

Tribhuvan University

Institute of Science and Technology

Word Embedding Based Feature Extraction for Nepali News

Classification

Dissertation

Submitted to:

Central Department of Computer Science and Information Technology

Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements for the Master’s Degree in

Computer Science and Information Technology

by

 Ramesh Kumar Chaudhary

7th February, 2019

Tribhuvan University

Institute of Science and Technology

Word Embedding Based Feature Extraction for Nepali News

Classification

Dissertation

Submitted to

Central Department of Computer Science and Information Technology

Kirtipur, Kathmandu, Nepal

In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Computer Science & Information Technology (M.SC.CSIT)

Submitted By:

Mr. Ramesh Kumar Chaudhary
Date: 7th February, 2019

Supervisor:

Prof. Dr. Subarna Shakya

Dept. of Electronics & Computer Engineering, IOE,

Tribhuvan University, Pulchwok, Nepal

Co-Supervisor:

Mr. Tej Bahadur Shahi

Lecturer
 CDCSIT, Tribhuvan University Kirtipur, Nepal

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the

listed here have been used in this work.

 … … … … … … … … …

Ramesh Kumar Chaudhary

Date: 7th February, 2019

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Supervisor’s Recommendation

We hereby recommend that this dissertation prepared under our supervision by Mr.

Ramesh Kumar Chaudhary entitled “Word Embedding Based Feature

Extraction for Nepali News Classification” be accepted as partial fulfillment of

the requirements for the degree of M. Sc. in Computer Science and Information

Technology. In our best knowledge this is an original work in computer science.

………………………………..

Prof. Dr. Subarna Shakya

Department of Electronics and Computer

Engineering, IOC, Tribhuvan University

Pulchok, Lalitpur, Nepal

Date: 7th February, 2019

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information

Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the

scope and quality as a dissertation in the partial fulfillment for the requirement of Master's

Degree in Computer Science and Information Technology

Evaluation Committee

 … … … … … … … … … … … … … … … … … … … …

 (Internal Examiner) (External Examiner)

Date: 7th February, 2019

…………………………..

Prof. Dr. Subarna Shakya

Department of Electronics and Computer

Engineering, IOE

Tribhuvan University

Pulchok, Lalitpur, Nepal

(Supervisor)

…………………………..

Ast. Prof. Navraj Paudel

Head of Department (HOD)

Central Department of Computer Science and

Information Technology(CDCSIT)

Tribhuvan University

Kritipur, Kathmandu, Nepal

i

ACKNOWLEDGEMENT

It is a great pleasure for me to acknowledge the contributions of a large number of

individuals to this work. I deeply extend my heartily acknowledgement to my respected

teacher and dissertation advisor Prof. Dr. Subarna Shakya for giving me an opportunity to

work under his supervision and for providing me guidance and support throughout this

work. With this regard, I wish to extend my sincere appreciation to respected Co-supervisor

Ast. Prof. Tej Bahadur Shahi, Central Department of Computer Science and Information

Technology (CDCSIT) for his valuable suggestions.

I would like to express my gratitude to the respected teachers Prof. Dr. Shashidhar Ram

Joshi, Mr. Nawaraj Paudel, Mr. Dhiraj Kedar Pandey, Mr. Arjun Singh Saud, Mr. Jagdish

Bhatt, Mr. Sarbin Sayami, Mrs. Lalita Sthapit, Mr. Bikash Balami and others staffs of

CDSCIT for granting me broad knowledge and inspirations within the time period of two

years.

I cannot remain without admiring the efforts put by my friends and others for their

exceptional participation on this work. Last but not list, I would like to thank my family

members for their constant support and encouragement.

ii

ABSTRACT

A major challenge in topic classification (TC) is the high dimensionality of the feature

space. Therefore, feature extraction (FE) plays a vital role in topic classification in

particular and text mining in general. FE based on cosine similarity score is commonly used

to reduce the dimensionality of datasets with tens or hundreds of thousands of features,

which can be impossible to process further. In this study, TF-IDF (Term Frequency Inverse

Document Frequency) term weighting is used to extract features. Selecting relevant

features and determining how to encode them for a learning machine method have a vast

impact on the learning machine methods ability to extract a good model.

Count based feature extraction methods is compared with word to vector feature extraction

techniques for Nepali news classification. The results show good classification

performance when using the feature extraction techniques based on word to vector for less

number of classes and drastically decrease the performance for large sample size. On the

other hand result of classification count based technique shows consistent nearly

performance for any number of classes. The overall performance of the TF-IDF (Term

Frequency Inverse Document Frequency) is far better than both word to vector techniques.

Keywords—feature extraction, topic classification, cosine similarity score, TF-IDF,

CBOW, Skip-gram, Text mining, neural networks, deep learning

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. i

ABSTRACT ... ii

TABLE OF CONTENTS ... iii

LIST OF FIGURES .. vi

LIST OF TABLES ... vii

LIST OF ABBREVIATION .. viii

CHAPTER ONE .. 1

INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Problem Statement ... 2

1.3 Objectives ... 2

1.4 Background .. 3

1.4.1 Natural Language Processing .. 3

1.4.2 Major Application of Natural Language Processing ... 5

1.4.3 Computational Linguistics .. 6

1.4.4 Corpus linguistics .. 7

1.4.5 Machine learning ... 7

1.4.6 Text Representation .. 7

1.4.6.1 Bag of words representation .. 7

1.4.6.2 Vector Space Model ... 8

1.4.7 Feature Extraction ... 9

1.4.7.1 Latent Semantic Analysis (LSA) ... 9

1.4.7.2 FE Based on Cosine Similarity Score .. 9

1.4.7.3 PCA- Principle Component Analysis .. 10

1.4.7.4 Artificial Neural Network .. 10

1.4.7.5 Convolutional Neural Network .. 10

1.4.7.6 Neuro-Fuzzy Method ... 11

1.4.8 Text Classification .. 11

1.4.8.1 Rule Based System ... 11

1.4.8.2 Machine Learning Based System ... 12

1.4.8.3 Hybrid System .. 13

1.4.8.4 Text Classification Algorithms .. 13

iv

CHAPTER TWO ... 15

LITERATURE REVIEW .. 15

CHAPTER THREE .. 19

RESEARCH METHODOLOGY ... 19

3.1 Data Set Preparation ... 19

3.2 Preprocessing ... 21

3.3 Feature Extraction .. 22

3.3.1 TF-IDF Vectorization ... 22

3.3.2 Skip-Gram Model ... 22

3.3.3 CBOW (Continuous Bag of Words) ... 23

3.4 Classification .. 24

3.4.1 Support Vector Machine (SVM) ... 25

3.5 News Type Filtering ... 26

CHAPTER FOUR .. 28

IMPLEMENTATION .. 28

4.1 Preprocessing ... 28

4.2 TF-IDF Algorithm .. 28

4.3 Continuous Bag of Words (CBOW) Algorithm .. 28

4.4 Skip-gram Algorithm ... 29

4.6 Python .. 31

4.7 Tools and Libraries .. 31

4.7.1 Anaconda .. 31

4.7.2 Spyder ... 31

4.7.3 TensorFlow ... 32

4.7.4 Numpy ... 32

4.7.5 Pandas ... 33

4.7.6 Scikit-learn .. 33

4.7.7 Matplotlib .. 33

4.7.8 Seaborn .. 34

CHAPTER FIVE .. 35

RESULT AND ANALYSIS .. 35

5.1 Testing Results ... 35

5.1.1 Observation with TF-IDF .. 35

5.1.2 Observation with CBOW .. 37

5.1.3 Observation with Skip-gram ... 38

v

5.1.4 Overall performance of Feature extraction algorithms 39

5.2 Analysis .. 40

5.2.1 Accuracy and F-Score ... 40

5.2.2 Precession and recall ... 41

CHAPTER SIX .. 42

CONCLUSION .. 42

6.1 Conclusion ... 42

References .. 43

Bibliography ... 46

Appendix .. 47

Sample program Code for CBOW ... 47

vi

LIST OF FIGURES

Figure 3. 1 The skip-gram model viewed as a network 23

Figure 3. 2 Continuous bag-of-word model 24

Figure 3. 3 Support Vector Machine 25

Figure 3. 4 Framework of Classification algorithm 27

Figure 5. 1 Bar graph of Performance of TF-IDF with of classes 36

Figure 5. 2 Bar graph of Performance of CBOW with split of classes 38

Figure 5. 3 Bar graph of Performance of Skip-gram with split of classes 39

Figure 5. 4 Bar graph of performance comparison of algorithms 40

vii

LIST OF TABLES

Table 3. 1 Nepali Character Set 19

Table 3. 2 Statistics of Nepali News Corpus 20

Table 5. 1 Performance of TF-IDF with 20 classes 36

Table 5. 2 Performance of TF-IDF with split of classes 36

Table 5. 3 Performance of CBOW with 20 classes 37

Table 5. 4 Performance of CBOW with split of classes 37

Table 5. 5 Performance of Skip-gram with 20 classes 38

Table 5. 6 Performance of Skip-gram with split of classes 39

Table 5. 7 Performance comparison of algorithms 40

viii

LIST OF ABBREVIATION

SVM Support Vector Machine

TF-IDF Term Frequency Inverse Document Frequency

CBOW Continuous Bag of Word

NLP Natural Language Processing

NLU Natural Language Understanding

NLG Natural Language Generation

POS Post of Speech

AI Artificial Intelligence

LSA Latent Semantic Analysis

SVD Singular Value Decomposition

PCA Principle Component Analysis

CNN Convolutional Neural Network

MLP Multi-Layered Perceptron

RNN Recurrent Neural Network

LDA Linear Discriminant Analysis

NDA Nonlinear Discriminant Analysis

ENA Ethiopian News Agency

1

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Modern information age produces vast amount of textual data, which can be termed in other

words as unstructured data. Internet and corporate spread across the globe produces textual

data in exponential growth, which needs to be shared, on need basis by individuals. If the

data generated is properly organized, classified then retrieving the needed data can be made

easily with least efforts. Hence the need of automatic methods to organize, classify the

documents becomes inevitable due to such exponential growth in documents, very

especially after the increase usage of internet by individuals. Automatic classification refers

to assigning the documents to a set of pre-defined classes based on the textual content of

the document. The classification can be flat or hierarchical. [1, 7]

Text Categorization (TC), also known as Text Classification, is the task of automatically

classifying a set of text documents into different categories from a predefined set. [4]

Consider the case of sorting and organizing emails, files in folder hierarchies so that topic

identification that would support topic specific operations be made. On such attempt is the

yahoo web directory. [5] If such classification is to be done manually it has several

disadvantages

 It needs domain experts in the areas of predefined categories.

 It is time-consuming, leads to frustration.

 It is error-prone and could be employee biased (subject biased).

 Human decision among two experts may disagree.

 Need to repeat the process for new documents (possibly of another domain).

So the need to employee machine learning to automate the classification is needed.

2

1.2 Problem Statement

The problem of news classification is to assign a news type label to each news automatically

by computer program. It comes under the heading of supervised machine learning

technique. For Nepali News, the available technique for other standard language such as

English can't be directly used for the classification task. Since the Nepali language is

morphologically rich and has many deflection and derivational form of words. The main

problem towards classification is not the availability of highly accurate classifier but the

number of feature fed to these classifier. If the number of features are correctly chosen, the

classification algorithm works well. In this research work, the best feature extraction

method will be find out among the some popular technique Term Frequency- Inverse

Document Frequency (TF-IDF) [8], Continuous Bag of words (CBOW) and Skip-Gram

method. [2]

 For the purpose of classification task, the Support Vector Machine (SVM) with best

feature extracted will be used to measure the accuracy and efficiency of the feature

extraction technique. [12]

1.3 Objectives

The main objectives of this research work is to extract the feature using different technique

and efficiently classify news types using SVM. The other objectives are:

1. To build a Nepali news corpus by crawling different online Nepali News portals.

2. To extracting feature vector of Nepali news based on methods: Term Frequency

Inverse Document Frequency (TF-IDF), Continuous Bag of words (CBOW) and

Skip-Gram method.

3. To build Nepali news type classifier using Support Vector Machine (SVM) and

analyze the accuracy of above feature extraction methods.

3

1.4 Background

1.4.1 Natural Language Processing

Natural Language Processing (NLP) has been developed in 1960 as a subfield of Artificial

Intelligence and Linguistics [14]. The aim of NLP is studying problems in the automatic

generation and understanding of natural language. A Natural Language is any of the

languages naturally used by humans, i.e. not an artificial or machine language such as a

programming language like C language, Java, Perl etc.

NLP is a convenient description for all attempts to use computers to process natural

language. NLP is also an area of artificial intelligence research that attempts to reproduce

the human interpretation of language for computer system processing. The ultimate goal of

NLP is to determine a system of language, words, relations, and conceptual information

that can be used by computer logic to implement artificial language interpretation. NLP

includes anything a computer needs to understand natural language (written or spoken) and

also generate the natural language. To build computational natural language systems, we

need Natural Language Understanding (NLU) and Natural Language Generation (NLG).

NLG systems convert information from computer databases into normal-sounding human

language, and NLU systems convert samples of human language into more representation

that are easier for computer programs to manipulate. Some of important levels of NLP are

as follows:

Phonological Analysis: Phonology is the study of sound system in a language. The

minimal unit of sound system is the phoneme which is capable of distinguishing the

meanings in the words. The phonemes combine to form a higher level unit called syllable

and syllables combine to form the words. Therefore, the organization of the sounds in a

language exhibits the linguistic as well as computational challenges for its analysis. This

level deals with the interpretation of speech sounds within and across words. There are, in

fact, three types of rules used in phonological analysis: 1) phonetic rules – for sounds within

words; 2) phonemic rules – for variations of pronunciation when words are spoken together,

and; 3) prosodic rules – for fluctuation in stress and intonation across a sentence. In an NLP

system that accepts spoken input, the sound waves are analyzed and encoded into a

4

digitized signal for interpretation by various rules or by comparison to the particular

language model being utilized.

Morphological Analysis: This level deals with the componential nature of words, which

are composed of morphemes – the smallest units of semantic meaning. For example, the

word preregistration can be morphologically analyzed into three separate morphemes: the

prefix pre, the root "registra", and the suffix "tion". Since the meaning of each morpheme

remains the same across words, humans can break down an unknown word into its

constituent morphemes in order to understand its meaning. Similarly, an NLP system can

recognize the meaning conveyed by each morpheme in order to gain and represent

meaning. For example, adding the suffix "ed" to a verb, conveys that the action of the verb

took place in the past. This is a key piece of meaning, and in fact, is frequently only

evidenced in a text by the use of the -ed morpheme. Typically, a natural language processor

knows how to understand multiple forms of a word i.e. its plural and singular, for example,

ghar (3/) "house" ghar-haru (3/x?) "house-s". From structural point of view, the words

can be simple, complex and compound. For example, ghar "house", ghar-haru "house-

Plural", ghar-ghar "each house".

Lexical Analysis: At this level, humans, as well as NLP systems, interpret the meaning of

individual words. Several types of processing contribute to word-level understanding – the

first of these being assignment of a single part-of-speech (POS) tag to each word. In this

processing, words that can function as more than one part-of-speech are assigned the most

probable part-of speech tag based on the context in which they occur. The lexical level may

require a lexicon, and the particular approach taken by an NLP system will determine

whether a lexicon will be utilized, as well as the nature and extent of information that is

encoded in the lexicon.

Syntactic Analysis: Syntactic analysis uses the results of morphological analysis and

lexical analysis to build a structural description of the sentence. The goal of this process,

called parsing, is to convert the flat list of words that forms the sentence into a structure that

defines the units that are represented by that flat list. The important thing here is that a flat list

of words has been converted into a hierarchical structure and that the structures correspond to

meaning units when semantic analysis is performed.

5

Semantic Analysis: It derives an absolute (dictionary definition) meaning from context; it

determines the possible meaning of a sentence in a context .The structures created by the

syntactic analyzer are assigned meaning. Thus, a mapping is made between individual

words into appropriate objects in the knowledge base or data base. It must create the correct

structure s to correspond to the way the meaning of the individual words combine with each

other. The structures for which no such mapping is possible are rejected.

Example: the sentence "colorless green ideas…." would be rejected as it has no such

semantic mapping, because colorless and green make no sense.

Discourse Integration: The meaning of an individual sentence may depend on the

sentences that precede it and may influence the meaning of the sentences that follow it.

Example: the meaning of word “it” in the sentence, “you wanted it” depends on the previous

discourse context.

Pragmatic Analysis: It derives knowledge from external commonsense information; it

means understanding the purposeful use of language in situations, particularly those aspects

of language which require world knowledge.

Example: If someone says “the door is open” then it is necessary to know which door “the

door” refers to; here it is necessary to know what the intention of the speaker: could be a

pure statement of fact, could be an explanation of how the cat got in, or could be a request

to the person addressed to close the door.

1.4.2 Major Application of Natural Language Processing

NLP is having a very important place in our day-to-day life due to its large natural language

applications. By means of these NLP applications the user can interact with computers in

their own mother tongue by means of a keyword and a screen. The few NLP processes are:

 Part-of-speech tagging

 Information retrieval

 Machine translation

6

 Named entity recognition

 Natural language generation

 Question answering

 Spoken dialogue system

 Text simplification

 Text to speech

 Speech recognition etc.

1.4.3 Computational Linguistics

Computational linguistics is the scientific study of language (i.e. statistical and/or rule-

based modeling of natural language) from a computational perspective. Traditionally,

computational linguistics was usually performed by computer scientists who had

specialized in the application of computers to the processing of a natural language.

Computational linguists often work as members of interdisciplinary teams, including

linguists (specifically trained in linguistics), language experts (persons with some level of

ability in the languages relevant to a given project), and computer scientists. In general,

computational linguistics draws upon the involvement of linguists, computer scientists, and

experts in artificial intelligence, mathematicians, logicians, cognitive scientists, cognitive

psychologists, psycholinguists, anthropologists and neuroscientists, amongst others. Some

of the areas of research that are studied by computational linguistics include:

 Computational complexity of natural language, largely modeled on automata

theory, with the application of context-sensitive grammar.

 Computational semantics comprises defining suitable logics for linguistic meaning

representation, automatically constructing them and reasoning with them.

 Computer-aided corpus linguistics.

 Design of parsers or chunkers for natural languages.

 Design of taggers like POS-taggers.

7

 Machine translation.

1.4.4 Corpus linguistics

Corpus linguistics is now seen as the study of linguistic phenomena through large

collections of machine-readable texts: corpora. These are used within a number of research

areas going from the descriptive study of the syntax of a language to language learning.

Corpus linguistics has developed considerably in the last decades due to the great

possibilities offered by the processing of natural language by computers having large

storage capacity. The availability of computers and machine-readable text has made it

possible to get data quickly and easily and also to have this data presented in a format

suitable for analysis. Corpus linguistics is, however, not the same as mainly obtaining

language data through the use of computers. Corpus linguistics is the study and analysis of

data obtained from a corpus. The main task of the corpus linguist is not to find the data but

to analyze it. Computers are useful, and sometimes indispensable, tools used in this process.

1.4.5 Machine learning

It is a recent field of artificial intelligence (AI) which aim to make a machine able to learn

as human learns the things. Marvin Minsky (1986) defined learning as “it is making useful

change in the working of our mind”. Machine learning exists in various forms: supervised

learning, unsupervised learning, semi supervised or minimally supervised learning,

reinforcement learning etc. In its basic form, machine learn the knowledge form some

sources and then generalize that knowledge for other instances.

1.4.6 Text Representation

1.4.6.1 Bag of words representation

Under this form, every sentence in the document is considered to be a multi-set or bag of

words (or tokens) without considering the grammar or even the word order in it. Here, the

occurrence or frequency of the word collectively contributes in features for further

8

classification. [27] For e.g. consider the following two documents containing sentences as

below:

D1: Meera likes dancing a lot.

D2: John too likes dancing but not that much.

For the above documents, one combined list is made:

[“Meera”, “likes”, “dancing”, “a, “lot”, “John”, “too”, “but”, “not”, “that”, “much”]

1.4.6.2 Vector Space Model

This is an algebraic model for text representation. It consists of three stages [5, 10]:

Stage 1: Indexing of the documents where the content bearing terms [6] are extracted from

the document text. The terms having very high or very low frequency distract the learning

and hence are eliminated. Such words are known as function words [6, 7, and 8]. These

include the highly occurring stop words like “a, an, the, on”. For e.g.:

 “New York is using sand-filled trucks to protect Thanks giving parade”.

Here, the words in bold are the content bearing words.

Stage 2: Weighting of the indexed terms for the enhancement of the retrieval of relevant

document. There are many ways to give weight to the terms depending upon the

application.

Dj= (w1, j, w2, j….wn,j) is the representation of document in terms of weights.

Here, each dimension corresponds to an independent term. Zero shows absence of any term

from the document.

Stage 3: Ranking of the documents taking the similarity measure into consideration to get

the closet words from query document.

9

1.4.7 Feature Extraction

Feature Vector Construction is an important approach, it provides a lot of information

regarding the text documents such as the highest and lowest term frequency for each

document. Selecting relevant features and determining how to encode them for a learning

machine method can have a vast impact on the learning machine methods ability to extract

a good model.

1.4.7.1 Latent Semantic Analysis (LSA)

LSA method is a novel technique in text classification. Generally, LSA analyzes

relationships between a term and concepts contained in an unstructured collection of text.

It is called Latent Semantic Analysis, because of its ability to correlate semantically related

terms that are latent in a text. LSA produces a set of concepts, which is smaller in size than

the original set, related to documents and terms [11, 12]. It uses SVD (Singular Value

Decomposing) to identify pat- tern between the terms & concepts contained in the text, and

find the relationships between documents. The method commonly referred to as concept

searches. It has ability to extract the conceptual content of a body of text by establishing

associations between those terms that occur in similar contexts. LSA is mostly used for

page retrieval systems and text clustering purposes. LSA overcomes two of the most

problematic keyword queries: multiple words that have similar meanings and words that

have more than one meaning.

1.4.7.2 FE Based on Cosine Similarity Score

FE based on cosine similarity score is commonly used to reduce the dimensionality of

datasets with tens or hundreds of thousands of features, which can be impossible to process

further. [1]

10

1.4.7.3 PCA- Principle Component Analysis

PCA is a well-known technique that can reduce the dimensionality of data by transforming

the original attribute space into smaller space. In the other word, the purpose of principle

components analysis is to derive new variables that are combinations of the original

variables and are uncorrelated. This is achieved by transforming the original variables Y =

[y1, y2... yp] (where p is number of original variable) to a new set of variables, T = [t1, t2,...,

tq] (where q is number of new variables), which are combinations of the original variables.

Transformed attributes are framed by first, computing the mean (μ) of the dataset, then

covariance matrix of the original attributes is calculated [5]. And the second step is,

extracting its eigenvectors. The eigenvectors (principal components) introduce as a linear

transformation from the original attribute space to a new space in which attributes are

uncorrelated. Eigenvectors can be sorted according to the amount of variation in the

original data. The best n eigenvectors (those one with highest eigenvalues) are selected as

new features while the rest are discarded.

1.4.7.4 Artificial Neural Network

Artificial neural networks are one of the main tools used in machine learning. As the

“neural” part of their name suggests, they are brain-inspired systems which are intended to

replicate the way that we humans learn. Neural networks consist of input and output layers,

as well as (in most cases) a hidden layer consisting of units that transform the input into

something that the output layer can use. They are excellent tools for finding patterns which

are far too complex or numerous for a human programmer to extract and teach the machine

to recognize. [22]

1.4.7.5 Convolutional Neural Network

Convolutions are great for extracting features from dataset. Convolutional Neural

Networks (CNN) are biologically-inspired variants of MLPs. CNNs are networks

composed of several layers of convolutions with nonlinear activation functions like ReLU

11

or tanh applied to the results. Traditional Layers are fully connected, instead CNN use local

connections. Each layer applies different filters (thousands) and combines their results. [30]

1.4.7.6 Neuro-Fuzzy Method

A fuzzy feature evaluation index for a set of features is newly defined in terms of degree

of similarity between two patterns in both the original and transformed feature spaces. A

layered network is designed for performing the task of minimization of the evaluation index

through unsupervised learning process. This extracts a set of optimum transformed

features, by projecting n-dimensional original space directly to n-dimensional (n:n)

transformed space, along with their relative importance.

1.4.8 Text Classification

Text classification algorithms are at the heart of a variety of software systems that process

text data at scale. Email software uses text classification to determine whether incoming

mail is sent to the inbox or filtered into the spam folder. Discussion forums use text

classification to determine whether comments should be flagged as inappropriate.

1.4.8.1 Rule Based System

Rule-based approaches classify text into organized groups by using a set of handcrafted

linguistic rules. These rules instruct the system to use semantically relevant elements of a

text to identify relevant categories based on its content. Each rule consists of an antecedent

or pattern and a predicted category. [4]

Say that need to classify news articles into 2 groups, namely, Sports and Politics. First,

need to define two lists of words that characterize each group (e.g. words related to sports

such as football, basketball, LeBron James, etc., and words related to politics such as

Donald Trump, Hillary Clinton, Putin, etc.). Next, when want to classify a new incoming

text, need to count the number of sport-related words that appear in the text and do the

12

same for politics-related words. If the number of sport-related word appearances is greater

than the number of politics-related word count, then the text is classified as sports and vice

versa.

For example, this rule-based system will classify the headline “When is LeBron James' first

game with the Lakers?” as Sports because it counted 1 sport-related term (Lebron James)

and it didn’t count any politics-related terms.

Rule-based systems are human comprehensible and can be improved over time. But this

approach has some disadvantages. They also time-consuming, since generating rules for a

complex system can be quite challenging and usually requires a lot of analysis and testing.

Rule-based systems are also difficult to maintain and don’t scale well given that adding

new rules can affect the results of the pre-existing rules. [4]

1.4.8.2 Machine Learning Based System

Instead of relying on manually crafted rules, text classification with machine learning

learns to make classifications based on past observations. By using pre-labeled examples

as training data, a machine learning algorithm can learn the different associations between

pieces of text and that a particular output (i.e. tags) is expected for a particular input (i.e.

text). [5, 6]

The first step towards training a classifier with machine learning is feature extraction: a

method is used to transform each text into a numerical representation in the form of a

vector. One of the most frequently used approaches is bag of words, where a vector

represents the frequency of a word in a predefined dictionary of words. [9]

Then, the machine learning algorithm is fed with training data that consists of pairs of

feature sets (vectors for each text example) and tags (e.g. sports, politics) to produce a

classification model. [7]

Once it’s trained with enough training samples, the machine learning model can begin to

make accurate predictions. The same feature extractor is used to transform unseen text to

13

feature sets which can be fed into the classification model to get predictions on tags (e.g.

sports, politics)

Text classification with machine learning is usually much more accurate than human-

crafted rule systems, especially on complex classification tasks. Also, classifiers with

machine learning are easier to maintain and you can always tag new examples to learn new

tasks. [18]

1.4.8.3 Hybrid System

Hybrids systems combine a base classifier trained with machine learning and a rule-based

system, which is used to further improve the results. These hybrid systems can be easily

fine-tuned by adding specific rules for those conflicting tags that haven’t been correctly

modeled by the base classifier. [4, 18]

1.4.8.4 Text Classification Algorithms

Some of the most popular machine learning algorithms for creating text classification

models include the Naive Bayes family of algorithms, support vector machines, and deep

learning.

1.4.8.4.1 Naïve Bayes

Naive Bayes is a family of statistical algorithms it can be used of when doing text

classification. One of the members of that family is Multinomial Naive Bayes (MNB). One

of its main advantages is that it can be get really good results when data available is not

much and computational resources are scarce.

All its need to know is that Naive Bayes is based on Bayes’s Theorem, which help to

compute the conditional probabilities of occurrence of two events based on the probabilities

of occurrence of each individual event. This means that any vector that represents a text

14

will have to contain information about the probabilities of appearance of the words of the

text within the texts of a given category so that the algorithm can compute the likelihood

of that text’s belonging to the category. [17]

1.4.8.4.2 Support Vector Machine

Support Vector Machines (SVM) is just one out of many algorithms it can be chosen from

when doing text classification. Like Naive Bayes, SVM doesn’t need much training data

to start providing accurate results. Although it needs more computational resources than

Naive Bayes, SVM can achieve more accurate results. [19]

In short, SVM takes care of drawing a “line” or hyperplane that divides a space into two

subspaces: one subspace that contains vectors that belong to a group and another subspace

that contains vectors that do not belong to that group. Those vectors are representations of

training texts and a group is a tag that need to tag to texts with. [7]

1.4.8.4.3 Deep Learning

Deep learning is a set of algorithms and techniques inspired by how the human brain works.

Text classification has benefited from the recent resurgence of deep learning architectures

due to their potential to reach high accuracy with less need of engineered features. The two

main deep learning architectures used in text classification are Convolutional Neural

Networks (CNN) and Recurrent Neural Networks (RNN). [8]

On the one hand, deep learning algorithms require much more training data than traditional

machine learning algorithms, i.e. at least millions of tagged examples. On the other hand,

traditional machine learning algorithms such as SVM and NB reach a certain threshold

where adding more training data doesn’t improve their accuracy. [18]

Deep learning algorithms such as Word2Vec or GloVe are also used in order to obtain

better vector representations for words and improve the accuracy of classifiers trained with

traditional machine learning algorithms. [2]

15

CHAPTER TWO

LITERATURE REVIEW

Literature review describes the previous works and findings related to the field of study.

This chapter is dedicated to the description of some feature extraction algorithm, which are

relevant to this work as well as the classification techniques used in text classification

technique after feature extraction.

Various techniques have been proposed to extract the features of the text: TF-IDF [1],

CBOW [2, 3], Skip-gram [2, 3], Feature Extraction based on Cosine Similarity [1],

Artificial Neural Network [29], and Convolutional Neural Network [31], and Neuro-Fuzzy

Method [30]. The basic concept of these techniques is to extract the features of text and

then use these features for different purposes such as in classification.

In [1] TF-IDF term weighting was used to extract features. Selecting relevant features and

determining how to encode them for a learning machine method have a vast impact on the

learning machine methods ability to extract a good model. Two different weighting

methods (TF-IDF and TF-IDF Global) were used and tested on the Reuters-21578 text

categorization test collection. The obtained results emerged a good candidate for enhancing

the performance of English topics FE. Simulation results the Reuters-21578 text

categorization showed the superiority of the proposed algorithm.

In [2] proposed two novel model architectures for computing continuous vector

representations of words from very large data sets. The quality of these representations was

measured in a word similarity task, and the results were compared to the previously best

performing techniques based on different types of neural networks. Large improvements

was observed in accuracy at much lower computational cost, i.e. it took less than a day to

learn high quality word vectors from a 1.6 billion words data set. Furthermore, these vectors

provided state-of-the-art performance on test set for measuring syntactic and semantic

word similarities.

In [3] presented several extensions that improve both the quality of the vectors and the

training speed. By subsampling of the frequent words significant speedup was obtain and

also learned more regular word representations. A simple alternative to the hierarchical

softmax called negative sampling was also described. An inherent limitation of word

representations was their indifference to word order and their inability to represent

16

idiomatic phrases. For example, the meanings of “Canada” and “Air” cannot be easily

combined to obtain “Air Canada”. Motivated by this example, a simple method for finding

phrases in text was presented, and showed that learning good vector representations for

millions of phrases was possible.

In [29] proposed a number of networks and learning algorithms which provide new or

alternative tools for feature extraction and data projection. These networks include a

network (SAMANN) for Sammon’s nonlinear projection, a linear discriminant analysis

(LDA) network, a nonlinear discriminant analysis (NDA) network, and a network for

nonlinear projection (NP-SOM) based on Kohonen’s self-organizing map [32]. They

evaluated five representative neural networks for feature extraction and data projection

based on a visual judgment of the two-dimensional projection maps and three quantitative

criteria on eight data sets with various properties. Sammon [33] proposed a nonlinear

projection technique that attempts to maximally preserve all the inter pattern distances.

In [31] demonstrated a way of formulating a neuro-fuzzy approach for feature extraction

under unsupervised training. A fuzzy feature evaluation index for a set of features is newly

defined in terms of degree of similarity between two patterns in both the original and

transformed feature spaces. A layered network is designed for performing the task of

minimization of the evaluation index through unsupervised learning process. This extracts

a set of optimum transformed features, by projecting n-dimensional original space directly

to n-dimensional (n:n) transformed space, along with their relative importance. This

method gave better results than PCA [5].

In [30] demonstrated that one can apply deep learning to text understanding from character

level inputs all the way up to abstract text concepts, using temporal convolutional networks

(ConvNets). They applied ConvNets to various large-scale datasets, including ontology

classification, sentiment analysis, and text categorization. They showed that temporal

ConvNets can achieve astonishing performance without the knowledge of words, phrases,

sentences and any other syntactic

 In [7] explored the use of hierarchical structure for classifying a large, heterogeneous

collection of Amharic News Text. The approach utilized the hierarchical topic structure to

decompose the classification task into a set of simpler problems, one at each node in the

classification tree. An experiment had been conducted using a categorical data collected

17

from Ethiopian News Agency (ENA) using SVM to see the performances of the

hierarchical classifiers on Amharic News Text. The findings of the experiment showed the

accuracy of flat classification decreases as the number of classes and documents (features)

increases. Moreover, the accuracy of the flat classifier decreases at an increasing number

of top feature set. The peak accuracy of the flat classifier was 68.84 % when the top 3

features were used. The findings of the experiment done using hierarchical classification

show an increasing performance of the classifiers as we move down the hierarchy. The

maximum accuracy achieved was 90.37% at level-3(last level) of the category tree.

Moreover, the accuracy of the hierarchical classifiers increases at an increasing number of

top feature set compared to the flat classifier. The peak accuracy was 89.06% using level

three classifier when the top 15 features were used. Furthermore, the performance between

flat classifier and hierarchical classifiers are compared using the same test data. Thus, it

shows that use of the hierarchical structure during classification has resulted in a significant

improvement of 29.42 % in exact match precision when compared with a flat classifier.

In [27] proposed a way to find co-occurrence feature from anchor text of wikipedia pages,

proposed a way to incorporate co-occurrence feature to BOW model. Finally the method

was analyzed to know how it performs in task of text classification.

In the context of Nepali text, there is little literature available. The basic steps in natural

language processing pipeline such as part of speech tagging [12, 13], steaming [14], named-

entity recognition [15, 16] have been investigated separately. There is no result available

collectively.

Furthermore, the text classification problem for Nepali text is not even studied thoroughly.

In [17], authors have proposed simple naïve Bayes classifier to address the problem. Naïve

Bayes uses the concept of probability. The parameter in Naïve Bayes was learned from

training the module with the Bayesian rule of probability. The representation of text

document in the form of the bag of words where it is assumed that each word is independent

of other, mainly degrade the performance of this approach. The simple Naïve Bayes was

augmented with multinomial lexicon pooling [17]. Paper [18] applied some machine

learning strategies for addressing the classification problem of the Nepali documents.

18

Nepali SMS classification task is discussed in [19] with Naïve Bayes and support vector

machine approaches. Here the length of SMS is very limited in comparison to the length

of the full text, the number of features such as SMS headings, words, and their frequency

was taken to represent an SMS. The SVM and Naïve Bayes based classification technique

were implemented to classify SMS into either spam or not spam. Due to the few number

of the feature in consideration, the Naïve Bayes outperform the SVM with 5% (92%

accuracy for NB and 87% accuracy for SVM)

19

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Data Set Preparation

The Nepali language belongs to one of the most common scripts, Devanagari, invented by

Brahmins around the 11th century. It consists of 36 consonant symbols, 12 vowel symbols

and 10 numeral symbols along with different modifiers and half forms. According to

current census research, 17 million people worldwide speak the Nepali language. Nepali

language character set is given in Table1.

Table 3. 1 Nepali Character Set

a) Numbers

) ! @ # $ % ^ & * (

b) Vowels

c cf O O{ p pm P P} cf] cf} c+ cM

c) Consonants

s v u 3 ª r 5 h ´ ` 6 7

8 9 0f t y b w g k km a e

d o / n j z if ; x If q 1

20

A collection of Nepali news was collected from various online Nepali News portals using

web crawler. The news portal namely ratopati.com, setopati.com, onlinekhabar.com, and

ekantipur.com were used to gather text related to different news types. The distribution of

news type in the Nepali news corpus is as shown in Table 2.

Table 3. 2 Statistics of Nepali News Corpus

S.N. News Class No. of Documents

1 Agriculture 200

2 Automobile 246

3 Bank 617

4 Blog 259

5 Business 307

6 Economy 600

7 Education 185

8 Employment 304

9 Entertainment 634

10 Health 180

11 Interview 330

12 Literature 251

13 Migration 111

14 Opinion 500

15 Politics 550

16 Society 353

17 Sports 700

18 Technology 118

19 Tourism 265

20 World 313

Total 7023

21

3.2 Preprocessing

The text preprocessing cleans the text data to make it ready to use in training and testing of

the machine learning model. Preprocessing is done to reduce the noise in the text that helps

to improve the performance of the classifier and speed up the classification process, thus

aiding in real time news classification. The main preprocessing techniques used are given

below.

1. Tokenization: Breakdowns the text into sentences and then words. Vertical bar,

question mark, and full stop are used to break down the sentences and whitespace and

comma are used to break down the words.

2. Special symbol and number removal: Special symbols like !, :, ÷, ×, º, >, <, \, /, @,

#, $, %, ^, &, *,), (, _, -, +, =, ~, ø, [,], ‘, ”, etc. and numbers, those do not have much

importance in classification, are removed.

3. Stop word removal: Stop words are high-frequency words that has not much influence

in the text are removed to increase the performance of the classification. The list of 255

stop-words like “5, d, xf], s]xL, xfdL, d]/f], Tof], x?, km]/L, cfkm", x'G5, /fv, eof], ug'{,klg, etc.”

were collected and removed from the text.

4. Word Stemming: Stemming is used to reduce the given word into its stem. Since the

word stem reflects the meaning of a particular word, we have segmented the inflected

word and derivational word into a stem word so that the dimension of vocabulary

reduced in the significant manner [11]. Example:

g]kfn 6]lnsdn] b'u{d lxdfnL lhNnfx?df ;]jf pknAw u/fpgsf nflu Pg6L:o6 k|ljlwsf]

k|of]u ul//x]sf] 5 .

[…g]kfnÚ, …6]lnsdn]Ú, …b'u{dÚ, …lxdfnLÚ, … lhNnfx?dfÚ, …;]jfÚ, …pknAwÚ, …u/fpgsfÚ, …nfluÚ,

…Pg6L:o6Ú, …k|ljlwsf]Ú, …k|of]uÚ, …ul//x]sf]Ú, …5Ú]

22

3.3 Feature Extraction

Feature Vector construction is the process of representing the news into a vector form. To

represent Nepali news in vector form, the TF-IDF weighting value for each word in the text

is taken as a dimensional value in a vector, CBOW and Skip-Gram techniques are used.

They are calculated the vector as,

3.3.1 TF-IDF Vectorization

In information retrieval or text mining, the term frequency – inverse document

frequency (also called TF-IDF), is a well know method to evaluate how important is a word

in a document.

𝑎𝑖𝑗 =
𝑡𝑓𝑖𝑗 . 𝑙𝑜𝑔

|𝐷|
𝐷𝐹𝑖

√∑ (𝑡𝑓𝑘𝑗 . 𝑙𝑜𝑔
|𝐷|
𝐷𝐹𝑘

)
2

𝑘

Where tfij is news in the training set and DFi is the number of NEWS, containing the term

i. The importance of a term in news is measured by the frequency and its inverse document

frequency. The more times an item appears in NEWS, the more important it is, and the

more times it appears in the training set, the less poorly discriminative it becomes. Often

the logarithms of 𝑡𝑓𝑖𝑗 or 𝐷𝐹𝑖 are taken in order to de-emphasize the increases in weighting

for larger values. The TF-IDF weighting of each news is calculated in the feature extraction

procedure of the framework.

3.3.2 Skip-Gram Model

In the continuous skip-gram architecture, the model uses the current word to predict the

surrounding window of context words. The skip-gram architecture weighs nearby context

words more heavily than more distant context words. [2, 3]

http://en.wikipedia.org/wiki/Tf%E2%80%93idf
http://en.wikipedia.org/wiki/Tf%E2%80%93idf

23

The skip-gram model actually learns two separate embedding for each word w: the word

embedding v and the context embedding C. These embedding are encoded in two matrices,

the word matrix W and the context matrix C. Each row i of the word matrix W is the 1xd

vector embedding vi for word i in the vocabulary. Each column i of the context matrix C is

a d x1 vector embedding ci for word i in the vocabulary. In principle, the word matrix and

the context matrix could use different vocabularies Vw and Vc.

Consider the corpus of length T and currently pointing at the tth word w (t), whose index in

the vocabulary is j, so call it wj (1 < j < |V|). The skip-gram model predicts each neighboring

word in a context window of 2L words from the current word. So a context window L=2

the context is [wt-2, wt-1, wt+1 wt+1] and predicting each of these from word wj. To normalize

the 2L context words, for example w (t+1), whose index in the vocabulary is k (1 < k <

|V|). Hence the probability P(wk/wj) is calculated. It is defined as follows:

Figure 3. 1 The skip-gram model viewed as a network [2]

3.3.3 CBOW (Continuous Bag of Words)

In the continuous bag-of-words architecture, the model predicts the current word from a

window of surrounding context words. [2, 3]

24

Like skip-grams, it is based on a predictive model, but this time predicting the current word

wt from the context window of 2L words around it, e.g. for L = 2 the context is [wt-2, wt-1,

wt+1 wt+1].

Figure 3. 2 Continuous bag-of-word model [2]

3.4 Classification

Given the example data {(xi, yi), i=1….n}, where the xi is input vector and the yi is its

associated label or class. Then the classification task is to learn the discriminate function

y=f(x),

25

which correctly classify the example data and optimized so that it will make minimal error

on the classification of unseen data.

If the label y is not discrete as above, then this task is called regression. Based on these

examples (xi, yi), one is particularly interested to predict the answer for other cases before

they are explicitly observed. Hence, learning is not only a question of remembering but

also of generalization to unseen cases. [4]

3.4.1 Support Vector Machine (SVM)

This is the supervised machine learning approach that can be used for both classification

[4correctly separate the example data into two classes. This hyperplane can be used to make

the prediction of class for unseen data. The hyperplane exist for the linearly separable data.

[7]

This can be illustrated with figure

Figure 3. 3 Support Vector Machine [18]

The equation for general hyperplane can be written as

𝑤. 𝑥 − 𝑏 = 0 (Equation 3.1)

Where x is point vector, w is a weight vector and b is bias. The hyperplane should separate

training data {(xi,yi), i=1….n and yi ∈(+1,-1)} in such way that 𝑦i 𝑤. 𝑥i − 𝑏 ≥ 1. The two

plane H1 and H2 are supporting hyperplane. We can see that there exist so many

hyperplanes that can separate the training data correctly but the SVM find one hyperplane

26

that maximize the margin between two supporting hyperplanes. It finds the w and b such

that the distance (margin) between H1 and H2 is maximum. This can be formulated as

optimization problem as

Minimize f = |𝑤 | (Equation 3.2)

Subject to constraints 𝑦𝑖 𝑤. 𝑥𝑖 − 𝑏 ≥ 1

This can be solved by the variant of quadratic programming technique [13]

3.5 News Type Filtering

The news classification learning and evaluation system pipeline is given in Figure below.

It consists of Preprocessing, Feature Extraction, Classification and Evaluation Phases. The

complete news dataset that was used in the system training and evaluation was explicitly

divided into training and testing sets. The five experiments were conducted to make the

more accurate analysis of the outputs. The experimental parameters such as C and gamma

(𝛾) for SVM were determined for their optimal results/outputs. In each experiment, the

different optimization parameters were analyzed to reach the optimal output.

27

Figure 3. 4 Framework of Classification algorithm

Training Corpus

Testing Corpus

Preprocessing

Feature Extraction

SVM Classifier

Class Labels

Preprocessed

Text

Feature Vector

Output

28

CHAPTER FOUR

IMPLEMENTATION

4.1 Preprocessing

The text preprocessing cleans the text data to make it ready to use in training and testing of

the machine learning model. Preprocessing is done to reduce the noise in the text that helps

to improve the performance of the classifier and speed up the classification process, thus

aiding in real time news classification. Algorithm for preprocessing the text:

1. Obtain a list of all row new text from different newspapers

2. Tokenize the text

3. Remove all stop words and special symbols

4.2 TF-IDF Algorithm

The TF-IDF feature extractor works on the basis of the token frequencies it is fed. The

algorithm with which it was implemented alongside the SVM classifier is as follows:

1. Process dataset to obtain IDF for each words

2. Compute TF of each term

3. Obtain a TF-IDF vector representation of text by multiplying corresponding TF

and IDF

4.3 Continuous Bag of Words (CBOW) Algorithm

In the continuous skip-gram architecture, the model uses the current word to predict the

surrounding window of context words. The skip-gram architecture weighs nearby context

29

words more heavily than more distant context words. The algorithm for CBOW is as

follows: [2, 3]

1. Get the preprocessed text data and Generate Train set

2. Create Dictionary of words in the corpus

3. Assign unique number to each word

4. Create the array of sentences

5. Arrange the input and output word pair according to window size for training

6. Create one hot encoding for each word.

7. Convert one hot encoding of words into Numpy arrays and place them in X_train

and Y_train variables

8. Creating placeholders for X_train and Y_train

9. Define Word embedding dimension

10. Compute Hidden layer

11. Compute Output layer

12. Compute loss function: cross entropy

13. Perform Training operation

14. Now use the hidden layer as lookup table to compute the weight of each words.

15. Print the weight vector

4.4 Skip-gram Algorithm

In the continuous skip-gram architecture, the model uses the current word to predict the

surrounding window of context words. The skip-gram architecture weighs nearby context

words more heavily than more distant context words. The algorithm for CBOW is as

follows: [2, 3]

1. Get the preprocessed text data and Generate Train set

2. Create Dictionary of words in the corpus

3. Assign unique number to each word

4. Create the array of sentences

5. Arrange the input and output word pair according to window size for training

30

6. Create one hot encoding for each word.

7. Convert one hot encoding of words into Numpy arrays and place them in X_train

and Y_train variables

8. Creating placeholders for X_train and Y_train

9. Define Word embedding dimension

10. Compute Hidden layer

11. Compute Output layer

12. Compute loss function: cross entropy

13. Perform Training operation

14. Now use the hidden layer as lookup table to compute the weight of each words.

15. Print the weight vector

4.5 Support Vector Machine Classifier

The matrix acquired from the feature extractor is finally used by the SVM classifier. It

associates the matrix with the data label, or category which the text was from, and finally

a trained classifier is achieved. This trained classifier is later used for predicting the

category of unknown texts. Algorithm for training the classifier:

1. Obtain a list of labeled documents to be used for training

2. Perform feature extraction on each document to obtain a feature matrix

3. Compute the corresponding output matrix using document label

4. Use the feature matrix and output matrix to train the SVM

5. Perform hyper parameter optimization

Algorithm for text categorization:

1. Perform feature extraction to obtain a feature vector

2. Feed corresponding vector into the trained SVM

31

4.6 Python

Python is an interpreted, object-oriented, high-level programming language with dynamic

semantics. Its high-level built in data structures, combined with dynamic typing and

dynamic binding, make it very attractive for Rapid Application Development, as well as

for use as a scripting or glue language to connect existing components together. Python's

simple, easy to learn syntax emphasizes readability and therefore reduces the cost of

program maintenance. Python supports modules and packages, which encourages program

modularity and code reuse. The Python interpreter and the extensive standard library are

available in source or binary form without charge for all major platforms, and can be freely

distributed.

4.7 Tools and Libraries

4.7.1 Anaconda

Anaconda is one of several Python distributions. Python distributions provide the Python

interpreter, together with a list of Python packages and sometimes other related tools, such

as editors. The packages provide by the Anaconda Python distribution includes all of those

that we need. A key part of the Anaconda Python distribution is Spyder, an interactive

development environment for Python, including an editor.

4.7.2 Spyder

Spyder is s a powerful interactive development environment for the Python language with

advanced editing, interactive testing, debugging and introspection features. The name

SPYDER derives from "Scientific PYthon Development EnviRonment" (SPYDER). It can

be used as main environment to learn about Python, programming and computational

science and engineering. Useful features include

32

 provision of the IPython (Qt) console as an interactive prompt, which can display

plots inline

 ability to execute snippets of code from the editor in the console

 continuous parsing of files in editor, and provision of visual warnings about

potential errors

 step-by-step execution

 variable explorer

4.7.3 TensorFlow

TensorFlow is a Python library for fast numerical computing created and released by

Google. It is a foundation library that can be used to create Deep Learning models directly

or by using wrapper libraries that simplify the process built on top of TensorFlow.

4.7.4 Numpy

NumPy is the fundamental package for scientific computing with Python. It contains among

other things:

 a powerful N-dimensional array object

 sophisticated (broadcasting) functions

 tools for integrating C/C++ and Fortran code

 useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-

dimensional container of generic data. Arbitrary data-types can be defined. This allows

NumPy to seamlessly and speedily integrate with a wide variety of databases.

33

4.7.5 Pandas

Pandas is a Python package providing fast, flexible, and expressive data structures designed

to make working with “relational” or “labeled” data both easy and intuitive. It aims to be

the fundamental high-level building block for doing practical, real world data analysis in

Python. Additionally, it has the broader goal of becoming the most powerful and flexible

open source data analysis / manipulation tool available in any language. It is already well

on its way toward this goal. Pandas is well suited for many different kinds of data:

 Tabular data with heterogeneously-typed columns, as in an SQL table or Excel

spreadsheet

 Ordered and unordered (not necessarily fixed-frequency) time series data.

 Arbitrary matrix data (homogeneously typed or heterogeneous) with row and

column labels

 Any other form of observational / statistical data sets. The data actually need not be

labeled at all to be placed into a pandas data structure

4.7.6 Scikit-learn

Scikit-learn (formerly scikits.learn) is a free software machine learning library for the

Python programming language. It features various classification, regression and clustering

algorithms including support vector machines, random forests, gradient boosting, k-means

and DBSCAN, and is designed to interoperate with the Python numerical and scientific

libraries NumPy and SciPy.

4.7.7 Matplotlib

Matplotlib is a Python 2D plotting library which produces publication quality figures in a

variety of hardcopy formats and interactive environments across platforms. Matplotlib can

be used in Python scripts, the Python and IPython shells, the Jupyter notebook, web

application servers, and four graphical user interface toolkits. Matplotlib tries to make easy

34

things easy and hard things possible. You can generate plots, histograms, power spectra,

bar charts, errorcharts, scatterplots, etc., with just a few lines of code.

4.7.8 Seaborn

Seaborn is a Python data visualization library based on mat-plotlib. It provides a high-level

interface for drawing attractive and informative statistical graphics.

35

CHAPTER FIVE

 RESULT AND ANALYSIS

5.1 Testing Results

The experimental setup is done in five exclusive observations with variation in train and

test splits and number of category. Experiments 1 to 5 (aka. Exp1 to Exp5) are respectively

trained with 10%, 20%, 30%, 40% and 50 % test splits of total training dataset described

in Table 3.2. The experiment is also compared in splitting number of classes in the same

corpus. The number of features used in the experiments is 14332, which is equal to the

vocabulary size of the dataset.

The experimental result was analyzed for four evaluation parameters: Accuracy, Precision,

Recall and F score.

5.1.1 Observation with TF-IDF

The experiments have been first done on a model which uses TF-IDF method as its feature

extractor. In its bare-bone form, TF-IDF uses all stems in the vocabulary for feature

extraction. Figure 5.1 shows the variation of accuracy, precision, recall and F-Score over 5

experiments. Figure 5.2 shows the variation of accuracy, precision, recall and F-Score over

5 splits of classes. The fluctuation can be attributed to the training data used and the

optimum value of ‘C’ calculated by hyperopt during each experiment.

36

Table 5. 1 Performance of TF-IDF with 20 classes

Experiment Accuracy Precision Recall F-score

Exp1 82.91 83 83 83

Exp2 82.05 82 78 82

Exp3 80.23 80 80 80

Exp4 79.07 79 79 79

Exp5 77.59 78 78 77

Table 5. 2 Performance of TF-IDF with split of classes

No. of classes Accuracy Precision Recall F-score

2 100 100 100 100

5 95.28 95 95 95

10 86.92 87 87 87

15 84.20 84 84 84

20 82.91 83 83 83

Figure 5. 1 Bar graph of Performance of TF-IDF with of classes

0

20

40

60

80

100

120

2 5 10 15 20

Ev
al

u
at

io
n

No. of classes

Result of TF-IDF

Accuracy Precision Recall F-score

37

5.1.2 Observation with CBOW

By being fundamentally different to TF-IDF in its approach, CBOW finds the center

context word from different words. Figure 5.3 shows the variation of accuracy, precision,

recall and f-score over 5 experiments. Figure 5.4 shows the variation of accuracy, precision,

recall and f-score over 5 splits of classes. The rise and fall of the values can be attributed

to the dataset and the optimum value of ‘C’ calculated by hyperopt during each experiment.

Table 5. 3 Performance of CBOW with 20 classes

Experiment Accuracy Precision Recall F-score

Exp1 40.69 36 41 35

Exp2 38.86 35 39 33

Exp3 36.21 33 36 30

Exp4 34.50 32 35 28

Exp5 32.94 31 33 26

Table 5. 4 Performance of CBOW with split of classes

No. of classes Accuracy Precision Recall F-score

2 75.00 76 76 75

5 58.52 46 52 45

10 42.88 32 43 34

15 41.52 36 42 35

20 36.37 35 36 30

38

Figure 5. 2 Bar graph of Performance of CBOW with split of classes

5.1.3 Observation with Skip-gram

Like CBOW, Skip-gram finds the context words form center word from different words.

Figure 5.5 shows the variation of accuracy, precision, recall and f-score over 5 experiments.

Figure 5.6 shows the variation of accuracy, precision, recall and f-score over 5 splits of

classes. The rise and fall of the values can be attributed to the dataset and the optimum

value of ‘C’ calculated by hyperopt during each experiment.

Table 5. 5 Performance of Skip-gram with 20 classes

Experiment Accuracy Precision Recall F-score

Exp1 33.39 29 33 26

Exp2 32.05 32 33 25

Exp3 31.67 28 32 26

Exp4 29.02 30 30 25

Exp5 29.27 16 29 19

0

10

20

30

40

50

60

70

80

2 5 10 15 20

Ev
al

u
at

io
n

No. of classes

Result of CBOW

Accuracy Precision Recall F-score

39

Table 5. 6 Performance of Skip-gram with split of classes

No. of classes Accuracy Precision Recall F-score

2 53.84 53 54 53

5 48.18 29 48 36

10 37.15 28 37 25

15 32.73 23 33 22

20 29.27 16 29 19

Figure 5. 3 Bar graph of Performance of Skip-gram with split of classes

5.1.4 Overall performance of Feature extraction algorithms

Table 5.7 shows the performance values that were obtained from all three models. Figure

5.4 is a graphical representation of the table that shows the variation of the performance

measures. It indicates that the model with TF-IDF implementation has the highest accuracy

value, and hence, the best overall performance. The first model features a simplistic

approach containing only the TF-IDF feature extractor along with SVM. The second model

uses the CBOW for feature extraction. The third model employs the same classification

algorithm, SVM, but uses skip-gram feature extraction method.

0

10

20

30

40

50

60

2 5 10 15 20

Ev
al

u
at

io
n

No. of classes

Result of Skip-gram

Accuracy Precision Recall F-score

40

Table 5. 7 Performance comparison of algorithms

Feature Extraction Algorithm Accuracy Precision Recall F-score

TF-IDF 82.91 83 83 83

CBOW 40.69 36 41 35

Skip-gram 33.39 29 33 26

Figure 5. 4 Bar graph of performance comparison of algorithms (TF-IDF, CBOW, and

Skip-gram)

5.2 Analysis

5.2.1 Accuracy and F-Score

As figure 7 suggests, the mean accuracy of the 3 models are 82.91 per cent, 40.69 per cent

and 33.39 per cent while their F-score are 83 per cent, 36 per cent and 29 per cent

respectively. The measure of the classifier’s accuracy doesn’t always convey the efficiency

of the model’s performance satisfactorily. It is easily skewed by the unevenness of the data

distribution among the categories. However, a better F-score which is the harmonic mean

of precision and recall of the model is indicative of the fact that the model is more precise

and has a complete prediction ability.

0

10

20

30

40

50

60

70

80

90

TF-IDF CBOW Skip-gram

P
er

fo
rm

an
ce

Algorithms

Chart Title

Accuracy Precision Recall F-score

41

5.2.2 Precession and recall

Figure 5.4 shows that the SVM model with TF-IDF has a better precision and recall over

the model with CBOW only by 47 percent and 42 percent respectively. Similarly, the model

has a better precision and recall of 54 percent and 50 percent respectively over the model

with Skip-gram. The proposed model with TF-IDF has overall performance better than

word2vec model.

42

CHAPTER SIX

CONCLUSION

6.1 Conclusion

Count based feature extraction methods is compared with word to vector feature extraction

techniques for Nepali news classification. The results show good classification

performance when using the feature extraction techniques based on word to vector for less

number of classes and drastically decrease the performance for large sample size. On the

other hand result of classification count based technique shows consistent nearly

performance for any number of classes. The overall performance of the TF-IDF is far better

than both word to vector techniques.

A great deal of research remains in developing document to vector representation of the

document. New approaches to setting appropriate category thresholds, estimating

probabilities, and selecting features need to be investigated. For practical systems,

combinations of count based and word to vector approaches are likely to be the best

strategy.

The limitation of the word to vector based feature extraction is speed and only analyze the

context. It may be better of grammatical checking in text documents. The other

disadvantage of this technique is speed since it based on neural network so it needs to be

train before using it. It is better of similarity analysis but text categorization the count based

technique better since it counts the number of times word occurrence in the particular

document.

43

References

[1] A. I. Kadhim, Y.-N. Cheah, N. H. Ahamed and L. A. Salman, "Feature Extraction for

Co-Occurrence-Based Cosine Similarity Score of Text Document," IEEE, 16-17 Dec

2014.

[2] T. Mikolov, . K. Chen, G. Corrado and J. Dean, "Efficient Estimation of Word

Representations in Vector Space," Proceedings of the International Conference on

Learning Representations (ICLR 2013), pp. 1-12, 7 Sep 2013.

[3] W. W. Cohen, "Learning rules that classify e-mail," in AAAI spring symposium, vol.

18, p. 25, 1996.

[4] T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean, "Distributed

Representations of Words and Phrases and their Compositionality," Proceeding

NIPS'13 Proceedings of the 26th International Conference on Neural Information,

vol. 2, pp. 3111-3119, 2013.

[5] I. Stuart, S.-H. Cha and C. Tappert, "A Neural Network Classifier for Junk E-Mail,"

Document Analysis Systems, vol. 4, p. 442–450, 2004.

[6] X. Carreras and L. Marquez, "Boosting Trees for Anti�Spam Email Filtering," arXiv

preprint cs/0109015, 2001.

[7] A. K. Tegegnie, A. N. Tarekegn and T. A. Alemu, "A comparative study of flat and

hierarchical classification for amharic news text using svm," I.J. Information

Engineering and Electronic Business, p. 1, 2017.

[8] S. Lai, L. Xu, K. Liu and J. Zhao, "Recurrent Convolutional Neural Networks for

Text Classification," Proceedings of the Twenty-Ninth AAAI Conference on Artificial

Intelligence, vol. 333, pp. 2267-2273, 2015.

[9] A. Joulin, E. Grave, P. Bojanowski and T. Mikolov, "Bag of Tricks for Efficient Text

Classification," arXiv preprint arXiv:1607.01759, 2016.

[10] K. Kowsari, D. E. Brown, M. Heidarysafa, K. J. Meimandi, M. S. Gerber and L. E.

Barnes, "HDLTex: Hierarchical Deep Learning for Text Classification," arXiv

preprint arXiv:1709.08267, 2017.

[11] M. HUGHES, I. LI, S. KOTOULAS and T. SUZUMURA, "Medical text

classification using convolutional neural networks," arXiv preprint

arXiv:1704.06841, 2017.

[12] T. B. Shahi, T. N. Dhamala and B. Balami, "Support Vector Machines based Part of

Speech Tagging for Nepali Text," International Journal of Computer Applications

(0975 – 8887), vol. 70, 24, May 2013.

[13] A. Paul, B. S. Purkayastha and S. i. Sarkar, "Hidden Markov Model Based Part of

Speech Tagging for Nepali Language," International Symposium on Advanced

Computing and Communication (lSACC), International Symposium on. IEEE, p.

149–156, 2015.

[14] I. Shrestha and S. S. Dhakal, "A New Stemmer For Nepali Language," PAN

Localization, Working Papers, vol. 2007, p. 324–31, 2004.

44

[15] S. B. Bam and T. B. Shahi, "Named Entity Recognition for Nepali Text Using

Support Vector Machines," Intelligent Information Management, vol. 6, p. 21, 2014.

[16] A. Dey, A. Paul and B. S. Purkayastha, "Named Entity Recognition for Nepali

language: A Semi Hybrid Approach," International Journal of Engineering and

Innovative Technology (IJEIT), vol. 3, no. 8, p. 21–25, February 2014.

[17] S. K. Thakur and V. K. Singh, "A Lexicon Pool Augmented Naive Bayes Classifier

for Nepali Text," Contemporary Computing (IC3), 2014 Seventh International

Conference on IEEE, p. 542–546, 2014.

[18] K. Kafle, D. Sharma, A. Subedi and A. K. Timalsina, "Improving Nepali Document

Classification by Neural Network," Proceedings of IOE Graduate Conference, p.

317–322, 2016.

[19] T. B. Shahi and A. Yadav, "Mobile SMS Spam Filtering for Nepali Text Using Naïve

Bayesian and Support Vector Machine," International Journal of Intelligence

Science, vol. 4, no. 01, p. 24, January 2014.

[20] C. D. Manning, P. Raghavan and H. Schütze, in Introduction to information retrieval,

Cambridge University Press, 2008, p. 405–416..

[21] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, no.

3, p. 273–297, 1995.

[22] S. Haykin, Neural networks: a comprehensive foundation, Tsinghua University Press,

2001.

[23] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning representations by back-

propagating errors," Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

[24] D. P. Kingma and J. L. Ba, "Adam: A method for stochastic optimization," arXiv

preprint arXiv:1412.6980, 2014.

[25] M. Sokolova and G. Lapalme, "A systematic analysis of performance measures for

classification tasks," Information Processing & Management, vol. 45, no. 4, pp. 427–

437, 2009., vol. 45, no. 4, p. 427–437, 2009.

[26] R. E. Bellman, Dynamic Programming, , Princeton, NJ,, Princeton,NJ, USA:

Princeton University Press, 1957.

[27] S. G. K and S. Joseph, "Text Classification by Augmenting Bag of Words (BOW)

Representation with Co-occurrence Feature," IOSR Journal of Computer

Engineering (IOSR-JCE), vol. 16, no. 1, pp. 34-38, Jan. 2014.

[28] X. Wang and K. Paliwal, "Feature extraction and dimensionality reduction algorithms

and their applications in vowel recognition," Pattern Recognition, 2003.

[29] J. Mao and A. Jain, "Artificial Neural Networks for Feature Extraction and

Multivariate Data Projection," IEEE Transactions on Neural Networks, vol. 6, no. 2,

pp. 296 - 317, March 1995.

[30] X. Zhang, J. Zhao and Y. LeCun, "Character-level Convolutional Networks for Text

Classification," Courant Institute of Mathematical Sciences, New York University,

vol. 3, 4 Apr 2016.

[31] R. K. Dea, J. Basakb and S. K. Pala, "Unsupervised feature extraction using neuro-

fuzzy approach," Fuzzy Sets and Systems 126, p. 277–291, 2002.

45

[32] E. Oja, "Neural networks, principal components, and subspaces," ” Int. J. Neural

Syst, vol. 1, pp. 61-68, 1989.

[33] J. Rubner and K. Schulten, "“Development of feature detectors by self-organization,"

Biol. Cybern, vol. 62, pp. 193-199, 1990.

46

Bibliography

E. Alpaydın, "Introduction to Machine Learning," Second Edition, The MIT Press,

Cambridge, Massachusetts London, England, 2010

L. Hamel, "Knowledge Discovery with Support Vector Machine," John Wiley and Sons

Inc., New Jersey, USA, 2009

47

Appendix

Sample program Code for CBOW

from gensim.models.word2vec import Word2Vec

from sklearn.pipeline import Pipeline

from collections import defaultdict

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

from tabulate import tabulate

from sklearn.model_selection import cross_val_score

import codecs

from sklearn.svm import SVC

X, y = [], []

with codecs.open('stop_nepali.txt', 'r', 'utf-8', errors='ignore') as infile:

 for line in infile:

 label, text = line.split("\t")

print(text)

 # texts are already tokenized, just split on space

 # in a real case we would use e.g. spaCy for tokenization

 # and maybe remove stopwords etc.

 X.append(text.split())

 y.append(label)

#print(X[1])

X, y = np.array(X), np.array(y)

print(X)

print ("total examples %s" % len(y))

#import numpy as np

#with open('glove.txt', "rb") as lines:

wvec = {line.split()[0].decode('utf-8'): np.array(line.split()[1:],dtype=np.float32)

for line in lines}

#print(wvec)

glove_small = {}

all_words = set(w for words in X for w in words)

with open('glove.txt', "rb") as infile:

 for line in infile:

 parts = line.split()

 word = parts[0].decode('utf-8')

 if (word in all_words):

 nums=np.array(parts[1:], dtype=np.float32)

 glove_small[word] = nums

#print(glove_small)

48

model = Word2Vec(X, size=2, window=5, min_count=3, workers=2)

w2v = {w: vec for w, vec in zip(model.wv.index2word, model.wv.vectors)}

#print(w2v)

class MeanEmbeddingVectorizer(object):

 def __init__(self, word2vec):

print('This is initialization')

 self.word2vec = word2vec

 if len(word2vec)>0:

 self.dim=len(word2vec[next(iter(w2v))])

print(self.dim)

 else:

 self.dim=0

 def fit(self, X, y):

print('This is fit funtions')

 return self

 def transform(self, X):

 return np.array([

 np.mean([self.word2vec[w] for w in words if w in self.word2vec]

 or [np.zeros(self.dim)], axis=0)

 for words in X

])

#and a tf-idf version of the same

class TfidfEmbeddingVectorizer(object):

 def __init__(self, word2vec):

 self.word2vec = word2vec

 self.word2weight = None

 if len(word2vec)>0:

 self.dim=len(word2vec[next(iter(w2v))])

print(self.dim)

 else:

 self.dim=0

 def fit(self, X, y):

 tfidf = TfidfVectorizer(analyzer=lambda x: x)

 tfidf.fit(X)

 # if a word was never seen - it must be at least as infrequent

 # as any of the known words - so the default idf is the max of

 # known idf's

 max_idf = max(tfidf.idf_)

 self.word2weight = defaultdict(

 lambda: max_idf,

 [(w, tfidf.idf_[i]) for w, i in tfidf.vocabulary_.items()])

49

 return self

 def transform(self, X):

 return np.array([

 np.mean([self.word2vec[w] * self.word2weight[w]

 for w in words if w in self.word2vec] or

 [np.zeros(self.dim)], axis=0)

 for words in X

])

#etree_glove_small = Pipeline([("glove vectorizer",

MeanEmbeddingVectorizer(glove_small)),

("extra trees", ExtraTreesClassifier(n_estimators=200))])

#etree_glove_small_tfidf = Pipeline([("glove vectorizer",

TfidfEmbeddingVectorizer(glove_small)),

("extra trees", ExtraTreesClassifier(n_estimators=200))])

#print("classification begin")

etree_w2v = Pipeline([("word2vec vectorizer", MeanEmbeddingVectorizer(w2v)),

 ("extra trees", SVC(kernel='rbf', random_state=42, verbose=False, C=1.5,

gamma='auto'))])

etree_w2v_tfidf = Pipeline([("word2vec vectorizer", TfidfEmbeddingVectorizer(w2v)),

 ("extra trees", SVC(kernel='rbf', random_state=42, verbose=False, C=1.5,

gamma='auto'))])

#print("classification end")

all_models = [

 ("w2v", etree_w2v),

 ("w2v_tfidf", etree_w2v_tfidf),

("glove_small", etree_glove_small),

("glove_small_tfidf", etree_glove_small_tfidf)

]

#print(X)

unsorted_scores = [(name, cross_val_score(model, X, y, cv=5).mean()) for name, model

in all_models]

scores = sorted(unsorted_scores, key=lambda x: -x[1])

print (tabulate(scores, floatfmt=".4f", headers=("model", 'score')))

