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ABSTRACT  

 

A major challenge in topic classification (TC) is the high dimensionality of the feature 

space. Therefore, feature extraction (FE) plays a vital role in topic classification in 

particular and text mining in general. FE based on cosine similarity score is commonly used 

to reduce the dimensionality of datasets with tens or hundreds of thousands of features, 

which can be impossible to process further. In this study, TF-IDF (Term Frequency Inverse 

Document Frequency) term weighting is used to extract features. Selecting relevant 

features and determining how to encode them for a learning machine method have a vast 

impact on the learning machine methods ability to extract a good model.  

Count based feature extraction methods is compared with word to vector feature extraction 

techniques for Nepali news classification. The results show good classification 

performance when using the feature extraction techniques based on word to vector for less 

number of classes and drastically decrease the performance for large sample size. On the 

other hand result of classification count based technique shows consistent nearly 

performance for any number of classes. The overall performance of the TF-IDF (Term 

Frequency Inverse Document Frequency) is far better than both word to vector techniques. 

Keywords—feature extraction, topic classification, cosine similarity score, TF-IDF, 

CBOW, Skip-gram, Text mining, neural networks, deep learning 

 

 

 

 

 

 



 

 

 

iii 
 

TABLE OF CONTENTS 

 

 

ACKNOWLEDGEMENT .................................................................................................... i 

ABSTRACT ......................................................................................................................... ii 

TABLE OF CONTENTS ................................................................................................... iii 

LIST OF FIGURES ............................................................................................................ vi 

LIST OF TABLES ............................................................................................................. vii 

LIST OF ABBREVIATION ............................................................................................ viii 

CHAPTER ONE .................................................................................................................. 1 

INTRODUCTION ............................................................................................................... 1 

1.1   Introduction .............................................................................................................. 1 

1.2 Problem Statement ..................................................................................................... 2 

1.3 Objectives ................................................................................................................... 2 

1.4 Background ................................................................................................................ 3 

1.4.1 Natural Language Processing .............................................................................. 3 

1.4.2 Major Application of Natural Language Processing ........................................... 5 

1.4.3 Computational Linguistics .................................................................................. 6 

1.4.4 Corpus linguistics ................................................................................................ 7 

1.4.5 Machine learning ................................................................................................. 7 

1.4.6 Text Representation ............................................................................................ 7 

1.4.6.1 Bag of words representation ........................................................................ 7 

1.4.6.2 Vector Space Model ..................................................................................... 8 

1.4.7 Feature Extraction ............................................................................................... 9 

1.4.7.1 Latent Semantic Analysis (LSA) ................................................................. 9 

1.4.7.2 FE Based on Cosine Similarity Score .......................................................... 9 

1.4.7.3 PCA- Principle Component Analysis ........................................................ 10 

1.4.7.4 Artificial Neural Network .......................................................................... 10 

1.4.7.5 Convolutional Neural Network .................................................................. 10 

1.4.7.6 Neuro-Fuzzy Method ................................................................................. 11 

1.4.8 Text Classification ............................................................................................ 11 

1.4.8.1 Rule Based System ..................................................................................... 11 

1.4.8.2 Machine Learning Based System ............................................................... 12 

1.4.8.3 Hybrid System ............................................................................................ 13 

1.4.8.4 Text Classification Algorithms .................................................................. 13 



 

 

 

iv 
 

CHAPTER TWO ............................................................................................................... 15 

LITERATURE REVIEW .................................................................................................. 15 

CHAPTER THREE ............................................................................................................ 19 

RESEARCH METHODOLOGY ....................................................................................... 19 

3.1 Data Set Preparation ................................................................................................. 19 

3.2 Preprocessing ........................................................................................................... 21 

3.3 Feature Extraction .................................................................................................... 22 

3.3.1 TF-IDF Vectorization ....................................................................................... 22 

3.3.2 Skip-Gram Model ............................................................................................. 22 

3.3.3 CBOW (Continuous Bag of Words) ................................................................. 23 

3.4 Classification ............................................................................................................ 24 

3.4.1 Support Vector Machine (SVM) ....................................................................... 25 

3.5 News Type Filtering ................................................................................................. 26 

CHAPTER FOUR .............................................................................................................. 28 

IMPLEMENTATION ........................................................................................................ 28 

4.1 Preprocessing ........................................................................................................... 28 

4.2 TF-IDF Algorithm .................................................................................................... 28 

4.3 Continuous Bag of Words (CBOW) Algorithm ...................................................... 28 

4.4 Skip-gram Algorithm ............................................................................................... 29 

4.6 Python ...................................................................................................................... 31 

4.7 Tools and Libraries .................................................................................................. 31 

4.7.1 Anaconda .......................................................................................................... 31 

4.7.2 Spyder ............................................................................................................... 31 

4.7.3 TensorFlow ....................................................................................................... 32 

4.7.4 Numpy ............................................................................................................... 32 

4.7.5 Pandas ............................................................................................................... 33 

4.7.6 Scikit-learn ........................................................................................................ 33 

4.7.7 Matplotlib .......................................................................................................... 33 

4.7.8 Seaborn .............................................................................................................. 34 

CHAPTER FIVE ................................................................................................................ 35 

RESULT AND ANALYSIS .............................................................................................. 35 

5.1 Testing Results ......................................................................................................... 35 

5.1.1 Observation with TF-IDF .................................................................................. 35 

5.1.2 Observation with CBOW .................................................................................. 37 

5.1.3 Observation with Skip-gram ............................................................................. 38 



 

 

 

v 
 

5.1.4 Overall performance of Feature extraction algorithms ..................................... 39 

5.2 Analysis .................................................................................................................... 40 

5.2.1 Accuracy and F-Score ....................................................................................... 40 

5.2.2 Precession and recall ......................................................................................... 41 

CHAPTER SIX .................................................................................................................. 42 

CONCLUSION .................................................................................................................. 42 

6.1 Conclusion ............................................................................................................... 42 

References .......................................................................................................................... 43 

Bibliography ....................................................................................................................... 46 

Appendix ............................................................................................................................ 47 

Sample program Code for CBOW ................................................................................. 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

vi 
 

LIST OF FIGURES 

 

 

Figure 3. 1 The skip-gram model viewed as a network  23 

Figure 3. 2 Continuous bag-of-word model  24 

Figure 3. 3 Support Vector Machine  25 

Figure 3. 4 Framework of Classification algorithm 27 
 

Figure 5. 1 Bar graph of Performance of TF-IDF with of classes 36 

Figure 5. 2 Bar graph of Performance of CBOW with split of classes 38 

Figure 5. 3 Bar graph of Performance of Skip-gram with split of classes 39 

Figure 5. 4 Bar graph of performance comparison of algorithms 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

vii 
 

LIST OF TABLES 

 

 

Table 3. 1 Nepali Character Set 19 

Table 3. 2 Statistics of Nepali News Corpus 20 
 

Table 5. 1 Performance of TF-IDF with 20 classes 36 

Table 5. 2 Performance of TF-IDF with split of classes 36 

Table 5. 3 Performance of CBOW with 20 classes 37 

Table 5. 4 Performance of CBOW with split of classes 37 

Table 5. 5 Performance of Skip-gram with 20 classes 38 

Table 5. 6 Performance of Skip-gram with split of classes 39 

Table 5. 7 Performance comparison of algorithms 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

viii 
 

LIST OF ABBREVIATION 

 

 

SVM    Support Vector Machine 

TF-IDF   Term Frequency Inverse Document Frequency 

CBOW   Continuous Bag of Word 

NLP    Natural Language Processing 

NLU    Natural Language Understanding 

NLG     Natural Language Generation 

POS    Post of Speech 

AI     Artificial Intelligence 

LSA    Latent Semantic Analysis 

SVD     Singular Value Decomposition 

PCA     Principle Component Analysis 

CNN    Convolutional Neural Network 

MLP    Multi-Layered Perceptron 

RNN    Recurrent Neural Network 

LDA    Linear Discriminant Analysis 

NDA    Nonlinear Discriminant Analysis 

ENA    Ethiopian News Agency 

 

 

 



 

 

 

 
1 

 

CHAPTER ONE 

INTRODUCTION  

  

1.1   Introduction 

Modern information age produces vast amount of textual data, which can be termed in other 

words as unstructured data. Internet and corporate spread across the globe produces textual 

data in exponential growth, which needs to be shared, on need basis by individuals. If the 

data generated is properly organized, classified then retrieving the needed data can be made 

easily with least efforts. Hence the need of automatic methods to organize, classify the 

documents becomes inevitable due to such exponential growth in documents, very 

especially after the increase usage of internet by individuals. Automatic classification refers 

to assigning the documents to a set of pre-defined classes based on the textual content of 

the document. The classification can be flat or hierarchical. [1, 7] 

Text Categorization (TC), also known as Text Classification, is the task of automatically 

classifying a set of text documents into different categories from a predefined set. [4] 

Consider the case of sorting and organizing emails, files in folder hierarchies so that topic 

identification that would support topic specific operations be made. On such attempt is the 

yahoo web directory. [5] If such classification is to be done manually it has several 

disadvantages 

 It needs domain experts in the areas of predefined categories. 

 It is time-consuming, leads to frustration. 

 It is error-prone and could be employee biased (subject biased). 

 Human decision among two experts may disagree. 

 Need to repeat the process for new documents (possibly of another domain). 

 

So the need to employee machine learning to automate the classification is needed.  
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1.2 Problem Statement 

The problem of news classification is to assign a news type label to each news automatically 

by computer program. It comes under the heading of supervised machine learning 

technique. For Nepali News, the available technique for other standard language such as 

English can't be directly used for the classification task. Since the Nepali language is 

morphologically rich and has many deflection and derivational form of words. The main 

problem towards classification is not the availability of highly accurate classifier but the 

number of feature fed to these classifier. If the number of features are correctly chosen, the 

classification algorithm works well. In this research work, the best feature extraction 

method will be find out among the some popular technique Term Frequency- Inverse 

Document Frequency (TF-IDF) [8], Continuous Bag of words (CBOW) and Skip-Gram 

method. [2] 

 For the purpose of classification task, the Support Vector Machine (SVM) with best 

feature extracted will be used to measure the accuracy and efficiency of the feature 

extraction technique. [12] 

 

1.3 Objectives  

The main objectives of this research work is to extract the feature using different technique 

and efficiently classify news types using SVM. The other objectives are: 

1. To build a Nepali news corpus by crawling different online Nepali News portals. 

2. To extracting feature vector of Nepali news based on methods: Term Frequency 

Inverse Document Frequency (TF-IDF), Continuous Bag of words (CBOW) and 

Skip-Gram method. 

3. To build Nepali news type classifier using Support Vector Machine (SVM) and 

analyze the accuracy of above feature extraction methods. 

 

 

 

 

 

 



 

 

 

 
3 

 

1.4 Background  
 

1.4.1 Natural Language Processing  

Natural Language Processing (NLP) has been developed in 1960 as a subfield of Artificial 

Intelligence and Linguistics [14]. The aim of NLP is studying problems in the automatic 

generation and understanding of natural language. A Natural Language is any of the 

languages naturally used by humans, i.e. not an artificial or machine language such as a 

programming language like C language, Java, Perl etc.  

NLP is a convenient description for all attempts to use computers to process natural 

language. NLP is also an area of artificial intelligence research that attempts to reproduce 

the human interpretation of language for computer system processing. The ultimate goal of 

NLP is to determine a system of language, words, relations, and conceptual information 

that can be used by computer logic to implement artificial language interpretation. NLP 

includes anything a computer needs to understand natural language (written or spoken) and 

also generate the natural language. To build computational natural language systems, we 

need Natural Language Understanding (NLU) and Natural Language Generation (NLG). 

NLG systems convert information from computer databases into normal-sounding human 

language, and NLU systems convert samples of human language into more representation 

that are easier for computer programs to manipulate. Some of important levels of NLP are 

as follows:  

Phonological Analysis: Phonology is the study of sound system in a language. The 

minimal unit of sound system is the phoneme which is capable of distinguishing the 

meanings in the words. The phonemes combine to form a higher level unit called syllable 

and syllables combine to form the words. Therefore, the organization of the sounds in a 

language exhibits the linguistic as well as computational challenges for its analysis. This 

level deals with the interpretation of speech sounds within and across words. There are, in 

fact, three types of rules used in phonological analysis: 1) phonetic rules – for sounds within 

words; 2) phonemic rules – for variations of pronunciation when words are spoken together, 

and; 3) prosodic rules – for fluctuation in stress and intonation across a sentence. In an NLP 

system that accepts spoken input, the sound waves are analyzed and encoded into a 
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digitized signal for interpretation by various rules or by comparison to the particular 

language model being utilized. 

Morphological Analysis: This level deals with the componential nature of words, which 

are composed of morphemes – the smallest units of semantic meaning. For example, the 

word preregistration can be morphologically analyzed into three separate morphemes: the 

prefix pre, the root "registra", and the suffix "tion". Since the meaning of each morpheme 

remains the same across words, humans can break down an unknown word into its 

constituent morphemes in order to understand its meaning. Similarly, an NLP system can 

recognize the meaning conveyed by each morpheme in order to gain and represent 

meaning. For example, adding the suffix "ed" to a verb, conveys that the action of the verb 

took place in the past. This is a key piece of meaning, and in fact, is frequently only 

evidenced in a text by the use of the -ed morpheme. Typically, a natural language processor 

knows how to understand multiple forms of a word i.e. its plural and singular, for example, 

ghar (3/) "house" ghar-haru (3/x?) "house-s". From structural point of view, the words 

can be simple, complex and compound. For example, ghar "house", ghar-haru "house-

Plural", ghar-ghar "each house".  

Lexical Analysis: At this level, humans, as well as NLP systems, interpret the meaning of 

individual words. Several types of processing contribute to word-level understanding – the 

first of these being assignment of a single part-of-speech (POS) tag to each word. In this 

processing, words that can function as more than one part-of-speech are assigned the most 

probable part-of speech tag based on the context in which they occur. The lexical level may 

require a lexicon, and the particular approach taken by an NLP system will determine 

whether a lexicon will be utilized, as well as the nature and extent of information that is 

encoded in the lexicon.  

Syntactic Analysis: Syntactic analysis uses the results of morphological analysis and 

lexical analysis to build a structural description of the sentence. The goal of this process, 

called parsing, is to convert the flat list of words that forms the sentence into a structure that 

defines the units that are represented by that flat list. The important thing here is that a flat list 

of words has been converted into a hierarchical structure and that the structures correspond to 

meaning units when semantic analysis is performed. 
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Semantic Analysis: It derives an absolute (dictionary definition) meaning from context; it 

determines the possible meaning of a sentence in a context .The structures created by the 

syntactic analyzer are assigned meaning. Thus, a mapping is made between individual 

words into appropriate objects in the knowledge base or data base. It must create the correct 

structure s to correspond to the way the meaning of the individual words combine with each 

other. The structures for which no such mapping is possible are rejected.  

Example: the sentence "colorless green ideas…." would be rejected as it has no such 

semantic mapping, because colorless and green make no sense.  

Discourse Integration: The meaning of an individual sentence may depend on the 

sentences that precede it and may influence the meaning of the sentences that follow it.  

Example: the meaning of word “it” in the sentence, “you wanted it” depends on the previous 

discourse context.  

Pragmatic Analysis: It derives knowledge from external commonsense information; it 

means understanding the purposeful use of language in situations, particularly those aspects 

of language which require world knowledge.  

Example: If someone says “the door is open” then it is necessary to know which door “the 

door” refers to; here it is necessary to know what the intention of the speaker: could be a 

pure statement of fact, could be an explanation of how the cat got in, or could be a request 

to the person addressed to close the door. 

 

1.4.2 Major Application of Natural Language Processing  

NLP is having a very important place in our day-to-day life due to its large natural language 

applications. By means of these NLP applications the user can interact with computers in 

their own mother tongue by means of a keyword and a screen. The few NLP processes are: 

 Part-of-speech tagging  

 Information retrieval  

 Machine translation  
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 Named entity recognition  

 Natural language generation  

 Question answering  

 Spoken dialogue system  

 Text simplification  

 Text to speech  

 Speech recognition etc.  

 

1.4.3 Computational Linguistics  

Computational linguistics is the scientific study of language (i.e. statistical and/or rule-

based modeling of natural language) from a computational perspective. Traditionally, 

computational linguistics was usually performed by computer scientists who had 

specialized in the application of computers to the processing of a natural language. 

Computational linguists often work as members of interdisciplinary teams, including 

linguists (specifically trained in linguistics), language experts (persons with some level of 

ability in the languages relevant to a given project), and computer scientists. In general, 

computational linguistics draws upon the involvement of linguists, computer scientists, and 

experts in artificial intelligence, mathematicians, logicians, cognitive scientists, cognitive 

psychologists, psycholinguists, anthropologists and neuroscientists, amongst others. Some 

of the areas of research that are studied by computational linguistics include:  

 Computational complexity of natural language, largely modeled on automata 

theory, with the application of context-sensitive grammar.  

 Computational semantics comprises defining suitable logics for linguistic meaning 

representation, automatically constructing them and reasoning with them. 

 Computer-aided corpus linguistics.  

 Design of parsers or chunkers for natural languages.  

 Design of taggers like POS-taggers.  
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 Machine translation.  

 

1.4.4 Corpus linguistics  

Corpus linguistics is now seen as the study of linguistic phenomena through large 

collections of machine-readable texts: corpora. These are used within a number of research 

areas going from the descriptive study of the syntax of a language to language learning. 

Corpus linguistics has developed considerably in the last decades due to the great 

possibilities offered by the processing of natural language by computers having large 

storage capacity. The availability of computers and machine-readable text has made it 

possible to get data quickly and easily and also to have this data presented in a format 

suitable for analysis. Corpus linguistics is, however, not the same as mainly obtaining 

language data through the use of computers. Corpus linguistics is the study and analysis of 

data obtained from a corpus. The main task of the corpus linguist is not to find the data but 

to analyze it. Computers are useful, and sometimes indispensable, tools used in this process. 

 

1.4.5 Machine learning  

It is a recent field of artificial intelligence (AI) which aim to make a machine able to learn 

as human learns the things. Marvin Minsky (1986) defined learning as “it is making useful 

change in the working of our mind”. Machine learning exists in various forms: supervised 

learning, unsupervised learning, semi supervised or minimally supervised learning, 

reinforcement learning etc. In its basic form, machine learn the knowledge form some 

sources and then generalize that knowledge for other instances.  

 

1.4.6 Text Representation 

1.4.6.1 Bag of words representation  

Under this form, every sentence in the document is considered to be a multi-set or bag of 

words (or tokens) without considering the grammar or even the word order in it. Here, the 

occurrence or frequency of the word collectively contributes in features for further 



 

 

 

 
8 

 

classification. [27] For e.g. consider the following two documents containing sentences as 

below: 

D1: Meera likes dancing a lot. 

D2: John too likes dancing but not that much. 

For the above documents, one combined list is made: 

[“Meera”, “likes”, “dancing”, “a, “lot”, “John”, “too”, “but”, “not”, “that”, “much”] 

 

1.4.6.2 Vector Space Model 

This is an algebraic model for text representation. It consists of three stages [5, 10]: 

Stage 1: Indexing of the documents where the content bearing terms [6] are extracted from 

the document text. The terms having very high or very low frequency distract the learning 

and hence are eliminated. Such words are known as function words [6, 7, and 8]. These 

include the highly occurring stop words like “a, an, the, on”. For e.g.: 

 “New York is using sand-filled trucks to protect Thanks giving parade”. 

Here, the words in bold are the content bearing words. 

Stage 2: Weighting of the indexed terms for the enhancement of the retrieval of relevant 

document. There are many ways to give weight to the terms depending upon the 

application. 

Dj= (w1, j, w2, j….wn,j) is the representation of document in terms of weights. 

Here, each dimension corresponds to an independent term. Zero shows absence of any term 

from the document. 

Stage 3: Ranking of the documents taking the similarity measure into consideration to get 

the closet words from query document. 
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1.4.7 Feature Extraction  

Feature Vector Construction is an important approach, it provides a lot of information 

regarding the text documents such as the highest and lowest term frequency for each 

document. Selecting relevant features and determining how to encode them for a learning 

machine method can have a vast impact on the learning machine methods ability to extract 

a good model. 

 

1.4.7.1 Latent Semantic Analysis (LSA) 

LSA method is a novel technique in text classification. Generally, LSA analyzes 

relationships between a term and concepts contained in an unstructured collection of text. 

It is called Latent Semantic Analysis, because of its ability to correlate semantically related 

terms that are latent in a text. LSA produces a set of concepts, which is smaller in size than 

the original set, related to documents and terms [11, 12]. It uses SVD (Singular Value 

Decomposing) to identify pat- tern between the terms & concepts contained in the text, and 

find the relationships between documents. The method commonly referred to as concept 

searches. It has ability to extract the conceptual content of a body of text by establishing 

associations between those terms that occur in similar contexts. LSA is mostly used for 

page retrieval systems and text clustering purposes. LSA overcomes two of the most 

problematic keyword queries: multiple words that have similar meanings and words that 

have more than one meaning. 

 

1.4.7.2 FE Based on Cosine Similarity Score 

FE based on cosine similarity score is commonly used to reduce the dimensionality of 

datasets with tens or hundreds of thousands of features, which can be impossible to process 

further. [1] 
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1.4.7.3 PCA- Principle Component Analysis 

PCA is a well-known technique that can reduce the dimensionality of data by transforming 

the original attribute space into smaller space. In the other word, the purpose of principle 

components analysis is to derive new variables that are combinations of the original 

variables and are uncorrelated. This is achieved by transforming the original variables Y = 

[y1, y2... yp] (where p is number of original variable) to a new set of variables, T = [t1, t2,..., 

tq] (where q is number of new variables), which are combinations of the original variables. 

Transformed attributes are framed by first, computing the mean (μ) of the dataset, then 

covariance matrix of the original attributes is calculated [5]. And the second step is, 

extracting its eigenvectors. The eigenvectors (principal components) introduce as a linear 

transformation from the original attribute space to a new space in which attributes are 

uncorrelated. Eigenvectors can be sorted according to the amount of variation in the 

original data. The best n eigenvectors (those one with highest eigenvalues) are selected as 

new features while the rest are discarded. 

 

1.4.7.4 Artificial Neural Network 

Artificial neural networks are one of the main tools used in machine learning. As the 

“neural” part of their name suggests, they are brain-inspired systems which are intended to 

replicate the way that we humans learn. Neural networks consist of input and output layers, 

as well as (in most cases) a hidden layer consisting of units that transform the input into 

something that the output layer can use. They are excellent tools for finding patterns which 

are far too complex or numerous for a human programmer to extract and teach the machine 

to recognize. [22] 

 

1.4.7.5 Convolutional Neural Network 

Convolutions are great for extracting features from dataset. Convolutional Neural 

Networks (CNN) are biologically-inspired variants of MLPs. CNNs are networks 

composed of several layers of convolutions with nonlinear activation functions like ReLU 
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or tanh applied to the results. Traditional Layers are fully connected, instead CNN use local 

connections. Each layer applies different filters (thousands) and combines their results. [30] 

 

1.4.7.6 Neuro-Fuzzy Method 

A fuzzy feature evaluation index for a set of features is newly defined in terms of degree 

of similarity between two patterns in both the original and transformed feature spaces. A 

layered network is designed for performing the task of minimization of the evaluation index 

through unsupervised learning process. This extracts a set of optimum transformed 

features, by projecting n-dimensional original space directly to n-dimensional (n:n) 

transformed space, along with their relative importance. 

 

1.4.8 Text Classification  

Text classification algorithms are at the heart of a variety of software systems that process 

text data at scale. Email software uses text classification to determine whether incoming 

mail is sent to the inbox or filtered into the spam folder. Discussion forums use text 

classification to determine whether comments should be flagged as inappropriate. 

 

1.4.8.1 Rule Based System 

Rule-based approaches classify text into organized groups by using a set of handcrafted 

linguistic rules. These rules instruct the system to use semantically relevant elements of a 

text to identify relevant categories based on its content. Each rule consists of an antecedent 

or pattern and a predicted category. [4] 

Say that need to classify news articles into 2 groups, namely, Sports and Politics. First,  

need to define two lists of words that characterize each group (e.g. words related to sports 

such as football, basketball, LeBron James, etc., and words related to politics such as 

Donald Trump, Hillary Clinton, Putin, etc.). Next, when want to classify a new incoming 

text, need to count the number of sport-related words that appear in the text and do the 
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same for politics-related words. If the number of sport-related word appearances is greater 

than the number of politics-related word count, then the text is classified as sports and vice 

versa. 

For example, this rule-based system will classify the headline “When is LeBron James' first 

game with the Lakers?” as Sports because it counted 1 sport-related term (Lebron James) 

and it didn’t count any politics-related terms. 

Rule-based systems are human comprehensible and can be improved over time. But this 

approach has some disadvantages. They also time-consuming, since generating rules for a 

complex system can be quite challenging and usually requires a lot of analysis and testing. 

Rule-based systems are also difficult to maintain and don’t scale well given that adding 

new rules can affect the results of the pre-existing rules. [4] 

 

1.4.8.2 Machine Learning Based System 

Instead of relying on manually crafted rules, text classification with machine learning 

learns to make classifications based on past observations. By using pre-labeled examples 

as training data, a machine learning algorithm can learn the different associations between 

pieces of text and that a particular output (i.e. tags) is expected for a particular input (i.e. 

text). [5, 6] 

The first step towards training a classifier with machine learning is feature extraction: a 

method is used to transform each text into a numerical representation in the form of a 

vector. One of the most frequently used approaches is bag of words, where a vector 

represents the frequency of a word in a predefined dictionary of words. [9] 

Then, the machine learning algorithm is fed with training data that consists of pairs of 

feature sets (vectors for each text example) and tags (e.g. sports, politics) to produce a 

classification model. [7] 

Once it’s trained with enough training samples, the machine learning model can begin to 

make accurate predictions. The same feature extractor is used to transform unseen text to 
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feature sets which can be fed into the classification model to get predictions on tags (e.g. 

sports, politics) 

Text classification with machine learning is usually much more accurate than human-

crafted rule systems, especially on complex classification tasks. Also, classifiers with 

machine learning are easier to maintain and you can always tag new examples to learn new 

tasks. [18] 

 

1.4.8.3 Hybrid System 

Hybrids systems combine a base classifier trained with machine learning and a rule-based 

system, which is used to further improve the results. These hybrid systems can be easily 

fine-tuned by adding specific rules for those conflicting tags that haven’t been correctly 

modeled by the base classifier. [4, 18] 

 

1.4.8.4 Text Classification Algorithms 

Some of the most popular machine learning algorithms for creating text classification 

models include the Naive Bayes family of algorithms, support vector machines, and deep 

learning. 

 

1.4.8.4.1 Naïve Bayes 

Naive Bayes is a family of statistical algorithms it can be used of when doing text 

classification. One of the members of that family is Multinomial Naive Bayes (MNB). One 

of its main advantages is that it can be get really good results when data available is not 

much and computational resources are scarce. 

All its need to know is that Naive Bayes is based on Bayes’s Theorem, which help to 

compute the conditional probabilities of occurrence of two events based on the probabilities 

of occurrence of each individual event. This means that any vector that represents a text 
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will have to contain information about the probabilities of appearance of the words of the 

text within the texts of a given category so that the algorithm can compute the likelihood 

of that text’s belonging to the category. [17] 

 

1.4.8.4.2 Support Vector Machine 

Support Vector Machines (SVM) is just one out of many algorithms it can be chosen from 

when doing text classification. Like Naive Bayes, SVM doesn’t need much training data 

to start providing accurate results. Although it needs more computational resources than 

Naive Bayes, SVM can achieve more accurate results. [19] 

In short, SVM takes care of drawing a “line” or hyperplane that divides a space into two 

subspaces: one subspace that contains vectors that belong to a group and another subspace 

that contains vectors that do not belong to that group. Those vectors are representations of 

training texts and a group is a tag that need to tag to texts with. [7] 

 

1.4.8.4.3 Deep Learning 

Deep learning is a set of algorithms and techniques inspired by how the human brain works. 

Text classification has benefited from the recent resurgence of deep learning architectures 

due to their potential to reach high accuracy with less need of engineered features. The two 

main deep learning architectures used in text classification are Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks (RNN). [8] 

On the one hand, deep learning algorithms require much more training data than traditional 

machine learning algorithms, i.e. at least millions of tagged examples. On the other hand, 

traditional machine learning algorithms such as SVM and NB reach a certain threshold 

where adding more training data doesn’t improve their accuracy. [18]  

Deep learning algorithms such as Word2Vec or GloVe are also used in order to obtain 

better vector representations for words and improve the accuracy of classifiers trained with 

traditional machine learning algorithms. [2] 
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CHAPTER TWO 

LITERATURE REVIEW 

 
Literature review describes the previous works and findings related to the field of study. 

This chapter is dedicated to the description of some feature extraction algorithm, which are 

relevant to this work as well as the classification techniques used in text classification 

technique after feature extraction. 

Various techniques have been proposed to extract the features of the text: TF-IDF [1], 

CBOW [2, 3], Skip-gram [2, 3], Feature Extraction based on Cosine Similarity [1], 

Artificial Neural Network [29], and Convolutional Neural Network [31], and Neuro-Fuzzy 

Method [30]. The basic concept of these techniques is to extract the features of text and 

then use these features for different purposes such as in classification.  

In [1] TF-IDF term weighting was used to extract features. Selecting relevant features and 

determining how to encode them for a learning machine method have a vast impact on the 

learning machine methods ability to extract a good model. Two different weighting 

methods (TF-IDF and TF-IDF Global) were used and tested on the Reuters-21578 text 

categorization test collection. The obtained results emerged a good candidate for enhancing 

the performance of English topics FE. Simulation results the Reuters-21578 text 

categorization showed the superiority of the proposed algorithm. 

In [2] proposed two novel model architectures for computing continuous vector 

representations of words from very large data sets. The quality of these representations was 

measured in a word similarity task, and the results were compared to the previously best 

performing techniques based on different types of neural networks. Large improvements 

was observed in accuracy at much lower computational cost, i.e. it took less than a day to 

learn high quality word vectors from a 1.6 billion words data set. Furthermore, these vectors 

provided state-of-the-art performance on test set for measuring syntactic and semantic 

word similarities. 

In [3] presented several extensions that improve both the quality of the vectors and the 

training speed. By subsampling of the frequent words significant speedup was obtain and 

also learned more regular word representations. A simple alternative to the hierarchical 

softmax called negative sampling was also described. An inherent limitation of word 

representations was their indifference to word order and their inability to represent 
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idiomatic phrases. For example, the meanings of “Canada” and “Air” cannot be easily 

combined to obtain “Air Canada”. Motivated by this example, a simple method for finding 

phrases in text was presented, and showed that learning good vector representations for 

millions of phrases was possible. 

In [29] proposed a number of networks and learning algorithms which provide new or 

alternative tools for feature extraction and data projection. These networks include a 

network (SAMANN) for Sammon’s nonlinear projection, a linear discriminant analysis 

(LDA) network, a nonlinear discriminant analysis (NDA) network, and a network for 

nonlinear projection (NP-SOM) based on Kohonen’s self-organizing map [32]. They 

evaluated five representative neural networks for feature extraction and data projection 

based on a visual judgment of the two-dimensional projection maps and three quantitative 

criteria on eight data sets with various properties. Sammon [33] proposed a nonlinear 

projection technique that attempts to maximally preserve all the inter pattern distances. 

In [31] demonstrated a way of formulating a neuro-fuzzy approach for feature extraction 

under unsupervised training. A fuzzy feature evaluation index for a set of features is newly 

defined in terms of degree of similarity between two patterns in both the original and 

transformed feature spaces. A layered network is designed for performing the task of 

minimization of the evaluation index through unsupervised learning process. This extracts 

a set of optimum transformed features, by projecting n-dimensional original space directly 

to n-dimensional (n:n) transformed space, along with their relative importance. This 

method gave better results than PCA [5]. 

In [30] demonstrated that one can apply deep learning to text understanding from character 

level inputs all the way up to abstract text concepts, using temporal convolutional networks 

(ConvNets). They applied ConvNets to various large-scale datasets, including ontology 

classification, sentiment analysis, and text categorization. They showed that temporal 

ConvNets can achieve astonishing performance without the knowledge of words, phrases, 

sentences and any other syntactic 

 In [7] explored the use of hierarchical structure for classifying a large, heterogeneous 

collection of Amharic News Text. The approach utilized the hierarchical topic structure to 

decompose the classification task into a set of simpler problems, one at each node in the 

classification tree. An experiment had been conducted using a categorical data collected 
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from Ethiopian News Agency (ENA) using SVM to see the performances of the 

hierarchical classifiers on Amharic News Text. The findings of the experiment showed the 

accuracy of flat classification decreases as the number of classes and documents (features) 

increases. Moreover, the accuracy of the flat classifier decreases at an increasing number 

of top feature set. The peak accuracy of the flat classifier was 68.84 % when the top 3 

features were used. The findings of the experiment done using hierarchical classification 

show an increasing performance of the classifiers as we move down the hierarchy. The 

maximum accuracy achieved was 90.37% at level-3(last level) of the category tree. 

Moreover, the accuracy of the hierarchical classifiers increases at an increasing number of 

top feature set compared to the flat classifier. The peak accuracy was 89.06% using level 

three classifier when the top 15 features were used. Furthermore, the performance between 

flat classifier and hierarchical classifiers are compared using the same test data. Thus, it 

shows that use of the hierarchical structure during classification has resulted in a significant 

improvement of 29.42 % in exact match precision when compared with a flat classifier. 

In [27] proposed a way to find co-occurrence feature from anchor text of wikipedia pages, 

proposed a way to incorporate co-occurrence feature to BOW model. Finally the method 

was analyzed to know how it performs in task of text classification.  

In the context of Nepali text, there is little literature available. The basic steps in natural 

language processing pipeline such as part of speech tagging [12, 13], steaming [14], named-

entity recognition [15, 16] have been investigated separately. There is no result available 

collectively. 

Furthermore, the text classification problem for Nepali text is not even studied thoroughly. 

In [17], authors have proposed simple naïve Bayes classifier to address the problem. Naïve 

Bayes uses the concept of probability. The parameter in Naïve Bayes was learned from 

training the module with the Bayesian rule of probability. The representation of text 

document in the form of the bag of words where it is assumed that each word is independent 

of other, mainly degrade the performance of this approach. The simple Naïve Bayes was 

augmented with multinomial lexicon pooling [17]. Paper [18] applied some machine 

learning strategies for addressing the classification problem of the Nepali documents. 
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Nepali SMS classification task is discussed in [19] with Naïve Bayes and support vector 

machine approaches. Here the length of SMS is very limited in comparison to the length 

of the full text, the number of features such as SMS headings, words, and their frequency 

was taken to represent an SMS. The SVM and Naïve Bayes based classification technique 

were implemented to classify SMS into either spam or not spam. Due to the few number 

of the feature in consideration, the Naïve Bayes outperform the SVM with 5% (92% 

accuracy for NB and 87% accuracy for SVM) 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

 

3.1 Data Set Preparation 

The Nepali language belongs to one of the most common scripts, Devanagari, invented by 

Brahmins around the 11th century. It consists of 36 consonant symbols, 12 vowel symbols 

and 10 numeral symbols along with different modifiers and half forms. According to 

current census research, 17 million people worldwide speak the Nepali language. Nepali 

language character set is given in Table1. 

 

Table 3. 1 Nepali Character Set 

a) Numbers 

) ! @ # $ % ^ & * ( 

 

b) Vowels 

c cf O O{ p pm P  P} cf] cf}  c+ cM 

 

c) Consonants 

s v u 3 ª r 5 h ´ ` 6  7 

8 9 0f t y b w g k km a e 

d o / n  j z if ; x If q 1 

 



 

 

 

 
20 

 

A collection of Nepali news was collected from various online Nepali News portals using 

web crawler. The news portal namely ratopati.com, setopati.com, onlinekhabar.com, and 

ekantipur.com were used to gather text related to different news types. The distribution of 

news type in the Nepali news corpus is as shown in Table 2. 

 

Table 3. 2 Statistics of Nepali News Corpus 

S.N. News Class No. of Documents 

1 Agriculture 200 

2 Automobile 246 

3 Bank 617 

4 Blog 259 

5 Business 307 

6 Economy 600 

7 Education 185 

8 Employment 304 

9 Entertainment 634 

10 Health 180 

11 Interview 330 

12 Literature 251 

13 Migration 111 

14 Opinion 500 

15 Politics 550 

16 Society 353 

17 Sports 700 

18 Technology 118 

19 Tourism 265 

20 World 313 

Total 7023 
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3.2 Preprocessing 

The text preprocessing cleans the text data to make it ready to use in training and testing of 

the machine learning model. Preprocessing is done to reduce the noise in the text that helps 

to improve the performance of the classifier and speed up the classification process, thus 

aiding in real time news classification. The main preprocessing techniques used are given 

below. 

1. Tokenization: Breakdowns the text into sentences and then words. Vertical bar, 

question mark, and full stop are used to break down the sentences and whitespace and 

comma are used to break down the words. 

2. Special symbol and number removal: Special symbols like !, :, ÷, ×, º, >, <, \, /, @, 

#, $, %, ^, &, *, ), (, _, -, +, =, ~, ø, [, ], ‘, ”, etc. and numbers, those do not have much 

importance in classification, are removed. 

3. Stop word removal: Stop words are high-frequency words that has not much influence 

in the text are removed to increase the performance of the classification. The list of 255 

stop-words like “5, d, xf], s]xL, xfdL, d]/f], Tof], x?, km]/L, cfkm", x'G5, /fv, eof], ug'{,klg, etc.” 

were collected and removed from the text. 

4. Word Stemming: Stemming is used to reduce the given word into its stem. Since the 

word stem reflects the meaning of a particular word, we have segmented the inflected 

word and derivational word into a stem word so that the dimension of vocabulary 

reduced in the significant manner [11]. Example: 

 

g]kfn 6]lnsdn] b'u{d lxdfnL lhNnfx?df ;]jf pknAw u/fpgsf nflu Pg6L:o6 k|ljlwsf] 

k|of]u ul//x]sf] 5 . 

 

[…g]kfnÚ, …6]lnsdn]Ú, …b'u{dÚ, …lxdfnLÚ, … lhNnfx?dfÚ, …;]jfÚ, …pknAwÚ, …u/fpgsfÚ, …nfluÚ, 

…Pg6L:o6Ú, …k|ljlwsf]Ú, …k|of]uÚ, …ul//x]sf]Ú, …5Ú] 
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3.3 Feature Extraction 

Feature Vector construction is the process of representing the news into a vector form. To 

represent Nepali news in vector form, the TF-IDF weighting value for each word in the text 

is taken as a dimensional value in a vector, CBOW and Skip-Gram techniques are used. 

They are calculated the vector as, 

 

3.3.1 TF-IDF Vectorization 

In information retrieval or text mining, the term frequency – inverse document 

frequency (also called TF-IDF), is a well know method to evaluate how important is a word 

in a document.  

𝑎𝑖𝑗 =
𝑡𝑓𝑖𝑗 . 𝑙𝑜𝑔

|𝐷|
𝐷𝐹𝑖

√∑ (𝑡𝑓𝑘𝑗 . 𝑙𝑜𝑔
|𝐷|
𝐷𝐹𝑘

)
2

𝑘

 

  

Where tfij is news in the training set and DFi is the number of NEWS, containing the term 

i. The importance of a term in news is measured by the frequency and its inverse document 

frequency. The more times an item appears in NEWS, the more important it is, and the 

more times it appears in the training set, the less poorly discriminative it becomes. Often 

the logarithms of 𝑡𝑓𝑖𝑗 or 𝐷𝐹𝑖 are taken in order to de-emphasize the increases in weighting 

for larger values. The TF-IDF weighting of each news is calculated in the feature extraction 

procedure of the framework.  

 

3.3.2 Skip-Gram Model 

In the continuous skip-gram architecture, the model uses the current word to predict the 

surrounding window of context words. The skip-gram architecture weighs nearby context 

words more heavily than more distant context words. [2, 3] 

http://en.wikipedia.org/wiki/Tf%E2%80%93idf
http://en.wikipedia.org/wiki/Tf%E2%80%93idf
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The skip-gram model actually learns two separate embedding for each word w: the word 

embedding v and the context embedding C. These embedding are encoded in two matrices, 

the word matrix W and the context matrix C. Each row i of the word matrix W is the 1xd 

vector embedding vi for word i in the vocabulary. Each column i of the context matrix C is 

a d x1 vector embedding ci for word i in the vocabulary. In principle, the word matrix and 

the context matrix could use different vocabularies Vw and Vc. 

Consider the corpus of length T and currently pointing at the tth word w (t), whose index in 

the vocabulary is j, so call it wj (1 < j < |V|). The skip-gram model predicts each neighboring 

word in a context window of 2L words from the current word. So a context window L=2 

the context is [wt-2, wt-1, wt+1 wt+1] and predicting each of these from word wj. To normalize 

the 2L context words, for example w (t+1), whose index in the vocabulary is k (1 < k < 

|V|). Hence the probability P(wk/wj) is calculated. It is defined as follows: 

 

 

 

Figure 3. 1 The skip-gram model viewed as a network [2] 

 

3.3.3 CBOW (Continuous Bag of Words)  

In the continuous bag-of-words architecture, the model predicts the current word from a 

window of surrounding context words. [2, 3] 
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Like skip-grams, it is based on a predictive model, but this time predicting the current word 

wt from the context window of 2L words around it, e.g. for L = 2 the context is [wt-2, wt-1, 

wt+1 wt+1]. 

 

Figure 3. 2 Continuous bag-of-word model [2] 

 

 

3.4 Classification 

Given the example data {(xi, yi), i=1….n}, where the xi is input vector and the yi is its 

associated label or class. Then the classification task is to learn the discriminate function  

y=f(x), 
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which correctly classify the example data and optimized so that it will make minimal error 

on the classification of unseen data.  

If the label y is not discrete as above, then this task is called regression. Based on these 

examples (xi, yi), one is particularly interested to predict the answer for other cases before 

they are explicitly observed. Hence, learning is not only a question of remembering but 

also of generalization to unseen cases. [4] 

 

3.4.1 Support Vector Machine (SVM)  

This is the supervised machine learning approach that can be used for both classification 

[4correctly separate the example data into two classes. This hyperplane can be used to make 

the prediction of class for unseen data. The hyperplane exist for the linearly separable data. 

[7] 

This can be illustrated with figure 

 

Figure 3. 3 Support Vector Machine [18] 

The equation for general hyperplane can be written as  

𝑤. 𝑥 − 𝑏 = 0    (Equation 3.1) 

Where x is point vector, w is a weight vector and b is bias. The hyperplane should separate 

training data {(xi,yi), i=1….n and yi ∈(+1,-1)} in such way that 𝑦i 𝑤. 𝑥i − 𝑏 ≥ 1. The two 

plane H1 and H2 are supporting hyperplane. We can see that there exist so many 

hyperplanes that can separate the training data correctly but the SVM find one hyperplane 
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that maximize the margin between two supporting hyperplanes. It finds the w and b such 

that the distance (margin) between H1 and H2 is maximum. This can be formulated as 

optimization problem as 

Minimize f = |𝑤 |      (Equation 3.2) 

Subject to constraints 𝑦𝑖 𝑤. 𝑥𝑖 − 𝑏 ≥ 1  

This can be solved by the variant of quadratic programming technique [13] 

 

3.5 News Type Filtering 

The news classification learning and evaluation system pipeline is given in Figure below. 

It consists of Preprocessing, Feature Extraction, Classification and Evaluation Phases. The 

complete news dataset that was used in the system training and evaluation was explicitly 

divided into training and testing sets. The five experiments were conducted to make the 

more accurate analysis of the outputs. The experimental parameters such as C and gamma 

(𝛾) for SVM were determined for their optimal results/outputs. In each experiment, the 

different optimization parameters were analyzed to reach the optimal output. 
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Figure 3. 4 Framework of Classification algorithm 
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CHAPTER FOUR 

IMPLEMENTATION 

 

4.1 Preprocessing 

The text preprocessing cleans the text data to make it ready to use in training and testing of 

the machine learning model. Preprocessing is done to reduce the noise in the text that helps 

to improve the performance of the classifier and speed up the classification process, thus 

aiding in real time news classification. Algorithm for preprocessing the text: 

1. Obtain a list of all row new text from different newspapers 

2. Tokenize the text 

3. Remove all stop words and special symbols  

 

4.2 TF-IDF Algorithm 

The TF-IDF feature extractor works on the basis of the token frequencies it is fed. The 

algorithm with which it was implemented alongside the SVM classifier is as follows: 

1. Process dataset to obtain IDF for each words 

2. Compute TF of each term 

3. Obtain a TF-IDF vector representation of text by multiplying corresponding TF 

and IDF 

 

4.3 Continuous Bag of Words (CBOW) Algorithm 

In the continuous skip-gram architecture, the model uses the current word to predict the 

surrounding window of context words. The skip-gram architecture weighs nearby context 
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words more heavily than more distant context words. The algorithm for CBOW is as 

follows: [2, 3] 

1. Get the preprocessed text data and Generate Train set 

2. Create Dictionary of words in the corpus 

3. Assign unique number to each word 

4. Create the array of sentences 

5. Arrange the input and output word pair according to window size for training 

6. Create one hot encoding for each word. 

7. Convert one hot encoding of words into Numpy arrays and place them in X_train 

and Y_train variables 

8. Creating placeholders for X_train and Y_train 

9. Define Word embedding dimension 

10. Compute Hidden layer 

11. Compute Output layer 

12. Compute loss function: cross entropy 

13. Perform Training operation 

14. Now use the hidden layer as lookup table to compute the weight of each words. 

15. Print the weight vector 

 

4.4 Skip-gram Algorithm 

In the continuous skip-gram architecture, the model uses the current word to predict the 

surrounding window of context words. The skip-gram architecture weighs nearby context 

words more heavily than more distant context words. The algorithm for CBOW is as 

follows: [2, 3] 

1. Get the preprocessed text data and Generate Train set 

2. Create Dictionary of words in the corpus 

3. Assign unique number to each word 

4. Create the array of sentences 

5. Arrange the input and output word pair according to window size for training 
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6. Create one hot encoding for each word. 

7. Convert one hot encoding of words into Numpy arrays and place them in X_train 

and Y_train variables 

8. Creating placeholders for X_train and Y_train 

9. Define Word embedding dimension 

10. Compute Hidden layer 

11. Compute Output layer 

12. Compute loss function: cross entropy 

13. Perform Training operation 

14. Now use the hidden layer as lookup table to compute the weight of each words. 

15. Print the weight vector 

 

4.5 Support Vector Machine Classifier 

The matrix acquired from the feature extractor is finally used by the SVM classifier. It 

associates the matrix with the data label, or category which the text was from, and finally 

a trained classifier is achieved. This trained classifier is later used for predicting the 

category of unknown texts. Algorithm for training the classifier: 

1. Obtain a list of labeled documents to be used for training 

2. Perform feature extraction on each document to obtain a feature matrix 

3. Compute the corresponding output matrix using document label 

4. Use the feature matrix and output matrix to train the SVM 

5. Perform hyper parameter optimization 

Algorithm for text categorization: 

1. Perform feature extraction to obtain a feature vector 

2. Feed corresponding vector into the trained SVM 
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4.6 Python 

Python is an interpreted, object-oriented, high-level programming language with dynamic 

semantics. Its high-level built in data structures, combined with dynamic typing and 

dynamic binding, make it very attractive for Rapid Application Development, as well as 

for use as a scripting or glue language to connect existing components together. Python's 

simple, easy to learn syntax emphasizes readability and therefore reduces the cost of 

program maintenance. Python supports modules and packages, which encourages program 

modularity and code reuse. The Python interpreter and the extensive standard library are 

available in source or binary form without charge for all major platforms, and can be freely 

distributed. 

 

4.7 Tools and Libraries 

4.7.1 Anaconda 

Anaconda is one of several Python distributions. Python distributions provide the Python 

interpreter, together with a list of Python packages and sometimes other related tools, such 

as editors. The packages provide by the Anaconda Python distribution includes all of those 

that we need. A key part of the Anaconda Python distribution is Spyder, an interactive 

development environment for Python, including an editor. 

 

4.7.2 Spyder 

Spyder is s a powerful interactive development environment for the Python language with 

advanced editing, interactive testing, debugging and introspection features.  The name 

SPYDER derives from "Scientific PYthon Development EnviRonment" (SPYDER). It can 

be used as main environment to learn about Python, programming and computational 

science and engineering. Useful features include 



 

 

 

 
32 

 

 provision of the IPython (Qt) console as an interactive prompt, which can display 

plots inline 

 ability to execute snippets of code from the editor in the console 

 continuous parsing of files in editor, and provision of visual warnings about 

potential errors 

 step-by-step execution 

 variable explorer 

 

4.7.3 TensorFlow 

TensorFlow is a Python library for fast numerical computing created and released by 

Google.  It is a foundation library that can be used to create Deep Learning models directly 

or by using wrapper libraries that simplify the process built on top of TensorFlow. 

 

4.7.4 Numpy 

NumPy is the fundamental package for scientific computing with Python. It contains among 

other things:  

 a powerful N-dimensional array object 

 sophisticated (broadcasting) functions 

 tools for integrating C/C++ and Fortran code 

 useful linear algebra, Fourier transform, and random number capabilities 

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-

dimensional container of generic data. Arbitrary data-types can be defined. This allows 

NumPy to seamlessly and speedily integrate with a wide variety of databases. 
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4.7.5 Pandas 

Pandas is a Python package providing fast, flexible, and expressive data structures designed 

to make working with “relational” or “labeled” data both easy and intuitive. It aims to be 

the fundamental high-level building block for doing practical, real world data analysis in 

Python. Additionally, it has the broader goal of becoming the most powerful and flexible 

open source data analysis / manipulation tool available in any language. It is already well 

on its way toward this goal. Pandas is well suited for many different kinds of data: 

 Tabular data with heterogeneously-typed columns, as in an SQL table or Excel 

spreadsheet 

 Ordered and unordered (not necessarily fixed-frequency) time series data. 

 Arbitrary matrix data (homogeneously typed or heterogeneous) with row and 

column labels 

 Any other form of observational / statistical data sets. The data actually need not be 

labeled at all to be placed into a pandas data structure 

 

4.7.6 Scikit-learn 

Scikit-learn (formerly scikits.learn) is a free software machine learning library for the 

Python programming language. It features various classification, regression and clustering 

algorithms including support vector machines, random forests, gradient boosting, k-means 

and DBSCAN, and is designed to interoperate with the Python numerical and scientific 

libraries NumPy and SciPy. 

 

4.7.7 Matplotlib 

Matplotlib is a Python 2D plotting library which produces publication quality figures in a 

variety of hardcopy formats and interactive environments across platforms. Matplotlib can 

be used in Python scripts, the Python and IPython shells, the Jupyter notebook, web 

application servers, and four graphical user interface toolkits. Matplotlib tries to make easy 



 

 

 

 
34 

 

things easy and hard things possible. You can generate plots, histograms, power spectra, 

bar charts, errorcharts, scatterplots, etc., with just a few lines of code. 

 

4.7.8 Seaborn 

Seaborn is a Python data visualization library based on mat-plotlib. It provides a high-level 

interface for drawing attractive and informative statistical graphics. 
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CHAPTER FIVE 

 RESULT AND ANALYSIS 

 

5.1 Testing Results 

The experimental setup is done in five exclusive observations with variation in train and 

test splits and number of category. Experiments 1 to 5 (aka. Exp1 to Exp5) are respectively 

trained with 10%, 20%, 30%, 40% and 50 % test splits of total training dataset described 

in Table 3.2. The experiment is also compared in splitting number of classes in the same 

corpus. The number of features used in the experiments is 14332, which is equal to the 

vocabulary size of the dataset.  

The experimental result was analyzed for four evaluation parameters: Accuracy, Precision, 

Recall and F score. 

 

5.1.1 Observation with TF-IDF 

The experiments have been first done on a model which uses TF-IDF method as its feature 

extractor. In its bare-bone form, TF-IDF uses all stems in the vocabulary for feature 

extraction. Figure 5.1 shows the variation of accuracy, precision, recall and F-Score over 5 

experiments. Figure 5.2 shows the variation of accuracy, precision, recall and F-Score over 

5 splits of classes. The fluctuation can be attributed to the training data used and the 

optimum value of ‘C’ calculated by hyperopt during each experiment. 
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Table 5. 1 Performance of TF-IDF with 20 classes 

Experiment Accuracy Precision  Recall F-score 

Exp1 82.91 83 83 83 

Exp2 82.05 82 78 82 

Exp3 80.23 80 80 80 

Exp4 79.07 79 79 79 

Exp5 77.59 78 78 77 

 

Table 5. 2 Performance of TF-IDF with split of classes 

No. of classes Accuracy Precision  Recall F-score 

2  100 100 100 100 

5  95.28 95 95 95 

10  86.92 87 87 87 

15 84.20 84 84 84 

20  82.91 83 83 83 

 

 

 

Figure 5. 1 Bar graph of Performance of TF-IDF with of classes 
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5.1.2 Observation with CBOW 

By being fundamentally different to TF-IDF in its approach, CBOW finds the center 

context word from different words. Figure 5.3 shows the variation of accuracy, precision, 

recall and f-score over 5 experiments. Figure 5.4 shows the variation of accuracy, precision, 

recall and f-score over 5 splits of classes. The rise and fall of the values can be attributed 

to the dataset and the optimum value of ‘C’ calculated by hyperopt during each experiment. 

 

Table 5. 3 Performance of CBOW with 20 classes 

Experiment Accuracy Precision  Recall F-score 

Exp1 40.69 36 41 35 

Exp2 38.86 35 39 33 

Exp3 36.21 33 36 30 

Exp4 34.50 32 35 28 

Exp5 32.94 31 33 26 

 

Table 5. 4 Performance of CBOW with split of classes 

No. of classes Accuracy Precision  Recall F-score 

2  75.00 76 76 75 

5  58.52 46 52 45 

10  42.88 32 43 34 

15 41.52 36 42 35 

20  36.37 35 36 30 
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Figure 5. 2 Bar graph of Performance of CBOW with split of classes 

 

5.1.3 Observation with Skip-gram 

Like CBOW, Skip-gram finds the context words form center word from different words. 

Figure 5.5 shows the variation of accuracy, precision, recall and f-score over 5 experiments. 

Figure 5.6 shows the variation of accuracy, precision, recall and f-score over 5 splits of 

classes. The rise and fall of the values can be attributed to the dataset and the optimum 

value of ‘C’ calculated by hyperopt during each experiment. 

 

 

Table 5. 5 Performance of Skip-gram with 20 classes 

Experiment Accuracy Precision  Recall F-score 

Exp1 33.39 29 33 26 

Exp2 32.05 32 33 25 

Exp3 31.67 28 32 26 

Exp4 29.02 30 30 25 

Exp5 29.27 16 29 19 
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Table 5. 6 Performance of Skip-gram with split of classes 

No. of classes Accuracy Precision  Recall F-score 

2  53.84 53 54 53 

5  48.18 29 48 36 

10  37.15 28 37 25 

15 32.73 23 33 22 

20  29.27 16 29 19 

 

 

 

Figure 5. 3 Bar graph of Performance of Skip-gram with split of classes 

 

5.1.4 Overall performance of Feature extraction algorithms 

Table 5.7 shows the performance values that were obtained from all three models. Figure 

5.4 is a graphical representation of the table that shows the variation of the performance 

measures. It indicates that the model with TF-IDF implementation has the highest accuracy 

value, and hence, the best overall performance. The first model features a simplistic 

approach containing only the TF-IDF feature extractor along with SVM. The second model 

uses the CBOW for feature extraction. The third model employs the same classification 

algorithm, SVM, but uses skip-gram feature extraction method.  
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Table 5. 7 Performance comparison of algorithms 

Feature Extraction Algorithm Accuracy Precision  Recall F-score 

TF-IDF 82.91 83 83 83 

CBOW 40.69 36 41 35 

Skip-gram 33.39 29 33 26 

 

 

Figure 5. 4 Bar graph of performance comparison of algorithms (TF-IDF, CBOW, and 

Skip-gram) 

 

5.2 Analysis 

5.2.1 Accuracy and F-Score 

As figure 7 suggests, the mean accuracy of the 3 models are 82.91 per cent, 40.69 per cent 
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respectively. The measure of the classifier’s accuracy doesn’t always convey the efficiency 

of the model’s performance satisfactorily. It is easily skewed by the unevenness of the data 

distribution among the categories. However, a better F-score which is the harmonic mean 

of precision and recall of the model is indicative of the fact that the model is more precise 

and has a complete prediction ability. 
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5.2.2 Precession and recall 

Figure 5.4 shows that the SVM model with TF-IDF has a better precision and recall over 

the model with CBOW only by 47 percent and 42 percent respectively. Similarly, the model 

has a better precision and recall of 54 percent and 50 percent respectively over the model 

with Skip-gram. The proposed model with TF-IDF has overall performance better than 

word2vec model. 
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CHAPTER SIX 

CONCLUSION  

 

6.1 Conclusion  

Count based feature extraction methods is compared with word to vector feature extraction 

techniques for Nepali news classification. The results show good classification 

performance when using the feature extraction techniques based on word to vector for less 

number of classes and drastically decrease the performance for large sample size. On the 

other hand result of classification count based technique shows consistent nearly 

performance for any number of classes. The overall performance of the TF-IDF is far better 

than both word to vector techniques. 

A great deal of research remains in developing document to vector representation of the 

document. New approaches to setting appropriate category thresholds, estimating 

probabilities, and selecting features need to be investigated. For practical systems, 

combinations of count based and word to vector approaches are likely to be the best 

strategy. 

The limitation of the word to vector based feature extraction is speed and only analyze the 

context. It may be better of grammatical checking in text documents. The other 

disadvantage of this technique is speed since it based on neural network so it needs to be 

train before using it. It is better of similarity analysis but text categorization the count based 

technique better since it counts the number of times word occurrence in the particular 

document.  
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Appendix 

 

 

Sample program Code for CBOW 
 

from gensim.models.word2vec import Word2Vec 

from sklearn.pipeline import Pipeline 

from collections import defaultdict 

from sklearn.feature_extraction.text import TfidfVectorizer 

import numpy as np 

from tabulate import tabulate 

from sklearn.model_selection import cross_val_score 

import codecs 

from sklearn.svm import SVC 

 

X, y = [], [] 

with codecs.open('stop_nepali.txt', 'r', 'utf-8', errors='ignore' ) as infile: 

    for line in infile: 

        label, text = line.split("\t") 

#        print(text) 

        # texts are already tokenized, just split on space 

        # in a real case we would use e.g. spaCy for tokenization 

        # and maybe remove stopwords etc. 

        X.append(text.split()) 

        y.append(label) 

#print(X[1]) 

X, y = np.array(X), np.array(y) 

print(X) 

print ("total examples %s" % len(y)) 

 

#import numpy as np 

#with open('glove.txt', "rb") as lines: 

#    wvec = {line.split()[0].decode('utf-8'): np.array(line.split()[1:],dtype=np.float32) 

#               for line in lines} 

#print(wvec) 

 

glove_small = {} 

all_words = set(w for words in X for w in words) 

with open('glove.txt', "rb") as infile: 

    for line in infile: 

        parts = line.split() 

        word = parts[0].decode('utf-8') 

        if (word in all_words): 

            nums=np.array(parts[1:], dtype=np.float32) 

            glove_small[word] = nums 

#print(glove_small) 

 



 

 

 

 
48 

 

model = Word2Vec(X, size=2, window=5, min_count=3, workers=2) 

w2v = {w: vec for w, vec in zip(model.wv.index2word, model.wv.vectors)} 

#print(w2v) 

 

class MeanEmbeddingVectorizer(object): 

    def __init__(self, word2vec): 

#        print('This is initialization') 

        self.word2vec = word2vec 

        if len(word2vec)>0: 

            self.dim=len(word2vec[next(iter(w2v))]) 

#            print(self.dim) 

        else: 

            self.dim=0 

             

    def fit(self, X, y): 

#        print('This is fit funtions') 

        return self  

 

    def transform(self, X): 

        return np.array([ 

            np.mean([self.word2vec[w] for w in words if w in self.word2vec]  

                    or [np.zeros(self.dim)], axis=0) 

            for words in X 

        ]) 

         

 

#and a tf-idf version of the same 

class TfidfEmbeddingVectorizer(object): 

    def __init__(self, word2vec): 

        self.word2vec = word2vec 

        self.word2weight = None 

        if len(word2vec)>0: 

            self.dim=len(word2vec[next(iter(w2v))]) 

#            print(self.dim) 

        else: 

            self.dim=0 

         

    def fit(self, X, y): 

        tfidf = TfidfVectorizer(analyzer=lambda x: x) 

        tfidf.fit(X) 

        # if a word was never seen - it must be at least as infrequent 

        # as any of the known words - so the default idf is the max of  

        # known idf's 

        max_idf = max(tfidf.idf_) 

        self.word2weight = defaultdict( 

            lambda: max_idf,  

            [(w, tfidf.idf_[i]) for w, i in tfidf.vocabulary_.items()]) 
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        return self 

     

    def transform(self, X): 

        return np.array([ 

                np.mean([self.word2vec[w] * self.word2weight[w] 

                         for w in words if w in self.word2vec] or 

                        [np.zeros(self.dim)], axis=0) 

                for words in X 

            ]) 

 

#etree_glove_small = Pipeline([("glove vectorizer", 

MeanEmbeddingVectorizer(glove_small)),  

#                        ("extra trees", ExtraTreesClassifier(n_estimators=200))]) 

#etree_glove_small_tfidf = Pipeline([("glove vectorizer", 

TfidfEmbeddingVectorizer(glove_small)),  

#                        ("extra trees", ExtraTreesClassifier(n_estimators=200))]) 

#print("classification begin") 

etree_w2v = Pipeline([("word2vec vectorizer", MeanEmbeddingVectorizer(w2v)),  

                        ("extra trees", SVC(kernel='rbf', random_state=42, verbose=False, C=1.5, 

gamma='auto'))]) 

etree_w2v_tfidf = Pipeline([("word2vec vectorizer", TfidfEmbeddingVectorizer(w2v)),  

                        ("extra trees", SVC(kernel='rbf', random_state=42, verbose=False, C=1.5, 

gamma='auto'))]) 

#print("classification end") 

 

 

all_models = [ 

    ("w2v", etree_w2v), 

    ("w2v_tfidf", etree_w2v_tfidf), 

#    ("glove_small", etree_glove_small), 

#    ("glove_small_tfidf", etree_glove_small_tfidf) 

] 

#print(X) 

unsorted_scores = [(name, cross_val_score(model, X, y, cv=5).mean()) for name, model 

in all_models] 

scores = sorted(unsorted_scores, key=lambda x: -x[1]) 

print (tabulate(scores, floatfmt=".4f", headers=("model", 'score'))) 


