
1

Chapter 1

Introduction

1.1 Programs and Processes

It is important to understand the concept of a process before describing schedulers. A

program is a combination of instructions and data put together to perform a task when

executed. Process is the program in execution. Each process has its own address space,

which typically consists of program parts and data parts. The program part stores the

instructions that processor executes and the data part contains data required for the

process. It also includes the state of the process such as contents of the CPU registers

which change dynamically with the execution of the instructions.

Life Cycle of a Process

When a process is loaded in memory, it becomes ready to execute. When the

scheduler selects the process for execution, the process enters the running state. In

this state, the process can either be preempted which is the case when it exceeds

the time quantum allocated or blocked while waiting for I/O data. When process

is preempted then the operating system puts the process on the end of the ready

queue of processes, but it remains ready to execute. If the process is blocked

while waiting for I/O operation, it is, then, taken from ready queue and put on the

2

I/O queue. When I/O channel completes the I/O operation for blocked process, the

process reenters the ready state, where it waits for CPU.

Thus, at any time each process may be in one of the following states:

Ready

In this state, the process is ready to run, and waiting for CPU. This is the

only state from where process can enter the running state.

Running

In this state, the process is using the CPU, and process can, either be

preempted and put in the ready state, or may go to blocked state for I/O

operation or may terminate with or without error.

Blocked

The process is waiting for I/O operation in this state. When channel

completes its I/O operation, then, the process becomes ready and the

operating system puts it on the back of the ready queue.

CPU and I/O-bound processes

A Process consists of the CPU-bound instruction and I/O-bound instructions. A

process, which has the majority of the CPU-bound instructions, is called CPU-

bound process. A process, which has the majority of the I/O-bound instructions, is

called I/O-bound process. Hence, the success of CPU scheduling heavily depends

on these characteristics of the process.

3

1.2 Scheduling

Scheduling is a fundamental operating system's function. CPU scheduling deals with the

problem of deciding which of the process in the ready queue is to be selected for CPU.

Thus, whenever the CPU becomes idle, the operating system must select from among the

processes in memory that are ready to execute, and allocates the CPU to it. The part of

the operating system which makes the choice as to which of the processes in the ready

queue runs next is called scheduler, and the algorithm it uses is called scheduling

algorithm.

At present, there are several primitive scheduling algorithms exist such as first-come

first-served (FCFS), shortest job first (SJF), Priority, Round-robin, Multilevel Queue, and

Multilevel Feedback Queue etc. However, there is no one best scheduling algorithm; each

has its own characteristics. For example, if we can predict the next CPU burst of all the

processes in the ready queue (in some way), shortest job first scheduling algorithm has

minimum waiting time than others. Round-robin is basically a first-come first-served

algorithm and is thus known for fairness among the processes. Here, I chose the round-

robin scheduling algorithm because it is one of the most popular scheduling algorithms

found in computer systems today for multiprogramming and time sharing computer

environment.

1.2.1 Scheduling Goals

In terms of schedulers, there is no single definition of performance that fits

everyone’s needs i.e., there is not a single performance goal for the scheduler to

4

achieve. The many definitions of good scheduling performance often lead to a

give-and-take situation, for instance, improving performance in one way

decreases performance in another. Here, I am going to achieve the performance in

three different ways, namely, CPU utilization, turnaround time and waiting time.

CPU utilization is the percentage of time CPU is busy with processes. Turnaround

time is the time difference of the arrival time and the finish time of the process.

The waiting time is defined as the amount of time that a process spends waiting

for CPU on the ready queue.

1.3 FCFS Scheduling Algorithm

First-come First-served scheduling algorithm is one of the simplest non-preemptive

scheduling algorithms. In this algorithm, the process that requests the CPU first, gets the

CPU first. The implementation of this algorithm consists of a FIFO queue of the ready

processes. The process enters the ready queue and continuously moves to the front of the

ready queue. When it reaches to the front of the queue, it is allocated the processor when

it becomes free. This algorithm, generally, has long average waiting time. The main

advantage of this algorithm is that it is easy to understand, easy to program, and ensures

fairness.

1.4 Round Robin Scheduling Algorithm

It is one of the most popular scheduling algorithms found in computer systems today for

multiprogramming and time sharing environment. It is similar to FCFS, but preemption is

included to switch the CPU among the processes. A time duration called quantum is

5

introduced in this algorithm, it is the time for which CPU is assigned a process. Thus,

each process is assigned the same time interval (time quantum) and, if the process

exceeds its time quantum, CPU is preempted and is given to another process on the ready

queue.

The round-robin scheduler has the advantage of very little selection overhead as

scheduling is done in constant time. Thus, scheduling decision time is simply O(1)

because it has to put running process to the end of the ready queue and has to select the

process from the front of the queue, which takes the constant amount of time.

What is an O(1) Algorithm?

Big-O notation is generally used to denote the growth rate of algorithms

execution time based on the amount of input. For example, the running

rate of an O(n) algorithm increases linearly, as the input size n grows. If it

is possible to establish a constant upper bound on the running time of an

algorithm, it is ,then, considered to be O(1) (constant time). That is, an

O(1) algorithm is guaranteed to complete in a certain amount of time

regardless of the size of the input.

The answer of the question “what makes the round-robin scheduling

algorithm perform in O(1) time?” is that every time the algorithm

performs exactly the same function, regardless of how many processes are

on the queue. This time is referred to as the context switch time and is the

6

time taken to save the CPU registers in the process control block for the

process being preempted or blocked and restoring the CPU registers from

the saved or original contents of the selected process’s control block. This

allows the scheduler to efficiently select a process among many processes

in the queue without increasing selection overhead cost, as the number of

processes increases.

7

Chapter 2

Problem Statement

The performance of the Round Robin Algorithm depends heavily on the size of the time

quantum. If the time quantum is large, the Round Robin simply becomes FCFS and, if

time quantum is small, there are so many preemptions of the CPU. Many context

switches decrease the utilization of CPU because, in case of context switch, CPU is busy

with no fruitful work. Thus, we need to consider the effect of context switching on the

performance of Round Robin Scheduling Algorithm.

Thus, the main purpose of my thesis is to find the optimal quantum size whereby,

the utilization of the CPU is maximized and turnaround time, and waiting time for each

process are minimized.

8

Chapter 3

Objective

The objective of my thesis work is:

To analyze the effect of quantum size on CPU utilization, turnaround time, and

waiting time and, hence, to find the optimal quantum size whereby the utilization of

the CPU is maximized and, turnaround time, and waiting time for each process are

minimized.

9

Chapter 4

Methodology

4.1 Literature Survey

The evolution of scheduling closely tracked the development of computers. The concept

of scheduling is not new; Henry L. Gantt, an American engineer and social scientist is

credited with the development of the bar chart (Gantt Chart) in 1917 to show the

performance of different scheduling algorithms.

One of the oldest, simplest, and most widely used algorithms is round-robin scheduling

algorithm. There are many variations of the primitive round-robin scheduling algorithms.

For example, weighted round-robin, virtual round-robin, and virtual time round-robin are

the new recent versions of the round-robin scheduling algorithm.

Weighted Round Robin (WRR)

The standard round-robin does not deal with different priorities of processes. All

processes are equally executed. In weighted round-robin, quantum is based on the

priorities of the processes. A high prioritized process receives a larger quantum,

and by this, receives execution time proportional with its priority. This is a very

common extension to the primitive round-robin scheduler and will be referred to

simply as the round-robin scheduler.

10

Virtual Round-Robin (VRR)

The virtual round-robin scheduler described by S. William [10] is an extension of

the standard round-robin scheduler. The round-robin scheduler treats I/O bound

processes and CPU-bound processes equally, but an I/O bound process does not

fully use its time-slice and thus gets an unfair treatment compared to CPU-bound

processes. The virtual round robin scheduler addresses the unfair treatment of I/O-

bound processes by allowing processes to maintain their quantum when blocked,

the quantum might be variable, and placing the blocked process at the front of the

ready queue when it returns to the ready queue. A process is only returned to the

back of the queue when it has used its full quantum. Researches have shown that

this algorithm is better than the standard round-robin scheduler in terms of

fairness between I/O bound processes and CPU-bound processes.

Virtual Time Round-Robin (VTRR)

The weighted round-robin and virtual round-robin schedulers both use a variable

quantum for processes, as priorities are implemented by changing the quantum

given to each processes. In the virtual time round-robin N. Jason [11] and T.

Andrew [12] use a fixed quantum, but change the frequency by which a process is

executed in order to implement priorities. This has the advantage that response

times are generally improved for high prioritized processes, while the selection

overhead is still constant time.

Lots of work has been done in the area of scheduler such that it should be fair among the

processes according to their weights. Fairness has a meaning: given a set of jobs with

11

associated weights, to achieve good fairness, scheduler should allocate resources to each

job in proportion to its respective weight. This is reflected in work done by Larmouth [4]

and [5], Newbury [6], Henry [2], and Woodside [7].

4.2 Statistics to Measure Optimality of Quantum Size

Different CPU scheduling algorithms have different properties and may favor one class

of process over another. Many criteria have been suggested for comparing optimal

quantum size for round robin algorithm. The criteria include the following:

i) CPU utilization

It is the percentage of time for which CPU is busy with processes. Here, we

want to keep the CPU as busy as possible. Thus, if the running process

requests for I/O operation, then, another process is selected to execute so that

CPU is kept busy. Concept of multiprogramming is used for maximizing the

CPU utilization. Several processes are kept in memory and are thus ready to

run. Scheduling time is, of course, an overhead since no useful work is done.

Utilization is thus measured by throughput which is measured as the number

of processes completed per unit time.

ii) Turnaround Time

This is the time difference of the arrival time and the finish time of the

process. It is generally the sum of the waiting time and the service time of the

process. If average turnaround time decreases, then throughput will increase.

12

iii) Waiting Time

This is the amount of time that a process spends waiting on the ready queue.

The waiting time should be kept to the minimum. Waiting time and

throughput are directly dependent on each other. If average waiting time

decreases, then it is clear that throughput will be increased. Average waiting

time is minimal for shortest job first scheduling algorithm but, it is just like a

conceptual scheduling algorithm because, we cannot find the shortest next

CPU burst time of the process at run time and thus cannot implement it. We

can only predict the next CPU burst time of the processes with the help of the

history of that process. But this is not always accurate. Another great

disadvantage of the shortest job first scheduling algorithm is that of starvation,

particularly if the shortest job first (SJF) is implemented as a preemptive

algorithm. In case of round robin scheduling algorithm, average waiting time

will generally be not as good as in the shortest job first. In spite of that, we

consider the average waiting time for round robin scheduling algorithm

because it directly affects the throughput.

4.3 Algorithm Evaluation Method

There are so many scheduling algorithms, each with its own characteristics. As I have

already mentioned, I used basically three criteria, namely, CPU utilization, turnaround

time, and waiting time to find the optimal quantum size. Based upon these selection

criteria, I used deterministic modeling. Deterministic modeling is one type of analytic

13

evaluation method. This method takes a particular predetermined workload and defines

the performance for that workload with different quantum size.

4.4 Simulator

To evaluate the round-robin scheduling algorithm, a simulator of a multiprogramming

operating system (MOS) has been implemented. The goal of the MOS simulator is to

make it possible to evaluate the performance of round-robin scheduling algorithm by

observing the changes in the selected parameters with different quantum size. Thus, to

calculate different performance parameters, we have to implement data structures for

them to record the changing parameters.

The main purpose of the multiprogramming operating system (MOS) is to process a

batched stream of user jobs efficiently. Another major task of the MOS is the

management of hardware and software resources. These include user storage, drum

storage, channel management, and the CPU. Specification and design of the MOS are

given in consequent chapters.

14

Chapter 5

Specification

For this thesis, I have implemented a multiprogramming operating system (MOS) as a

project. Specification of the MOS is based upon the ideas given by Alan C. Shaw [1].

Appendix in this text book gives the overall description of the MOS project for

hypothetical computer configuration. Here, we directly deal with the basic functionalities

of the operating system such as input output, interrupt handling, scheduling, main and

auxiliary storage management, process and resource data structure. Description of the

MOS project and its breakdown into three versions can be found in the paper by O. P.

Sharma [8, 9].

5.1 Machine Specification

Every operating system provides a view of machine to its users. Similarly we can

describe hypothetical configuration of the MOS computers from two points of view:

i) The virtual machine seen by the typical user.

ii) The real machine used by the MOS designer.

5.1.1 Virtual Machine

The overall configuration of the virtual machine seen by the typical user can be

depicted as:

15

Here, we have assumed that main storage consists of maximum of hundred words,

addressed from 00 to 99. Here, one word is divided into four bytes and each byte

is capable of storing one character. The CPU has three registers as:

1) General purpose register which is divided into four bytes and denoted

by R.

2) “Boolean” toggle having the size of one byte and denoted by C. This

may contain either true “T” or false “F”.

3) Instruction counter having the size of two bytes and denoted by IC,

which contains the address of the next instruction to be executed.

Each instruction of the program is divided into two parts: operation code and operand

address. The table below gives the format and meaning of each instruction used in our

program. The first instruction of the program always begins at address 00.

00
01

98
99

Main
Storage

C IC

CPU

IR

Card
Reader

Line
Printer

Figure 5.1: Virtual Machine

16

Notes: 1. X1, X2 belongs to [0, 1, …, 9]

2. X = 10X1+ X2

3. [X] means “the contents of location X”

4. Z =10X1

We can divide these seven basic instructions into two categories: CPU-bound instructions

and I/O-bound instructions. Get Data (GD) and Put Data (PD) are the examples of I/O-

bound instructions whereas the remaining Load Register (LR), Store Registers (SR),

Compare R (CR), Branch on True (BT), and Halt (H) are the examples of CPU-bound

instructions.

Users of the machine prepare the job for batch processing by including control cards,

program cards, and data cards in the sequence shown:

Instruction Interpretation
Operator Operand

LR X1X2 R := [X];
SR X1X2 X := R;
CR X1X2 if R = [X] then C := ‘T’ else C := ’F’
BT X1X2 if C=’T’ then IC := X
GD X1X2 Read ([Z+i], i = 0,…, 9);
PD X1X2 Print ([Z+i], i = 0,…, 9);
H halt

Table 5.1: Instruction Set of Virtual Machine

17

<JOBCard> <Program> <DATACard> <Data> <ENDJOBCard>

where <JOBCard>, <DATACard>, and <ENDJOBCard> are control cards.

<JOBCard>

<JOBCard> indicates the starting of new program which contains four entries as:

a. The $AMJ cc.1-4 A multiprogramming Job

b. <JobID> cc.5-8 a unique four character job identifier

c. <time estimate> cc 9-12, four digit maximum time estimate

d. <line estimate> cc 13-16, four digit output estimate

<Program>

Each line of the <Program> part contains information in card columns 1-40. The

ith card contains the initial contents of the user virtual memory locations

10(i-1), 10(i-1)+1, …….., 10(i-1)+9, i=1, 2, 3, ……., n

where n is the number of cards in the <Program> deck. The number of cards in

the program deck defines the size of the user space, that is, n cards define 10*n

words, n<=10. The value of n can not exceed 10 because of the size limitation of

virtual memory.

<DATACard>

18

The <DATACard> has the format $DTA (cc. 1-4). The <DATACard> is omitted

if there is no <Data> cards in the job. This control card signals end of program

cards and beginning of data cards.

<Data>

The <Data> deck contains information in 1-40 and, is the user data retrieved by

the virtual machine GD instruction.

<ENDJOBCard>

The <ENDJOBCard> has the format $END (cc.1-4) and <JobID> (cc. 5-8) where

<JobID> should be same as in <JOBCard>. This card signifies physical end of the

job deck.

19

5.1.2 Real Machine

The diagram of the real machine used by the MOS designer/implementer can be depicted

in fig 5.2.

The overall design of the real machine can be described with the help of following

subsections as:

i) Components

Figure 5.2 describes the abstract view of components of the real machine. At any

time, CPU may operate in either a master mode or a slave mode. In master mode, it

executes the instructions of the MOS, which resides in the supervisor storage. In slave

mode, it executes the instructions of the user program which are in main memory, and

accesses these programs via paging mechanism.

The CPU registers of interests are:

C: a one-byte “Boolean” toggle,

Supervisor
Storage

HLP

Timer

Registers

Read-
Only
Memory

CPU

User
Storage

Channel 1 Channel 2 Channel 3

Card
Reader

Line
Printer Auxiliary

Storage

Page Map

Figure 5.2: Real Machine

20

R: a four-byte general purpose register,

IC: a two-byte virtual machine location counter,

PI, SI, IOI, TI: four interrupt registers,

PTR: a four-byte page table register,

CHST[i], i=1, 2, 3: three channel status registers, and

MODE: mode of CPU, “master ” or “slave”.

Interrupt registers PI, SI, IOI, and TI are used to set the interrupts generated by

user programs, channels, and timer respectively. These interrupts have been

described later. PTR register is used to store the information about the page table.

Channel status registers (CHST) are used to keep record of the status of the

channels. At any time, channel may either be free or busy. We set the CHST[i]

register to 1 if channel i is busy. The MODE register is used to store the mode of

the CPU. Its value may be either 1(master mode) or 0(slave mode).

Here, main memory consists of 300 words; each word is divided into four one-

byte unit. Address of each word is indicated from 000 to 299. The main memory

is divided into 30 blocks where each block consists of 10 words. Supervisor

storage in the Figure 5.2 indicates the amount of storage required for MOS.

The card reader and the line printer reads or writes respectively, 40 bytes of

information at a time. Channel 1 and 2 are connected from peripheral devices to

supervisor storage and take 5 time units to transfer information, while channel 3 is

21

connected between auxiliary storage and both supervisor and user memory, and

takes 2 time units.

The auxiliary storage is a high speed drum of 100 tracks. Each track consists of 10

words or 40 bytes. The transfer of 10 words to or from a track takes 2 time units.

ii) Master Mode Operation

Supervisor storage is used to store the main operating system. We have assumed

that the master mode operations execute in zero time unit. In the master mode,

interrupt registers are inspected and, the operating system accomplishes the

appropriate tasks according to the value of the interrupt registers. I/O operations

are initiated by starting the non busy channels with proper tasks.

iii) Slave Mode Operation

The CPU is said to be in slave mode when it is executing the user program. Each

user instruction takes one time unit to execute. Paging hardware is used to map

the address from virtual to real; page table is used for this purpose. The Page

Table Register (PTR) points to page table location in memory and is divided into

four bytes named a0, a1, a2, and a3. Here a1 denotes the length of the page table

minus one, and 10a2+a3 denotes the user storage block in which the page table

resides, as shown in the Figure 5.3 below.

22

The virtual address X1X2 is mapped by the relocation hardware into the real

address as:

10[10 (10a2 + 10a3) + X1] + X2

iv) Channels

Channels are used for I/O operations. When MOS gives the task to the channel, the

status of the channel is set to busy (1), and I/O occurs completely in parallel with

CPU. After the completion of the task given to the channel by MOS, the status of the

channel is reset to free, and I/O interrupt signal is raised by setting proper value in

IOI registers.

0

1

2

27

28

29

…

…

13

0
1

.

.

.

9

Pages Page Table

PTR a0 a1 a2 a3

0 1 1 3

0002

0028

User Storage

Page 0

Page 1

Page Table

Figure 5.3: User Storage at any time

23

Channel 1 is used to read the data from card reader into supervisor memory, channel

2 is used to print the data to the line printer form supervisor memory, and, channel 3

is used to transfer data between secondary storage and user storage as well as

supervisor storage.

v) Timer

There are two time counters used in the system, namely, total time counter (TTC) and

time slice counter (TSC). Total time counter is used to count the total CPU time the

process has used. Time slice counter is used to count the time slice used by the

running process out of the total time slice (time quantum) assigned to that process.

TTC and TSC of running processes are incremented after each CPU cycle.

When the TTC of a process exceeds the total time limit of the running process as

indicated by the user on the control card, the timer interrupt occurs by setting the TI

register to 2. When the TSC of a particular process exceeds the time slice (time

quantum) given to that process, the timer interrupt set the TI register to 1. These

values are actually added to TI register. Hence TI value will vary between 0 and 3.

vi) Interrupts

Four types of interrupts can be generated.

a. Program Interrupt (PI): Program interrupt, PI, is provided to indicate program

errors at execution time. It occurs in slave mode.

24

PI=1; interrupt due to operation code error.

PI=2; interrupt due to operand error.

PI=3; interrupt due to valid or invalid page fault.

b. Supervisor interrupt (SI): Supervisor interrupt, SI, is provided for system calls.

It occurs in slave mode.

SI=1; interrupt due to GD instruction.

SI=2; interrupt due to PD instruction.

SI=3; interrupt due to H instruction.

c. Input Output interrupt (IOI): Input output interrupt, IOI, is provided to indicate

completion of I/O operations. The different values of the IOI register when

interrupt signal is raised and its interpretation are given below:

IOI=1; when channel 1 completes its task.

IOI=2; when channel 2 completes its task.

IOI=3; when channel 1 and channel 2 complete their task simultaneously.

IOI=4; when channel 3 completes its task.

IOI=5; when channel 1 and channel 3 complete their task simultaneously.

IOI=6; when channel 2 and channel 3 complete their task simultaneously.

IOI=7; when all channels complete their task simultaneously.

d. Timer Interrupt (TI): Timer interrupt, TI, is provided to indicate that the

quantum has been finished or time limit has been finished.

TI=1; if quantum has been finished.

25

TI=2; if time limit has been finished.

TI=3; if both finish at the same time.

5.2 Life Cycle of a Job

In between reading the job from card reader and printing the output of the job to the line

printer, the job may pass through different stages. The overall life cycle of a job can be

described by three stages: input spooling, main processing, and output spooling, and is

shown in figure 5.4.

CPU

Supervisor Storage

Card Reader Printer Drum

Fig. 5.4: The Life of a Job

1

7

6

2

3
5
3

4

Supervisor Storage

26

Input Spooling

Here, program and data parts of a job are transferred from the card reader to the drum.

Appropriate data structures have been maintained inside the PCB to keep record of the

process and data part of the process. Channel 1 reads the input job from the card reader

into the supervisor buffer and channel 3 stores these buffers into the secondary storage,

drum.

Main Processing

The program part of the job is loaded from the drum track into user storage by

channel 3. Then, the job is ready to run and becomes a process. During the overall

life of the process while in memory, its status will generally switch many times

among ready, running, and blocked. Process waits on the ready queue until

scheduled, then it starts running. When GD or PD instructions execute, it is

preempted and placed on blocked queue. After IO is completed by channel 3, it is

moved back to ready queue. If it exceeds its time quantum, it is preempted and

placed at the back of the ready queue. Finally when H is encountered or error is

detected, it is moved to terminate queue.

Output Spooling

Whenever the process gets terminated, either normally or as a result of an error,

outputs and error messages of the process are output spooled from drum to the

printer. Channel 3 reads the output line from secondary storage into the supervisor

buffer and, then, those output lines of the user program get printed by the channel

2.

27

Chapter 6

Design and Implementation

6.1 MOS Design

To evaluate the round-robin scheduling algorithm, a simulator of a multiprogramming

operating system (MOS) has been designed. The goal of the MOS simulator is to make it

possible to evaluate round-robin scheduling algorithm and the values of changing

parameters with different quantum sizes.

MOS
(Master Mode)

Scheduler

(Slave Mode)

Time Simulator

Figure 6.1: Basic Design of Multiprogramming Operating System

28

The focus of the MOS simulator is to test scheduler that has been implemented inside the

MOS independently. An overall design of the MOS simulator is given in the Figure 6.1.

There are two major modules: one is master mode and another is slave mode. The master

mode handles the interrupts generated by channels, timer, and user program. When an

interrupt occurs and appropriate interrupt register is set, it causes switch to master mode.

In the master mode, MOS checks the value of interrupt registers and calls appropriate

interrupt handling routines. Finally, after finishing the interrupt services, MOS calls the

scheduler to get the ready process to run. Time simulator is used to simulate the channel

and CPU timers. The overall data structures used and algorithm of main modules are

given in the next subsections:

6.1.1 Data Structures used in the design of MOS

Different data structures have been conceptualized and implemented while designing and

implementing the multiprogramming operating system (MOS). The main purpose of data

structure is to maintain the current state of all the user processes and the current state of

the operating system.

To keep record of any process, PCB has been constructed. PCB is, basically, used to keep

track of all the CPU registers, time limit of the process, line limit of the process, track

information of program part and data part and output messages, and outputs of the

process. Additional information is also maintained here such as, CPU utilization time,

waiting time, arrival time, and finish time of the process.

29

As the user process in multiprogramming environment goes through different states, there

may be different data structures used to keep record of the processes in different states.

Different queues have been maintained to keep the PCBs of the processes in different

states. In case of MOS, there may be five different queues: load queue (LQ), ready queue

(RQ), input output queue (IOQ), swap queue (SQ) and terminate queue (TQ). These

queues can be defined as:

RQ This is the queue which is used to store the list of ready processes. This is

simply the linked list of the PCB of the different ready processes.

LQ Whenever the process is ready to load, then it is put into the LQ. Thus LQ

is a data structure which contains all the processes which are ready to load.

IOQ Whenever the process requests for an I/O operation, it is put into the rear

of the IOQ.

SQ If process requests the frame for its further execution and if the frame is

not available at that time, then it is put into the rear of the SQ.

TQ This is the queue which is used to store the list of terminated processes but

the output remains to be printed.

In case of MOS, whenever $AMJ card is read by the channel 1, operating system creates

and initializes the new PCB. After reading all the program cards and data cards of the

user program given and, which is indicated when $END is read by the channel 1, the

operating system puts this user program on the rear of the load queue. Any process in the

load queue implies that it is ready to load now. If memory frame is available and there is

process in the load queue, then channel 3 simply loads the program card from the given

30

track of the secondary storage into the indicated memory frame, and puts the PCB from

load queue to the end of the ready queue. Any process in the ready queue indicates that it

is ready to execute. Input output queue and swap queue are the data structures used to

keep track of those process which request for the input output operations and the memory

frame. All the processes, when complete their execution (either normally or abnormally

due to different kinds of errors), are kept in the terminate queue. Output messages and

output part of the process in terminate queue are output spooled with the help of channel

3. The PCB is deleted form the terminate queue and the process is finished if all the

outputs are output spooled.

Five buffers are used which are the part of the supervisor storage. Each buffer can be

used to hold up to 40 characters at any time. Initially, all buffers are placed into the

empty buffer queue (EBQ). These buffers may be in one of the queues, namely, input full

buffer queue (IFBQ), output full buffer queue (OFBQ). Proper data structures have been

implemented to transfer buffer in between these queues.

6.1.2 MOS (Master Mode Operation)

In this case, the operating system handles the interrupts generated either in master mode

or in slave mode. After handling the interrupts MOS calls for scheduler, part of the

operating system, to find a new ready process to execute. Whenever scheduler gives the

new ready process to the operating system, mode is switched to slave mode. Operating

system runs in infinite loop. The detail operation of the operating system is given in the

algorithm below:

31

Algorithm: MOS (Master Mode)

Case TI and SI of

TI SI Action

0 or 1 1 Move PCB, RQ->IOQ (Read)

0 or 1 2 Move PCB, RQ->IOQ (Write)

0 or 1 3 Move PCB, RQ-> TQ

(With error message “Normal termination”)

2 1 Move PCB, RQ->TQ

(With error message “Time Limit Exceeded”)

2 2 Move PCB, RQ->TQ (Write)

(With error message “Time Limit Exceeded”)

2 3 Move PCB, RQ->TQ

(With error message “Normal Termination”)

Case TI and PI of

TI PI Action

0 or 1 1 Move PCB, RQ->TQ

(With error message “Operation Code Error”)

0 or 1 2 Move PCB, RQ->TQ

(With error message “Operand Error”)

0 or 1 3 Page Fault

IF(Page Fault is valid and Frame available)

Allocate the Frame

32

Update the Page Table

ELSE IF(Page Fault is valid but Frame not available)

Move PCB, RQ->SQ

ELSE (Page Fault is invalid)

Move PCB, RQ->TQ

(With error message “Invalid Page Fualt”)

2 1 Move PCB, RQ->TQ

(With error message

“Time Limit Exceeded and Operation Code Error)

2 2 Move PCB, RQ->TQ

(With error message

“Time Limit Exceeded and Operand Error)

2 3 Move PCB, RQ->TQ

(With error message “Time Limit Exceeded”)

Case TI

TI Action

1 Move PCB to the rear of the ready queue

2 Move PCB, RQ->TQ

(With error message “Time Limit Exceeded”)

3 Same as 2 above

33

Case IOI

IOI Action

0 No Action

1 IR1

2 IR2

3 IR2, IR1

4 IR3

5 IR1, IR3

6 IR3, IR2

7 IR2, IR1, IR3

Finally Call Scheduler to select the new ready process

End Algorithm: MOS (Master Mode

6.1.3 Interrupt Service Routine

Interrupt service routines are the functions written for the operating system to handle the

interrupts generated by the channels. In the case of MOS, there are three types of

interrupt service routines IR1, IR2, and IR3 for channel 1, channel 2, and channel 3

respectively. Detailed description of these three interrupt service routines and data

structures used are given below:

Algorithm: IR1

Read next card in given EB

34

Change status to IFB

Place on IFB (Q)

IF (not end of file and EB is available)

Get next EB

Start Channel 1

Examine ifb

IF ($AMJ)

Create and initialize new PCB

Allocate Frame for Page Table

Initialize Page Table and PTR

Set information (Program Card to follow)

Return the IFB to EB (Q)

IF ($DTA)

Set information (Data Card to follow)

Return the IFB to EB (Q)

IF ($END)

Place PCB on LQ

Return the IFB to EB(Q)

Otherwise

Place IFB on IFB (Q)

Save information (Program or data card of the process with JobID)

END Algorithm: IR1

35

Algorithm: IR2

Print given OFB

Return OFB to EB(Q)

IF (OFB (Q) is not empty)

Get next OFB

Start Channel 2

END Algorithm: IR2

Algorithm: IR3

Task Action

IS Write given IFB into given Track

Place track number in P or D part of PCB

Return IFB to IB(Q)

OS Read given Track into given EB

Change status to OFB

Return OFB to OFB (Q)

Release the Track

IF (last line)

Release PCB and all remaining drum tracks and memory blocks

LD Load first program card from given track into given memory block

Move PCB, LQRQ

RD Read data card from given track into indicated memory block

36

Release track

Decrement data count in PCB

Move PCB, IOQRQ

WT Write from indicated memory block into the given track

Increment line count in PCB

IF(Time Exceeded)

Move PCB, IOQTQ

ELSE

Move PCB, IOQRQ

SQ(W) Write the victim frame into the given track

Locate drum track with faulted page

TaskSQ(R)

Start Channel 3

SQ(R) Read drum track with faulted page into the frame

Move PCB, SQ RQ

Now assign new task in priority order

IF (PCB on TQ)

IF(EB(Q) not empty)

Get next EB from EB(Q)

Find track number of the next output line

TaskOS

Start Channel 3

ELSE IF (IFB(Q) not empty and a drum track available)

37

Get next buffer from IFB(Q)

Get a drum track

TaskIS

Start Channel 3

ELSE IF (PCB on LQ and memory frame available)

Find track number of next program card

Allocate a frame

Update Page Table

Task LD

Start Channel 3

ELSE IF(PCB on IOQ)

IF(Read)

IF(no more data card

Move PCB, IOQTQ

With error message “Out of data”

ELSE

Find track number of next data card

Get memory RA

TaskRD

Start Channel 3

ELSE IF (Write)

IF (line counter exceeds line limit)

Move PCB, IOQTQ

38

With error message ”Line Limit Exceeded”

ELSE

Get drum track, if available

Update PCB

Find memory RA

TaskWR

Start Channel 3

ELSE IF(PCB on SQ)

IF(memory frame available)

Allocate

Update Page Table

Move PCB, SQRQ

ELSE

Run Page replacement algorithm and find a victim frame

Allocate and Deallocate this frame by updating both page tables

IF(victim frame not written into)

Locate drum track for faulted page

TaskSQ(R)

Start Channel 3

ELSE

TaskSQ(R)

Start Channel 3

END Algorithm: IR3

39

6.1.4 MOS (Slave Mode Operation)

In this case, CPU is used to execute the user program and, whenever there is an interrupt

in slave mode, mode is changed to master, and control is transferred to MOS. MOS

saves all the current status of the process and handles the interrupts. Algorithm for slave

mode operation is given below:

Algorithm: MOS (Slave Mode Operation)

LOOP

Find the real address of IC

IF(PI not equal to zero)

Save the current state of process on PCB

Give control to MOS (Master Mode Operation)

Find the next instruction

Increment instruction counter

Find real address of operand of current instruction

IF (PI not equal to zero)

Adjust IC if necessary

IF(PI is equal to 3 for LR and PD instruction and first time reference)

Set “Invalid Page Fault Error” in the PCB

Give control to MOS (Master Mode Operation)

Case to check the operation code of the instruction

Case Action

LR R<-Memory [real address of operand of instruction]

40

SR R->Memory [real address of operand of instruction]

CR Compare register R and Memory [real address of operand of

Instruction]

IF (equal) C<-True

ELSE C<-False

BT IF (C is equal to true)

Set instruction counter to virtual address (operand of instruction)

GD Set SI equal to 1 (for input request)

PD Set SI equal to 2 (for output request)

H Set SI equal to 3 (for terminate request)

Otherwise Set PI equal to 1 (indicates the operation code error)

END Case to check the operation code of the instruction

Call for timer SIMULATION

END LOOP

END Algorithm: MOS (Slave Mode Operation)

Algorithm: SIMULATION

Increment total time counter (TTC) register

IF (Total time counter exceeds the time limit)]

Set TI to 2

Increment time slice counter

IF (Time slice counter exceeds time quantum assigned to the process)

41

Set TI to 1

FOR Channel 1

IF (Channel 1 is busy)

Increment Channel timer

IF (Channel timer is equal to Channel total time)

Set IOI as IOI+1

(Set Channel completion interrupt)

END FOR Channel 1

FOR Channel 2

IF (Channel 2 is busy)

Increment Channel timer

IF (Channel timer is equal to Channel total time)

Set IOI as IOI+2

(Set Channel completion interrupt)

END FOR Channel 2

FOR Channel 3

IF (Channel 3 is busy)

Increment Channel timer

IF (Channel timer is equal to Channel total time)

Set IOI as IOI+4

(Set Channel completion interrupt)

END FOR Channel 3

IF(any of SI, PI, TI or IOI not equal zero)

42

Give control to MOS (Master Mode Operation)

ELSE

Return from SIMULATION

END Algorithm: SIMULATION

6.1.5 MOS (Scheduler)

Whenever the MOS completes all the interrupts, it calls the scheduler whose main

function is to select the new ready process among the list of the ready processes. Here, in

case of round robin scheduler, it takes the new process from the front of the queue. And,

after assigning the CPU to the ready process, CPU is switched to the slave mode to

execute that process. Before executing the process, MOS should set all the CPU registers

with the help of PCB. Then, the process is allocated the CPU and, the execution begins.

PCB contains all the information associated with a process.

Generally, algorithm for primitive round robin scheduler is simple because it has to select

the process from the front of the ready queue. The data structure, here, for ready queue is

simply the linked list of the PCBs and the variables that store the front and rear of the

queue.

Algorithm: Scheduler

Select the PCB from the front of the ready queue

Maintain the ready queue

Store CPU registers in the PCB of the process which was running

43

Set CPU registers from the data structures maintained for PCB selected

Allocate the CPU to selected process

Switch to slave mode

END Algorithm: Scheduler

6.2 MOS Implementation

To simulate the round robin scheduler and different performance criteria,

multiprogramming operating system (MOS) has been implemented as a project in C

programming language. Basically, CPU control continuously switches between master

mode operation and slave mode operation. MOS is interrupt driven, and when it has

serviced all the interrupts, it calls the scheduler to select a user process which gets control

of CPU. At the same time, mode is switched to slave. And, whenever CPU has to switch

from slave mode operation to master mode operation, which occurs whenever interrupts

are generated, CPU is simply preempted from the running user process and, the control is

transferred to the MOS in master mode operation. PI and SI interrupt registers are set in

slave mode and, by looking these values of the interrupt registers, MOS handles the

interrupts. TI and IOI interrupts occur in an asynchronous fashion. Thus, CPU switches

continuously between master mode and slave mode.

The CPU registers has been implemented in C programming language by declaring

global variables as:

char R [4]; //four bytes for general purpose register
char IR[4]; //four bytes for instruction register

44

int IC; //instruction counter
char C; //one byte for Boolean toggle
char PTR[4]; //four bytes for page table register
int SI =0; //supervisor interrupt register
int PI =0; //program interrupt register
int TI =0; //timer interrupt register
int IOI=1; //input output interrupt register
int MODE=0; //mode of CPU: ‘slave’ or ‘master’

Other different parts of the MOS can be summarized as:

i) Process Control Block (PCB)

To maintain all the state of the process, structure has been implemented and all the

variables are declared inside the structure for appropriate purposes. The structure for PCB

node can be listed as:

struct PCBnode
{

int JobID;

char r[4];
int ic;
char c;
char ir[4];
char ptr[4];

int llc;
int tll;
int ttc;
int ttl;

int TrackForPage[BLOCKSIZE];
int FaultedPage;
int InvalidPageFault;

struct CardListNode *PCardHead;
struct CardListNode *PCardTail;
struct CardListNode *PCardCurrent;

struct CardListNode *DCardHead;
struct CardListNode *DCardTail;
struct CardListNode *DCardCurrent;

45

struct CardListNode *OutPutCardHead;
struct CardListNode *OutPutCardTail;
struct CardListNode *OutPutCardCurrent;

int ErrorMessage;

int ArrivalTime;
int FinishTime;
int SetIFResponseCalculated;
int WaitingTime;

}; //end struct PCBnode

Different functions have been implemented to handles the different activities of PCBs.

These can be listed as:

int CreatePCB(int FrameNo);

void InitializePCB(int pid);

void InitializePageTableofPCB(int FrameNo);

void InitializePTRofPCB(int pid,int FrameNo);

ii) Memory

User storage and auxiliary storage can be simulated in C programming language, by

simply declaring global variables.

char M[MEMORYSIZE][WORDSIZE];

char DM[DRUMTRACKNUMBER][TRACKSIZE];

To keep record of either a block is free or not and either a track is free or not, block status

and track status variables are declared as:

int blockStatus[MEMORYSIZE/BLOCKSIZE];

46

int trackStatus[DRUMTRACKNUMBER];

Different functions have been implemented to handle the different activities related with

memories, which can be listed as:

int CheckFrame(void);

This function is used to check for free frame in memory. If there is any free frames

available in memory, then it returns TRUE, otherwise it returns FALSE.

int GetFrameFromMemory(void);

This function is used to get frame from memory. It gives the first available free frame

from use storage and makes the status of the frame allocated.

int CheckTrack(void);

This function is used to get check for free track in memory. If there is any free tracks

available in drum, then it returns TRUE, otherwise it returns FALSE.

int GetTrackFromDrum(void);

This function is used to get track from drum. It gives the first available free track from

drum and makes the status of the track allocated.

iii) Main Header File and Important Prototypes of different functions

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>
#include <alloc.h>

#define MEMORYSIZE 300
#define BLOCKSIZE 10
#define WORDSIZE 4
#define BUFFERNUMBER 5

47

#define DRUMTRACKNUMBER 100
#define TRACKSIZE 40

//used for different buffer queues
struct buffernode
{

int BufferNo;
struct buffernode *next;

};
//used to store information of Program card and Data card
//inside the PCB
struct CardListNode
{

int trackNo;
struct CardListNode *next;

};

struct ProcessTableNode
{

int pid;
struct ProcessTableNode *next;
struct PCBnode *PCB;

};

struct PCBQueueNode
//PCB Queue for IS,OS,LD,IO,Swap,Terminate
{

int pid;
struct PCBQueueNode *next;

};

void MOS(void);
void SetRegisters(void);
void SetPCBRegisters(void);
void EXECUTEUSERPROGRAM(void);
int ADDRESSMAP

(struct ProcessTableNode *tempProcess,int va);

void IR1(void);
void IR2(void);
void IR3(void);

int GetBufferFrom(int BufferQueue);
void AddBufferTo(int BufferNo,int BufferQueue);

48

//read next card from input file to given buffer
void ReadNextCard(int BufferNo);

struct ProcessTableNode * FindProcessTableNode(int pid);

void scheduler(void);

void StartCH1(void);
void StartCH2(void);
void StartCH3(void);

int GetPageTableLength
(struct ProcessTableNode *tempProcess);

int GetPageTableFrameNo
(struct ProcessTableNode *tempProcess);

void UpdatePageTableLength
(struct ProcessTableNode *tempProcess,

int PageTableLength);
int GetPageFrameNo

(struct ProcessTableNode *tempProcess,int Page);
void UpdatePageFrameNo

(struct ProcessTableNode *tempProcess,
int Page,int FrameNo);

int FindVictimFrame(void);
void ReleasePCB(struct ProcessTableNode *tempProcess);

49

Chapter 7

Data Collection

In this section, all the data collected with the help of MOS simulator are given. The data

set given by the simulator for quantum size equal to 3 is presented in this section, and all

other dataset given by the simulator for quantum size equal to 1 to 5 are presented in

Appendix B.

7.1 Sample Input Programs

$AMJ001110001000

GD40PD40LR40SR64LR41SR63LR42SR62LR43SR61

LR44SR60PD60LR40CR40BT12SR80PD80LR41SR80

PD80LR42SR80PD80LR43SR80PD80LR44SR80H

$DTA

P I Z Z A

$END0011

$AMJ001210001000

GD40LR41SR50SR51LR40SR60PD50SR61SR62LR42

SR70LR44SR71LR45SR72PD70LR42SR80LR42SR81

LR45SR82PD60PD80LR44SR90LR42PD60SR91LR43

SR92PD90PD50H

$DTA

---- | X | X O | O

$ENDOO12

$AMJ002110001000

GD40LR40SR70PD70CR45BT00LR41SR71PD70CR45

BT00LR42SR72PD70CR45BT00LR43SR73PD70CR45

50

BT00LR44SR74PD70CR45BT00LR45SR75PD70CR45

BT31GD50LR50SR60LR51SR62PD60GD60PD60H

$DTA

5 4 3 2 1 0

RUN,FAST

YOU WIN

$END0021

$AMJ002210001000

GD40LR40SR70GD50LR50SR71PD70LR41SR70LR51

SR71PD70LR42SR70LR52SR71PD70LR43SR70LR53

SR71PD70LR44SR70LR54SR71PD70GD60PD60LR55

SR71PD70LR56SR62LR57SR63PD60H

$DTA

2*2=3*3=4*4=5*5=6*6=

4 9 16 25 35 36 right

This is wrong

$END0022

$AMJ003110001000

GD40LR40SR90LR41SR91PD90CR42BT38GD50LR50

SR90LR51SR91PD90CR42BT38GD60LR60SR90LR61

SR91PD90CR42BT38GD70LR70SR90LR71SR91PD90

CR42BT38GD80LR80SR90LR81SR91PD90H

$DTA

A 4 ANT END

B 4 BALL

C 4 CAT

D 4 DOG

E 4 END

$END0031

$AMJ003210001000

GD30PD30GD40LR40SR30LR41SR31LR42SR34PD30

GD50LR50SR30LR51SR31PD30H

51

$DTA

IF A IS EQUAL TO B.

AND B ITO C

THEN A I

$END0032

$AMJ004110001000

GD40GD50GD60LR40CR49BT00SR52PD50LR41CR49

BT00SR52PD50LR42CR49BT00SR52PD50LR43CR49

BT00SR52PD50LR44CR49BT00SR52PD50LR60SR52

LR61SR53LR62SR54PD50H

$DTA

0 1 2 3 4 5 6 7 8 9

This is

END bye bye

$END0041

$AMJ004210001000

GD40GD50LR50SR45LR51SR46PD40LR52SR45LR53

SR46PD40LR54SR45LR55SR46PD40LR56SR45LR57

SR46PD40LR58SR45LR59SR46PD40H

$DTA

This is your

ha ha hi hi ho ho he he ya hoo

$END0042

7.2 Output of the Sample Programs

0011 LINE LIMIT EXCEEDED

27 PD60 P 0004

P I Z Z A

A Z Z I P

A Z Z I P

52

A Z Z I P

0012 NORMAL TERMINATION

40 H X 0007

| |

X | O | O

X | X | O

O | X | X

| |

0021 NORMAL TERMINATION

44 H FAST 0008

5

5 4

5 4 3

5 4 3 2

5 4 3 2 1

5 4 3 2 1 0

RUN, FAST

YOU WIN

0022 NORMAL TERMINATION

42 H t 0008

2*2=4

3*3=9

4*4=16

5*5=25

6*6=35

This is wrong

6*6=36

53

This is right

0032 NORMAL TERMINATION

20 H A I 0003

IF A IS EQUAL TO B.

AND B IS EQUAL TO C.

THEN A IS EQUAL TO C.

0031 NORMAL TERMINATION

46 H END 0005

A 4 ANT

B 4 BALL

C 4 CAT

D 4 DOG

E 4 END

0042 NORMAL TERMINATION

30 H hoo 0005

This is your ha ha

This is your hi hi

This is your ho ho

This is your he he

This is your ya hoo

0041 NORMAL TERMINATION

39 H bye 0006

This is 0

This is 1

This is 2

This is 3

This is 4

This is END bye bye

54

7.3 Workload and Data Set

Workload consisted of one hundred input programs made up of above eight sample

programs. All individual parameters such as arrival time, finish time, and waiting time

are kept inside the process control block (PCB) of the process. The workload

approximately consisted of 20-30 percent I/O bound instructions and 70-80 percent CPU

bound instructions.

Table: Data Set for the Workload with Quantum Size=3

PID ARRIVAL FINISH TURNAROUND WAITING
0 37 78 41 0
1 77 173 96 9
2 128 262 134 15
3 184 341 157 22
5 285 377 92 10
4 240 421 181 22
8 412 515 103 41
7 380 541 161 49
6 332 601 269 65
9 454 645 191 48
13 668 731 63 5
11 558 822 264 26
10 504 835 331 41
15 758 865 107 15
14 716 900 184 22
12 620 902 282 19
16 909 964 55 0
17 950 1078 128 12
18 999 1165 166 22
19 1049 1254 205 35
21 1149 1266 117 16
20 1112 1316 204 25
22 1203 1337 134 16
23 1293 1429 136 22
24 1329 1450 121 14
25 1368 1534 166 34
26 1416 1620 204 30
27 1472 1648 176 16

55

29 1571 1712 141 9
28 1529 1740 211 17
32 1741 1842 101 34
30 1657 1850 193 48
31 1707 1872 165 46
33 1781 1987 206 61
34 1831 2078 247 40
37 1983 2123 140 15
35 1885 2125 240 36
36 1943 2160 217 29
40 2193 2295 102 33
38 2117 2304 187 46
39 2157 2319 162 45
41 2231 2441 210 56
42 2281 2513 232 34
45 2432 2533 101 6
46 2552 2679 127 10
44 2392 2696 304 34
47 2570 2699 129 6
43 2334 2765 431 38
48 2604 2778 174 11
49 2708 2944 236 26
50 2758 3027 269 33
51 2809 3046 237 21
53 2907 3112 205 11
55 3067 3186 119 6
54 2983 3260 277 20
56 3115 3271 156 14
52 2867 3293 426 39
58 3209 3475 266 23
57 3153 3505 352 27
61 3386 3547 161 10
59 3288 3577 289 22
64 3600 3698 98 13
63 3566 3719 153 32
60 3348 3724 376 42
62 3514 3791 277 23
65 3638 3868 230 31
66 3719 3944 225 15
67 3769 3988 219 16
69 3891 4018 127 3
72 4027 4127 100 28
71 3997 4151 154 28
68 3847 4182 335 45
70 3957 4296 339 53
73 4069 4388 319 51
77 4329 4418 89 3

56

74 4146 4460 314 31
75 4196 4572 376 27
80 4499 4599 100 3
79 4461 4607 146 7
76 4255 4679 424 18
78 4423 4748 325 33
81 4616 4846 230 28
83 4714 4916 202 41
82 4666 4939 273 37
84 4777 5000 223 19
85 4815 5029 214 18
88 5038 5120 82 24
87 4992 5145 153 28
86 4954 5201 247 33
89 5076 5276 200 47
91 5176 5358 182 25
90 5134 5378 244 37
93 5309 5420 111 5
92 5238 5476 238 27
95 5447 5563 116 18
94 5397 5566 169 13
97 5545 5659 114 18
96 5507 5686 179 35
98 5599 5724 125 26
99 5637 5726 89 24

Chapter 8

Analysis

CPU utilization heavily depends upon the nature of the workload. Basically, each process

in the work load might be either CPU-bound or I/O-bound. If all the processes are

approximately CPU-bound, then multiprogramming environment does not help so much.

Similarly CPU utilization, which usually depends upon the degree of multiprogramming,

is not helped a great deal if the processes are completely or approximately 100 percent

57

CPU-bound. In this situation processes in the work load are approximately 70 percent

CPU-bound.

FOR Quantum=1

Total Number of Processes--------------100

Total Context Switches-----------------3871

Total Context Switches Due to Quantum--3637

Total CPU Cycle------------------------5814

Total CPU Cycle used by the Processes--3637

Total Percentage used------------------62.555900%

Average Turnaround Time----------------201.920000

Average Waiting Time-------------------30.940000

Partial flow of the process with quantum size of 1 is given below. The first process PID0

enters the ready queue at time cycle 37-38 when no other process is there to compete for

the processor time. Hence, PID0 is given immediate access to the processor and it starts

its execution. As the quantum has been set to 1 unit, it will leave the CPU after 1 time

unit but, as it is the only process in the ready queue, PID0 is again given access to the

processor. In the time interval 77-78, there are now two processes in the ready queue but,

being PID0 already in the ready queue, it is given access to the processor for time interval

77-78 and, PID0 is, then, put into the terminate queue. After that, PID1 is the only

process until the time 128. After the time 128, both PID1 and PID2 compete for the

processor time. As the time passes, the degree of multiprogramming increases and, hence,

the processor utilization increases, too.

58

As the quantum is small, the processor is preempted from the processes very frequently.

Data collected in the Chapter 7 shows that number of context switches increases as

quantum size decreases. If we consider the cost of context switch, then it does decrease

the percentage of CPU utilized. Waiting time and turnaround time increase in comparison

with first-come first-served (FCFS), if the processes are CPU-bound.

Note: Clock t indicates the time interval t-1 to t

PID=-- indicates processor is not busy with processes

Clock=m PID=n indicates that processor is busy with the process of process id n

in the time interval m-1 to m.

Clock PID clock PID clock PID clock PID clock PID
1 -- 2 -- 3 -- 4 -- 5 --
6 -- 7 -- 8 -- 9 -- 10 --
11 -- 12 -- 13 -- 14 -- 15 --
16 -- 17 -- 18 -- 19 -- 20 --
21 -- 22 -- 23 -- 24 -- 25 --
26 -- 27 -- 28 -- 29 -- 30 --
31 -- 32 -- 33 -- 34 -- 35 --
36 -- 37 -- 38 0 39 0 40 --
41 -- 42 0 43 -- 44 -- 45 0
46 0 47 0 48 0 49 0 50 0
51 0 52 0 53 0 54 -- 55 --
56 0 57 0 58 0 59 -- 60 --
61 0 62 0 63 0 64 0 65 --
66 -- 67 0 68 0 69 0 70 0
71 -- 72 -- 73 -- 74 -- 75 0
76 0 77 0 78 0 79 1 80 1
81 -- 82 -- 83 -- 84 -- 85 --
86 -- 87 -- 88 -- 89 -- 90 --
91 -- 92 -- 93 -- 94 -- 95 --
96 -- 97 -- 98 1 99 1 100 1
101 1 102 1 103 1 104 1 105 1

59

106 -- 107 -- 108 1 109 1 110 1
111 -- 112 -- 113 1 114 1 115 1
116 1 117 1 118 1 119 1 120 --
121 -- 122 1 123 1 124 1 125 1
126 1 127 -- 128 -- 129 2 130 2
131 1 132 1 133 1 134 2 135 2
136 2 137 1 138 2 139 -- 140 --
141 1 142 1 143 1 144 2 145 1
146 2 147 1 148 2 149 2 150 2
151 1 152 1 153 2 154 -- 155 --
156 -- 157 1 158 1 159 2 160 2
161 2 162 1 163 2 164 -- 165 --
166 1 167 -- 168 2 169 2 170 2
171 2 172 2 173 -- 174 -- 175 --
176 -- 177 -- 178 -- 179 -- 180 --
181 -- 182 -- 183 -- 184 -- 185 --
186 3 187 3 188 -- 189 -- 190 2
191 -- 192 -- 193 -- 194 -- 195 --
196 3 197 3 198 3 199 3 200 3
201 -- 202 -- 203 -- 204 3 205 3
206 3 207 2 208 2 209 2 210 2
211 3 212 3 213 3 214 2 215 2
216 2 217 2 218 2 219 3 220 3
221 2 222 -- 223 -- 224 -- 225 3
226 3 227 3 228 3 229 3 230 2
231 2 232 2 233 -- 234 3 235 3

. . .

. . .

. . .

5681 96 5682 96 5683 96 5684 98 5685 99
5686 98 5687 99 5688 96 5689 96 5690 96
5691 99 5692 96 5693 99 5694 98 5695 96
5696 99 5697 98 5698 99 5699 98 5700 96
5701 99 5702 98 5703 98 5704 98 5705 98
5706 98 5707 -- 5708 -- 5709 -- 5710 --
5711 -- 5712 -- 5713 -- 5714 -- 5715 --
5716 99 5717 99 5718 99 5719 -- 5720 98
5721 98 5722 99 5723 99 5724 98 5725 98
5726 98 5727 99 5728 98 5729 99 5730 98

. . .

. . .

. . .

5781 -- 5782 -- 5783 -- 5784 -- 5785 --

60

5786 -- 5787 -- 5788 -- 5789 -- 5790 --
5791 -- 5792 -- 5793 -- 5794 -- 5795 --
5796 -- 5797 -- 5798 -- 5799 -- 5800 --
5801 -- 5802 -- 5803 -- 5804 -- 5805 --
5806 -- 5807 -- 5808 -- 5809 -- 5810 --
5811 -- 5812 -- 5813 -- 5814 --

FOR Quantum=2

Total Number of Processes--------------100

Total Context Switches-----------------2839

Total Context Switches Due to Quantum--925

Total CPU Cycle------------------------5831

Total CPU Cycle used by the Processes--3634

Total Percentage used------------------62.322072%

Average Turnaround Time----------------201.790000

Average Waiting Time-------------------29.590000

As the quantum increases, almost every parameter changes as shown in the Chapter 7.

Here, unnecessary context switches, due to the quantum, decrease. Thus quantum size

equals to 2 definitely increases the performance than the quantum size of 1. Turnaround

time and waiting time slightly decrease in this case.

FOR Quantum=3

Total Number of Processes--------------100

Total Context Switches-----------------2850

Total Context Switches Due to Quantum--11

Total CPU Cycle------------------------5804

61

Total CPU Cycle used by the Processes--3638

Total Percentage used------------------62.680910%

Average Turnaround Time----------------195.980000

Average Waiting Time-------------------25.620000

As we have the workload which consists of approximately 70 percent CPU-bound

processes, the majority of the instructions are in the sequence of ratio 3:1 (compute vs.

IO). It might be the reason why CPU utilization is maximized when the quantum equals

3. Turnaround time and waiting time heavily decreases because most processes finish

their next CPU burst in a single time quantum. If the context switch is added in, the

average turnaround time increases for a smaller time quantum, since more context

switches are required.

FOR Quantum=4

Total Number of Processes--------------100

Total Context Switches-----------------2823

Total Context Switches Due to Quantum--1

Total CPU Cycle------------------------5861

Total CPU Cycle used by the Processes--3643

Total Percentage used------------------62.156629%

Average Turnaround Time----------------205.260000

Average Waiting Time-------------------27.680000

62

With quantum equals to four, unnecessary context switches heavily decrease. This shows

that almost all CPU bursts are less than four. This decrement of unnecessary context

switches improves the performance but, all the demerits of FCFS algorithm come up with

it. That is, for the quantum size equal to four or more, our round robin algorithm behaves

like FCFS scheduling algorithm.

FOR Quantum=5

Total Number of Processes--------------100

Total Context Switches-----------------2823

Total Context Switches Due to Quantum--0

Total CPU Cycle------------------------5861

Total CPU Cycle used by the Processes--3643

Total Percentage used------------------62.156629%

Average Turnaround Time----------------205.260000

Average Waiting Time-------------------27.680000

Quantum size 5 or more behaves the same as above.

63

Chapter 9

Graph Representation

CPU Utilization

61.8

61.9

62

62.1

62.2

62.3

62.4

62.5

62.6

62.7

62.8

1 2 3 4 5

Quantum

C
P

U
 U

til
iz

at
io

n

CPU Utilization

Figure 9.1: Graph relationship between CPU utilization and quantum sizes

64

Turnaround Time

190

192

194

196

198

200

202

204

206

1 2 3 4 5

Quantum

Tu
rn

ar
ou

nd
 T

im
e

Turnaround Time

Figure 9.2: Graph relationship between turnaround time and quantum sizes

Waiting Time

0

5

10

15

20

25

30

35

1 2 3 4 5

Quantum

W
ai

tin
g

Ti
m

e

Waiting Time

Figure 9.3: Graph relationship between waiting time and quantum sizes

65

Context Switches due to Quantum

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5

Quantum

C
on

te
xt

 S
w

itc
he

s
Context Switches due to Quantum

Figure 9.4: Graph relationship between context switches and quantum sizes

66

Chapter 10

Conclusion

CPU utilization in our simulation and workload gets maximized when the quantum size is

equal to 3. Basically, our workload consists of approximately 70 percent CPU

instructions and 30 percent IO instructions. Further, each sequence of CPU and I/O

instructions are in ratio 3:1. Thus, almost all sequence of CPU bound instructions can

execute without preemption for quantum size 3. If the quantum is set too small, then the

unnecessary context switches increase heavily. And if the quantum size is large, the

unnecessary context switches decrease. Thus, if we consider the effect of the context

switches on the performance of the processor, the quantum size 3 worked out to be the

best.

Turnaround time and waiting time heavily depend upon the nature of the processes. In

case of our workload, as almost all the processes consist of approximately 70 percent

CPU-bound instructions, waiting time is maximized when the quantum size is small.

And, waiting time decreases when the quantum size increases. Turnaround time also

increases with the quantum. The average turnaround time is improved heavily at quantum

equals 3 because most processes finish their next CPU burst in a single time quantum.

Thus, if we consider the effect of all the performance measure parameters, optimal

quantum size is that for which we can get the average values for all parameters. Thus,

67

from the analysis for the workload defined earlier, we conclude that average values for all

the parameters are good for quantum equal to 3, and that heavily dependent on the nature

of the workload.

Recommendation

Lots of simplified assumptions have been adopted, while designing the MOS, to make the

design simple. In real systems, context switch has direct impact on the performance but,

here in case of MOS, it has been assumed that kernel part of the operating system runs in

zero time units. This is impossible in real systems. To analyze the round robin algorithm

in its entirety and to find optimal quantum size and its impact on CPU utilization,

turnaround time, and waiting time, it would be better if some more realistic system were

used. In case of linux operating system, so many parameters are included (inside the

PCB) to keep record of almost all aspects of the process to have better statistics to

measure performance. So, it might be good platform for analysis purpose of the round

robin algorithm.

Fairness has become the most popular parameter for performance measure of scheduling

algorithms in the recent time. Fair share scheduling has a meaning: given a set of jobs

with associated weights, a fair share scheduler should allocate resources to each job in

proportion to its respective weight. So many works have been done in the area of

fairness. Henry [2] has contributed a lot in the field of fairness; J. Kay and P. Lauder [3],

Larmouth [4] are following him and contributing in this field.

68

Appendix A

A.1 Source Code of the MOS in Master Mode Operation

void MOS(void)
{

//MASTER:
//CASE TI and SE of
struct ProcessTableNode *tempProcess=NULL;
tempProcess=FindProcessTableNode(PCBQueueRQHead->pid);

if((TI==0 || TI==1) && SI==1)
{

SI=0;TI=0;
//Move PCB,RQ->IOQ(Read)
ADDpidTo(PCBQueueRQHead->pid,4); //IOQ
DELpidFrom(7); //RQ

}
else if((TI==0 || TI==1) && SI==2)
{

SI=0;TI=0;
//Move PCB,RQ->IOQ(Write)

69

ADDpidTo(PCBQueueRQHead->pid,4); //IOQ
DELpidFrom(7); //RQ

}
else if((TI==0 || TI==1) && SI==3)
{

SI=0;TI=0;
//Move PCB,RQ->TQ(Terminate[0])
tempProcess->PCB->ErrorMessage=0;

ADDpidTo(PCBQueueRQHead->pid,6); //TQ
DELpidFrom(7); //RQ

}
else if(TI==2 && SI==1)
{

SI=0;TI=0;
//Move PCB,RQ->TQ(Terminate[3]);
tempProcess->PCB->ErrorMessage=3;

ADDpidTo(PCBQueueRQHead->pid,6); //TQ
DELpidFrom(7); //RQ

}
else if(TI==2 && SI==2)
{

SI=0;TI=0;
//Move PCB,RQ->IOQ(Write)then TQ(Terminate[3])
tempProcess->PCB->ErrorMessage=3;

ADDpidTo(PCBQueueRQHead->pid,4); //IOQ
DELpidFrom(7); //RQ

}
else if(TI==2 && SI==3)
{

SI=0;TI=0;
//Move PCB,RQ->TQ(Terminate[3]);
tempProcess->PCB->ErrorMessage=3;

ADDpidTo(PCBQueueRQHead->pid,6); //TQ
DELpidFrom(7); //RQ

}

//CASE TI and PI of

else if((TI==0 || TI==1) && PI==1)
{

PI=0;TI=0;
//Move PCB,RQ->TQ(Terminate[4])
tempProcess->PCB->ErrorMessage=4;

70

ADDpidTo(PCBQueueRQHead->pid,6); //TQ
DELpidFrom(7); //RQ

}
else if((TI==0 || TI==1) && PI==2)
{

PI=0;TI=0;
//Move PCB,RQ->TQ(Terminate[5])
tempProcess->PCB->ErrorMessage=5;

ADDpidTo(PCBQueueRQHead->pid,6); //TQ
DELpidFrom(7); //RQ

}
else if((TI==0 || TI==1) && PI==3)
{

PI=0;TI=0;
if(tempProcess->PCB->InvalidPageFault==0)
{

if(CheckFrame()==1 &&
(tempProcess->PCB->TrackForPage
[tempProcess->PCB->FaultedPage]==-1))
{

//Allocate
int FrameNo=GetFrameFromMemory();
//Update PidForFrame[30]
PidForFrame[FrameNo]=tempProcess->pid;
//Update page table
int PageTableFrameNo=

GetPageTableFrameNo(tempProcess);
int PageTableLength =

GetPageTableLength(tempProcess);
UpdatePageTableLength

(tempProcess,PageTableLength+1);
int PageTablePageNo=

PageTableFrameNo*BLOCKSIZE+
(tempProcess->PCB->FaultedPage);

M[PageTablePageNo][0]='1';//allocate
M[PageTablePageNo][1]='0';///unmodified
//Update PageFrameNo
UpdatePageFrameNo

(tempProcess,
tempProcess->PCB->FaultedPage,
FrameNo);

//Adjust TrackForPage[10]
if(CheckTrack()==1)
{

int TrackNo=GetTrackFromDrum();

71

tempProcess->PCB->TrackForPage
[tempProcess->PCB->FaultedPage]=
TrackNo;

}
else
{

printf("\nTracks are full");
exit(0);

}
}
else
{

//Move PCB,RQ->SQ
ADDpidTo(PCBQueueRQHead->pid,5);
DELpidFrom(7);

}
}//end if(page fault valid)
else //if(page fault invalid)
{

tempProcess->PCB->ErrorMessage=6;

ADDpidTo(PCBQueueRQHead->pid,6);//TQ
DELpidFrom(7);//RQ

} //end if(page fault invalid)
}
else if(TI==2 && PI==1)
{

TI=0; PI=0;
//Move PCB,RQ->TQ(TERMINATE(3,4);
tempProcess->PCB->ErrorMessage=7;

ADDpidTo(PCBQueueRQHead->pid,6);
DELpidFrom(7);

}
else if(TI==2 && PI==2)
{

TI=0; PI=0;
//Move PCB,RQ->TQ(TERMINATE(3,5))
tempProcess->PCB->ErrorMessage=8;

ADDpidTo(PCBQueueRQHead->pid,6);
DELpidFrom(7);

}
else if(TI==2 && PI==3)
{

TI=0; PI=0;

72

//Move PCB,RQ->TQ(TERMINATE(3))
tempProcess->PCB->ErrorMessage=3;
ADDpidTo(PCBQueueRQHead->pid,6);
DELpidFrom(7);

}
else if(TI==1)
{

TI=0;
ADDpidTo(PCBQueueRQHead->pid,7);
DELpidFrom(7);

}
tempProcess=NULL;

//CASE IOI of

if(IOI==0) { /*No Action*/ }
else if(IOI==1) { IR1(); }
else if(IOI==2) { IR2(); }
else if(IOI==3) { IR2(); IR1(); }
else if(IOI==4) { IR3(); }
else if(IOI==5) { IR1(); IR3(); }
else if(IOI==6) { IR3(); IR2(); }
else if(IOI==7) { IR2(); IR1(); IR3(); }
scheduler();

} //END MOS

A.2 Source Code for Scheduler

void scheduler(void)
{

IOI=0;
if(PCBQueueRQHead!=NULL)
{

struct ProcessTableNode *tempProcess=NULL;
tempProcess=FindProcessTableNode(PCBQueueRQHead->pid);
if(tempProcess->PCB->SetIFResponseCalculated==0)
{

tempProcess->PCB->ResponseTime=
GlobalCPUTime-(tempProcess->PCB->ArrivalTime);

TotalResponseTime=TotalResponseTime+
tempProcess->PCB->ResponseTime;

TotalNumberOfProcess++;
tempProcess->PCB->SetIFResponseCalculated=1;

}
SetRegisters();

73

EXECUTEUSERPROGRAM();
}

}

A.3 Source Code of the MOS in Slave Mode Operation

void EXECUTEUSERPROGRAM(void) //SLAVE MODE
{

char operand[3]; operand[2]=NULL;

struct ProcessTableNode *tempProcess=NULL;
tempProcess=FindProcessTableNode(PCBQueueRQHead->pid);
int PageTableFrameNo=GetPageTableFrameNo(tempProcess);

char tempPTR[5]; tempPTR[4]=NULL;
tempPTR[0]=PTR[0]; tempPTR[1]=PTR[1];
tempPTR[2]=PTR[2]; tempPTR[3]=PTR[3];

while(1)
{

RA=ADDRESSMAP(tempProcess,IC);

if(PI!=0){ goto CHECKInterrupt; }

IR[0]=M[RA][0];
IR[1]=M[RA][1];
IR[2]=M[RA][2];
IR[3]=M[RA][3];

if(IR[0]!='H')
{

IC=IC+1;
operand[0]=IR[2];
operand[1]=IR[3];
operand[2]=NULL;

if((!isdigit(operand[0])) ||
(!isdigit(operand[1])))

{ PI=2; }
else
{

RA=ADDRESSMAP(tempProcess,atoi(operand));
}
if(PI!=0)
{

74

IC=IC-1;
if(PI==3)
{

if((memcmp(IR,"LR",2)==0) ||]
(memcmp(IR,"PD",2)==0))

{
if(tempProcess->PCB->TrackForPage
[(atoi(operand))/BLOCKSIZE]==-1)
tempProcess->PCB->InvalidPageFault

=1;
}

}
goto SIMULATION;

}
}
if(IR[0]=='L' && IR[1]=='R')
{

R[0]=M[RA][0]; R[1]=M[RA][1];
R[2]=M[RA][2]; R[3]=M[RA][3];

}
else if(IR[0]=='S' && IR[1]=='R')
{

M[RA][0]=R[0]; M[RA][1]=R[1];
M[RA][2]=R[2]; M[RA][3]=R[3];

M[PageTableFrameNo*BLOCKSIZE+
(atoi(operand)/BLOCKSIZE)][1]='1';
//set page is modified

}
else if(IR[0]=='C' && IR[1]=='R')
{

if(R[0]==M[RA][0] && R[1]==M[RA][1] &&
R[2]==M[RA][2] && R[3]==M[RA][3])

C='T';
else

C='F';
}
else if(IR[0]=='B' && IR[1]=='T')
{

if(C=='T')
IC=atoi(operand);

}
else if(IR[0]=='G' && IR[1]=='D')
{

M[PageTableFrameNo*BLOCKSIZE+
(atoi(operand)/BLOCKSIZE)][1]='1';
//set page is modified

75

SI=1;
}
else if(IR[0]=='P' && IR[1]=='D')
{

SI=2;
}
else if(IR[0]=='H')
{

IC=IC+1;
SI=3;

}
else

PI=1; //Operation error
//SIMULATION

SIMULATION:
GlobalCPUTime++;
UtilizationCPUTime++;
//increment the waiting time of all ready but not
//running processes and increment total waiting
//time
FindWaitingTime();
TTC++;
if(TTC>=TTL) TI=2;
TSC++;
if(TSC==TS) TI=1;

if(CHST1==1)
{

CH1TimeCount++;
if(CH1TimeCount==CH1TimeLimit)

IOI=IOI+1;
}
if(CHST2==1)
{

CH2TimeCount++;
if(CH2TimeCount==CH2TimeLimit)

IOI=IOI+2;
}
if(CHST3==1)
{

CH3TimeCount++;
if(CH3TimeCount==CH3TimeLimit)

IOI=IOI+4;
}
CHECKInterrupt:

ContextSwitch++;

76

if(TI==1) ContextSwitchQuantum++;
SetPCBRegisters();
break;

}
} //end while(1)

} //END EXECUTEUSERPROGRAM

A.4 Source Code of the Interrupt Service Routine for Channel 1

void IR1(void)
{

if(EBForCH1!=-1)
{

//read next card in given eb
ReadNextCard(EBForCH1);
//change status to ifb,place on ifb(q)
IFBForCH1=EBForCH1;
EBForCH1=-1;
CHST1=0; CH1TimeCount=0;

}
if((!feof(INPUT_FP)) && EBQHead!=NULL)
{

//Get next eb
EBForCH1=GetBufferFrom(1);//1 for EBQ
//Start Channel 1
StartCH1();

}
if(IFBForCH1 != -1)
{

if(memcmp("$AMJ",buffer[IFBForCH1],4)==0)
{

if(CheckFrame()==1)
{

//Allocate frame for Page Table
int FrameNo=GetFrameFromMemory();
//CreatePCB start
ISpid=CreatePCB(FrameNo);
//initialize PCB start
InitializePCB(ISpid);
//Initialize Page Table and PTR
InitializePageTable(FrameNo);
//Initialize PTR of the created PCB
InitializePTRofPCB(ISpid,FrameNo);
//Set F==P (Program cards to follow)
F=1;

77

//change status from ifb to eb and
//return buffer to eb(q)
AddBufferTo(IFBForCH1,1);
IFBForCH1=-1;
//add pid of new process to PCBQueue
//for IS(input spooling

}//end if(CheckFrame()==1)
else //frame not available
{

if(EBForCH1 != -1)
{

CHST1=0;
AddBufferTo(EBForCH1,1);
EBForCH1=-1;

}
}//end frame not available

}
else if(memcmp("$DTA",buffer[IFBForCH1],4)==0)
{

//setF<--D(data cards to follo)
F=2;
//change status from ifb to eb and return
//buffer to eb(q)
AddBufferTo(IFBForCH1,1);
IFBForCH1=-1;

}
else if(memcmp("$END",buffer[IFBForCH1],4)==0)
{

//Place PCB on LQ,
ADDpidTo(ISpid,3);//3 for LD queue
//change status from ifb to eb and return
//buffer to eb(q)
AddBufferTo(IFBForCH1,1);
IFBForCH1=-1;

}
else
{

//place ifb on ifb(q)
AddBufferTo(IFBForCH1,2);
IFBForCH1=-1;
//save F information(program or data card
//for CH3)
AddCardTypeToFQueue(F);
AddPidToPQueue(ISpid);

}
}

}

78

A.5 Source Code of the Interrupt Service Routine for Channel 2

void IR2(void)
{

if(OFBForCH2!=-1)
{

//print given ofb
for(int i=0;i<40;i++)
{

fputc(buffer[OFBForCH2][i],OUTPUT_FP);
}
fputc('\n',OUTPUT_FP);
AddBufferTo(OFBForCH2,1);
OFBForCH2=-1;
CHST2=0;
CH2TimeCount=0;

}
if(OFBHead!=NULL)
{

OFBForCH2=GetBufferFrom(3);
StartCH2();

}

else if(PCBQueueISHead==NULL &&
PCBQueueLDHead==NULL &&
PCBQueueIOHead==NULL &&
PCBQueueSQHead==NULL &&
PCBQueueTQHead==NULL &&
PCBQueueRQHead==NULL &&
CHST1==0 && CHST3==0 &&
CHST2==0 && OFBHead==NULL)
{

exit(0);
}

}

A.6 Source Code of the Interrupt Service Routine for Channel 3

void IR3(void)
{

if(Task!=0)
{

CHST3=0;

79

CH3TimeCount=0;
struct ProcessTableNode *tempProcess=NULL;
if(Task==1) //IS
{

tempProcess=
FindProcessTableNode(PQueueHead->pid);

Strncpy
(DM[TrackNoForIS],buffer[EBForIS],40);

PlaceTrackNoToPorD
(tempProcess,TrackNoForIS);

AddBufferTo(EBForIS,1);//1 for EBQ
EBForIS=-1; TrackNoForIS=-1;

}
else if(Task==2)//OS
{

tempProcess=
FindProcessTableNode(PCBQueueTQHead->pid);
if(ErrorCount==0)
{

FindErrorMessage(tempProcess,EBForOS);
ErrorCount++;

AddBufferTo(EBForOS,3);
EBForOS=-1;

}
else if(ErrorCount==1)
{

FindErrorMessage(tempProcess,EBForOS);
ErrorCount++;

AddBufferTo(EBForOS,3);
EBForOS=-1;

}
else
{

strncpy
(buffer[EBForOS],DM[TrackNoForOS],40);
AddBufferTo(EBForOS,3); //3 for OFB
//Release Track
trackStatus[TrackNoForOS]=0;

tempProcess->PCB->OutPutCardCurrent=
tempProcess->PCB->
OutPutCardCurrent->next;

if(tempProcess->PCB->
OutPutCardCurrent==NULL)

{

80

ErrorCount=0;
ReleasePCB(tempProcess);
DELpidFrom(6);

}
EBForOS=-1; TrackNoForOS=-1;

}//else if ErrorCount!=0 or ErrorCount!=1
}
else if(Task==3)//LD
{

tempProcess=
FindProcessTableNode(PCBQueueLDHead->pid);
Strncpy

(M[FrameNoForLD*BLOCKSIZE],
DM[TrackNoForLD],40);

//Update PidForFrame[30]
PidForFrame[FrameNoForLD]=tempProcess->pid;

//update the arrival time of the process
tempProcess->PCB->ArrivalTime=GlobalCPUTime;

ADDpidTo(tempProcess->pid,7);
DELpidFrom(3);

FrameNoForLD=-1; TrackNoForLD=-1;
}
else if(Task==4)//RD
{

tempProcess=
FindProcessTableNode(PCBQueueIOHead->pid);
strncpy(M[RAForIO],DM[TrackNoForIO],40);
//Release Track
trackStatus[TrackNoForIO]=0;
tempProcess->PCB->DCardCurrent=

tempProcess->PCB->DCardCurrent->next;
ADDpidTo(tempProcess->pid,7);
DELpidFrom(4);
RAForIO=-1; TrackNoForIO=-1;

}
else if(Task==5)//WT
{

tempProcess=
FindProcessTableNode(PCBQueueIOHead->pid);
strncpy(DM[TrackNoForIO],M[RAForIO],40);
tempProcess->PCB->llc++;
if(tempProcess->PCB->ttc>=

tempProcess->PCB->ttl)

81

{
ADDpidTo(tempProcess->pid,6); //TQ
DELpidFrom(4); //IO

}
else
{

ADDpidTo(tempProcess->pid,7); //RQ
DELpidFrom(4); //IO

}
RAForIO=-1; TrackNoForIO=-1;

}
else if(Task==6)//SQ(W)
{

strncpy
(DM[TrackNoForSQW],M[VFForSQW*BLOCKSIZE],
40);
FForSQR=VFForSQW;
TrackNoForSQW=-1; VFForSQW=-1;
Task=7;
StartCH3();
return;

}
else if(Task==7) //SQ(R)
{

tempProcess=
FindProcessTableNode(PCBQueueSQHead->pid);
TrackNoForSQR=tempProcess->PCB->TrackForPage

[tempProcess->PCB->FaultedPage];
strncpy
(M[FForSQR*BLOCKSIZE],DM[TrackNoForSQR],40);
//Move PCB,SQ->RQ after setting TSC<-0
ADDpidTo(tempProcess->pid,7); //RQ
DELpidFrom(5); //SQ
TrackNoForSQR=-1; FForSQR=-1;

}
Task=0;//reset the task

}//end if(Task!=0)

struct ProcessTableNode *tempProcess=NULL;
//(Now Assign New Task in Priority Order)

if(PCBQueueTQHead!=NULL && EBQHead!=NULL)
//(output spool first)
{

tempProcess=NULL;
tempProcess=

FindProcessTableNode(PCBQueueTQHead->pid);

82

EBForOS=GetBufferFrom(1);
if(ErrorCount==0 || ErrorCount==1)
{

Task=2; StartCH3(); return;
}
if(tempProcess->PCB->OutPutCardCurrent==NULL)
{

ErrorCount=0;
AddBufferTo(EBForOS,1);
ReleasePCB(tempProcess);
DELpidFrom(6);//TQ
return;

}
TrackNoForOS=
tempProcess->PCB->OutPutCardCurrent->trackNo;
Task=2;//2 for OS
StartCH3();

}
else if(IFBHead!=NULL && CheckTrack()==1)
{

//Get next buffer from ifb(q)
EBForIS=GetBufferFrom(2);
//Get drum track
TrackNoForIS=GetTrackFromDrum();
Task=1;
StartCH3();

}
else if(PCBQueueLDHead!=NULL && CheckFrame()==1)
{

tempProcess=NULL;
tempProcess=

FindProcessTableNode(PCBQueueLDHead->pid);
//Find track number of next program card
TrackNoForLD=

tempProcess->PCB->PCardCurrent->trackNo;
//Allocate a frame
FrameNoForLD=GetFrameFromMemory();
//Update Page Table
int PageTableLength;
if(tempProcess->PCB->ptr[1]==NULL)

PageTableLength=0;
else
{

PageTableLength=
GetPageTableLength(tempProcess);

PageTableLength=PageTableLength+1;
}

83

UpdatePageTableLength
(tempProcess,PageTableLength);

UpdatePageFrameNo
(tempProcess,PageTableLength,FrameNoForLD);

Task=3;
StartCH3();

}
else if(PCBQueueIOHead!=NULL)
{

tempProcess=
FindProcessTableNode(PCBQueueIOHead->pid);

if(tempProcess->PCB->ir[0]=='G' &&
tempProcess->PCB->ir[1]=='D')

{
if(tempProcess->PCB->DCardCurrent==NULL)
{

//out of data message
tempProcess->PCB->ErrorMessage=1;
//6 for TQ
ADDpidTo(tempProcess->pid,6);
DELpidFrom(4);//4 for IO

}
else
{

TrackNoForIO=
tempProcess->PCB->

DCardCurrent->trackNo;
//Get memory real address
char va[3]; va[2]=NULL;
va[0]=tempProcess->PCB->ir[2];
va[1]=tempProcess->PCB->ir[3];
RAForIO=

ADDRESSMAP(tempProcess,atoi(va));
Task=4;
StartCH3();

}

}
else //if PD
{

if(tempProcess->PCB->llc>=
tempProcess->PCB->tll)

{
tempProcess->PCB->ErrorMessage=2;
ADDpidTo(tempProcess->pid,6);
DELpidFrom(4);

}

84

else
{

if(CheckTrack()==1)
{

TrackNoForIO=GetTrackFromDrum();
//update PCB
if(tempProcess->PCB->

OutPutCardHead==NULL &&
tempProcess->PCB->
OutPutCardTail==NULL)

{
tempProcess->PCB->
OutPutCardHead=
(struct CardListNode *)

malloc(sizeof(struct
CardListNode));

tempProcess->PCB->
OutPutCardHead->trackNo=
TrackNoForIO;
tempProcess->PCB->
OutPutCardHead->next=NULL;
tempProcess->PCB->
OutPutCardTail=
tempProcess->PCB->
OutPutCardHead;
tempProcess->PCB->
OutPutCardCurrent=
tempProcess->PCB->
OutPutCardHead;

}
else
{

tempProcess->PCB->
OutPutCardTail->next=
(struct CardListNode *)

malloc(sizeof(struct
CardListNode));

tempProcess->PCB->
OutPutCardTail=
tempProcess->PCB->
OutPutCardTail->next;
tempProcess->PCB->
OutPutCardTail->trackNo=
TrackNoForIO;
tempProcess->PCB->
OutPutCardTail->next=NULL;

}

85

//find memory RA
char va[3]; va[2]=NULL;
va[0]=tempProcess->PCB->ir[2];
va[1]=tempProcess->PCB->ir[3];

RAForIO=ADDRESSMAP(tempProcess,atoi(va));

//RAForIO=GetMemoryRAForIO(ptr,va);
Task=5;
StartCH3();

}
}

}
}
else if(PCBQueueSQHead!=NULL)
{

tempProcess=NULL;
tempProcess=

FindProcessTableNode(PCBQueueSQHead->pid);

if(CheckFrame()==1)
{

//Allocate
int FrameNo=GetFrameFromMemory();
//Update PidForFrame[30]
PidForFrame[FrameNo]=tempProcess->pid;
//Update page table
int PageTableFrameNo=

GetPageTableFrameNo(tempProcess);
int PageTableLength=

GetPageTableLength(tempProcess);
UpdatePageFrameNo(tempProcess,

tempProcess->PCB->FaultedPage,FrameNo);
//Adjust TrackForPage[10]
if(tempProcess->PCB->TrackForPage

[tempProcess->PCB->FaultedPage]==-1)
{

if(CheckTrack()==1)
{

int TrackNo=GetTrackFromDrum();
tempProcess->PCB->TrackForPage
[tempProcess->PCB->FaultedPage]=

TrackNo;
UpdatePageTableLength
(tempProcess,PageTableLength+1);

}

86

else
{

tempProcess->PCB->ErrorMessage=9;
ADDpidTo(PCBQueueSQHead->pid,6);
DELpidFrom(5);
return;

}
}
//Adjust IC,If necessary
FForSQR=FrameNo;
Task=7;
StartCH3();

}
else //frame not available
{

//--V-- Victim Process
//--S-- Swap Queue Head Process
struct ProcessTableNode *VtempProcess=NULL;
int VPageTableFrameNo;
int modified=0;

int SPageTableFrameNo=
GetPageTableFrameNo(tempProcess);

int SPageTableLength=
GetPageTableLength(tempProcess);

int VFrameNo=-1;
//Run page replacement algorithm
//and Find a victim frame
while(1)
{

VFrameNo=FindVictimFrame();
VtempProcess=FindProcessTableNode

(PidForFrame[VFrameNo]);
VPageTableFrameNo=

GetPageTableFrameNo(VtempProcess);
if(VFrameNo==VPageTableFrameNo)
{

continue;
VtempProcess=NULL;

}
else

break;
}
int VPageFrameNo=-1;
//Updating Victim Process
for(int page=0;page<10;page++)

87

{
if(M[VPageTableFrameNo*BLOCKSIZE+page][0]==

'1')
// if allocated page
{

VPageFrameNo=
GetPageFrameNo(VtempProcess,page);
if(VPageFrameNo==VFrameNo)
{

//Update PidForFrame[30]
PidForFrame[VFrameNo]=
PCBQueueSQHead->pid;
//updating victim process
M[VPageTableFrameNo*

BLOCKSIZE+page][0]='0';
if(M[VPageTableFrameNo*BLOCKSIZE
+page][1]=='1')
{

modified=1;
M[VPageTableFrameNo*
BLOCKSIZE+page][1]='0';
}

M[VPageTableFrameNo*BLOCKSIZE+page][2]=NULL;
M[VPageTableFrameNo*BLOCKSIZE+page][3]=NULL;
//updating swap process
UpdatePageFrameNo
(tempProcess,tempProcess->PCB->FaultedPage,VFrameNo);
if(modified==1)
{

VFForSQW=VFrameNo;
TrackNoForSQW=VtempProcess->PCB->

TrackForPage[page];
}
else

FForSQR=VFrameNo;
break;

}//if(atoi(PageFrameNo)==VFrameNo)
}//if(M[VPageTableFrameNo*BLOCKSIZE+page][0]=='1')
}
//Locate Drum Track with faulted page
if(tempProcess->PCB->TrackForPage

[tempProcess->PCB->FaultedPage]==-1)
{

if(CheckTrack()==1)
{

int TrackNo=GetTrackFromDrum();

88

tempProcess->PCB->TrackForPage
[tempProcess->PCB->FaultedPage]=TrackNo;
UpdatePageTableLength

(tempProcess,SPageTableLength+1);
}
else
{

tempProcess->PCB->ErrorMessage=9;
ADDpidTo(PCBQueueSQHead->pid,6);
DELpidFrom(5);
return;

}
}
if(modified==1)

Task=6;
else

Task=7;
StartCH3();
} //else frame not available
}//else if(PCBQueueSQHead!=NULL)
}

Appendix B

89

B.1 Data Set for the Workload with Quantum Size=1

PID ARRIVAL FINISH TURNAROUND WAITING
0 37 78 41 0
1 77 166 89 5
2 128 262 134 19
3 185 330 145 16
5 285 400 115 18
4 241 461 220 41
6 347 534 187 62
7 375 538 163 65
8 414 570 156 49
9 450 658 208 43
13 659 745 86 13
10 502 763 261 48
11 560 830 270 25
12 621 926 305 50
16 848 959 111 29
14 760 1005 245 39
15 812 1035 223 39
17 887 1135 248 42
21 1099 1201 102 17
18 951 1203 252 43
20 1061 1316 255 45
19 998 1334 336 55
23 1264 1395 131 32
22 1224 1452 228 40
24 1338 1481 143 20
25 1378 1559 181 32
27 1479 1650 171 33
26 1426 1667 241 50
29 1582 1670 88 10
28 1538 1739 201 26
32 1774 1865 91 31
31 1728 1867 139 34
30 1688 1868 180 34
33 1812 1994 182 43
34 1861 2134 273 26
37 2017 2162 145 11
35 1914 2164 250 22
39 2173 2294 121 17
36 1972 2333 361 46
40 2207 2346 139 18
38 2065 2450 385 41
41 2247 2494 247 44
45 2517 2579 62 8
43 2367 2582 215 36

90

42 2316 2619 303 31
44 2425 2683 258 18
47 2642 2788 146 30
48 2678 2810 132 32
46 2592 2840 248 37
49 2730 2943 213 54
53 2933 3028 95 12
51 2835 3046 211 25
50 2780 3064 284 32
56 3127 3212 85 19
55 3081 3240 159 18
54 3041 3286 245 18
52 2893 3335 442 42
57 3164 3480 316 48
58 3237 3520 283 33
61 3390 3563 173 15
59 3283 3608 325 39
63 3565 3716 151 16
60 3353 3730 377 48
64 3597 3793 196 17
62 3517 3819 302 21
65 3645 3886 241 31
67 3787 3999 212 40
69 3920 4043 123 8
70 3940 4127 187 22
66 3741 4141 400 32
71 4040 4143 103 3
68 3850 4211 361 35
72 4072 4258 186 11
73 4156 4397 241 15
75 4256 4451 195 24
77 4354 4489 135 5
74 4206 4495 289 19
76 4313 4570 257 15
79 4528 4687 159 51
80 4564 4709 145 46
78 4480 4771 291 60
81 4602 4795 193 58
82 4652 4905 253 49
85 4844 4906 62 18
83 4709 4966 257 24
84 4806 5025 219 20
87 4983 5131 148 46
88 5019 5153 134 45
86 4943 5202 259 53
89 5057 5275 218 61
90 5106 5360 254 45

91

91 5158 5387 229 28
93 5307 5405 98 10
92 5220 5457 237 24
94 5400 5547 147 16
95 5450 5605 155 27
97 5548 5659 111 20
96 5510 5700 190 50
98 5598 5734 136 32
99 5639 5736 97 29

B.2 Data Set for the Workload with Quantum Size=2

PID ARRIVAL FINISH TURNAROUND WAITING
0 37 78 41 0
1 77 173 96 10
2 128 269 141 17
3 184 346 162 18
5 284 382 98 9
4 240 455 215 33
7 374 537 163 54
6 330 561 231 54
8 418 574 156 50
9 472 673 201 48
10 510 754 244 49
11 562 796 234 29
13 663 824 161 13
12 625 882 257 32
15 831 982 151 50
16 875 998 123 43
14 791 1018 227 56
17 916 1114 198 49
21 1124 1257 133 21
19 1021 1275 254 30
20 1079 1327 248 22
18 967 1345 378 43
24 1322 1438 116 12
23 1272 1463 191 23
22 1170 1547 377 33
25 1362 1596 234 33
26 1410 1668 258 36
27 1460 1692 232 21
28 1520 1752 232 17
29 1633 1782 149 6
32 1791 1870 79 25

92

31 1745 1890 145 25
30 1705 1952 247 42
33 1829 2038 209 52
35 1931 2126 195 35
34 1887 2127 240 45
37 2031 2128 97 8
36 1992 2242 250 23
38 2121 2337 216 35
40 2251 2350 99 31
39 2205 2378 173 37
41 2289 2485 196 54
42 2338 2573 235 30
43 2391 2575 184 26
45 2520 2599 79 9
44 2449 2688 239 29
46 2613 2791 178 36
47 2663 2799 136 42
48 2697 2828 131 36
49 2736 2926 190 42
50 2785 3040 255 28
53 2941 3052 111 13
51 2839 3082 243 25
56 3115 3211 96 15
55 3079 3232 153 18
54 2989 3290 301 42
52 2897 3356 459 47
61 3381 3458 77 7
58 3229 3516 287 9
57 3155 3528 373 37
59 3277 3622 345 14
60 3341 3692 351 20
62 3473 3750 277 32
63 3555 3795 240 25
64 3591 3822 231 33
67 3776 3978 202 10
65 3641 3990 349 28
66 3719 3998 279 16
69 3875 4058 183 3
72 4103 4224 121 40
68 3837 4238 401 45
71 4069 4248 179 36
70 4017 4362 345 52
73 4141 4418 277 54
75 4293 4447 154 13
74 4243 4488 245 13
77 4451 4590 139 22
80 4574 4666 92 39

93

79 4541 4667 126 44
78 4501 4689 188 52
76 4351 4801 450 66
82 4684 4878 194 21
81 4615 4896 281 44
83 4734 5006 272 40
85 4919 5020 101 10
84 4826 5046 220 18
86 4967 5123 156 14
88 5079 5177 98 14
87 5043 5204 161 25
89 5116 5272 156 27
90 5167 5385 218 35
93 5319 5415 96 25
91 5221 5431 210 35
92 5285 5491 206 29
95 5464 5587 123 15
94 5424 5616 192 22
97 5562 5692 130 29
96 5524 5707 183 33
99 5652 5748 96 30
98 5612 5750 138 22

B.3 Data Set for the Workload with Quantum Size=4

PID ARRIVAL FINISH TURNAROUND WAITING
0 37 78 41 0
1 77 173 96 9
2 128 262 134 15
3 184 341 157 22
5 285 377 92 10
4 240 421 181 22
8 412 515 103 41
7 380 541 161 49
6 332 601 269 65
9 454 645 191 48
13 668 731 63 5
11 558 822 264 26
10 504 835 331 41
15 758 865 107 15
14 716 900 184 22
12 620 902 282 19
16 909 964 55 0
17 950 1078 128 12
18 999 1165 166 22
19 1049 1254 205 35

94

21 1149 1266 117 16
20 1112 1316 204 25
22 1203 1337 134 16
23 1293 1429 136 22
24 1329 1454 125 17
25 1368 1523 155 21
26 1416 1612 196 39
27 1471 1653 182 17
29 1573 1681 108 13
32 1732 1817 85 40
28 1537 1818 281 60
30 1626 1828 202 47
31 1688 1833 145 47
33 1772 1944 172 32
34 1886 2037 151 11
37 2034 2127 93 7
35 1936 2139 203 27
36 1994 2222 228 34
39 2142 2264 122 25
40 2176 2301 125 28
38 2088 2302 214 33
41 2237 2437 200 33
43 2338 2480 142 32
42 2287 2526 239 29
45 2472 2616 144 22
47 2561 2679 118 41
48 2595 2701 106 31
46 2521 2713 192 38
44 2397 2804 407 57
49 2636 2948 312 38
50 2701 2963 262 33
51 2750 3019 269 27
53 2850 3093 243 19
52 2814 3152 338 54
56 3082 3183 101 28
55 3032 3220 188 31
54 2982 3285 303 46
58 3175 3422 247 32
57 3120 3424 304 54
61 3325 3517 192 17
59 3237 3546 309 36
60 3285 3612 327 22
64 3539 3657 118 12
62 3463 3728 265 41
63 3507 3758 251 31
65 3583 3848 265 30
66 3635 3948 313 34

95

69 3793 3992 199 6
71 3989 4102 113 25
68 3755 4104 349 32
67 3684 4105 421 37
72 4023 4119 96 23
70 3883 4131 248 30
73 4126 4316 190 13
74 4177 4392 215 19
77 4331 4455 124 9
75 4227 4472 245 24
80 4469 4573 104 23
79 4429 4576 147 24
76 4285 4650 365 40
78 4377 4696 319 36
82 4594 4845 251 34
85 4742 4899 157 27
83 4640 4955 315 32
81 4511 5022 511 53
84 4706 5058 352 31
88 4992 5078 86 7
87 4926 5172 246 27
86 4888 5223 335 31
89 5054 5257 203 25
90 5103 5343 240 35
93 5254 5377 123 5
91 5151 5519 368 35
95 5384 5536 152 14
92 5214 5539 325 21
94 5304 5621 317 21
97 5558 5670 112 3
99 5650 5746 96 33
98 5608 5747 139 33
96 5442 5762 320 37

B.4 Data Set for the Workload with Quantum Size=5

PID ARRIVAL FINISH TURNAROUND WAITING
0 37 78 41 0
1 77 173 96 9
2 128 262 134 15
3 184 341 157 22
5 285 377 92 10
4 240 421 181 22
8 412 515 103 41
7 380 541 161 49
6 332 601 269 65

96

9 454 645 191 48
13 668 731 63 5
11 558 822 264 26
10 504 835 331 41
15 758 865 107 15
14 716 900 184 22
12 620 902 282 19
16 909 964 55 0
17 950 1078 128 12
18 999 1165 166 22
19 1049 1254 205 35
21 1149 1266 117 16
20 1112 1316 204 25
22 1203 1337 134 16
23 1293 1429 136 22
24 1329 1454 125 17
25 1368 1523 155 21
26 1416 1612 196 39
27 1471 1653 182 17
29 1573 1681 108 13
32 1732 1817 85 40
28 1537 1818 281 60
30 1626 1828 202 47
31 1688 1833 145 47
33 1772 1944 172 32
34 1886 2037 151 11
37 2034 2127 93 7
35 1936 2139 203 27
36 1994 2222 228 34
39 2142 2264 122 25
40 2176 2301 125 28
38 2088 2302 214 33
41 2237 2437 200 33
43 2338 2480 142 32
42 2287 2526 239 29
45 2472 2616 144 22
47 2561 2679 118 41
48 2595 2701 106 31
46 2521 2713 192 38
44 2397 2804 407 57
49 2636 2948 312 38
50 2701 2963 262 33
51 2750 3019 269 27
53 2850 3093 243 19
52 2814 3152 338 54
56 3082 3183 101 28
55 3032 3220 188 31

97

54 2982 3285 303 46
58 3175 3422 247 32
57 3120 3424 304 54
61 3325 3517 192 17
59 3237 3546 309 36
60 3285 3612 327 22
64 3539 3657 118 12
62 3463 3728 265 41
63 3507 3758 251 31
65 3583 3848 265 30
66 3635 3948 313 34
69 3793 3992 199 6
71 3989 4102 113 25
68 3755 4104 349 32
67 3684 4105 421 37
72 4023 4119 96 23
70 3883 4131 248 30
73 4126 4316 190 13
74 4177 4392 215 19
77 4331 4455 124 9
75 4227 4472 245 24
80 4469 4573 104 23
79 4429 4576 147 24
76 4285 4650 365 40
78 4377 4696 319 36
82 4594 4845 251 34
85 4742 4899 157 27
83 4640 4955 315 32
81 4511 5022 511 53
84 4706 5058 352 31
88 4992 5078 86 7
87 4926 5172 246 27
86 4888 5223 335 31
89 5054 5257 203 25
90 5103 5343 240 35
93 5254 5377 123 5
91 5151 5519 368 35
95 5384 5536 152 14
92 5214 5539 325 21
94 5304 5621 317 21
97 5558 5670 112 3
99 5650 5746 96 33
98 5608 5747 139 33
96 5442 5762 320 37

98

References

[1] Shaw, Allan C., “The logical design of operating systems”, Prentice Hall, 1974.

[2] Henry, G. J. “The Fair Share Scheduler”, Bell System Technical Journal,

October, 1984.

[3] J. Kay and P. Lauder, “A Fair Share Scheduler”, Communications of

ACM, 31(1), Jan. 1998.

[4] Larmouth, J. “Scheduling for a Share of the Machine”, Software Practice and

Experience, vol 5, 1975, pp29-49.

[5] Larmouth, J. “Scheduling for Immediate Turnaround”, Software Practice and

Experience, vol 8, 1978, pp559-578.

[6] Newbury, J.P., ”Immediate Turnaround-An Exclusive Goal”, Software Practice

and Experience, vol 8, 1982.

99

[7] Woodside, C.M. “Controllability of Computer Performance Tradeoffs Obtained

Using Controlled-Share Queue Schedulers” IEEE Trans. On Software

Engineering, Vol. SE-12, no.10, October, 1986.

[8] Sharma, Onkar P., "Enhancing Operating System Course Using a Comprehensive

Project: Decades Of Experience Outlined," CCSC: Eastern Conference, PP.206-

213, 2007.

[9] Onkar Sharma et al, "An Operating System Project, its accompanying problems,

and their object-oriented design solution", The Journal of Computing for Small

Colleges, Vol. 8, No. 2, Nov. 1992.

[10] William Stallings, Operating systems, Prentice Hall, fourth edition, 2001.

[11] Jason Nieh, Chris Waill, and Hua Zhong, “Virtual-time round robin: An O(1)

proportional share scheduler”, In Proceedings of the 2001 USENIX Annual

Technical Conference, June 2001.

[12] Andrew S. Tanenbaum and Albert S. Woodhull, Operating systems: Design and

implementation, Prentice Hall, second edition, 1997.

Bibliography

100

[1] A. Silberschatz, P. Baer Galvin, G. Gagne, Operating System Concepts, John

Wiley & Sons, 6th edition.

[2] Andrew S. Tanenbaum, Modern Operating Systems, Second Edition, Prentice

Hall of India.

[3] Zhao, Xiaodong, “Process Scheduling in Linux”, Department of Computer

Science, Helsinki University.

[4] Hideaki Takagi, “Exact Analysis of round-robin Scheduling of Services”, IBM J.

Res. Development. Vol 31, July 1987.

[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a Fair

Queueing Algorithm”, in Proceedings of ACM SIGCOMM ’89, Austin, TX, Sept.

1989, pp 1-12

[6] M. Jones, D. Rosu, and M. Rosu, “CPU Reservations and Time Constraints:

Efficient, Predictable Scheduling of Independent Activities,” in Proceedings of

the 16th Symposium on Operating Systems Principles, ACM press, New York,

Oct. 1997, pp. 198-211

[7] H. Custer, Inside Windows NT, Redmond, WA, USA: Microsoft Press 1993

[8] M. Beck, H. Bohme, M. Dziadzka, and U. Kunitz, Linux Kernel Internals,

Reading, MA: Addison-Wesley, 2nd ed., 1998.

