence of wildlife has been changed mainly due to market driven economy. In Nepal, considerable amount of work has been done on threatened birds, especially global threatened species in last 20 years (Thakuri, 2007). Differently, very little monitoring of common bird species or of those habitually frequenting agricultural lands has been done. The study of farmland birds has positive impact as well as the negative impact on the crop as well as has benefits and disadvantage for farmers. As the birds feed on the crop pests and increase the crop production whereas some birds feed on the crop or damage the crop

that produce negative impression on the farmers towards the birds and their conservation. Realizing these facts and importance of study of avifauna on farmland this project is designed which will provide the baseline information about the status, diversity and seasonal variation of farmland dependent birds and their conservation status.

1.3. Objectives of the study

1.3.1. General objective

The general objective of this study was to determine species diversity, the environmental factors affecting diversity of farmland dependent birds in selected lowland areas of Nawalpur district, Nepal.

1.3.2. Specific objectives

The specific objectives were to:

1. Determine the diversity of farmlands dependent birds in Nawalpur

2. Understand the environmental factors affecting diversity of farmland dependent birds in the study area.

2. LITERATURE REVIEW

2.1. Bird richness and diversity

Bird species diversity and distribution along the landscape is not same (Hill *et al.*, 1992). Their pattern are related to different environmental variables (climatic condition, topography and habitats) and human disturbance or interventions for determining the bird diversity and abundance (Rodríguez-Estrella, 2007; Jankowski *et al.*, 2009).

Species richness of any area is related to its habitat, topography, latitude, climate, resources availability (da Silva *et al.*, 2014). Hawkins *et al.* (2007) studied that climate was responsible for species richness pattern. Mittelbach *et al.* (2001) lighten that factors like productivity, species area effect (Rahbek, 1997), vegetation type (MacArthur *et al.*, 1966), and temperature (McCain, 2009) as responsible for the pattern of diversity and richness. Bird distribution and abundance within a landscape are influenced by multiple factors that interact in space and time (Orians and Wittenberger, 1991).

The study avifaunal diversity of Khata corridor forest found 141 species belonging to 12 orders and 43 families (Chaudhari *et al.*, 2009). Adhikari *et al.* (2018) recorded 304 bird species belonging to 18 orders and 69 families including 59% residential, 8% summer visitors, 32% winter visitors and 1% vagrant in the Barandabhar Corridor Forest. Harisha and Hosetti (2009) studied the diversity of the birds in Lakkavali Range Forest, Bhadra Wildlife Sanctuary, Western Ghat, India and recorded a total of 132 species of birds of 34 families under 11 orders.

About 21% of bird species found in Nepal utilizes agricultural habitats for foraging at some season, also that the different method adapted for agricultural practices are having major and far-reaching impacts on natural habitats – wetlands, grasslands and forest along with the increase of pesticides use in Nepal mostly on vegetation cash crops, have serious impacts on birds and environments (Inskipp and Baral, 2010). Reino *et al.* (2009) during their found that forest plantation may increase overall bird diversity and abundance in adjacent farmland, at the expense of steppe birds of conservation concern. Increasing hedge length enhanced significantly the number of species, hedge length has a stronger effect on bird richness than management (Batáry *et al.*, 2010). The increase in the length of hedges enhanced the birds in conventional fields too. As hedges around the farm increase the bird species though there is crop rotation (Benton *et al.*, 2003).

Hedges provide important nesting, feeding and sheltering sites for birds in agricultural areas so that hedges are important in conserving avifaunal diversity as well as hedge length had strongest positive effect on bird diversity so, more hedgerows and carefully managing them, can contribute to the conservation of farmland birds (Batáry et al., 2010). Sajjad et al. (2016) careful crop ecosystem analysis, can significantly improve species richness and functional diversity in agro-ecosystem by adopting four Better Management Practices (BMPs) i.e. i) use of farm yard manure and avoiding chemical fertilizers, ii) based on application of botanical insecticides and avoidance of chemical insecticides, iii) doing mulching of trash after harvest rather than burning it and iv) using base application of irrigation. Not only the hedge length crop ecosystem and rotation, environmental factors also play the significant role in species diversity. Climate affects diversity directly and indirectly, as it put restriction on the physiological tolerance of species and act as the species filter (Currie, 1991; Brown, 2001). Whereas the climatic factors (such as temperature and precipitation) indirectly affects species distribution (Currie, 1991; Hawkins et al., 2003). Therefore, many study supported that climatic factors are considered as an important factor for the large patterns of biodiversity and their role in shaping the species richness (McCain, 2007; Rowe, 2009; Chen et al., 2017) which reflect the complexity of energy and productivity, enhanced the vegetation index, could also be factors of bird diversity patterns (Hawkins et al., 2005; Hawkins et al., 2007; Pokharel, 2015).

2.2. Environmental factors affecting bird diversity

Several studied have analyzed species richness and environmental variation. Seasonal change highly influence the bird species richness. More number of species were recorded in winter season in Betana wetland of Belbari, Morang (Pokharel, 2015). Ríos-Muñoz and Navarro-Sigüenza (2012) found that the biogeographic patterns of avifauna associated with seasonally dry tropical forests in Mesoamerica are poorly understood despite their high levels of species richness and endemism. Parajuli (2018) found highest bird diversity during winter season than in summer season in the Karra River of the Hetauda, Makwanpur, Nepal. Highest bird diversity was found during spring and lowest in autumn season in coastal woodland of the reserve 'EI Destino', Buenos Aires Province, Argentina (Cueto and Lopez de Casenave, 2000). Avian population had the significant relation with variation of season. Thakuri (2007) discussed the highest species richness in summer followed by autumn and

spring. The farmsteads are known to be of importances during winter, as species richness were observed in active farmsteads significantly more in winter season than other seasons (Šálek *et al.*, 2018).

Seasonal variation of food and rainfall brings changes in species occurrence and abundance of birds (Tonkin *et al.*, 2017). Change in weather patterns have direct impact upon several activities of birds and species richness of birds (Jenouvrier, 2013). The species richness showed pronounced seasonal changes with higher species richness number after monsoon (Katuwal *et al.*, 2016). Hence species richness of birds are influenced by the seasonal variation.

The study in Neo-tropical region showed the characteristics and complexity of vegetation is strong determining factors for bird species distribution pattern in ecotone (Antonelli and Sanmartín, 2011). Phytogeographic heterogeneity and presence of aquatic habitats in the Catimbau National Park of Brazil appear as the main ecological factors determining the species richness reported by (Sousa *et al.*, 2013) along with 179 bird species. During the study on seasonal diversity, status and habitat utilization of birds in Nawalparasi forest in Nepal species richness of birds was higher in agricultural farmland with wetland and lower in forest habitat (Khanal, 2008). Habitat structure, floristic composition such as canopy cover, tree species diversity and distribution of specific plant taxa have significant role in defining the occurrence of the species (Joshi *et al.*, 2012).

The human influenced activities like farming, cutting of forests, and urbanization, fragments the natural plant communities into smaller units affect not only the plant communities, but the animal communities also (Adams, 1994). Habitat loss and degradation can have direct and indirect adverse impact on birds. Anthropogenic activities like timber extraction, livestock grazing, hunting and trade of wild birds, infrastructure development, agricultural expansion or encroachment and introduction of invasive species have direct adverse impact (Johnson *et al.*, 2011). Use of excessive chemical compounds like pesticides and fertilizers, loss of crop diversity, intensification of farming practices, destruction of grassland and semi-natural habitat cause the decline of biodiversity including avian fauna (Emmerson *et al.*, 2016). The diversity and abundance of the threatened bird were found to be higher in wetlands, open wooded lands and grassland in Chitwan National Park whereas distance to road and village and livestock presence caused significantly negative impact (Adhikari *et al.*, 2019). In contrast to this, Møller and Díaz (2018) three

small inlands in European cities and concluded that proximity to human habitation was a main factor of the birds distribution, with most individuals and species tightly linked to inhabited houses. Šálek *et al.* (2018) study found that active farmsteads are hotspots in agriculture landscape for local bird diversity and host species construction concern. Also, the farmsteads are known to be of importances during winter as species richness were observed in active farmsteads significantly more than other seasons. This study also provide recent conservation measures for farmland birds i.e. focusing on conservation within non-farmed habitats, such as actively used farmsteads

By understanding the factors that influence the distribution of organisms, it becomes possible to use conservation tools necessary for the survival of endangered species of the geographical areas (Guisan and Zimmermann, 2000). Availability of food, detectability and capture, location of nesting sites, availability of nesting materials, presence of predators and competitors are the major threats factors known to influence the population of birds (Khanal, 2008).

Most of the research of the birds are concentrated on the protected areas, forests ad landscape level. Farmland ecosystem isn't prioritized subject for the researchers and conservationist. Hence to fulfill this research gaps this study was designed to evaluate the importance of farmland dependent birds.

3. MATERIALS AND METHODS

3.1. Study area

This study was focused on the farmland of Nawalpur lowlands below 500 m asl. Nawalpur is an eastern part of Nawalparasi district which is located in Gandaki Province of Nepal. The study area encompasses the lowlands of Nawalpur district from Bhedabari in the east to Arunkhola in the west (DCCO, 2015). A large area of farmlands in Nawalpur district is excluded from the Nawalparasi forests (an Important Bird and Biodiversity Area-IBA-NP17) (Baral and Inskipp, 2005). However, this area is equally important for bird diversity as the Nawalparasi forests. The total area of Nawalpur District is 1,043.1 square kilometers and total population in 2011 was 310864 (CBS, 2012).

The forests of Nawalpur lowland located adjoining to the Chitwan National Park that supports high diversities of flora and fauna. The dominant forest in Nawalpur lowland are Sal (*Shorea robusta*) forest, Simal (*Bombax ceiba*) forest, riverine forest as well as tall and short grasslands (CNP 2019). Agriculture is the mainstay occupation of the people of Nawalpur where crop cultivation is done in two seasons. Main crop cultivated in Nawalpur agricultural land are paddy, maize, mustard, wheat, sugarcane, banana etc. Though both the cash crops and food crops are main crop cultivated in Nawalpur, during my field visit in my study area the most of the cultivated crops were food crops like paddy, wheat, maize and mustard.

Minimum and maximum annual temperature of Nawalpur district in 2020 was 18.4°c and 28.553°c. The temperature was maximum in the month of April and minimum in January. The average annual rainfall was 211.75mm and average annual percentage of humidity was 73.833 in 2020 (DHM, 2020).

Figure 1. Map of the study area with grids and sampled points

3.2. Data collection

3.2.1. Preliminary survey

It was carried out before conducting the actual research by field visit for identifying the relevant farmlands and questioning the local people about the farmland dependent birds and crops that are cultivated in different seasons or mostly in their farmlands.

3.3.2. Bird survey

The study was conducted by dividing the entire study area into the grid of $500m \times 500m$. The grid was designed through fishnet tool using ArcGIS 10.7. A total of 72 grids were randomly selected for the study. The centroid points of the sample grids were taken from Google Earth and then taken uploaded into GPS (Garmin eTrex 10) for navigation. The points were also conformed during field by GPS. Point count method is used to estimate population densities, defining population trends, assessing habitat preference, mostly in avian fauna (Ralph *et al.*, 1995). Point count method was used for the survey of the birds recording all the individual birds in the farmlands (Gregory *et al.*, 2004) within the plot. In each point, species and number of individuals of birds including habitat and disturbance characteristics was recorded within 50m radius for 20 minutes by visual encounter method.

The birds were observed directly using binoculars (Bushnell 20×50) and photographs (Nikon Coolpix P900) was taken whenever possible. The birds were observed in the plot during the active time period of 7 am to 10 am in the morning and 3 pm to 6 pm in the evening during rainy and summer season while from 10 am to 4 pm in noon during winter season. Data was collected in July, 2019 (rainy season), in January, 2020 (winter season) and in May, 2020 (summer season). The field guide book- Birds of Nepal (Grimmett *et al.*, 2016a) was used to identify the birds.

3.3. Environmental Variables

3.3.1. Habitats variables

As a substitution of resources availability for species diversity and richness, presence of tree were recorded by direct observation and distance to nearest tree was noted by using range finder (Ailemon laser Hunting Range Finder 1200 yards 6x magnification) and distance to nearest forest and water body were measured using point data with the aid of Google Earth.

3.3.1. Disturbance variable

Distance to highway and presence of people on the grid was taken as the factor of human disturbance in the study area. Presence of people on the study grid were recorded by direct observation whereas highway were estimated in the field and confirmed by Google Earth.

3.3.3. Feeding guild classification

Feeding guild of recorded species were classified reviewing field guild book 'Birds of Nepal' (Grimmett *et al.*, 2016a) and categorized into five types on the basis of food insectivores (feeding on insects, larva, worms, spiders, crustaceans, mollusks etc.), omnivores (feeding on both plants and animals), carnivore (feeding on fishes, amphibians, reptiles, birds and mammals), granivorous (feeding on seeds, grains) and herbivore (feeding on plant leaves, grains, twig, fruits, berries, nectars, figs and drupes).

3.4. Data analysis

All the collected data from the field survey were entered in excel data sheet and then analyzed by using standard statistical tools.

3.4.1. Diversity index

For quantification of diversity and comparison of species diversities between different ecosystems in various ecological conditions, it is useful. Shannon-Wiener diversity index was used calculate the diversity of species (Shannon, 1948).

In Shannon's index, ratio of each component is multiplied by the loge of the ratio (ni/N) and summed it.

Mathematically,

 $H' = -\sum Pi (ln Pi)$

Where, \sum represent sum of Pi (ln Pi)

H' = Shannon's index of diversity

Pi = the proportion of individuals in the ith species, Pi = ni/N

ni = number of species in a community

N= total value for all species in a community.

Higher value of H' shows the higher diversity and the lower value shows the lower diversity. The maximum value of H' can be more than one.

3.4.2. Evenness index

Evenness is a measure of the relative abundance of different species making up the richness of an area. Evenness expresses how evenly the individuals in a community are distributed among the different species and is the important of the component of diversity indices. Evenness index was calculated to know whether the species are evenly distributed among the study area in different seasons. It is calculated as,

 $E = H'/H'_{max}$

Where,

H'= Shannon's index of diversity

 H'_{max} = maximum possible value of H', if every species is equally likely and equal to ln(S)

S = Species Richness is the total number of species.

If we have value near the 0, then the diversity is said to be uneven distribution and when the value is nearer to 1, the diversity is said to be even distribution.

3.3.3. Simpson's Index (D)

Measures the probability that bird species were randomly selected from a sample was belong to the same species (or some category other than species) (Simpson, 1949).

Index of dominance (D) = $\sum (ni/n)^2$

Where, ni= number or biomass or energy flow for each species

N= total value for all species.

The value of D lies between "0 to 1". If the value is nearer to 0, then there is less dominance but, if the value is closer to 1, then there is greater dominance. With this index, 0 represents infinite diversity and 1, no diversity. That is, the bigger the value of D, the lower the diversity. All the diversity indices calculated using "PAST".

Local status of bird was identified according to the category described by Bull (Bull, 1974). Status was classified as: very abundant (above 250 individuals), abundant (201-250), very common (101-200), common (51-100), fairly common (16-50) and rare (below 15 individuals). Results was be presented with the help of tables, charts and graphs.

3.3.4. Climatic data

Due to unavailability of the climatic data form on-field data loggers, all the climatic data were extracted from WorldClim (https://www.worldclim.org/) (Fick and Hijmans, 2017) database for the coordinates of the points to roughly describe climate condition (mean monthly precipitation and mean monthly temperature).

3.3.5. Environmental correlates of bird diversity

3.3.5.1. Generalized linear model

Generalized linear model was used to identify the relation between the bird species richness and diversity changes with different environmental and disturbance variables. GLM was done using R software (Team, 2020).

S.N.	Environmental variables	Codes used
1.	Distance to nearest forest	NFD
2.	Distance to nearest tree	NTD
3.	Distance to nearest water body	NWD
4	Distance to nearest village	NVD
5.	Distance to highway	DH

Table 1.	Environmental	variables	and	their	codes	used
		1 001 100 100			•••••	

4. RESULTS

4.1. Species diversity

4.1.1. Status of birds in farmland

The study recorded 123 species belonging 41 families and 14 orders and were recorded from 72 grids during our field visit on three different seasons. Highest number of species belongs to order Passeriformes (69 species and 25 families) followed by Pelecaniformes (9 species and 2 families), Accipitriformes (8 species and 1 family), Coraciiformes (7 species and 3 family) and Cuculiformes (5 species and 1 family) and least number of species belongs to Bucerotiformes and Galliformes (1 species and 1 family) (Table 2). A total of 8 species recorded were globally threatened (two Critically Endangered, three Vulnerable and three Near Threatened).

 Table 2. Orders of birds recorded along with number of family and species recorded in

 Farmland

		Number of	Number of
S.N	Orders	family	species
1	Passeriformes	25	69
2	Pelecaniformes	2	9
3	Acciptriformes	1	8
4	Coraciiformes	3	7
5	Psittaciformes	1	6
6	Cuculiformes	1	5
7	Camprimulgiformes	1	3
8	Ciconiiformes	1	3
9	Columbiformes	1	3
10	Gruiformes	1	3
11	Piciformes	1	3
12	Suliformes	1	2
13	Bucerotiformes	1	1
14	Galliformes	1	1

4.1.2. Seasonal status of birds in farmlands

A total of 77 species belonging 33 families and 12 orders were recorded in rainy season whereas 83 species belonging to 36 families and 13 orders were found in summer season and 69 species of 28 families and 10 orders were recorded in winter season. In all three season the highest number of species was recorded on order Passeriformes and least on order Bucerotiformes in rainy and summer but on order Cuculiformes in winter (Figure 2).

Figure 2. Seasonal species richness of the birds

4.1.3. Bird diversity

This study reported that the Shannon-Weiner index of diversity (H) was 4.47. The diversity of the bird was higher in the farmlands of Nawalpur. The evenness index was very lower (e=0.717), this value indicated that the birds diversity was said to be even distribution. Simpson's Index of dominance (D) of birds of farmland of Nawalpur was 0.01466. Hence, no one species control the study area. This result indicates the greater diversity of the bird in Farmlands (Table 3).

4.1.4. Seasonal bird diversity

The study found the Shannon-Weiner index of diversity (H) of the farmland birds was greater in summer saeson i.e.(H= 4.253) than in rainy (H= 4.113) and winter season (H=

4.129) while evenness was greater in winter season than rainy season and summer season. The dominance of the Farmlands birds was found to be greater in rainy season than other two seasons (Table 3).

	Rainy	Summer	Winter	All
Taxa_S	77	83	69	123
Individuals	2714	3184	2615	8513
Dominance_D	0.01962	0.01608	0.01769	0.01466
Simpson_1-D	0.9804	0.9839	0.9823	0.9853
Shannon_H	4.113	4.253	4.129	4.479
Evenness_e^H/S	0.7936	0.8476	0.9	0.717

Table 3. Diversity indices of birds in different Season

4.1.5 Feeding guild

High number of insectivores species were recorded during the study along with omnivore, carnivore and least recorded were herbivore and granivore (Figure 3).

Figure 3. Species richness in different feeding guild

4.2. Environmental factors affecting the bird diversity.

Different environmental factors (habitat and disturbance) and parameters was taken for determining their effects on the farmland dependent bird diversity by using GLM.

4.2.1. Habitat and disturbance variable

There was positive and negative impact in species richness of birds with distance to nearest forest distance, distance to nearest water body, distance to nearest tree, number of people presence distance to highway and distance to nearest village. In rainy season, it was found that there was significantly negative association of species richness of birds with distance to nearest forest distance and distance to nearest water body (Table 4).

Table 4. Generalized linear model (GLM) with Poisson distribution and identity link function test showing the effects of environmental factors of different seasons on bird species richness in farmland of Nawalpur in rainy season

Rainy				
	Intercept	z value	Pr(> z)	
Distance to highway (DH)	6.08E-06	0.504	0.614	
Distance to nearest forest (NFD)	-0.00145	-1.768	0.057 *	
Distance to nearest tree (NTD)	-0.02903	-1.642	0.101	
Number of people	-0.4253	-1.023	0.306	
Distance to nearest village (NVD)	0.007941	0.893	0.372	
Distance to nearest water body (NWD)	-0.00191	-2.069	0.0385 *	
Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1				

In summer season, it was found that there was significantly negative correlation of species richness of birds with distance to nearest forest distance and distance to nearest water body (Table 5).

Table 5. Generalized linear model (GLM) with Poisson distribution and identity link function test showing the effects of environmental factors of different seasons on bird species richness in farmland of Nawalpur in summer season

Summer					
	Intercept	z value	Pr(> z)		
Distance to highway (DH)	-3.20E-06	-0.272	0.786		
Distance to nearest forest (NFD)	-0.00151	-1.798	0.0522 *		
Distance to nearest tree (NTD)	-0.029	-1.596	0.11		
Number of people	-0.5021	-1.181	0.237		
Distance to nearest village (NVD)	0.009965	1.089	0.276		
Distance to nearest water body (NWD)	-0.00162	-1.694	0.0502 *		
Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					

In winter season, it was found that there was significantly negative correlation of species richness of birds with distance to nearest forest distance and distance to nearest water body and significantly positive association with distance to highway (Table 6).

Table 6. Generalized linear model (GLM) with Poisson distribution and identity link function test showing the effects of environmental factors of different seasons on bird species richness in farmland of Nawalpur in winter season

Winter					
	Intercept	z value	Pr(> z)		
Distance to highway (DH)	5.082	1.818	0.0014**		
Distance to nearest forest (NFD)	-0.00139	-1.758	0.0587*		
Distance to nearest tree (NTD)	-0.02397	-1.4	0.161		
Number of people	-0.4196	-1.049	0.294		
Distance to nearest village (NVD)	0.005687	0.666	0.505		
Distance to nearest water body (NWD)	-0.00162	-1.818	0.0591 *		
Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					

4.2.2. Environmental parameters

Temperature and precipitation has significant impacts on the species richness. Temperature shows significantly positive association on the species richness whereas precipitation shows significantly negative correlated with species riches in all three seasons (Table 7).

Table 7. Generalized linear model (GLM) with Poisson distribution and identity link function test showing the effects of environmental parameters of different seasons on bird species richness in farmland of Nawalpur

Parameters	Intercept	z value	Pr(> Z
Rainy			
Temperature	11.541	2.67	0.00758**
Precipitation	-0.04543	-2.545	0.0109*
Summer			
Temperature	11.554	2.406	0.0161*
Precipitation	-0.2536	-2.234	0.0255*
Winter			
Temperature	6.437	2.094	0.0362*
Precipitation	-1.536	-2.042	0.041154*

4.3. Conservation priority

During the study, number of conservation priority species were found. A total of eight globally threatened species (two Critically Endangered, three Vulnerable and three Near Threatened) (IUCN, 2018), 18 nationally threatened (three Critically Endangered, one Endangered, six Vulnerable and eight Near Threatened) (Inskipp *et al.*, 2017) and 12 CITES (Appendix II) (CITES, 2021) enlisted bird species were recorded from study area. Globally threatened species like Red-Headed Vulture (*Sarcogyps calvus*), White-Rumped Vulture (*Gyps bengalensis*), Asian Woolly Neck (*Ciconia episcopus*), Alexandrine Parakeet and so on were recorded (Table 8).

S.N.	Common Name	IUCN	NRDB	CITES
1	Alexandrine Parakeet	NT	NT	II
2	Asian Openbill		VU	
3	Asian Woollyneck	VU	NT	
4	Baya Weaver		NT	
5	Black-faced Bunting		VU	
6	Black-winged Kite			II
7	Blossom-headed Parakeet	NT	NT	II
8	Brahminy Kite		CR	II
9	Crested Serpent-eagle			II
10	Great Cormorant		NT	
11	Hume's Leaf-Warbler		VU	
12	Indian spotted Eagle	VU	VU	II
13	Lesser Adjutant	VU	VU	
14	Plain Martin		NT	
15	Plum-headed Parakeet			II
16	Red-breasted Parakeet	NT	VU	II
17	Red-headed Vulture	CR	EN	II
18	Rufous-necked Laughing thrush		CR	
19	Shikra			II
20	Vernal Hanging-parrot			II
21	Watercock		NT	
22	White-rumped Spine tail		NT	
23	White-rumped Vulture	CR	CR	II

Table 8. List of threatened bird species recorded on the farmland of Nawalpur

4.4. Conservation status

The conservation status of the farmland dependent birds of the study was categorized according to the IUCN category in Least Concern (LC), Near Threatened (NT), Vulnerable (VU), Endangered (EN) and Critically Endangered (CR). Most of birds recorded during the field survey are of Least Concern under IUCN category (Figure 4).

Figure 4. Conservation status according IUCN Category

Local status of the farmland dependent birds of the study was categorized according to the local category very abundant (above 250 individuals), abundant (201-250), very common (101-200), common (51-100), fairly common (16-50) and rare (below 15 individuals). The birds of fairly common category are recorded more followed by common, very common and least recorded were very abundant category (Figure 5).

Figure 5. Local Status of birds according Local Category

5. DISCUSSION

5.1. Species richness and diversity

The farmland of Nepal supports 21% (~180) bird species among them 11% are globally threatened species (Inskipp and Baral, 2010; Inskipp *et al.*, 2017) among which 123 species of farmland dependent birds along with eight species which were globally threatened species were recorded in the farmland of Nawalpur. Higher richness of farmland dependent bird in these farmland were found as these farmlands are nearer foraging sites for the birds of the forests of CNP which are found in different habitat and easy availability of food for the species in the farmland. The diversity of the birds in farmland species is high as the agricultural land of this study area has seasonal variation in farming (Robinson *et al.*, 2001) also found similar result bird species diversity and abundance are likely to fall wherever agricultural landscapes become homogeneous and their richness depend to the arable habitats.

5.2. Factors affecting bird diversity

The bird community in any given habitat type is not static but changes seasonally (Avery and Riper III, 1989), so there might be the fluctuation in the diversity and richness of bird with change in seasons. During the study, higher species richness was found in summer season and rainy season in comparison to the winter season. Higher species in summer season among all three seasons might be due to the assemblage of migratory birds in summer and the favorable ecological and climatic condition as well as food availability in this season. Similar finding was made by Murgui (2007) during his study on the effect of seasonality on bird species in which due to the unfavorable climatic conditions, shortage of food and predation in winter season, the species richness was higher in summer and rainy season.

The difference in diversity of farmland dependent birds was found between two seasons. Shannon Weiner index shows that summer season was more diverse (H= 4.253) than rainy (H= 4.113) and winter (H= 4.129). All three seasons have almost similar number of individuals but higher species richness in summer is the reason for diverse assemblage of bird in summer season. The diversity and distribution of birds are affected due to the temperature and climatic condition which differs according to seasons (Shoo *et al.*, 2005).

One of the major determinants of species diversity, especially the richness is the amount of the energy available in a system (Bailey *et al.*, 2004) which is lower in winter season.

There are many environmental and disturbance factors affecting the species richness and diversity of the area. During this eight variables were taken for knowing the impact on bird diversity of the farmlands. Likewise forest, water body, precipitation and temperature have positive impact on the richness whereas road or highway has negative impact.

In accordance to the result of this study, the association of roads on the species richness is positively significant, as near the distance from the road lesser the species richness. Similar finding was discussed in threatened birds of Chitwan National Park that showed a negative impact of road in the species richness (Adhikari *et al.*, 2019). Species richness, occurrence and abundance of birds have shown negative relation on many studies, which shows birds are mostly declined near road, with high traffic on roads than lower traffic (Brotons and Herrando, 2001; Fuller *et al.*, 2001; Rheindt, 2003; Griffith *et al.*, 2010).

In this study, more species richness was found along with the increase temperature in all the three seasons we surveyed and also shows the positive correlation whereas negative correlation with precipitation in all rainy, summer and winter season. Climate limits species distribution on the basis of their physiological tolerance and indirectly influenced species distribution by gradients of climatic factors (temperature, precipitation) (Hurlbert and Haskell, 2003).

The species richness showed negative correlation with distance to nearest water body during this study which means bird richness or diversity increase in distance to nearest water body from the surveyed point/grid. Li *et al.* (2013) described that species richness was linear function of water availability and further concluded that water availability had strong effects on plant richness, and weaker effects on vertebrate richness.

A total of eight globally threatened species 18 nationally threatened and 12 CITES (Appendix II) bird species were recorded in this study likewise (Dangaura *et al.*, 2020) recorded 15 globally threatened species, 53 nationally threatened and 58 CITES (Appendix II) bird species during 10 years of the study.

6. CONCLUSION AND RECOMMENDATION

Farmlands played the significant roles in supporting the bird species. Altogether of 123 species of birds were supported by the farmland of Nawalpur. Species richness as well as diversity of the farmland dependent birds was higher in summer season than in rainy and winter seasons. It was found that there was significant impact in species richness of birds with nearest forest distance, nearest water distance, precipitation (mean) and temperature (mean) in farmland dependent birds in all three surveyed seasons but distance to highway also shows positive significant in winter seasons. Distance to nearest forest, Distance to nearest water body and precipitation are negatively associated with the species richness whereas temperature is positively correlated with species richness of farmland dependent birds.

Farmland of Nawalpur supported eight globally threatened birds (two Critically Endangered, three Vulnerable and three Near Threatened). The farmland dependent birds were greatly affected by seasonal variation and environmental factors of the farmland.

Few recommendation from this study are:

• High diversity of birds in the study was found, so more research should be designed for the study of farmland dependent birds.

7. REFERENCES

- Adams, L.W. 1994. Urban wildlife habitats: a landscape perspective (Vol. 3): University of Minnesota Press.
- Adhikari, J.N., Bhattarai, B.P. and Thapa, T.B. 2018. Diversity and conservation threats of water birds in and around Barandabhar corridor forest, Chitwan, Nepal. Journal of Natural History Museum, 30:164-179. doi:https://doi.org/10.3126/jnhm.v30i0.27553
- Adhikari, J.N., Bhattarai, B.P. and Thapa, T.B. 2019. Factors affecting diversity and distribution of threatened birds in Chitwan National Park, Nepal. Journal of Threatened Taxa, 11(5): 13511-13522.
 doi:https://doi.org/10.11609/jott.4137.11.5.13511-13522
- Antonelli, A. and Sanmartín, I. 2011. Why are there so many plant species in the Neotropics? Taxon, **60**(2): 403-414. doi:https://doi.org/10.1002/tax.602010
- Avery, M.L. and Riper III, C.V. 1989. Seasonal changes in bird communities of the chaparral and blue-oak woodlands in central California. The Condor, 91(2): 288-295. doi:https://doi.org/10.2307/1368306
- Bailey, S.A., Horner-Devine, M., Luck, G., Moore, L., Carney, K., Anderson, S., *et al.* 2004. Primary productivity and species richness: relationships among functional guilds, residency groups and vagility classes at multiple spatial scales. Ecography, 27(2): 207-217. doi:https://doi.org/10.1111/j.0906-7590.2004.03631.x
- Baral, H.S. and Inskipp, C. 2005. Important Bird Areas in Nepal: key sites for conservation: Bird Conservation Nepal.
- Batáry, P., Matthiesen, T. and Tscharntke, T. 2010. Landscape-moderated importance of hedges in conserving farmland bird diversity of organic vs. conventional croplands and grasslands. Biological Conservation, 143(9): 2020-2027. doi:https://doi.org/10.1016/j.biocon.2010.05.005

- BCN. (2020, 5 July). Birds of Nepal. Retrieved from http://Www.Birdlifenepal.Org/Birds/Status-of-Birds.
- BCN. 2021. Important Bird And Biodiversity Areas Of Nepal (IBAs). Retrieved from https://www.birdlifenepal.org/birds/important-birds-areas
- Benton, T.G., Vickery, J.A. and Wilson, J.D. 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology and Evolution, 18(4): 182-188. doi:https://doi.org/10.1016/S0169-5347(03)00011-9
- Brotons, L.s. and Herrando, S. 2001. Reduced bird occurrence in pine forest fragments associated with road proximity in a Mediterranean agricultural area. Landscape and Urban Planning, **57**(2): 77-89. doi:https://doi.org/10.1016/S0169-2046(01)00191-8
- Brown, J.H. 2001. Mammals on mountainsides: elevational patterns of diversity. Global Ecology and Biogeography, **10**(1): 101-109. doi:https://doi.org/10.1046/j.1466-822x.2001.00228.x
- Bull, J. 1974. Birds of New York State: Doubleday: Natural History Press.
- CBS. 2012. National population and household census 2011. National report submitted to Government of Nepal. National Planning Commission Secretariat. Retrieved from https://unstats.un.org/unsd/demographicsocial/census/documents/Nepal/Nepal-Census-2011-Vol1.pdf.
- Chaudhari, U.K., Kafle, G. and Baral, H.S. 2009. Avifaunal diversity of khata corridor forest. Journal of Wetlands Ecology, 2: 48-56. Retrieved from http://www.nepjol.info/index.php/JOWE
- Chen, Z., He, K., Cheng, F., Khanal, L. and Jiang, X. 2017. Patterns and underlying mechanisms of non-volant small mammal richness along two contrasting mountain slopes in southwestern China. Scientific Reports, 7(1): 1-10. doi:10.1038/s41598-017-13637-0
- CITES. 2021. Checklist of CITES Species. Retrieved from https://checklist.cites.org
- CNP. 2019. Annual Report 2076. Retrived from https://www.Chitwannationalpark.gov.np.

- Cueto, V.R. and Lopez de Casenave, J. 2000. Seasonal changes in bird assemblages of coastal woodlands in east-central Argentina. Studies on Neotropical Fauna and Environment, 35(3): 173-177. doi:https://doi.org/10.1076/snfe.35.3.173.8859
- Currie, D.J. 1991. Energy and large-scale patterns of animal-and plant-species richness. the american naturalist, **137**(1): 27-49.
- Dangaura, H.L., Pandey, N., Chand, D.B. and Bhusal, K.P. 2020. Avian richness of the Basanta Protected Forest, far-western lowland Nepal: Implication for conservation. Nepalese Journal of Zoology, 4(2): 68-84. doi:https://doi.org/10.3126/njz.v4i2.33886.
- da Silva, F.K.G., de Faria Lopes, S., Lopez, L.C.S., de Melo, J.I.M. and Trovão,
 D.M.d.B.M. 2014. Patterns of species richness and conservation in the Caatinga along elevational gradients in a semiarid ecosystem. Journal of Arid Environments, 11047-52. doi:https://doi.org/10.1016/j.jaridenv.2014.05.011
- DCCO. (2015). District profile Nawalparasi 2072. Retrieved from <u>https://dccnawalparasiwest.gov.np/en/district-profile-nawalparasi-2072</u>
- DHM. 2020. Temperature and rainfall data. Government of Nepal. Department of Hydrology and Meterology.
- DNPWC. 2019. Annual Report 2076. Government of Nepal. Department of national parks and wildlife conseevation. Retrived from https:// dnpwc.gov.np.
- Emmerson, M., Morales, M., Oñate, J., Batary, P., Berendse, F., Liira, J., *et al.* 2016.
 How agricultural intensification affects biodiversity and ecosystem services.
 Advances in Ecological Research, 55: 43-97.
 doi:https://doi.org/10.1016/bs.aecr.2016.08.005s
- Fick, S.E. and Hijmans, R.J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12): 4302-4315. doi:https://doi.org/10.1002/joc.5086
- Flohre, A., Fischer, C., Aavik, T., Bengtsson, J., Berendse, F., Bommarco, R., *et al.* 2011. Agricultural intensification and biodiversity partitioning in European landscapes

comparing plants, carabids, and birds. Ecological Applications, **21**(5): 1772-1781. doi: https://doi.org/10.1890/10-0645.1

- Fuller, R., Chamberlain, D.E., Burton, N. and Gough, S. 2001. Distributions of birds in lowland agricultural landscapes of England and Wales: how distinctive are bird communities of hedgerows and woodland? Agriculture, Ecosystems and Environment, 84(1): 79-92. doi:https://doi.org/10.1016/S0167-8809(00)00194-8
- Goddard, M.A., Dougill, A.J. and Benton, T.G. 2010. Scaling up from gardens: biodiversity conservation in urban environments. Trends in Ecology and Evolution, 25(2): 90-98. doi:https://doi.org/10.1016/j.tree.2009.07.016
- Gregory, R.D., Gibbons, D.W. and Donald, P.F. 2004. Bird census and survey techniques. Bird Ecology and Conservation, 17-56.
- Gregory, R.D. and van Strien, A. 2010. Wild bird indicators: using composite population trends of birds as measures of environmental health. Ornithological Science, 9(1): 3-22. doi:https://doi.org/10.2326/osj.9.3
- Griffith, E.H., Sauer, J.R. and Royle, J.A. 2010. Traffic effects on bird counts on North American Breeding Bird Survey routes. The Auk, **127**(2): 387-393. doi:https://doi.org/10.1525/auk.2009.09056
- Grimmett, R., Inskipp, C., Inskipp, T. and Baral, H.S. 2016a. Birds of Nepal (Revised ed.): Bloomsbury Publishing
- Grimmett, R., Inskipp, C. and Inskipp, T. 2016b. Birds of the Indian Subcontinent: India, Pakistan, Sri Lanka, Nepal, Bhutan, Bangladesh and the Maldives (Revisied ed.): Bloomsbury Publishing.
- Guisan, A. and Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135(2-3): 147-186. doi:https://doi.org/10.1016/S0304-3800(00)00354-9
- Harisha, M. and Hosetti, B. 2009. Diversity and distribution of avifauna of Lakkavalli range forest, Bhadra wildlife sanctuary, Western Ghat, India. Ecoprint: An

International Journal of Ecology, **16**: 21-27. doi:https://doi.org/10.3126/eco.v16i0.3469

- Hawkins, B.A., Diniz-Filho, J.A.F., Jaramillo, C.A. and Soeller, S.A. 2007. Climate, niche conservatism, and the global bird diversity gradient. The American Naturalist, 170(S2): S16-S27. Retrieved from http://www.jstor.org/stable/10.1086/519009?origin=JSTOR-pdf
- Hawkins, B.A., Diniz-Filho, J.A.F. and Soeller, S.A. 2005. Water links the historical and contemporary components of the Australian bird diversity gradient. Journal of Biogeography, **32**(6): 1035-1042. doi:https://doi.org/10.1111/j.1365-2699.2004.01238.x
- Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.-F., Kaufman, D.M., et al. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84(12): 3105-3117. doi:https://doi.org/10.1890/03-8006
- Hill, D.A., Burgess, N.D. and Bibby, C. 1992. Bird census techniques: Elsevier Science.
- Hurlbert, A.H. and Haskell, J.P. 2003. The effect of energy and seasonality on avian species richness and community composition. The American Naturalist, 161(1): 83-97. doi:www.journals.uchicago.edu/dio/pdf/10.1086/345439
- Inskipp, C. and Baral, H. 2010. Potential impacts of agriculture on Nepal birds. Our Nature, **8**(1): 270-312. doi:https://doi.org/10.3126/on.v8i1.4339
- Inskipp, C., Baral, H.S., Inskipp, T., Khatiwada, A.P., Khatiwada, M.P., Poudyal, L.P., *et al.* (2017). Nepal's National Red List of Birds. Journal of Threatened Taxa.
- International, B. 2008. State of the world's birds: indicators for our changing world. Birdlife International. Retrieved from www.birdlife.org
- IUCN. 2018. The IUCN Red List of Threatened Species. Retrieved from www.iucnredlist.org
- Jankowski, J.E., Ciecka, A.L., Meyer, N.Y. and Rabenold, K.N. 2009. Beta diversity along environmental gradients: implications of habitat specialization in tropical

montane landscapes. Journal of Animal Ecology, **78**(2): 315-327. doi:https://doi.org/10.1111/j.1365-2656.2008.01487.x

- Jenouvrier, S. 2013. Impacts of climate change on avian populations. Global Change Biology, **19**(7): 2036-2057. doi:https://doi.org/10.1111/gcb.12195
- Johnson, R.J., Jedlicka, J.A., Quinn, J.E. and Brandle, J.R. 2011. Global perspectives on birds in agricultural landscapes *Integrating agriculture, conservation and ecotourism: Examples from the field* (pp. 55-140): Springer
- Joshi, K. and Bhatt, D. 2015. Avian species distribution along elevation at doon valley (foot hills of western Himalayas), Uttarakhand, and its association with vegetation structure. Journal of Asia-Pacific Biodiversity, 8(2): 158-167. doi:https://doi.org/10.1016/j.japb.2015.04.002
- Joshi, K.K., Bhatt, D. and Thapliyal, A. 2012. Avian diversity and its association with vegetation structure in different elevational zones of Nainital district (Western Himalayan) of Uttarakhand. International Journal of Biodiversity and Conservation, 4(11): 364-370. doi:https://doi.org/10.5897/IJBC11.243
- Katuwal, H.B., Basnet, K., Khanal, B., Devkota, S., Rai, S.K., Gajurel, J.P., *et al.* 2016.
 Seasonal changes in bird species and feeding guilds along elevational gradients of the Central Himalayas, Nepal. PloS One, **11**(7): e0158362.
 doi:https://doi.org/10.1371/journal.pone.0158362
- Khanal, H.R. 2008. Seasonal diversity, status and habitat utilization of birds in the Nawalparasi forest of Nawalparasi, Nepal. MSc Thesis. Central Department of Zoology. Tribhuvan University, Kathmandu, Nepal.
- Li, L., Wang, Z., Zerbe, S., Abdusalih, N., Tang, Z., Ma, M., *et al.* 2013. Species richness patterns and water-energy dynamics in the drylands of Northwest China. PloS one, 8(6): e66450. doi:https://doi.org/10.1371/journal.pone.0066450
- MacArthur, R., Recher, H. and Cody, M. 1966. On the relation between habitat selection and species diversity. the american naturalist, **100**(913): 319-332. doi:https://doi.org/10.1086/282425

- Manning, A.D., Fischer, J. and Lindenmayer, D.B. 2006. Scattered trees are keystone structures–implications for conservation. Biological Conservation, 132(3): 311-321. doi:https://doi.org/10.1016/j.biocon.2006.04.023
- McCain, C.M. 2007. Area and mammalian elevational diversity. Ecology, **88**(1): 76-86. doi:https://doi.org/10.1890/0012-9658(2007)88[76:AAMED]2.0.CO;2
- McCain, C.M. 2009. Global analysis of bird elevational diversity. Global Ecology and Biogeography, **18**(3): 346-360. doi:https://doi.org/10.1111/j.1466-8238.2008.00443.x
- Mittelbach, G.G., Steiner, C.F., Scheiner, S.M., Gross, K.L., Reynolds, H.L., Waide, R.B., *et al.* 2001. What is the observed relationship between species richness and productivity? Ecology, **82**(9): 2381-2396. doi:https://doi.org/10.1890/0012-9658(2001)082[2381:WITORB]2.0.CO;2
- Møller, A.P. and Díaz, M. 2018. Avian preference for close proximity to human habitation and its ecological consequences. Current Zoology, 64(5): 623-630. doi:https://doi.org/10.1093/cz/zox073
- Murgui, E. 2007. Effects of seasonality on the species–area relationship: a case study with birds in urban parks. Global Ecology and Biogeography, **16**(3): 319-329. doi:https://doi.org/10.1111/j.1466-8238.2006.00304.x
- Ó hUallacháin, D., Copland, A.S., Buckley, K. and McMahon, B.J. 2015. Opportunities within the revised EU common agricultural policy to address the decline of farmland birds: an Irish perspective. Diversity, **7**(3): 307-317. doi:https://doi.org/10.3390/d7030307
- Orians, G.H. and Wittenberger, J.F. 1991. Spatial and temporal scales in habitat selection. The American Naturalist, **137**: S29-S49. Retrieved from http://www.jstor.org/stable/2462287?origin=JSTOR-pdf
- Parajuli, K. 2018. Diversity and Relative Abundance of Avian Fauna of Karra River, Hetauda, Makwanpur, Nepal. (Master Academic), Tribhuvan University.
 Retrieved from http://hdl.handle.net/123456789/691 (12621)

- Pokharel, U. 2015. Diversity and Conservation Status of Birds in Betana Wetland area Belbari, Morang, Nepal. (Master Academic), Tribhuvan University. Retrieved from http://hdl.handle.net/123456789/555 (12311)
- Rahbek, C. 1997. The relationship among area, elevation, and regional species richness in neotropical birds. the american naturalist, **149**(5): 875-902. Retrieved from http://www.jstor.org/stable/10.1086/286028?origin=JSTOR-pdf
- Ralph, C.J., Sauer, J.R. and Droege, S. 1995. Monitoring bird populations by point counts. Gen. Tech. Rep. PSW-GTR-149. Albany, CA: US Department of Agriculture, Forest Service, Pacific Southwest Research Station. 187 p, 149117-124. doi:https://doi.org/10.2737/PSW-GTR-149
- Reino, L., Beja, P., Osborne, P.E., Morgado, R., Fabião, A. and Rotenberry, J.T. 2009. Distance to edges, edge contrast and landscape fragmentation: interactions affecting farmland birds around forest plantations. Biological Conservation, 142(4): 824-838. doi:https://doi.org/10.1016/j.biocon.2008.12.011
- Rheindt, F.E. 2003. The impact of roads on birds: does song frequency play a role in determining susceptibility to noise pollution? Journal für Ornithologie, 144(3): 295-306. doi:https://doi.org/10.1007/BF02465629
- Ríos-Muñoz, C.A. and Navarro-Sigüenza, A.G. 2012. Patterns of species richness and biogeographic regionalization of the avifaunas of the seasonally dry tropical forest in Mesoamerica. Studies on Neotropical Fauna and Environment, **47**(3): 171-182. doi:https://doi.org/10.1080/01650521.2012.734175
- Robinson, R.A., Wilson, J.D. and Crick, H.Q. 2001. The importance of arable habitat for farmland birds in grassland landscapes. Journal of Applied Ecology, 38(5): 1059-1069. doi:https://doi.org/10.1046/j.1365-2664.2001.00654.x
- Rodríguez-Estrella, R. 2007. Land use changes affect distributional patterns of desert birds in the Baja California peninsula, Mexico. Diversity and Distributions, 13(6): 877-889. doi:https://doi.org/10.1111/j.1472-4642.2007.00387.x

- Rowe, R.J. 2009. Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography, **32**(3): 411-422. doi:https://doi.org/10.1111/j.1600-0587.2008.05538.x
- Sajjad, A., Bhutto, A.R., Imran, A. and Makhdum, A.H. 2016. Impact of better management practices on farmland biodiversity associated with sugarcane crop. Sciences, 7: 48-54.
- Šálek, M., Bažant, M. and Żmihorski, M. 2018. Active farmsteads are year-round strongholds for farmland birds. Journal of Applied Ecology, **55**(4): 1908-1918. doi:https://doi.org/10.1111/1365-2664.13093
- Shannon, C.E. 1948. A mathematical theory of communication. The Bell System Technical Journal, 27(3): 379-423. doi:https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Shoo, L.P., Williams, S.E. and Hero, J.-M. 2005. Climate warming and the rainforest birds of the Australian Wet Tropics: Using abundance data as a sensitive predictor of change in total population size. Biological Conservation, **125**(3): 335-343. doi:https://doi.org/10.1016/j.biocon.2005.04.003
- Simpson, E.H. 1949. Measurement of diversity. Nature, **163**(4148): 688-688. doi:https://doi.org/10.1038/163688a0
- Sousa, A.E.B.A., Lima, D.M. and Lyra-Neves, R.M. 2013. Avifauna of the catimbau national park in the brazilian state of pernambuco, brazil: species richness and spatio-temporal variation. Revista Brasileira de Ornitologia-Brazilian Journal of Ornithology, 20(49): 16.
- Team, R.C. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (Version 4.0.0): R Foundation for Statistical Computing, Vienna, Austria. Retrieved from <u>https://www.R-project.org/</u>.
- Thakuri, J.J. 2007. Status, seasonal diversity, habitat utilization and distribution of birds in Satikhel Community Forest and Dallu Community Forest in Seshanaryan VDC. (Master), Tribhuvan University, Kathmandu, Nepal.

- Tonkin, J.D., Bogan, M.T., Bonada, N., Rios-Touma, B. and Lytle, D.A. 2017. Seasonality and predictability shape temporal species diversity. Ecology, 98(5): 1201-1216. doi:https://doi.org/10.1002/ecy.1761
- Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I. and Thies, C. 2005. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology Letters, 8(8): 857-874. doi:https://doi.org/10.1111/j.1461-0248.2005.00782.x
- van der Weijden, W., Terwan, P. and Guldemond, A. 2010. Farmland Birds Across de World. Barcelona, Spain: Lynx Edicions.
- Whelan, C.J., Wenny, D.G. and Marquis, R.J. 2008. Ecosystem services provided by birds. Annals of the New York Academy of Sciences, **1134**(1): 25-60. doi:10.1196/annals.1439.003
- Wilcox, J., Barbottin, A., Durant, D., Tichit, M. and Makowski, D. 2014. Farmland birds and arable farming, a meta-analysis *Sustainable agriculture reviews*. Springer, 35-63. doi: https://doi.org/10.1007/978-3-319-00915-5_3
- Wretenberg, J., Pärt, T. and Berg, Å. 2010. Changes in local species richness of farmland birds in relation to land-use changes and landscape structure. Biological Conservation, 143(2): 375-381. doi:https://doi.org/10.1016/j.biocon.2009.11.001

APPENDICES

I. List of birds with scientific name, orders, family, and species code for CCA, migratory status, IUCN status and feeding guild.

S.N.	Common name	Zoological name	Spp_code	Orders		Family	IUCN	population trend	presence in rainy	in summer	in winter	feeding guild	migratory
1	Black-winged Kite	<i>Elanus caeruleus</i> (Desfontaines, 1789)	Ela.cae	Accipitriformes	Accipitridae		LC	stable	\checkmark	\checkmark	\checkmark	Carnivore	resident
	U	Gyps bengalensis (Gmelin,		•									
2	White-rumped Vulture	1788)	Gyp.ben	Accipitriformes	Accipitridae		CR	decreasing	\checkmark	\checkmark	\checkmark	Carnivore	resident
3	Brahminy Kite	Haliastur indus (Boddaert, 1783)	Hal.ind	Accipitriformes	Accipitridae		LC	decreasing	\checkmark	\checkmark	\checkmark	Carnivore	resident
-		Sarcogyps calvus (Scopoli,											
4	Red-headed Vulture	1786)	Sar.cal	Accipitriformes	Accipitridae		CR	decreasing	\checkmark	\checkmark	\checkmark	Carnivore	resident
5	Shikra	Accipiter badius (Gmelin, 1788)	Acc.bad	Accipitriformes	Accipitridae		LC	stable			\checkmark	Carnivore	resident
6	Indian spotted eagle	Clanga hastata (Lesson, 1831)	Cla.has	Accipitriformes	Accipitridae		VU	decreasing		\checkmark	\checkmark	Carnivore	resident
		Nisaetus cirrhatus (Gmelin,											
7	Changeable Hawk-eagle	1788)	Nis.cir	Accipitriformes	Accipitridae		LC	decreasing	\checkmark			Carnivore	resident
8	Crested Serpent-eagle	Spilornis cheela (Latham, 1790)	Spi.che	Accipitriformes	Accipitridae		LC	stable			\checkmark	Carnivore	resident
9	Common Hoopoe	Upupa epops Linnaeus, 1758	Upu.epo	Bucerotiformes	Upupidae		LC	decreasing	\checkmark	\checkmark		Insectivore	resident
		Apus nipalensis (Hodgson,											
10	House swift	1836)	Apu.nip	Caprimulgiformes	Apodidae		LC	increasing	\checkmark		\checkmark	Insectivore	resident
11	Pacific Swift	Apus pacificus (Latham, 1802)	Apu.pac	Caprimulgiformes	Apodidae		LC	Stable		\checkmark	\checkmark	Insectivore	s. migratory

		Zoonavena sylvatica (Tickell,										
12	White-rumped Spinetail	1846)	Zoo.syl	Caprimulgiformes	Apodidae	LC	stable	\checkmark	\checkmark		Insectivore	resident
		Ciconia episcopus (Boddaert,										
13	Asian Woollyneck	1783)	Cic.epi	Ciconiiformes	Ciconiidae	VU	decreasing	\checkmark			Carnivore	resident
		Leptoptilos javanicus (Horsfield,										
14	Lesser Adjutant	1821)	Lep.jav	Ciconiiformes	Ciconiidae	VU	decreasing			\checkmark	Carnivore	resident
		Anastomus oscitans (Boddaert,										
15	Asian Openbill	1783)	Ana.osc	Ciconiiformes	Ciconiidae	LC	unknown		\checkmark	\checkmark	Carnivore	resident
		Spilopelia suratensis (Gmelin,										
16	Western Spotted Dove	1789)	Spi.sur	Columbiformes	Columbidae	LC	increasing	\checkmark	\checkmark	\checkmark	Granivorous	resident
		Streptopelia decaocto										
17	Eurasian Collared-dove	Frivaldszky, 1838	Str.dec	Columbiformes	Columbidae	LC	increasing	\checkmark	\checkmark	\checkmark	Granivorous	resident
18	Rock Dove	Columba livia Gmelin, 1789	Col.liv	Columbiformes	Columbidae	LC	decreasing	\checkmark	\checkmark	\checkmark	Granivorous	resident
19	Common Kingfisher	Alcedo atthis (Linnaeus, 1758)	Alc.att	Coraciiformes	Alcedinidae	LC	unknown	\checkmark	\checkmark	\checkmark	Carnivore	resident
		Halcyon smyrnensis (Linnaeus,										
20	White breasted kingfisher	1758)	Hal.smy	Coraciiformes	Alcedinidae	LC	increasing	\checkmark	\checkmark	\checkmark	Carnivore	resident
21	Pied Kingfisher	Ceryle rudis (Linnaeus, 1758)	Cer.rud	Coraciiformes	Alcedinidae	LC	unknown	\checkmark			Carnivore	resident
		Coracias benghalensis										
22	Indian Roller	(Linnaeus, 1758)	Cor.ben	Coraciiformes	Coraciidae	LC	increasing	\checkmark	\checkmark	\checkmark	Carnivore	resident
		Eurystomus orientalis (Linnaeus,										
23	Oriental Dollarbird	1766)	Eur.ori	Coraciiformes	Coraciidae	LC	decreasing	\checkmark	\checkmark		Insectivore	s.migratory
24	Green Bee-eater	Merops orientalis Latham, 1802	Mer.ori	Coraciiformes	Meropidae	LC	increasing	\checkmark	\checkmark		Insectivore	resident
		Merops philippinus Linnaeus,										
25	Blue-tailed Bee-eater	1766	Mer.phi	Coraciiformes	Meropidae	LC	Stable		\checkmark	\checkmark	Insectivore	S. migratory
		Centropus bengalensis (Gmelin,										
26	Lesser Coucal	1788)	Cen.ben	Cuculiformes	Cuculidae	LC	increasing	\checkmark	\checkmark		Omnivores	resident
		Centropus sinensis (Stephens,										
27	Greater Coucal	1815)	Cen.sin	Cuculiformes	Cuculidae	LC	stable	\checkmark	\checkmark	\checkmark	Omnivores	resident
28	European Cuckoo	Cuculus canorus Linnaeus, 1758	Cuc.can	Cuculiformes	Cuculidae	LC	Decreasing		\checkmark		Omnivores	S. migratory
		Eudynamys scolopaceus										
29	Western Koel	(Linnaeus, 1758)	Eud.sco	Cuculiformes	Cuculidae	LC	Stable		\checkmark		Omnivores	s.migratory
30	Common Hawk-cuckoo	Hierococcyx varius (Vahl, 1797)	Hie.var	Cuculiformes	Cuculidae	LC	stable	\checkmark	\checkmark		Insectivore	resident

		Francolinus francolinus										
31	Black Francolin	(Linnaeus, 1766)	Fra.fra	Galliformes	Phasianidae	LC	stable		\checkmark		Omnivores	resident
		Amaurornis phoenicurus										
32	White-breasted Waterhen	(Pennant, 1769)	Ama.pho	Gruiformes	Rallidae	LC	unknown	\checkmark			Omnivores	resident
33	Watercock	Gallicrex cinerea (Gmelin, 1789)	Gal.cin	Gruiformes	Rallidae	LC	decreasing	\checkmark	\checkmark		Omnivores	s.migratory
		Gallinula chloropus (Linnaeus,										
34	Common Moorhen	1758)	Gal.chl	Gruiformes	Rallidae	LC	stable	\checkmark	\checkmark		Omnivores	resident
		Aegithalos concinnus (Gould,										
35	Black-throated Bushtit	1855)	Aeg.con	Passeriformes	Aegithalidae	LC	stable			\checkmark	Omnivores	resident
36	Bengal Bushlark	Mirafra assamica Horsfield, 1840	Mir.ass	Passeriformes	Alaudidae	LC	stable	\checkmark			Omnivores	resident
		Coracina javensis (Horsfield,										
37	Large Cuckooshrike	1821)	Cor.jav	Passeriformes	Campephagidae	LC	stable		\checkmark		Insectivore	resident
		Pericrocotus cinnamomeus										
38	Small Minivet	(Linnaeus, 1766)	Per.cin	Passeriformes	Campephagidae	LC	stable	\checkmark	\checkmark		Insectivore	resident
		Lalage melanoptera (Rüppell,										
39	Black-headed Cuckooshrike	1839)	Lal.mel	Passeriformes	Campephagidae	LC	stable	\checkmark			Insectivore	s.migratory
		Pericrocotus roseus (Vieillot,										
40	Rosy Minivet	1818)	Per.ros	Passeriformes	Campephagidae	LC	decreasing	\checkmark	\checkmark		Insectivore	resident
		Cisticola juncidis (Rafinesque,										
41	Zitting Cisticola	1810)	Cis.jun	Passeriformes	Cisticolidae	LC	increasing	\checkmark	\checkmark	\checkmark	Insectivore	resident
		Orthotomus sutorius (Pennant,										
42	Common Tailorbird	1769)	Ort.sut	Passeriformes	Cisticolidae	LC	stable	\checkmark	\checkmark		Insectivore	resident
43	Grey-breasted Prinia	Prinia hodgsonii Blyth, 1844	Pri.hod	Passeriformes	Cisticolidae	LC	stable		\checkmark		Insectivore	resident
44	Plain Prinia	Prinia inornata Sykes, 1832	Pri.ino	Passeriformes	Cisticolidae	LC	stable		\checkmark		Insectivore	resident
45	IndianJungle Crow	Corvus culminatus Sykes, 1832	Cor.cul	Passeriformes	Corvidae	LC	stable	\checkmark		\checkmark	Omnivores	resident
46	House Crow	Corvus splendens Vieillot, 1817	Cor.spl	Passeriformes	Corvidae	LC	stable	\checkmark	\checkmark	\checkmark	Omnivores	resident
		Dendrocitta vagabunda (Latham,				1				1		
47	Rufous Treepie	1790)	Den.vag	Passeriformes	Corvidae	LC	decreasing	\checkmark	\checkmark	\checkmark	Omnivores	resident
		Urocissa erythroryncha										
48	Red-billed Blue Magpie	(Boddaert, 1783)	Uro.ery	Passeriformes	Corvidae	LC	stable	\checkmark			Insectivore	resident
		Dicrurus macrocercus Vieillot,										
49	Black Drongo	1817	Dic.mac	Passeriformes	Dicruridae	LC	unknown	\checkmark	\checkmark	\checkmark	Insectivore	resident

		Dicrurus caerulescens										
50	White-bellied Drongo	(Linnaeus, 1758)	Dic.cae	Passeriformes	Dicruridae	LC	unknown	\checkmark			Insectivore	resident
		Dicrurus leucophaeus Vieillot,										W.
51	Ashy Drongo	1817	Dic.leu	Passeriformes	Dicruridae	LC	unknown		\checkmark	\checkmark	Insectivore	migratory
52	Crested Bunting	Emberiza lathami Gray, 1831	Emb.lat	Passeriformes	Emberizidae	LC	stable			\checkmark	Frugivorous	W.migratory
		Emberiza spodocephala Pallas,										
53	Black-faced Bunting	1776	Emb.spo	Passeriformes	Emberizidae	LC	stable	\checkmark		\checkmark	Omnivores	w.migratory
		Lonchura punctulata (Linnaeus,										
54	Scaly-breasted Munia	1758)	Lon.pun	Passeriformes	Estrildidae	LC	stable	\checkmark	\checkmark	\checkmark	Granivorous	resident
55	Barn Swallow	Hirundo rustica Linnaeus, 1758	Hir.rus	Passeriformes	Hirundinidae	LC	decreasing	\checkmark	\checkmark	\checkmark	Insectivore	resident
		Delichon nipalense Horsfield &										
56	Nepal House Martin	Moore, 1854	Del.nip	Passeriformes	Hirundinidae	LC	stable	\checkmark	\checkmark		Insectivore	resident
57	Plain Martin	Riparia chinensis (Gray, 1830)	Rip.chi	Passeriformes	Hirundinidae	LC	decreasing	\checkmark	\checkmark		Insectivore	resident
58	Long-tailed Shrike	Lanius schach Linnaeus, 1758	Lan.sch	Passeriformes	Laniidae	LC	unknown	\checkmark	\checkmark	\checkmark	Insectivore	resident
												w.
59	Brown Shrike	Lanius cristatus Linnaeus, 1758	Lan.cri	Passeriformes	Laniidae	LC	decreasing	\checkmark		\checkmark	Insectivore	migratory
	Rufous-necked	Garrulax ruficollis (Jardine &										
60	Laughingthrush	Selby, 1838)	Gar.ruf	Passeriformes	Leiotrichidae	LC	stable		\checkmark		Omnivores	resident
61	Jungle Babbler	Turdoides striata (Dumont, 1823)	Tur.str	Passeriformes	Leiotrichidae	LC	stable		\checkmark		Omnivores	resident
		Terpsiphone paradisi (Linnaeus,										
62	Indian Paradise-flycatcher	1758)	Ter.par	Passeriformes	Monarchidae	LC	stable		\checkmark		Insectivore	S. migratory
63	Rosy Pipit	Anthus roseatus Blyth, 1847	Ant.ros	Passeriformes	Motacillidae	LC	stable			\checkmark	Omnivores	w.migratory
64	White Wagtail	Motacilla alba Linnaeus, 1758	Mot.alb	Passeriformes	Motacillidae	LC	stable	\checkmark		\checkmark	Insectivore	W.migratory
65	Western Yellow Wagtail	Motacilla flava Linnaeus, 1758	Mot.fla	Passeriformes	Motacillidae	LC	decreasing			\checkmark	Insectivore	W.migratory
		Anthus hodgsoni Richmond,										
66	Olive-backed Pipit	1907	Ant.hod	Passeriformes	Motacillidae	LC	stable			\checkmark	Omnivores	w.migratory
67	Richard's Pipit	Anthus richardi Vieillot, 1818	Ant.ric	Passeriformes	Motacillidae	LC	stable			\checkmark	Omnivores	w.migratory
68	Paddyfield Pipit	Anthus rufulus Vieillot, 1818	Ant.ruf	Passeriformes	Motacillidae	LC	stable	\checkmark	\checkmark		Omnivores	resident
		Motacilla maderaspatensis										
69	White-browed Wagtail	Gmelin, 1789	Mot.mad	Passeriformes	Motacillidae	LC	stable			\checkmark	Insectivore	resident
70	Siberian Rubythroat	Calliope calliope (Pallas, 1776)	Cal.cal	Passeriformes	Muscicapidae	LC	stable			\checkmark	Insectivore	W.migratory

		Copsychus saularis (Linnaeus,										
71	Oriental Magpie Robin	1758)	Cop.sau	Passeriformes	Muscicapidae	LC	stable	\checkmark	\checkmark	\checkmark	Insectivore	resident
		Enicurus immaculatus (Hodgson,										
72	Black-backed Forktail	1836)	Eni.imm	Passeriformes	Muscicapidae	LC	stable	\checkmark		\checkmark	Carnivore	resident
73	Little Forktail	Enicurus scouleri Vigors, 1832	Eni.sco	Passeriformes	Muscicapidae	LC	stable	\checkmark		\checkmark	Insectivore	resident
		Ficedula westermanni (Sharpe,										
74	Little Pied Flycatcher	1888)	Fic.wes	Passeriformes	Muscicapidae	LC	decreasing		\checkmark	\checkmark	Insectivore	resident
		Kittacincla malabarica (Scopoli,										
75	White-rumped Shama	1788)	Kit.mal	Passeriformes	Muscicapidae	LC	decreasing		\checkmark	\checkmark	Insectivore	resident
		Larvivora brunnea Hodgson,										
76	Indian Blue Robin	1837	Lar.bru	Passeriformes	Muscicapidae	LC	decreasing	\checkmark	\checkmark		Insectivore	s.migratory
		Myophonus caeruleus (Scopoli,										
77	Blue Whistling-thrush	1786)	Myo.cae	Passeriformes	Muscicapidae	LC	unknown			\checkmark	Omnivores	W.migratory
78	White-tailed Stonechat	Saxicola leucurus (Blyth, 1847)	Sax.leu	Passeriformes	Muscicapidae	LC	stable	\checkmark	\checkmark		Insectivore	resident
		Saxicola caprata (Linnaeus,										
79	Pied Bushchat	1766)	Sax.cap	Passeriformes	Muscicapidae	LC	stable	\checkmark	\checkmark	\checkmark	Insectivore	resident
80	Grey Bushchat	Saxicola ferreus Gray, 1846	Sax.fer	Passeriformes	Muscicapidae	LC	stable	\checkmark	\checkmark		Insectivore	resident
		Saxicola torquatus (Linnaeus,										W.
81	Common Stonechat	1766)	Sax.tor	Passeriformes	Muscicapidae	LC	stable		\checkmark	\checkmark	Insectivore	migratory
82	Indian Golden Oriole	Oriolus kundoo Sykes, 1832	Ori.kun	Passeriformes	Oriolidae	LC	unknown	\checkmark	\checkmark		Insectivore	s.migratory
		Oriolus xanthornus (Linnaeus,										
83	Black-hooded Oriole	1758)	Ori.xan	Passeriformes	Oriolidae	LC	stable	\checkmark	\checkmark		Insectivore	resident
		Passer domesticus (Linnaeus,										
84	House Sparrow	1758)	Pas.dom	Passeriformes	Passeridae	LC	decreasing	\checkmark	\checkmark	\checkmark	Granivorous	resident
		Pellorneum ruficeps Swainson,										
85	Puff-throated Babbler	1832	Pel.ruf	Passeriformes	Pellorneidae	LC	stable		\checkmark	\checkmark	Omnivores	resident
		Phylloscopus collybita (Vieillot,										
86	Common Chiffchaff	1817)	Phy.col	Passeriformes	Phylloscopidae	LC	increasing			\checkmark	Omnivores	W.migratory
		Phylloscopus fuligiventer										w.
87	Smoky Warbler	(Hodgson, 1845)	Phy.ful	Passeriformes	Phylloscopidae	LC	stable		\checkmark	\checkmark	Insectivore	migratory
		Phylloscopus fuscatus (Blyth,										w.
88	Dusky Warbler	1842)	Phy.fus	Passeriformes	Phylloscopidae	LC	stable		\checkmark	\checkmark	Insectivore	migratory

		Phylloscopus humei (Brooks,										
89	Hume's Leaf-warbler	1878)	Phy.hum	Passeriformes	Phylloscopidae	LC	stable			\checkmark	Omnivores	W.migratory
		Phylloscopus reguloides (Blyth,										
90	Blyth's Leaf-warbler	1842)	Phy.reg	Passeriformes	Phylloscopidae	LC	stable			\checkmark	Omnivores	W.migratory
		Phylloscopus trochiloides										
91	Greenish Warbler	(Sundevall, 1837)	Phy.tro	Passeriformes	Phylloscopidae	LC	increasing			\checkmark	Carnivore	w.migratory
		Phylloscopus xanthoschistos										
92	Grey-hooded Warbler	(Gray, 1846)	Phy.xan	Passeriformes	Phylloscopidae	LC	stable	\checkmark			Insectivore	resident
		Ploceus philippinus (Linnaeus,										
93	Baya Weaver	1766)	Plo.phi	Passeriformes	Ploceidae	LC	stable	\checkmark	\checkmark		Omnivores	resident
		Hypsipetes leucocephalus										
94	Black Bulbul	(Gmelin, 1789)	Hyp.leu	Passeriformes	Pycnonotidae	LC	stable		\checkmark		Omnivores	resident
		Pycnonotus cafer (Linnaeus,										
95	Red-vented Bulbul	1766)	Pyc.caf	Passeriformes	Pycnonotidae	LC	increasing	\checkmark	\checkmark	\checkmark	Omnivores	resident
		Rhipidura albicollis (Vieillot,										
96	White-throated Fantail	1818)	Rhi.alb	Passeriformes	Rhipiduridae	LC	stable			\checkmark	Insectivore	resident
97	Chestnut-bellied Nuthatch	Sitta cinnamoventris Blyth, 1842	Sit.cin	Passeriformes	Sittidae	LC	unknown		\checkmark		Omnivores	resident
		Acridotheres tristis (Linnaeus,										
98	Common Myna	1766)	Acr.tri	Passeriformes	Sturnidae	LC	stable	\checkmark	\checkmark	\checkmark	Omnivores	resident
		Gracupica contra (Linnaeus,										
99	Asian-pied Starling	1758)	Gra.con	Passeriformes	Sturnidae	LC	increasing	\checkmark	\checkmark	\checkmark	Omnivores	resident
		Sturnia pagodarum (Gmelin,										
100	Brahminy Starling	1789)	Stu.pag	Passeriformes	Sturnidae	LC	unknown	\checkmark			Omnivores	resident
		Tephrodornis virgatus										
101	Large Wood-shrike	(Temminck, 1824)	Tep.vir	Passeriformes	Vangidae	LC	stable		\checkmark		Insectivore	resident
		Tephrodornis pondicerianus										
102	Common Wood-shrike	(Gmelin, 1789)	Tep.pon	Passeriformes	Vangidae	LC	stable	\checkmark			Insectivore	resident
		Zosterops palpebrosus										
103	Indian White-eye	(Temminck, 1824)	Zos.pal	Passeriformes	Zosteropidae	LC	decreasing	\checkmark	\checkmark		Omnivores	resident
104	Great White Egret	Ardea alba Linnaeus, 1758	Ard.alb	Pelecaniformes	Ardeidae	LC	unknown		\checkmark		Carnivore	resident
105	Intermediate Egret	Ardea intermedia Wagler, 1829	Ard.int	Pelecaniformes	Ardeidae	LC	decreasing	\checkmark	\checkmark	\checkmark	Carnivore	resident
106	Purple Heron	Ardea purpurea Linnaeus, 1766	Ard.pur	Pelecaniformes	Ardeidae	LC	decreasing	\checkmark			Carnivore	resident

107	Indian Pond Heron	Ardeola grayii (Sykes, 1832)	Ard.gra	Pelecaniformes	Ardeidae	LC	unknown	\checkmark	\checkmark	\checkmark	Carnivore	resident
108	Cattle Egret	Bubulcus ibis (Linnaeus, 1758)	Bub.ibi	Pelecaniformes	Ardeidae	LC	increasing	\checkmark	\checkmark	\checkmark	Carnivore	resident
		Butorides striata (Linnaeus,										
109	Green-backed Heron	1758)	But.str	Pelecaniformes	Ardeidae	LC	decreasing		\checkmark		Carnivore	resident
		Egretta garzetta (Linnaeus,										
110	Little Egret	1766)	Egr.gar	Pelecaniformes	Ardeidae	LC	decreasing	\checkmark	\checkmark	\checkmark	Carnivore	resident
		Ixobrychus cinnamomeus										
111	Cinnamon Bittern	(Gmelin, 1789)	Ixo.cin	Pelecaniformes	Ardeidae	LC	stable	\checkmark	\checkmark		Carnivore	S.migratory
		Pseudibis papillosa (Temminck,										
112	Red-naped Ibis	1824)	Pse.pap	Pelecaniformes	Threskiornithidae	LC	decreasing	\checkmark	\checkmark	\checkmark	Omnivores	resident
		Psilopogon haemacephalus										
113	Coppersmith Barbet	(Müller, 1776)	Psi.hae	Piciformes	Megalaimidae	LC	increasing	\checkmark	\checkmark		Frugivorous	resident
		Psilopogon virens (Boddaert,										
114	Great Barbet	1783)	Psi.vir	Piciformes	Megalaimidae	LC	decreasing	\checkmark	\checkmark		Omnivores	resident
		Psilopogon asiaticus (Latham,										
115	Blue-throated Barbet	1790)	Psi.asi	Piciformes	Megalaimidae	LC	stable	\checkmark			Insectivore	resident
		Loriculus vernalis (Sparrman,										
116	Vernal Hanging-parrot	1787)	Lor.ver	Psittaciformes	Psittacidae	LC	stable	\checkmark			Herbivore	resident
		Psittacula alexandri (Linnaeus,										
117	Red-breasted Parakeet	1758)	Psi.ale	Psittaciformes	Psittacidae	NT	decreasing		\checkmark		Herbivore	resident
		Psittacula cyanocephala										
118	Plum-headed Parakeet	(Linnaeus, 1766)	Psi.cya	Psittaciformes	Psittacidae	LC	decreasing		\checkmark		Herbivore	resident
119	Blossom-headed Parakeet	Psittacula roseata Biswas, 1951	Psi.ros	Psittaciformes	Psittacidae	NT	stable	\checkmark	\checkmark	\checkmark	Herbivore	resident
		Psittacula krameri (Scopoli,										
120	Rose-ringed Parrakeet	1769)	Psi.kra	Psittaciformes	Psittacidae	LC	increasing	\checkmark	\checkmark	\checkmark	Herbivore	resident
		Psittacula eupatria (Linnaeus,										
121	Alexandrine Parakeet	1766)	Psi.eup	Psittaciformes	Psittacidae	NT	decreasing	\checkmark	\checkmark	\checkmark	Herbivore	resident
122	Little Cormorant	Microcarbo niger (Vieillot, 1817)	Mic.nig	Suliformes	Phalacrocoracidae	LC	unknown			\checkmark	Carnivore	resident
		Phalacrocorax carbo (Linnaeus,		1								1
123	Great Cormorant	1758)	Pha.car	Suliformes	Phalacrocoracidae	LC	increasing			\checkmark	Carnivore	W.migratory

PHOTOGRAPHS

1. Black-winged Kite

2. Shikra

3. Asian Openbill

4. Common Moorhen

5. Pied Kingfisher

6. Lesser Adjutant

7. Blossom-headed Parakeet

8. White-browed Wagtail

9. Coppersmith Barbet

10. Scaly-breasted Munia

11. Bhraminy Starling

12. Pied Bushchat