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Chapter 1

Introduction

1.1 Programs and Processes

It is important to understand the concept of a process before describing schedulers. A

program is a combination of instructions and data put together to perform a task when

executed. Process is the program in execution. Each process has its own address space,

which typically consists of program parts and data parts. The program part stores the

instructions that processor executes and the data part contains data required for the

process. It also includes the state of the process such as contents of the CPU registers

which change dynamically with the execution of the instructions.

Life Cycle of a Process

When a process is loaded in memory, it becomes ready to execute. When the

scheduler selects the process for execution, the process enters the running state. In

this state, the process can either be preempted which is the case when it exceeds

the time quantum allocated or blocked while waiting for I/O data. When process

is preempted then the operating system puts the process on the end of the ready

queue of processes, but it remains ready to execute. If the process is blocked

while waiting for I/O operation, it is, then, taken from ready queue and put on the
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I/O queue. When I/O channel completes the I/O operation for blocked process, the

process reenters the ready state, where it waits for CPU.

Thus, at any time each process may be in one of the following states:

Ready

In this state, the process is ready to run, and waiting for CPU. This is the

only state from where process can enter the running state.

Running

In this state, the process is using the CPU, and process can, either be

preempted and put in the ready state, or may go to blocked state for I/O

operation or may terminate with or without error.

Blocked

The process is waiting for I/O operation in this state. When channel

completes its I/O operation, then, the process becomes ready and the

operating system puts it on the back of the ready queue.

CPU and I/O-bound processes

A Process consists of the CPU-bound instruction and I/O-bound instructions. A

process, which has the majority of the CPU-bound instructions, is called CPU-

bound process. A process, which has the majority of the I/O-bound instructions, is

called I/O-bound process. Hence, the success of CPU scheduling heavily depends

on these characteristics of the process.
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1.2 Scheduling

Scheduling is a fundamental operating system's function. CPU scheduling deals with the

problem of deciding which of the process in the ready queue is to be selected for CPU.

Thus, whenever the CPU becomes idle, the operating system must select from among the

processes in memory that are ready to execute, and allocates the CPU to it. The part of

the operating system which makes the choice as to which of the processes in the ready

queue runs next is called scheduler, and the algorithm it uses is called scheduling

algorithm.

At present, there are several primitive scheduling algorithms exist such as first-come

first-served (FCFS), shortest job first (SJF), Priority, Round-robin, Multilevel Queue, and

Multilevel Feedback Queue etc. However, there is no one best scheduling algorithm; each

has its own characteristics. For example, if we can predict the next CPU burst of all the

processes in the ready queue (in some way), shortest job first scheduling algorithm has

minimum waiting time than others. Round-robin is basically a first-come first-served

algorithm and is thus known for fairness among the processes. Here, I chose the round-

robin scheduling algorithm because it is one of the most popular scheduling algorithms

found in computer systems today for multiprogramming and time sharing computer

environment.

1.2.1 Scheduling Goals

In terms of schedulers, there is no single definition of performance that fits

everyone’s needs i.e., there is not a single performance goal for the scheduler to
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achieve. The many definitions of good scheduling performance often lead to a

give-and-take situation, for instance, improving performance in one way

decreases performance in another. Here, I am going to achieve the performance in

three different ways, namely, CPU utilization, turnaround time and waiting time.

CPU utilization is the percentage of time CPU is busy with processes. Turnaround

time is the time difference of the arrival time and the finish time of the process.

The waiting time is defined as the amount of time that a process spends waiting

for CPU on the ready queue.

1.3 FCFS Scheduling Algorithm

First-come First-served scheduling algorithm is one of the simplest non-preemptive

scheduling algorithms. In this algorithm, the process that requests the CPU first, gets the

CPU first. The implementation of this algorithm consists of a FIFO queue of the ready

processes. The process enters the ready queue and continuously moves to the front of the

ready queue. When it reaches to the front of the queue, it is allocated the processor when

it becomes free. This algorithm, generally, has long average waiting time. The main

advantage of this algorithm is that it is easy to understand, easy to program, and ensures

fairness.

1.4 Round Robin Scheduling Algorithm

It is one of the most popular scheduling algorithms found in computer systems today for

multiprogramming and time sharing environment. It is similar to FCFS, but preemption is

included to switch the CPU among the processes. A time duration called quantum is
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introduced in this algorithm, it is the time for which CPU is assigned a process. Thus,

each process is assigned the same time interval (time quantum) and, if the process

exceeds its time quantum, CPU is preempted and is given to another process on the ready

queue.

The round-robin scheduler has the advantage of very little selection overhead as

scheduling is done in constant time. Thus, scheduling decision time is simply O(1)

because it has to put running process to the end of the ready queue and has to select the

process from the front of the queue, which takes the constant amount of time.

What is an O(1) Algorithm?

Big-O notation is generally used to denote the growth rate of algorithms

execution time based on the amount of input. For example, the running

rate of an O(n) algorithm increases linearly, as the input size n grows. If it

is possible to establish a constant upper bound on the running time of an

algorithm, it is ,then, considered to be O(1) (constant time). That is, an

O(1) algorithm is guaranteed to complete in a certain amount of time

regardless of the size of the input.

The answer of the question “what makes the round-robin scheduling

algorithm perform in O(1) time?” is that every time the algorithm

performs exactly the same function, regardless of how many processes are

on the queue. This time is referred to as the context switch time and is the
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time taken to save the CPU registers in the process control block for the

process being preempted or blocked and restoring the CPU registers from

the saved or original contents of the selected process’s control block. This

allows the scheduler to efficiently select a process among many processes

in the queue without increasing selection overhead cost, as the number of

processes increases.
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Chapter 2

Problem Statement

The performance of the Round Robin Algorithm depends heavily on the size of the time

quantum. If the time quantum is large, the Round Robin simply becomes FCFS and, if

time quantum is small, there are so many preemptions of the CPU. Many context

switches decrease the utilization of CPU because, in case of context switch, CPU is busy

with no fruitful work. Thus, we need to consider the effect of context switching on the

performance of Round Robin Scheduling Algorithm.

Thus, the main purpose of my thesis is to find the optimal quantum size whereby,

the utilization of the CPU is maximized and turnaround time, and waiting time for each

process are minimized.
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Chapter 3

Objective

The objective of my thesis work is:

To analyze the effect of quantum size on CPU utilization, turnaround time, and

waiting time and, hence, to find the optimal quantum size whereby the utilization of

the CPU is maximized and, turnaround time, and waiting time for each process are

minimized.
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Chapter 4

Methodology

4.1 Literature Survey

The evolution of scheduling closely tracked the development of computers. The concept

of scheduling is not new; Henry L. Gantt, an American engineer and social scientist is

credited with the development of the bar chart (Gantt Chart) in 1917 to show the

performance of different scheduling algorithms.

One of the oldest, simplest, and most widely used algorithms is round-robin scheduling

algorithm. There are many variations of the primitive round-robin scheduling algorithms.

For example, weighted round-robin, virtual round-robin, and virtual time round-robin are

the new recent versions of the round-robin scheduling algorithm.

Weighted Round Robin (WRR)

The standard round-robin does not deal with different priorities of processes. All

processes are equally executed. In weighted round-robin, quantum is based on the

priorities of the processes. A high prioritized process receives a larger quantum,

and by this, receives execution time proportional with its priority. This is a very

common extension to the primitive round-robin scheduler and will be referred to

simply as the round-robin scheduler.



10

Virtual Round-Robin (VRR)

The virtual round-robin scheduler described by S. William [10] is an extension of

the standard round-robin scheduler. The round-robin scheduler treats I/O bound

processes and CPU-bound processes equally, but an I/O bound process does not

fully use its time-slice and thus gets an unfair treatment compared to CPU-bound

processes. The virtual round robin scheduler addresses the unfair treatment of I/O-

bound processes by allowing processes to maintain their quantum when blocked,

the quantum might be variable, and placing the blocked process at the front of the

ready queue when it returns to the ready queue. A process is only returned to the

back of the queue when it has used its full quantum. Researches have shown that

this algorithm is better than the standard round-robin scheduler in terms of

fairness between I/O bound processes and CPU-bound processes.

Virtual Time Round-Robin (VTRR)

The weighted round-robin and virtual round-robin schedulers both use a variable

quantum for processes, as priorities are implemented by changing the quantum

given to each processes. In the virtual time round-robin N. Jason [11] and T.

Andrew [12] use a fixed quantum, but change the frequency by which a process is

executed in order to implement priorities. This has the advantage that response

times are generally improved for high prioritized processes, while the selection

overhead is still constant time.

Lots of work has been done in the area of scheduler such that it should be fair among the

processes according to their weights. Fairness has a meaning: given a set of jobs with
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associated weights, to achieve good fairness, scheduler should allocate resources to each

job in proportion to its respective weight. This is reflected in work done by Larmouth [4]

and [5], Newbury [6], Henry [2], and Woodside [7].

4.2 Statistics to Measure Optimality of Quantum Size

Different CPU scheduling algorithms have different properties and may favor one class

of process over another. Many criteria have been suggested for comparing optimal

quantum size for round robin algorithm. The criteria include the following:

i) CPU utilization

It is the percentage of time for which CPU is busy with processes. Here, we

want to keep the CPU as busy as possible. Thus, if the running process

requests for I/O operation, then, another process is selected to execute so that

CPU is kept busy. Concept of multiprogramming is used for maximizing the

CPU utilization. Several processes are kept in memory and are thus ready to

run. Scheduling time is, of course, an overhead since no useful work is done.

Utilization is thus measured by throughput which is measured as the number

of processes completed per unit time.

ii) Turnaround Time

This is the time difference of the arrival time and the finish time of the

process. It is generally the sum of the waiting time and the service time of the

process. If average turnaround time decreases, then throughput will increase.
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iii) Waiting Time

This is the amount of time that a process spends waiting on the ready queue.

The waiting time should be kept to the minimum. Waiting time and

throughput are directly dependent on each other. If average waiting time

decreases, then it is clear that throughput will be increased.  Average waiting

time is minimal for shortest job first scheduling algorithm but, it is just like a

conceptual scheduling algorithm because, we cannot find the shortest next

CPU burst time of the process at run time and thus cannot implement it. We

can only predict the next CPU burst time of the processes with the help of the

history of that process. But this is not always accurate. Another great

disadvantage of the shortest job first scheduling algorithm is that of starvation,

particularly if the shortest job first (SJF) is implemented as a preemptive

algorithm. In case of round robin scheduling algorithm, average waiting time

will generally be not as good as in the shortest job first. In spite of that, we

consider the average waiting time for round robin scheduling algorithm

because it directly affects the throughput.

4.3 Algorithm Evaluation Method

There are so many scheduling algorithms, each with its own characteristics. As I have

already mentioned, I used basically three criteria, namely, CPU utilization, turnaround

time, and waiting time to find the optimal quantum size. Based upon these selection

criteria, I used deterministic modeling. Deterministic modeling is one type of analytic
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evaluation method. This method takes a particular predetermined workload and defines

the performance for that workload with different quantum size.

4.4 Simulator

To evaluate the round-robin scheduling algorithm, a simulator of a multiprogramming

operating system (MOS) has been implemented. The goal of the MOS simulator is to

make it possible to evaluate the performance of round-robin scheduling algorithm by

observing the changes in the selected parameters with different quantum size. Thus, to

calculate different performance parameters, we have to implement data structures for

them to record the changing parameters.

The main purpose of the multiprogramming operating system (MOS) is to process a

batched stream of user jobs efficiently. Another major task of the MOS is the

management of hardware and software resources. These include user storage, drum

storage, channel management, and the CPU. Specification and design of the MOS are

given in consequent chapters.
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Chapter 5

Specification

For this thesis, I have implemented a multiprogramming operating system (MOS) as a

project. Specification of the MOS is based upon the ideas given by Alan C. Shaw [1].

Appendix in this text book gives the overall description of the MOS project for

hypothetical computer configuration. Here, we directly deal with the basic functionalities

of the operating system such as input output, interrupt handling, scheduling, main and

auxiliary storage management, process and resource data structure. Description of the

MOS project and its breakdown into three versions can be found in the paper by O. P.

Sharma [8, 9].

5.1 Machine Specification

Every operating system provides a view of machine to its users. Similarly we can

describe hypothetical configuration of the MOS computers from two points of view:

i) The virtual machine seen by the typical user.

ii) The real machine used by the MOS designer.

5.1.1 Virtual Machine

The overall configuration of the virtual machine seen by the typical user can be

depicted as:
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Here, we have assumed that main storage consists of maximum of hundred words,

addressed from 00 to 99. Here, one word is divided into four bytes and each byte

is capable of storing one character. The CPU has three registers as:

1) General purpose register which is divided into four bytes and denoted

by R.

2) “Boolean” toggle having the size of one byte and denoted by C. This

may contain either true “T” or false “F”.

3) Instruction counter having the size of two bytes and denoted by IC,

which contains the address of the next instruction to be executed.

Each instruction of the program is divided into two parts: operation code and operand

address. The table below gives the format and meaning of each instruction used in our

program. The first instruction of the program always begins at address 00.

00
01

98
99

Main
Storage

C IC

CPU

IR

Card
Reader

Line
Printer

Figure 5.1: Virtual Machine



16

Notes:  1. X1, X2 belongs to [0, 1, …, 9]

2. X = 10X1+ X2

3. [X] means “the contents of location X”

4. Z =10X1

We can divide these seven basic instructions into two categories: CPU-bound instructions

and I/O-bound instructions. Get Data (GD) and Put Data (PD) are the examples of I/O-

bound instructions whereas the remaining Load Register (LR), Store Registers (SR),

Compare R (CR), Branch on True (BT), and Halt (H) are the examples of CPU-bound

instructions.

Users of the machine prepare the job for batch processing by including control cards,

program cards, and data cards in the sequence shown:

Instruction Interpretation
Operator Operand

LR X1X2 R := [X];
SR X1X2 X := R;
CR X1X2 if R = [X] then C := ‘T’ else C := ’F’
BT X1X2 if C=’T’ then IC := X
GD X1X2 Read ([Z+i], i = 0,…, 9 );
PD X1X2 Print ([Z+i], i = 0,…, 9 );
H halt

Table 5.1: Instruction Set of Virtual Machine
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<JOBCard> <Program> <DATACard> <Data> <ENDJOBCard>

where <JOBCard>, <DATACard>, and <ENDJOBCard> are control cards.

<JOBCard>

<JOBCard> indicates the starting of new program which contains four entries as:

a. The $AMJ cc.1-4  A multiprogramming Job

b. <JobID>    cc.5-8  a unique four character job identifier

c. <time estimate> cc 9-12, four digit maximum time estimate

d. <line estimate>   cc 13-16, four digit output estimate

<Program>

Each line of the <Program> part contains information in card columns 1-40. The

ith card contains the initial contents of the user virtual memory locations

10(i-1), 10(i-1)+1, …….., 10(i-1)+9,  i=1, 2, 3, ……., n

where n is the number of cards in the <Program> deck. The number of cards in

the program deck defines the size of the user space, that is, n cards define 10*n

words, n<=10. The value of n can not exceed 10 because of the size limitation of

virtual memory.

<DATACard>
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The <DATACard> has the format $DTA (cc. 1-4). The <DATACard> is omitted

if there is no <Data> cards in the job. This control card signals end of program

cards and beginning of data cards.

<Data>

The <Data> deck contains information in 1-40 and, is the user data retrieved by

the virtual machine GD instruction.

<ENDJOBCard>

The <ENDJOBCard> has the format $END (cc.1-4) and <JobID> (cc. 5-8) where

<JobID> should be same as in <JOBCard>. This card signifies physical end of the

job deck.
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5.1.2 Real Machine

The diagram of the real machine used by the MOS designer/implementer can be depicted

in fig 5.2.

The overall design of the real machine can be described with the help of following

subsections as:

i) Components

Figure 5.2 describes the abstract view of components of the real machine. At any

time, CPU may operate in either a master mode or a slave mode. In master mode, it

executes the instructions of the MOS, which resides in the supervisor storage. In slave

mode, it executes the instructions of the user program which are in main memory, and

accesses these programs via paging mechanism.

The CPU registers of interests are:

C: a one-byte “Boolean” toggle,

Supervisor
Storage

HLP

Timer

Registers

Read-
Only
Memory

CPU

User
Storage

Channel 1 Channel 2 Channel 3

Card
Reader

Line
Printer Auxiliary

Storage

Page Map

Figure 5.2: Real Machine
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R: a four-byte general purpose register,

IC: a two-byte virtual machine location counter,

PI, SI, IOI, TI: four interrupt registers,

PTR: a four-byte page table register,

CHST[i], i=1, 2, 3: three channel status registers, and

MODE: mode of CPU, “master ” or “slave”.

Interrupt registers PI, SI, IOI, and TI are used to set the interrupts generated by

user programs, channels, and timer respectively. These interrupts have been

described later. PTR register is used to store the information about the page table.

Channel status registers (CHST) are used to keep record of the status of the

channels. At any time, channel may either be free or busy. We set the CHST[i]

register to 1 if channel i is busy. The MODE register is used to store the mode of

the CPU. Its value may be either 1(master mode) or 0(slave mode).

Here, main memory consists of 300 words; each word is divided into four one-

byte unit. Address of each word is indicated from 000 to 299. The main memory

is divided into 30 blocks where each block consists of 10 words. Supervisor

storage in the Figure 5.2 indicates the amount of storage required for MOS.

The card reader and the line printer reads or writes respectively, 40 bytes of

information at a time. Channel 1 and 2 are connected from peripheral devices to

supervisor storage and take 5 time units to transfer information, while channel 3 is
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connected between auxiliary storage and both supervisor and user memory, and

takes 2 time units.

The auxiliary storage is a high speed drum of 100 tracks. Each track consists of 10

words or 40 bytes. The transfer of 10 words to or from a track takes 2 time units.

ii) Master Mode Operation

Supervisor storage is used to store the main operating system. We have assumed

that the master mode operations execute in zero time unit. In the master mode,

interrupt registers are inspected and, the operating system accomplishes the

appropriate tasks according to the value of the interrupt registers. I/O operations

are initiated by starting the non busy channels with proper tasks.

iii) Slave Mode Operation

The CPU is said to be in slave mode when it is executing the user program. Each

user instruction takes one time unit to execute. Paging hardware is used to map

the address from virtual to real; page table is used for this purpose. The Page

Table Register (PTR) points to page table location in memory and is divided into

four bytes named a0, a1, a2, and a3. Here a1 denotes the length of the page table

minus one, and 10a2+a3 denotes the user storage block in which the page table

resides, as shown in the Figure 5.3 below.
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The virtual address X1X2 is mapped by the relocation hardware into the real

address as:

10[10 (10a2 + 10a3) + X1] + X2

iv) Channels

Channels are used for I/O operations. When MOS gives the task to the channel, the

status of the channel is set to busy (1), and I/O occurs completely in parallel with

CPU. After the completion of the task given to the channel by MOS, the status of the

channel is reset to free, and I/O interrupt signal is raised by setting proper value in

IOI registers.

0

1

2

27

28

29

…

…

13

0
1

.

.

.

9

Pages Page Table

PTR a0 a1 a2 a3

0  1  1   3

0002

0028

User Storage

Page 0

Page 1

Page Table

Figure 5.3: User Storage at any time
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Channel 1 is used to read the data from card reader into supervisor memory, channel

2 is used to print the data to the line printer form supervisor memory, and, channel 3

is used to transfer data between secondary storage and user storage as well as

supervisor storage.

v) Timer

There are two time counters used in the system, namely, total time counter (TTC) and

time slice counter (TSC). Total time counter is used to count the total CPU time the

process has used. Time slice counter is used to count the time slice used by the

running process out of the total time slice (time quantum) assigned to that process.

TTC and TSC of running processes are incremented after each CPU cycle.

When the TTC of a process exceeds the total time limit of the running process as

indicated by the user on the control card, the timer interrupt occurs by setting the TI

register to 2. When the TSC of a particular process exceeds the time slice (time

quantum) given to that process, the timer interrupt set the TI register to 1. These

values are actually added to TI register. Hence TI value will vary between 0 and 3.

vi) Interrupts

Four types of interrupts can be generated.

a. Program Interrupt (PI): Program interrupt, PI, is provided to indicate program

errors at execution time. It occurs in slave mode.



24

PI=1; interrupt due to operation code error.

PI=2; interrupt due to operand error.

PI=3; interrupt due to valid or invalid page fault.

b. Supervisor interrupt (SI): Supervisor interrupt, SI, is provided for system calls.

It occurs in slave mode.

SI=1; interrupt due to GD instruction.

SI=2; interrupt due to PD instruction.

SI=3; interrupt due to H instruction.

c. Input Output interrupt (IOI): Input output interrupt, IOI, is provided to indicate

completion of I/O operations. The different values of the IOI register when

interrupt signal is raised and its interpretation are given below:

IOI=1; when channel 1 completes its task.

IOI=2; when channel 2 completes its task.

IOI=3; when channel 1 and channel 2 complete their task simultaneously.

IOI=4; when channel 3 completes its task.

IOI=5; when channel 1 and channel 3 complete their task simultaneously.

IOI=6; when channel 2 and channel 3 complete their task simultaneously.

IOI=7; when all channels complete their task simultaneously.

d. Timer Interrupt (TI): Timer interrupt, TI, is provided to indicate that the

quantum has been finished or time limit has been finished.

TI=1; if quantum has been finished.
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TI=2; if time limit has been finished.

TI=3; if both finish at the same time.

5.2 Life Cycle of a Job

In between reading the job from card reader and printing the output of the job to the line

printer, the job may pass through different stages. The overall life cycle of a job can be

described by three stages: input spooling, main processing, and output spooling, and is

shown in figure 5.4.

CPU

Supervisor Storage

Card Reader Printer Drum

Fig. 5.4: The Life of a Job

1

7

6

2

3
5
3

4

Supervisor Storage
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Input Spooling

Here, program and data parts of a job are transferred from the card reader to the drum.

Appropriate data structures have been maintained inside the PCB to keep record of the

process and data part of the process. Channel 1 reads the input job from the card reader

into the supervisor buffer and channel 3 stores these buffers into the secondary storage,

drum.

Main Processing

The program part of the job is loaded from the drum track into user storage by

channel 3. Then, the job is ready to run and becomes a process. During the overall

life of the process while in memory, its status will generally switch many times

among ready, running, and blocked. Process waits on the ready queue until

scheduled, then it starts running. When GD or PD instructions execute, it is

preempted and placed on blocked queue. After IO is completed by channel 3, it is

moved back to ready queue. If it exceeds its time quantum, it is preempted and

placed at the back of the ready queue. Finally when H is encountered or error is

detected, it is moved to terminate queue.

Output Spooling

Whenever the process gets terminated, either normally or as a result of an error,

outputs and error messages of the process are output spooled from drum to the

printer. Channel 3 reads the output line from secondary storage into the supervisor

buffer and, then, those output lines of the user program get printed by the channel

2.
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Chapter 6

Design and Implementation

6.1 MOS Design

To evaluate the round-robin scheduling algorithm, a simulator of a multiprogramming

operating system (MOS) has been designed. The goal of the MOS simulator is to make it

possible to evaluate round-robin scheduling algorithm and the values of changing

parameters with different quantum sizes.

MOS
(Master Mode)

Scheduler

(Slave Mode)

Time Simulator

Figure 6.1: Basic Design of Multiprogramming Operating System
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The focus of the MOS simulator is to test scheduler that has been implemented inside the

MOS independently. An overall design of the MOS simulator is given in the Figure 6.1.

There are two major modules: one is master mode and another is slave mode. The master

mode handles the interrupts generated by channels, timer, and user program. When an

interrupt occurs and appropriate interrupt register is set, it causes switch to master mode.

In the master mode, MOS checks the value of interrupt registers and calls appropriate

interrupt handling routines. Finally, after finishing the interrupt services, MOS calls the

scheduler to get the ready process to run.  Time simulator is used to simulate the channel

and CPU timers. The overall data structures used and algorithm of main modules are

given in the next subsections:

6.1.1 Data Structures used in the design of MOS

Different data structures have been conceptualized and implemented while designing and

implementing the multiprogramming operating system (MOS). The main purpose of data

structure is to maintain the current state of all the user processes and the current state of

the operating system.

To keep record of any process, PCB has been constructed. PCB is, basically, used to keep

track of all the CPU registers, time limit of the process, line limit of the process, track

information of program part and data part and output messages, and outputs of the

process. Additional information is also maintained here such as, CPU utilization time,

waiting time, arrival time, and finish time of the process.
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As the user process in multiprogramming environment goes through different states, there

may be different data structures used to keep record of the processes in different states.

Different queues have been maintained to keep the PCBs of the processes in different

states. In case of MOS, there may be five different queues: load queue (LQ), ready queue

(RQ), input output queue (IOQ), swap queue (SQ) and terminate queue (TQ). These

queues can be defined as:

RQ This is the queue which is used to store the list of ready processes. This is

simply the linked list of the PCB of the different ready processes.

LQ Whenever the process is ready to load, then it is put into the LQ. Thus LQ

is a data structure which contains all the processes which are ready to load.

IOQ Whenever the process requests for an I/O operation, it is put into the rear

of the IOQ.

SQ If process requests the frame for its further execution and if the frame is

not available at that time, then it is put into the rear of the SQ.

TQ This is the queue which is used to store the list of terminated processes but

the output remains to be printed.

In case of MOS, whenever $AMJ card is read by the channel 1, operating system creates

and initializes the new PCB. After reading all the program cards and data cards of the

user program given and, which is indicated when $END is read by the channel 1, the

operating system puts this user program on the rear of the load queue. Any process in the

load queue implies that it is ready to load now. If memory frame is available and there is

process in the load queue, then channel 3 simply loads the program card from the given
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track of the secondary storage into the indicated memory frame, and puts the PCB from

load queue to the end of the ready queue. Any process in the ready queue indicates that it

is ready to execute. Input output queue and swap queue are the data structures used to

keep track of those process which request for the input output operations and the memory

frame. All the processes, when complete their execution (either normally or abnormally

due to different kinds of errors), are kept in the terminate queue.  Output messages and

output part of the process in terminate queue are output spooled with the help of channel

3. The PCB is deleted form the terminate queue and the process is finished if all the

outputs are output spooled.

Five buffers are used which are the part of the supervisor storage. Each buffer can be

used to hold up to 40 characters at any time. Initially, all buffers are placed into the

empty buffer queue (EBQ). These buffers may be in one of the queues, namely, input full

buffer queue (IFBQ), output full buffer queue (OFBQ). Proper data structures have been

implemented to transfer buffer in between these queues.

6.1.2 MOS (Master Mode Operation)

In this case, the operating system handles the interrupts generated either in master mode

or in slave mode. After handling the interrupts MOS calls for scheduler, part of the

operating system, to find a new ready process to execute. Whenever scheduler gives the

new ready process to the operating system, mode is switched to slave mode. Operating

system runs in infinite loop. The detail operation of the operating system is given in the

algorithm below:
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Algorithm: MOS (Master Mode)

Case TI and SI of

TI SI Action

0 or 1 1 Move PCB, RQ->IOQ (Read)

0 or 1 2 Move PCB, RQ->IOQ (Write)

0 or 1 3 Move PCB, RQ-> TQ

(With error message “Normal termination”)

2 1 Move PCB, RQ->TQ

(With error message “Time Limit Exceeded”)

2 2 Move PCB, RQ->TQ (Write)

(With error message “Time Limit Exceeded”)

2 3 Move PCB, RQ->TQ

(With error message “Normal Termination”)

Case TI and PI of

TI PI Action

0 or 1 1 Move PCB, RQ->TQ

(With error message “Operation Code Error”)

0 or 1 2 Move PCB, RQ->TQ

(With error message “Operand Error”)

0 or 1 3 Page Fault

IF(Page Fault is valid and Frame available)

Allocate the Frame
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Update the Page Table

ELSE IF(Page Fault is valid but Frame not available)

Move PCB, RQ->SQ

ELSE (Page Fault is invalid)

Move PCB, RQ->TQ

(With error message “Invalid Page Fualt”)

2 1 Move PCB, RQ->TQ

(With error message

“Time Limit Exceeded and Operation Code Error)

2 2 Move PCB, RQ->TQ

(With error message

“Time Limit Exceeded and Operand Error)

2 3 Move PCB, RQ->TQ

(With error message “Time Limit Exceeded”)

Case TI

TI Action

1 Move PCB to the rear of the ready queue

2 Move PCB, RQ->TQ

(With error message “Time Limit Exceeded”)

3 Same as 2 above
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Case IOI

IOI Action

0 No Action

1 IR1

2 IR2

3 IR2, IR1

4 IR3

5 IR1, IR3

6 IR3, IR2

7 IR2, IR1, IR3

Finally Call Scheduler to select the new ready process

End Algorithm: MOS (Master Mode

6.1.3 Interrupt Service Routine

Interrupt service routines are the functions written for the operating system to handle the

interrupts generated by the channels. In the case of MOS, there are three types of

interrupt service routines IR1, IR2, and IR3 for channel 1, channel 2, and channel 3

respectively. Detailed description of these three interrupt service routines and data

structures used are given below:

Algorithm: IR1

Read next card in given EB
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Change status to IFB

Place on IFB (Q)

IF (not end of file and EB is available)

Get next EB

Start Channel 1

Examine ifb

IF ($AMJ)

Create and initialize new PCB

Allocate Frame for Page Table

Initialize Page Table and PTR

Set information (Program Card to follow)

Return the IFB to EB (Q)

IF ($DTA)

Set information (Data Card to follow)

Return the IFB to EB (Q)

IF ($END)

Place PCB on LQ

Return the IFB to EB(Q)

Otherwise

Place IFB on IFB (Q)

Save information (Program or data card of the process with JobID)

END Algorithm: IR1
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Algorithm: IR2

Print given OFB

Return OFB to EB(Q)

IF (OFB (Q) is not empty)

Get next OFB

Start Channel 2

END Algorithm: IR2

Algorithm: IR3

Task Action

IS Write given IFB into given Track

Place track number in P or D part of PCB

Return IFB to IB(Q)

OS Read given Track into given EB

Change status to OFB

Return OFB to OFB (Q)

Release the Track

IF (last line)

Release PCB and all remaining drum tracks and memory blocks

LD Load first program card from given track into given memory block

Move PCB, LQRQ

RD Read data card from given track into indicated memory block
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Release track

Decrement data count in PCB

Move PCB, IOQRQ

WT Write from indicated memory block into the given track

Increment line count in PCB

IF( Time Exceeded)

Move PCB, IOQTQ

ELSE

Move PCB, IOQRQ

SQ(W) Write the victim frame into the given track

Locate drum track with faulted page

TaskSQ(R)

Start Channel 3

SQ(R) Read drum track with faulted page into the frame

Move PCB, SQ RQ

Now assign new task in priority order

IF ( PCB on TQ)

IF(EB(Q) not empty)

Get next EB from EB(Q)

Find track number of the next output line

TaskOS

Start Channel 3

ELSE IF (IFB(Q) not empty and a drum track available)
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Get next buffer from IFB(Q)

Get a drum track

TaskIS

Start Channel 3

ELSE IF ( PCB on LQ and memory frame available)

Find track number of next program card

Allocate a frame

Update Page Table

Task LD

Start Channel 3

ELSE IF( PCB on IOQ)

IF(Read )

IF(no more data card

Move PCB, IOQTQ

With error message “Out of data”

ELSE

Find track number of next data card

Get memory RA

TaskRD

Start Channel 3

ELSE IF (Write)

IF ( line counter exceeds line limit)

Move PCB, IOQTQ
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With error message ”Line Limit Exceeded”

ELSE

Get drum track, if available

Update PCB

Find memory RA

TaskWR

Start Channel 3

ELSE IF(PCB on SQ)

IF(memory frame available)

Allocate

Update Page Table

Move PCB, SQRQ

ELSE

Run Page replacement algorithm and find a victim frame

Allocate and Deallocate this frame by updating both page tables

IF(victim frame not written into )

Locate drum track for faulted page

TaskSQ(R)

Start Channel 3

ELSE

TaskSQ(R)

Start Channel 3

END Algorithm: IR3
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6.1.4 MOS (Slave Mode Operation)

In this case, CPU is used to execute the user program and, whenever there is an interrupt

in slave mode, mode is changed to master, and control is transferred to MOS. MOS

saves all the current status of the process and handles the interrupts. Algorithm for slave

mode operation is given below:

Algorithm: MOS (Slave Mode Operation)

LOOP

Find the real address of IC

IF(PI not equal to zero)

Save the current state of process on PCB

Give control to MOS (Master Mode Operation)

Find the next instruction

Increment instruction counter

Find real address of operand of current instruction

IF (PI not equal to zero)

Adjust IC if necessary

IF(PI is equal to 3 for LR and PD instruction and first time reference)

Set “Invalid Page Fault Error” in the PCB

Give control to MOS (Master Mode Operation)

Case to check the operation code of the instruction

Case Action

LR R<-Memory [real address of operand of instruction]
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SR R->Memory [real address of operand of instruction]

CR Compare register R and Memory [real address of operand of

Instruction]

IF (equal) C<-True

ELSE C<-False

BT IF (C is equal to true)

Set instruction counter to virtual address (operand of instruction)

GD Set SI equal to 1 (for input request)

PD Set SI equal to 2 (for output request)

H Set SI equal to 3 (for terminate request)

Otherwise Set PI equal to 1 (indicates the operation code error)

END Case to check the operation code of the instruction

Call for timer SIMULATION

END LOOP

END Algorithm: MOS (Slave Mode Operation)

Algorithm: SIMULATION

Increment total time counter (TTC) register

IF (Total time counter exceeds the time limit)]

Set TI to 2

Increment time slice counter

IF (Time slice counter exceeds time quantum assigned to the process)
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Set TI to 1

FOR Channel 1

IF (Channel 1 is busy)

Increment Channel timer

IF (Channel timer is equal to Channel total time)

Set IOI as IOI+1

(Set Channel completion interrupt)

END FOR Channel 1

FOR Channel 2

IF (Channel 2 is busy)

Increment Channel timer

IF (Channel timer is equal to Channel total time)

Set IOI as IOI+2

(Set Channel completion interrupt)

END FOR Channel 2

FOR Channel 3

IF (Channel 3 is busy)

Increment Channel timer

IF (Channel timer is equal to Channel total time)

Set IOI as IOI+4

(Set Channel completion interrupt)

END FOR Channel 3

IF( any of SI, PI, TI or IOI not equal zero)
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Give control to MOS (Master Mode Operation)

ELSE

Return from SIMULATION

END Algorithm: SIMULATION

6.1.5 MOS (Scheduler)

Whenever the MOS completes all the interrupts, it calls the scheduler whose main

function is to select the new ready process among the list of the ready processes. Here, in

case of round robin scheduler, it takes the new process from the front of the queue. And,

after assigning the CPU to the ready process, CPU is switched to the slave mode to

execute that process. Before executing the process, MOS should set all the CPU registers

with the help of PCB. Then, the process is allocated the CPU and, the execution begins.

PCB contains all the information associated with a process.

Generally, algorithm for primitive round robin scheduler is simple because it has to select

the process from the front of the ready queue. The data structure, here, for ready queue is

simply the linked list of the PCBs and the variables that store the front and rear of the

queue.

Algorithm: Scheduler

Select the PCB from the front of the ready queue

Maintain the ready queue

Store CPU registers in the PCB of the process which was running
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Set CPU registers from the data structures maintained for PCB selected

Allocate the CPU to selected process

Switch to slave mode

END Algorithm: Scheduler

6.2 MOS Implementation

To simulate the round robin scheduler and different performance criteria,

multiprogramming operating system (MOS) has been implemented as a project in C

programming language. Basically, CPU control continuously switches between master

mode operation and slave mode operation. MOS is interrupt driven, and when it has

serviced all the interrupts, it calls the scheduler to select a user process which gets control

of CPU. At the same time, mode is switched to slave. And, whenever CPU has to switch

from slave mode operation to master mode operation, which occurs whenever interrupts

are generated, CPU is simply preempted from the running user process and, the control is

transferred to the MOS in master mode operation. PI and SI interrupt registers are set in

slave mode and, by looking these values of the interrupt registers, MOS handles the

interrupts. TI and IOI interrupts occur in an asynchronous fashion. Thus, CPU switches

continuously between master mode and slave mode.

The CPU registers has been implemented in C programming language by declaring

global variables as:

char R [4]; //four bytes for general purpose register
char IR[4]; //four bytes for instruction register
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int  IC; //instruction counter
char C; //one byte for Boolean toggle
char PTR[4]; //four bytes for page table register
int SI =0; //supervisor interrupt register
int PI =0; //program interrupt register
int TI =0; //timer interrupt register
int IOI=1; //input output interrupt register
int MODE=0; //mode of CPU: ‘slave’ or ‘master’

Other different parts of the MOS can be summarized as:

i) Process Control Block (PCB)

To maintain all the state of the process, structure has been implemented and all the

variables are declared inside the structure for appropriate purposes. The structure for PCB

node can be listed as:

struct PCBnode
{

int JobID;

char r[4];
int  ic;
char c;
char ir[4];
char ptr[4];

int llc;
int tll;
int ttc;
int ttl;

int TrackForPage[BLOCKSIZE];
int FaultedPage;
int InvalidPageFault;

struct CardListNode *PCardHead;
struct CardListNode *PCardTail;
struct CardListNode *PCardCurrent;

struct CardListNode *DCardHead;
struct CardListNode *DCardTail;
struct CardListNode *DCardCurrent;
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struct CardListNode *OutPutCardHead;
struct CardListNode *OutPutCardTail;
struct CardListNode *OutPutCardCurrent;

int ErrorMessage;

int ArrivalTime;
int FinishTime;
int SetIFResponseCalculated;
int WaitingTime;

}; //end struct PCBnode

Different functions have been implemented to handles the different activities of PCBs.

These can be listed as:

int  CreatePCB(int FrameNo);

void InitializePCB(int pid);

void InitializePageTableofPCB(int FrameNo);

void InitializePTRofPCB(int pid,int FrameNo);

ii) Memory

User storage and auxiliary storage can be simulated in C programming language, by

simply declaring global variables.

char M[MEMORYSIZE][WORDSIZE];

char DM[DRUMTRACKNUMBER][TRACKSIZE];

To keep record of either a block is free or not and either a track is free or not, block status

and track status variables are declared as:

int blockStatus[MEMORYSIZE/BLOCKSIZE];
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int  trackStatus[DRUMTRACKNUMBER];

Different functions have been implemented to handle the different activities related with

memories, which can be listed as:

int CheckFrame(void);

This function is used to check for free frame in memory. If there is any free frames

available in memory, then it returns TRUE, otherwise it returns FALSE.

int GetFrameFromMemory(void);

This function is used to get frame from memory. It gives the first available free frame

from use storage and makes the status of the frame allocated.

int CheckTrack(void);

This function is used to get check for free track in memory. If there is any free tracks

available in drum, then it returns TRUE, otherwise it returns FALSE.

int GetTrackFromDrum(void);

This function is used to get track from drum. It gives the first available free track from

drum and makes the status of the track allocated.

iii) Main Header File and Important Prototypes of different functions

#include  <stdio.h>
#include  <conio.h>
#include  <stdlib.h>
#include  <string.h>
#include  <time.h>
#include  <ctype.h>
#include  <alloc.h>

#define MEMORYSIZE       300
#define BLOCKSIZE         10
#define WORDSIZE           4
#define BUFFERNUMBER       5
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#define DRUMTRACKNUMBER  100
#define TRACKSIZE         40

//used for different buffer queues
struct buffernode
{

int BufferNo;
struct buffernode *next;

};
//used to store information of Program card and Data card
//inside the PCB
struct CardListNode
{

int trackNo;
struct CardListNode *next;

};

struct ProcessTableNode
{

int pid;
struct ProcessTableNode *next;
struct PCBnode *PCB;

};

struct PCBQueueNode
//PCB Queue for IS,OS,LD,IO,Swap,Terminate
{

int pid;
struct PCBQueueNode *next;

};

void MOS(void);
void SetRegisters(void);
void SetPCBRegisters(void);
void EXECUTEUSERPROGRAM(void);
int  ADDRESSMAP

(struct ProcessTableNode *tempProcess,int va);

void IR1(void);
void IR2(void);
void IR3(void);

int  GetBufferFrom(int BufferQueue);
void AddBufferTo(int BufferNo,int BufferQueue);
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//read next card from input file to given buffer
void ReadNextCard(int BufferNo);

struct ProcessTableNode * FindProcessTableNode(int pid);

void scheduler(void);

void StartCH1(void);
void StartCH2(void);
void StartCH3(void);

int GetPageTableLength
(struct ProcessTableNode *tempProcess);

int GetPageTableFrameNo
(struct ProcessTableNode *tempProcess);

void UpdatePageTableLength
(struct ProcessTableNode *tempProcess,

int PageTableLength);
int GetPageFrameNo

(struct ProcessTableNode *tempProcess,int Page);
void UpdatePageFrameNo

(struct ProcessTableNode *tempProcess,
int Page,int FrameNo);

int FindVictimFrame(void);
void ReleasePCB(struct ProcessTableNode *tempProcess);
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Chapter 7

Data Collection

In this section, all the data collected with the help of MOS simulator are given.  The data

set given by the simulator for quantum size equal to 3 is presented in this section, and all

other dataset given by the simulator for quantum size equal to 1 to 5 are presented in

Appendix B.

7.1 Sample Input Programs

$AMJ001110001000

GD40PD40LR40SR64LR41SR63LR42SR62LR43SR61

LR44SR60PD60LR40CR40BT12SR80PD80LR41SR80

PD80LR42SR80PD80LR43SR80PD80LR44SR80H

$DTA

P   I   Z   Z   A

$END0011

$AMJ001210001000

GD40LR41SR50SR51LR40SR60PD50SR61SR62LR42

SR70LR44SR71LR45SR72PD70LR42SR80LR42SR81

LR45SR82PD60PD80LR44SR90LR42PD60SR91LR43

SR92PD90PD50H

$DTA

---- | X | X   O | O

$ENDOO12

$AMJ002110001000

GD40LR40SR70PD70CR45BT00LR41SR71PD70CR45

BT00LR42SR72PD70CR45BT00LR43SR73PD70CR45
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BT00LR44SR74PD70CR45BT00LR45SR75PD70CR45

BT31GD50LR50SR60LR51SR62PD60GD60PD60H

$DTA

5   4   3   2   1   0

RUN,FAST

YOU WIN

$END0021

$AMJ002210001000

GD40LR40SR70GD50LR50SR71PD70LR41SR70LR51

SR71PD70LR42SR70LR52SR71PD70LR43SR70LR53

SR71PD70LR44SR70LR54SR71PD70GD60PD60LR55

SR71PD70LR56SR62LR57SR63PD60H

$DTA

2*2=3*3=4*4=5*5=6*6=

4   9   16  25  35  36  right

This is wrong

$END0022

$AMJ003110001000

GD40LR40SR90LR41SR91PD90CR42BT38GD50LR50

SR90LR51SR91PD90CR42BT38GD60LR60SR90LR61

SR91PD90CR42BT38GD70LR70SR90LR71SR91PD90

CR42BT38GD80LR80SR90LR81SR91PD90H

$DTA

A 4 ANT END

B 4 BALL

C 4 CAT

D 4 DOG

E 4 END

$END0031

$AMJ003210001000

GD30PD30GD40LR40SR30LR41SR31LR42SR34PD30

GD50LR50SR30LR51SR31PD30H
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$DTA

IF   A IS EQUAL TO B.

AND  B ITO C

THEN A I

$END0032

$AMJ004110001000

GD40GD50GD60LR40CR49BT00SR52PD50LR41CR49

BT00SR52PD50LR42CR49BT00SR52PD50LR43CR49

BT00SR52PD50LR44CR49BT00SR52PD50LR60SR52

LR61SR53LR62SR54PD50H

$DTA

0   1   2   3   4   5   6   7   8   9

This is

END bye bye

$END0041

$AMJ004210001000

GD40GD50LR50SR45LR51SR46PD40LR52SR45LR53

SR46PD40LR54SR45LR55SR46PD40LR56SR45LR57

SR46PD40LR58SR45LR59SR46PD40H

$DTA

This is your

ha ha   hi hi   ho ho   he he   ya hoo

$END0042

7.2 Output of the Sample Programs

0011    LINE LIMIT EXCEEDED

27    PD60    P       0004

P   I   Z   Z   A

A   Z   Z   I   P

A   Z   Z   I   P
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A   Z   Z   I   P

0012    NORMAL TERMINATION

40    H        X      0007

|   |

X | O | O

------------

X | X | O

------------

O | X | X

|   |

0021    NORMAL TERMINATION

44    H       FAST 0008

5

5   4

5   4   3

5   4   3   2

5   4   3   2   1

5   4   3   2   1   0

RUN,    FAST

YOU WIN

0022    NORMAL TERMINATION

42    H       t       0008

2*2=4

3*3=9

4*4=16

5*5=25

6*6=35

This is wrong

6*6=36



53

This is right

0032 NORMAL TERMINATION

20    H        A I    0003

IF   A IS EQUAL TO B.

AND  B IS EQUAL TO C.

THEN A IS EQUAL TO C.

0031    NORMAL TERMINATION

46    H       END 0005

A 4 ANT

B 4 BALL

C 4 CAT

D 4 DOG

E 4 END

0042    NORMAL TERMINATION

30    H       hoo     0005

This is your         ha ha

This is your         hi hi

This is your         ho ho

This is your         he he

This is your         ya hoo

0041    NORMAL TERMINATION

39    H       bye     0006

This is 0

This is 1

This is 2

This is 3

This is 4

This is END bye bye
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7.3 Workload and Data Set

Workload consisted of one hundred input programs made up of above eight sample

programs. All individual parameters such as arrival time, finish time, and waiting time

are kept inside the process control block (PCB) of the process. The workload

approximately consisted of 20-30 percent I/O bound instructions and 70-80 percent CPU

bound instructions.

Table: Data Set for the Workload with Quantum Size=3

PID  ARRIVAL  FINISH  TURNAROUND  WAITING
0    37       78      41          0
1    77       173     96          9
2    128      262     134         15
3    184      341     157         22
5    285      377     92          10
4    240 421     181         22
8    412      515     103         41
7    380      541     161         49
6    332      601     269         65
9    454      645     191         48
13   668      731     63          5
11   558      822 264         26
10   504      835     331         41
15   758      865     107         15
14   716      900     184         22
12   620      902     282         19
16   909      964     55          0
17   950      1078 128         12
18   999      1165    166         22
19   1049     1254    205         35
21   1149     1266    117         16
20   1112     1316    204         25
22   1203     1337    134         16
23   1293     1429    136 22
24   1329     1450    121         14
25   1368     1534    166         34
26   1416     1620    204         30
27   1472     1648    176         16
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29   1571     1712    141         9
28   1529     1740    211 17
32   1741     1842    101         34
30   1657     1850    193         48
31   1707     1872    165         46
33   1781     1987    206         61
34   1831     2078    247         40
37   1983     2123    140 15
35   1885     2125    240         36
36   1943     2160    217         29
40   2193     2295    102         33
38   2117     2304    187         46
39   2157     2319    162         45
41   2231     2441    210         56
42   2281     2513    232         34
45   2432     2533    101         6
46   2552     2679    127         10
44   2392     2696    304         34
47   2570     2699    129         6
43   2334     2765    431         38
48   2604     2778    174         11
49   2708     2944    236         26
50   2758     3027    269         33
51   2809     3046    237         21
53   2907     3112    205         11
55   3067     3186    119         6
54 2983     3260    277         20
56   3115     3271    156         14
52   2867     3293    426         39
58   3209     3475    266         23
57   3153     3505    352         27
61   3386     3547    161         10
59   3288     3577    289         22
64   3600     3698    98          13
63   3566     3719    153         32
60   3348     3724    376         42
62   3514     3791    277         23
65   3638     3868    230         31
66   3719 3944    225         15
67   3769     3988    219         16
69   3891     4018    127         3
72   4027     4127    100         28
71   3997     4151    154         28
68   3847     4182    335         45
70   3957     4296    339         53
73   4069     4388    319         51
77   4329     4418    89          3
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74   4146     4460    314         31
75   4196     4572    376         27
80   4499     4599    100         3
79   4461     4607 146         7
76   4255     4679    424         18
78   4423     4748    325         33
81   4616     4846    230         28
83   4714     4916    202         41
82   4666     4939    273         37
84   4777     5000    223         19
85   4815     5029    214         18
88   5038     5120    82          24
87   4992     5145    153         28
86   4954     5201    247         33
89   5076     5276    200         47
91   5176     5358    182 25
90   5134     5378    244         37
93   5309     5420    111         5
92   5238     5476    238         27
95   5447     5563    116         18
94   5397     5566    169         13
97   5545     5659    114 18
96   5507     5686    179         35
98   5599     5724    125         26
99   5637     5726    89          24

Chapter 8

Analysis

CPU utilization heavily depends upon the nature of the workload. Basically, each process

in the work load might be either CPU-bound or I/O-bound. If all the processes are

approximately CPU-bound, then multiprogramming environment does not help so much.

Similarly CPU utilization, which usually depends upon the degree of multiprogramming,

is not helped a great deal if the processes are completely or approximately 100 percent
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CPU-bound. In this situation processes in the work load are approximately 70 percent

CPU-bound.

FOR Quantum=1

Total Number of Processes--------------100

Total Context Switches-----------------3871

Total Context Switches Due to Quantum--3637

Total CPU Cycle------------------------5814

Total CPU Cycle used by the Processes--3637

Total Percentage used------------------62.555900%

Average Turnaround Time----------------201.920000

Average Waiting Time-------------------30.940000

Partial flow of the process with quantum size of 1 is given below. The first process PID0

enters the ready queue at time cycle 37-38 when no other process is there to compete for

the processor time. Hence, PID0 is given immediate access to the processor and it starts

its execution. As the quantum has been set to 1 unit, it will leave the CPU after 1 time

unit but, as it is the only process in the ready queue, PID0 is again given access to the

processor. In the time interval 77-78, there are now two processes in the ready queue but,

being PID0 already in the ready queue, it is given access to the processor for time interval

77-78 and, PID0 is, then, put into the terminate queue. After that, PID1 is the only

process until the time 128. After the time 128, both PID1 and PID2 compete for the

processor time. As the time passes, the degree of multiprogramming increases and, hence,

the processor utilization increases, too.
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As the quantum is small, the processor is preempted from the processes very frequently.

Data collected in the Chapter 7 shows that number of context switches increases as

quantum size decreases. If we consider the cost of context switch, then it does decrease

the percentage of CPU utilized. Waiting time and turnaround time increase in comparison

with first-come first-served (FCFS), if the processes are CPU-bound.

Note: Clock t indicates the time interval t-1 to t

PID=-- indicates processor is not busy with processes

Clock=m PID=n indicates that processor is busy with the process of process id n

in the time interval m-1 to m.

Clock PID clock PID clock PID clock PID clock PID
1 -- 2 -- 3 -- 4 -- 5 --
6 -- 7 -- 8 -- 9 -- 10 --
11 -- 12 -- 13 -- 14 -- 15 --
16 -- 17 -- 18 -- 19 -- 20 --
21 -- 22 -- 23 -- 24 -- 25 --
26 -- 27 -- 28 -- 29 -- 30 --
31 -- 32 -- 33 -- 34 -- 35 --
36 -- 37 -- 38 0   39    0   40 --
41 -- 42    0   43 -- 44 -- 45    0
46    0   47    0   48    0   49    0   50    0
51    0   52    0   53    0   54 -- 55 --
56    0   57    0   58    0   59 -- 60 --
61    0   62    0   63    0 64    0   65 --
66 -- 67    0   68    0   69    0   70    0
71 -- 72 -- 73 -- 74 -- 75    0
76    0   77    0   78    0   79    1   80    1
81 -- 82 -- 83 -- 84 -- 85 --
86 -- 87 -- 88 -- 89 -- 90 --
91 -- 92 -- 93 -- 94 -- 95 --
96 -- 97 -- 98    1   99    1   100   1
101   1   102   1   103   1   104   1   105   1
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106 -- 107 -- 108   1   109   1   110   1
111 -- 112 -- 113   1 114   1   115   1
116   1   117   1   118   1   119   1   120 --
121 -- 122   1   123   1   124   1   125   1
126   1   127 -- 128 -- 129   2   130   2
131   1   132   1   133   1   134   2   135   2
136   2   137   1   138   2 139 -- 140 --
141   1   142   1   143   1   144   2   145   1
146   2   147   1   148   2   149   2   150   2
151   1   152   1   153   2   154 -- 155 --
156 -- 157   1   158   1   159   2   160   2
161   2   162   1   163   2   164 -- 165 --
166   1   167 -- 168   2   169   2   170   2
171   2   172   2   173 -- 174 -- 175 --
176 -- 177 -- 178 -- 179 -- 180 --
181 -- 182 -- 183 -- 184 -- 185 --
186   3   187   3   188 -- 189 -- 190   2
191 -- 192 -- 193 -- 194 -- 195 --
196   3   197   3   198   3   199   3   200   3
201 -- 202 -- 203 -- 204   3   205   3
206   3   207   2   208   2   209   2   210   2
211   3   212   3   213   3   214 2   215   2
216   2   217   2   218   2   219   3   220   3
221   2   222 -- 223 -- 224 -- 225   3
226   3   227   3   228   3   229   3   230   2
231   2   232   2   233 -- 234   3   235   3

. . .

. . .

. . .

5681  96  5682  96  5683  96  5684  98  5685  99
5686  98  5687  99  5688  96  5689  96  5690  96
5691  99  5692  96  5693  99  5694  98  5695  96
5696  99  5697  98  5698  99  5699  98  5700  96
5701  99  5702  98  5703  98  5704  98  5705  98
5706  98  5707 -- 5708 -- 5709 -- 5710 --
5711 -- 5712 -- 5713 -- 5714 -- 5715 --
5716  99  5717  99  5718  99  5719 -- 5720  98
5721  98  5722  99  5723  99  5724  98  5725  98
5726  98  5727  99  5728  98  5729  99  5730  98

. . .

. . .

. . .

5781 -- 5782 -- 5783 -- 5784 -- 5785 --
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5786 -- 5787 -- 5788 -- 5789 -- 5790 --
5791 -- 5792 -- 5793 -- 5794 -- 5795 --
5796 -- 5797 -- 5798 -- 5799 -- 5800 --
5801 -- 5802 -- 5803 -- 5804 -- 5805 --
5806 -- 5807 -- 5808 -- 5809 -- 5810 --
5811 -- 5812 -- 5813 -- 5814 --

FOR Quantum=2

Total Number of Processes--------------100

Total Context Switches-----------------2839

Total Context Switches Due to Quantum--925

Total CPU Cycle------------------------5831

Total CPU Cycle used by the Processes--3634

Total Percentage used------------------62.322072%

Average Turnaround Time----------------201.790000

Average Waiting Time-------------------29.590000

As the quantum increases, almost every parameter changes as shown in the Chapter 7.

Here, unnecessary context switches, due to the quantum, decrease. Thus quantum size

equals to 2 definitely increases the performance than the quantum size of 1. Turnaround

time and waiting time slightly decrease in this case.

FOR Quantum=3

Total Number of Processes--------------100

Total Context Switches-----------------2850

Total Context Switches Due to Quantum--11

Total CPU Cycle------------------------5804
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Total CPU Cycle used by the Processes--3638

Total Percentage used------------------62.680910%

Average Turnaround Time----------------195.980000

Average Waiting Time-------------------25.620000

As we have the workload which consists of approximately 70 percent CPU-bound

processes, the majority of the instructions are in the sequence of ratio 3:1 (compute vs.

IO). It might be the reason why CPU utilization is maximized when the quantum equals

3. Turnaround time and waiting time heavily decreases because most processes finish

their next CPU burst in a single time quantum. If the context switch is added in, the

average turnaround time increases for a smaller time quantum, since more context

switches are required.

FOR Quantum=4

Total Number of Processes--------------100

Total Context Switches-----------------2823

Total Context Switches Due to Quantum--1

Total CPU Cycle------------------------5861

Total CPU Cycle used by the Processes--3643

Total Percentage used------------------62.156629%

Average Turnaround Time----------------205.260000

Average Waiting Time-------------------27.680000
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With quantum equals to four, unnecessary context switches heavily decrease. This shows

that almost all CPU bursts are less than four. This decrement of unnecessary context

switches improves the performance but, all the demerits of FCFS algorithm come up with

it. That is, for the quantum size equal to four or more, our round robin algorithm behaves

like FCFS scheduling algorithm.

FOR Quantum=5

Total Number of Processes--------------100

Total Context Switches-----------------2823

Total Context Switches Due to Quantum--0

Total CPU Cycle------------------------5861

Total CPU Cycle used by the Processes--3643

Total Percentage used------------------62.156629%

Average Turnaround Time----------------205.260000

Average Waiting Time-------------------27.680000

Quantum size 5 or more behaves the same as above.
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Chapter 9

Graph Representation
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Figure 9.1: Graph relationship between CPU utilization and quantum sizes
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Figure 9.4: Graph relationship between context switches and quantum sizes
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Chapter 10

Conclusion

CPU utilization in our simulation and workload gets maximized when the quantum size is

equal to 3. Basically, our workload consists of approximately 70 percent CPU

instructions and 30 percent IO instructions. Further, each sequence of CPU and I/O

instructions are in ratio 3:1. Thus, almost all sequence of CPU bound instructions can

execute without preemption for quantum size 3. If the quantum is set too small, then the

unnecessary context switches increase heavily. And if the quantum size is large, the

unnecessary context switches decrease. Thus, if we consider the effect of the context

switches on the performance of the processor, the quantum size 3 worked out to be the

best.

Turnaround time and waiting time heavily depend upon the nature of the processes. In

case of our workload, as almost all the processes consist of approximately 70 percent

CPU-bound instructions, waiting time is maximized when the quantum size is small.

And, waiting time decreases when the quantum size increases. Turnaround time also

increases with the quantum. The average turnaround time is improved heavily at quantum

equals 3 because most processes finish their next CPU burst in a single time quantum.

Thus, if we consider the effect of all the performance measure parameters, optimal

quantum size is that for which we can get the average values for all parameters. Thus,
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from the analysis for the workload defined earlier, we conclude that average values for all

the parameters are good for quantum equal to 3, and that heavily dependent on the nature

of the workload.

Recommendation

Lots of simplified assumptions have been adopted, while designing the MOS, to make the

design simple. In real systems, context switch has direct impact on the performance but,

here in case of MOS, it has been assumed that kernel part of the operating system runs in

zero time units. This is impossible in real systems. To analyze the round robin algorithm

in its entirety and to find optimal quantum size and its impact on CPU utilization,

turnaround time, and waiting time, it would be better if some more realistic system were

used. In case of linux operating system, so many parameters are included (inside the

PCB) to keep record of almost all aspects of the process to have better statistics to

measure performance. So, it might be good platform for analysis purpose of the round

robin algorithm.

Fairness has become the most popular parameter for performance measure of scheduling

algorithms in the recent time.  Fair share scheduling has a meaning: given a set of jobs

with associated weights, a fair share scheduler should allocate resources to each job in

proportion to its respective weight. So many works have been done in the area of

fairness. Henry [2] has contributed a lot in the field of fairness; J. Kay and P. Lauder [3],

Larmouth [4] are following him and contributing in this field.
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Appendix A

A.1 Source Code of the MOS in Master Mode Operation

void MOS(void)
{

//MASTER:
//CASE TI and SE of
struct ProcessTableNode *tempProcess=NULL;
tempProcess=FindProcessTableNode(PCBQueueRQHead->pid);

if( (TI==0 || TI==1)  && SI==1)
{

SI=0;TI=0;
//Move PCB,RQ->IOQ(Read)
ADDpidTo(PCBQueueRQHead->pid,4);   //IOQ
DELpidFrom(7);                     //RQ

}
else if( (TI==0 || TI==1)  && SI==2)
{

SI=0;TI=0;
//Move PCB,RQ->IOQ(Write)
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ADDpidTo(PCBQueueRQHead->pid,4);     //IOQ
DELpidFrom(7);                       //RQ

}
else if( (TI==0 || TI==1)  && SI==3)
{

SI=0;TI=0;
//Move PCB,RQ->TQ(Terminate[0])
tempProcess->PCB->ErrorMessage=0;

ADDpidTo(PCBQueueRQHead->pid,6);      //TQ
DELpidFrom(7);                        //RQ

}
else if(TI==2 && SI==1)
{

SI=0;TI=0;
//Move PCB,RQ->TQ(Terminate[3]);
tempProcess->PCB->ErrorMessage=3;

ADDpidTo(PCBQueueRQHead->pid,6);        //TQ
DELpidFrom(7);                          //RQ

}
else if(TI==2 && SI==2)
{

SI=0;TI=0;
//Move PCB,RQ->IOQ(Write)then TQ(Terminate[3])
tempProcess->PCB->ErrorMessage=3;

ADDpidTo(PCBQueueRQHead->pid,4);         //IOQ
DELpidFrom(7);                           //RQ

}
else if(TI==2 && SI==3)
{

SI=0;TI=0;
//Move PCB,RQ->TQ(Terminate[3]);
tempProcess->PCB->ErrorMessage=3;

ADDpidTo(PCBQueueRQHead->pid,6);           //TQ
DELpidFrom(7);                             //RQ

}

//CASE TI and PI of

else if( (TI==0 || TI==1)  && PI==1)
{

PI=0;TI=0;
//Move PCB,RQ->TQ(Terminate[4])
tempProcess->PCB->ErrorMessage=4;
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ADDpidTo(PCBQueueRQHead->pid,6);      //TQ
DELpidFrom(7);                        //RQ

}
else if( (TI==0 || TI==1)  && PI==2)
{

PI=0;TI=0;
//Move PCB,RQ->TQ(Terminate[5])
tempProcess->PCB->ErrorMessage=5;

ADDpidTo(PCBQueueRQHead->pid,6);       //TQ
DELpidFrom(7);                         //RQ

}
else if( (TI==0 || TI==1) && PI==3)
{

PI=0;TI=0;
if(tempProcess->PCB->InvalidPageFault==0)
{

if( CheckFrame()==1 &&
(tempProcess->PCB->TrackForPage
[tempProcess->PCB->FaultedPage]==-1))
{

//Allocate
int FrameNo=GetFrameFromMemory();
//Update PidForFrame[30]
PidForFrame[FrameNo]=tempProcess->pid;
//Update page table
int PageTableFrameNo=

GetPageTableFrameNo(tempProcess);
int PageTableLength =

GetPageTableLength(tempProcess);
UpdatePageTableLength

(tempProcess,PageTableLength+1);
int PageTablePageNo=

PageTableFrameNo*BLOCKSIZE+
(tempProcess->PCB->FaultedPage);

M[PageTablePageNo][0]='1';//allocate
M[PageTablePageNo][1]='0';///unmodified
//Update PageFrameNo
UpdatePageFrameNo

(tempProcess,
tempProcess->PCB->FaultedPage,
FrameNo);

//Adjust TrackForPage[10]
if(CheckTrack()==1)
{

int TrackNo=GetTrackFromDrum();
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tempProcess->PCB->TrackForPage
[tempProcess->PCB->FaultedPage]=
TrackNo;

}
else
{

printf("\nTracks are full");
exit(0);

}
}
else
{

//Move PCB,RQ->SQ
ADDpidTo(PCBQueueRQHead->pid,5);
DELpidFrom(7);

}
}//end if(page fault valid)
else    //if(page fault invalid)
{

tempProcess->PCB->ErrorMessage=6;

ADDpidTo(PCBQueueRQHead->pid,6);//TQ
DELpidFrom(7);//RQ

} //end if(page fault invalid)
}
else if(TI==2 && PI==1)
{

TI=0; PI=0;
//Move PCB,RQ->TQ(TERMINATE(3,4);
tempProcess->PCB->ErrorMessage=7;

ADDpidTo(PCBQueueRQHead->pid,6);
DELpidFrom(7);

}
else if(TI==2 && PI==2)
{

TI=0; PI=0;
//Move PCB,RQ->TQ(TERMINATE(3,5))
tempProcess->PCB->ErrorMessage=8;

ADDpidTo(PCBQueueRQHead->pid,6);
DELpidFrom(7);

}
else if(TI==2 && PI==3)
{

TI=0; PI=0;
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//Move PCB,RQ->TQ(TERMINATE(3))
tempProcess->PCB->ErrorMessage=3;
ADDpidTo(PCBQueueRQHead->pid,6);
DELpidFrom(7);

}
else if(TI==1)
{

TI=0;
ADDpidTo(PCBQueueRQHead->pid,7);
DELpidFrom(7);

}
tempProcess=NULL;

//CASE IOI of

if(IOI==0)      {  /*No Action*/ }
else if(IOI==1) { IR1(); }
else if(IOI==2) { IR2(); }
else if(IOI==3) { IR2(); IR1(); }
else if(IOI==4) { IR3(); }
else if(IOI==5) { IR1(); IR3(); }
else if(IOI==6) { IR3(); IR2(); }
else if(IOI==7) { IR2(); IR1(); IR3(); }
scheduler();

} //END MOS

A.2 Source Code for Scheduler

void scheduler(void)
{

IOI=0;
if(PCBQueueRQHead!=NULL)
{

struct ProcessTableNode *tempProcess=NULL;
tempProcess=FindProcessTableNode(PCBQueueRQHead->pid);
if(tempProcess->PCB->SetIFResponseCalculated==0)
{

tempProcess->PCB->ResponseTime=
GlobalCPUTime-(tempProcess->PCB->ArrivalTime);

TotalResponseTime=TotalResponseTime+
tempProcess->PCB->ResponseTime;

TotalNumberOfProcess++;
tempProcess->PCB->SetIFResponseCalculated=1;

}
SetRegisters();
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EXECUTEUSERPROGRAM();
}

}

A.3 Source Code of the MOS in Slave Mode Operation

void EXECUTEUSERPROGRAM(void)   //SLAVE MODE
{

char operand[3]; operand[2]=NULL;

struct ProcessTableNode *tempProcess=NULL;
tempProcess=FindProcessTableNode(PCBQueueRQHead->pid);
int PageTableFrameNo=GetPageTableFrameNo(tempProcess);

char tempPTR[5];    tempPTR[4]=NULL;
tempPTR[0]=PTR[0];  tempPTR[1]=PTR[1];
tempPTR[2]=PTR[2];  tempPTR[3]=PTR[3];

while(1)
{

RA=ADDRESSMAP(tempProcess,IC);

if(PI!=0){   goto CHECKInterrupt;   }

IR[0]=M[RA][0];
IR[1]=M[RA][1];
IR[2]=M[RA][2];
IR[3]=M[RA][3];

if(IR[0]!='H')
{

IC=IC+1;
operand[0]=IR[2];
operand[1]=IR[3];
operand[2]=NULL;

if( (!isdigit(operand[0])) ||
(!isdigit(operand[1])) )

{ PI=2; }
else
{

RA=ADDRESSMAP(tempProcess,atoi(operand) );
}
if(PI!=0)
{
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IC=IC-1;
if(PI==3)
{

if((memcmp(IR,"LR",2)==0) || ]
(memcmp(IR,"PD",2)==0))

{
if(tempProcess->PCB->TrackForPage
[(atoi(operand))/BLOCKSIZE]==-1)
tempProcess->PCB->InvalidPageFault

=1;
}

}
goto SIMULATION;

}
}
if(IR[0]=='L' && IR[1]=='R')
{

R[0]=M[RA][0]; R[1]=M[RA][1];
R[2]=M[RA][2]; R[3]=M[RA][3];

}
else if(IR[0]=='S' && IR[1]=='R')
{

M[RA][0]=R[0]; M[RA][1]=R[1];
M[RA][2]=R[2]; M[RA][3]=R[3];

M[PageTableFrameNo*BLOCKSIZE+
(atoi(operand)/BLOCKSIZE)][1]='1';
//set page is modified

}
else if(IR[0]=='C' && IR[1]=='R')
{

if(R[0]==M[RA][0] && R[1]==M[RA][1] &&
R[2]==M[RA][2] && R[3]==M[RA][3])

C='T';
else

C='F';
}
else if(IR[0]=='B' && IR[1]=='T')
{

if(C=='T')
IC=atoi(operand);

}
else if(IR[0]=='G' && IR[1]=='D')
{

M[PageTableFrameNo*BLOCKSIZE+
(atoi(operand)/BLOCKSIZE)][1]='1';
//set page is modified
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SI=1;
}
else if(IR[0]=='P' && IR[1]=='D')
{

SI=2;
}
else if(IR[0]=='H')
{

IC=IC+1;
SI=3;

}
else

PI=1;   //Operation error
//SIMULATION

SIMULATION:
GlobalCPUTime++;
UtilizationCPUTime++;
//increment the waiting time of all ready but not
//running processes and increment total waiting
//time
FindWaitingTime();
TTC++;
if(TTC>=TTL) TI=2;
TSC++;
if(TSC==TS)  TI=1;

if(CHST1==1)
{

CH1TimeCount++;
if(CH1TimeCount==CH1TimeLimit)

IOI=IOI+1;
}
if(CHST2==1)
{

CH2TimeCount++;
if(CH2TimeCount==CH2TimeLimit)

IOI=IOI+2;
}
if(CHST3==1)
{

CH3TimeCount++;
if(CH3TimeCount==CH3TimeLimit)

IOI=IOI+4;
}
CHECKInterrupt:

ContextSwitch++;
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if(TI==1) ContextSwitchQuantum++;
SetPCBRegisters();
break;

}
} //end while(1)

} //END EXECUTEUSERPROGRAM

A.4 Source Code of the Interrupt Service Routine for Channel 1

void IR1(void)
{

if(EBForCH1!=-1)
{

//read next card in given eb
ReadNextCard(EBForCH1);
//change status to ifb,place on ifb(q)
IFBForCH1=EBForCH1;
EBForCH1=-1;
CHST1=0; CH1TimeCount=0;

}
if((!feof(INPUT_FP)) && EBQHead!=NULL)
{

//Get next eb
EBForCH1=GetBufferFrom(1);//1 for EBQ
//Start Channel 1
StartCH1();

}
if(IFBForCH1 != -1)
{

if(memcmp("$AMJ",buffer[IFBForCH1],4)==0 )
{

if(CheckFrame()==1)
{

//Allocate frame for Page Table
int FrameNo=GetFrameFromMemory();
//CreatePCB start
ISpid=CreatePCB(FrameNo);
//initialize PCB start
InitializePCB(ISpid);
//Initialize Page Table and PTR
InitializePageTable(FrameNo);
//Initialize PTR of the created PCB
InitializePTRofPCB(ISpid,FrameNo);
//Set F==P (Program cards to follow)
F=1;
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//change status from ifb to eb and
//return buffer to eb(q)
AddBufferTo(IFBForCH1,1);
IFBForCH1=-1;
//add pid of new process to PCBQueue
//for IS(input spooling

}//end if(CheckFrame()==1)
else //frame not available
{

if(EBForCH1 != -1)
{

CHST1=0;
AddBufferTo(EBForCH1,1);
EBForCH1=-1;

}
}//end frame not available

}
else if(memcmp("$DTA",buffer[IFBForCH1],4)==0)
{

//setF<--D(data cards to follo)
F=2;
//change status from ifb to eb and return
//buffer to eb(q)
AddBufferTo(IFBForCH1,1);
IFBForCH1=-1;

}
else if(memcmp("$END",buffer[IFBForCH1],4)==0)
{

//Place PCB on LQ,
ADDpidTo(ISpid,3);//3 for LD queue
//change status from ifb to eb and return
//buffer to eb(q)
AddBufferTo(IFBForCH1,1);
IFBForCH1=-1;

}
else
{

//place ifb on ifb(q)
AddBufferTo(IFBForCH1,2);
IFBForCH1=-1;
//save F information(program or data card
//for CH3)
AddCardTypeToFQueue(F);
AddPidToPQueue(ISpid);

}
}

}
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A.5 Source Code of the Interrupt Service Routine for Channel 2

void IR2(void)
{

if(OFBForCH2!=-1)
{

//print given ofb
for(int i=0;i<40;i++)
{

fputc(buffer[OFBForCH2][i],OUTPUT_FP);
}
fputc('\n',OUTPUT_FP);
AddBufferTo(OFBForCH2,1);
OFBForCH2=-1;
CHST2=0;
CH2TimeCount=0;

}
if(OFBHead!=NULL)
{

OFBForCH2=GetBufferFrom(3);
StartCH2();

}

else if( PCBQueueISHead==NULL &&
PCBQueueLDHead==NULL &&
PCBQueueIOHead==NULL &&
PCBQueueSQHead==NULL &&
PCBQueueTQHead==NULL &&
PCBQueueRQHead==NULL &&
CHST1==0 && CHST3==0 &&
CHST2==0 && OFBHead==NULL )
{

exit(0);
}

}

A.6 Source Code of the Interrupt Service Routine for Channel 3

void IR3(void)
{

if(Task!=0)
{

CHST3=0;
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CH3TimeCount=0;
struct ProcessTableNode *tempProcess=NULL;
if(Task==1) //IS
{

tempProcess=
FindProcessTableNode(PQueueHead->pid);

Strncpy
(DM[TrackNoForIS],buffer[EBForIS],40);

PlaceTrackNoToPorD
(tempProcess,TrackNoForIS);

AddBufferTo(EBForIS,1);//1 for EBQ
EBForIS=-1;  TrackNoForIS=-1;

}
else if(Task==2)//OS
{

tempProcess=
FindProcessTableNode(PCBQueueTQHead->pid);
if(ErrorCount==0)
{

FindErrorMessage(tempProcess,EBForOS);
ErrorCount++;

AddBufferTo(EBForOS,3);
EBForOS=-1;

}
else if(ErrorCount==1)
{

FindErrorMessage(tempProcess,EBForOS);
ErrorCount++;

AddBufferTo(EBForOS,3);
EBForOS=-1;

}
else
{

strncpy
(buffer[EBForOS],DM[TrackNoForOS],40);
AddBufferTo(EBForOS,3);   //3 for OFB
//Release Track
trackStatus[TrackNoForOS]=0;

tempProcess->PCB->OutPutCardCurrent=
tempProcess->PCB->
OutPutCardCurrent->next;

if(tempProcess->PCB->
OutPutCardCurrent==NULL)

{
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ErrorCount=0;
ReleasePCB(tempProcess);
DELpidFrom(6);

}
EBForOS=-1; TrackNoForOS=-1;

}//else if ErrorCount!=0 or ErrorCount!=1
}
else if(Task==3)//LD
{

tempProcess=
FindProcessTableNode(PCBQueueLDHead->pid);
Strncpy

(M[FrameNoForLD*BLOCKSIZE],
DM[TrackNoForLD],40);

//Update PidForFrame[30]
PidForFrame[FrameNoForLD]=tempProcess->pid;

//update the arrival time of the process
tempProcess->PCB->ArrivalTime=GlobalCPUTime;

ADDpidTo(tempProcess->pid,7);
DELpidFrom(3);

FrameNoForLD=-1; TrackNoForLD=-1;
}
else if(Task==4)//RD
{

tempProcess=
FindProcessTableNode(PCBQueueIOHead->pid);
strncpy(M[RAForIO],DM[TrackNoForIO],40);
//Release Track
trackStatus[TrackNoForIO]=0;
tempProcess->PCB->DCardCurrent=

tempProcess->PCB->DCardCurrent->next;
ADDpidTo(tempProcess->pid,7);
DELpidFrom(4);
RAForIO=-1;  TrackNoForIO=-1;

}
else if(Task==5)//WT
{

tempProcess=
FindProcessTableNode(PCBQueueIOHead->pid);
strncpy(DM[TrackNoForIO],M[RAForIO],40);
tempProcess->PCB->llc++;
if(tempProcess->PCB->ttc>=

tempProcess->PCB->ttl)
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{
ADDpidTo(tempProcess->pid,6);    //TQ
DELpidFrom(4);                   //IO

}
else
{

ADDpidTo(tempProcess->pid,7);     //RQ
DELpidFrom(4);                    //IO

}
RAForIO=-1; TrackNoForIO=-1;

}
else if(Task==6)//SQ(W)
{

strncpy
(DM[TrackNoForSQW],M[VFForSQW*BLOCKSIZE],
40);
FForSQR=VFForSQW;
TrackNoForSQW=-1;  VFForSQW=-1;
Task=7;
StartCH3();
return;

}
else if(Task==7) //SQ(R)
{

tempProcess=
FindProcessTableNode(PCBQueueSQHead->pid);
TrackNoForSQR=tempProcess->PCB->TrackForPage

[tempProcess->PCB->FaultedPage];
strncpy
(M[FForSQR*BLOCKSIZE],DM[TrackNoForSQR],40);
//Move PCB,SQ->RQ after setting TSC<-0
ADDpidTo(tempProcess->pid,7); //RQ
DELpidFrom(5); //SQ
TrackNoForSQR=-1;  FForSQR=-1;

}
Task=0;//reset the task

}//end if(Task!=0)

struct ProcessTableNode *tempProcess=NULL;
//(Now Assign New Task in Priority Order)

if(PCBQueueTQHead!=NULL  && EBQHead!=NULL)
//(output spool first)
{

tempProcess=NULL;
tempProcess=

FindProcessTableNode(PCBQueueTQHead->pid);
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EBForOS=GetBufferFrom(1);
if(ErrorCount==0 || ErrorCount==1)
{

Task=2;    StartCH3();  return;
}
if(tempProcess->PCB->OutPutCardCurrent==NULL)
{

ErrorCount=0;
AddBufferTo(EBForOS,1);
ReleasePCB(tempProcess);
DELpidFrom(6);//TQ
return;

}
TrackNoForOS=
tempProcess->PCB->OutPutCardCurrent->trackNo;
Task=2;//2 for OS
StartCH3();

}
else if(IFBHead!=NULL && CheckTrack()==1)
{

//Get next buffer from ifb(q)
EBForIS=GetBufferFrom(2);
//Get drum track
TrackNoForIS=GetTrackFromDrum();
Task=1;
StartCH3();

}
else if(PCBQueueLDHead!=NULL  && CheckFrame()==1)
{

tempProcess=NULL;
tempProcess=

FindProcessTableNode(PCBQueueLDHead->pid);
//Find track number of next program card
TrackNoForLD=

tempProcess->PCB->PCardCurrent->trackNo;
//Allocate a frame
FrameNoForLD=GetFrameFromMemory();
//Update Page Table
int PageTableLength;
if(tempProcess->PCB->ptr[1]==NULL)

PageTableLength=0;
else
{

PageTableLength=
GetPageTableLength(tempProcess);

PageTableLength=PageTableLength+1;
}
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UpdatePageTableLength
(tempProcess,PageTableLength);

UpdatePageFrameNo
(tempProcess,PageTableLength,FrameNoForLD);

Task=3;
StartCH3();

}
else if(PCBQueueIOHead!=NULL)
{

tempProcess=
FindProcessTableNode(PCBQueueIOHead->pid);

if( tempProcess->PCB->ir[0]=='G' &&
tempProcess->PCB->ir[1]=='D')

{
if(tempProcess->PCB->DCardCurrent==NULL)
{

//out of data message
tempProcess->PCB->ErrorMessage=1;
//6 for TQ
ADDpidTo(tempProcess->pid,6);
DELpidFrom(4);//4 for IO

}
else
{

TrackNoForIO=
tempProcess->PCB->

DCardCurrent->trackNo;
//Get memory real address
char va[3];   va[2]=NULL;
va[0]=tempProcess->PCB->ir[2];
va[1]=tempProcess->PCB->ir[3];
RAForIO=

ADDRESSMAP(tempProcess,atoi(va));
Task=4;
StartCH3();

}

}
else     //if PD
{

if( tempProcess->PCB->llc>=
tempProcess->PCB->tll)

{
tempProcess->PCB->ErrorMessage=2;
ADDpidTo(tempProcess->pid,6);
DELpidFrom(4);

}
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else
{

if(CheckTrack()==1)
{

TrackNoForIO=GetTrackFromDrum();
//update PCB
if( tempProcess->PCB->

OutPutCardHead==NULL &&
tempProcess->PCB->
OutPutCardTail==NULL)

{
tempProcess->PCB->
OutPutCardHead=
(struct CardListNode *)

malloc(sizeof(struct
CardListNode));

tempProcess->PCB->
OutPutCardHead->trackNo=
TrackNoForIO;
tempProcess->PCB->
OutPutCardHead->next=NULL;
tempProcess->PCB->
OutPutCardTail=
tempProcess->PCB->
OutPutCardHead;
tempProcess->PCB->
OutPutCardCurrent=
tempProcess->PCB->
OutPutCardHead;

}
else
{

tempProcess->PCB->
OutPutCardTail->next=
(struct CardListNode *)

malloc(sizeof(struct
CardListNode));

tempProcess->PCB->
OutPutCardTail=
tempProcess->PCB->
OutPutCardTail->next;
tempProcess->PCB->
OutPutCardTail->trackNo=
TrackNoForIO;
tempProcess->PCB->
OutPutCardTail->next=NULL;

}
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//find memory RA
char va[3];    va[2]=NULL;
va[0]=tempProcess->PCB->ir[2];
va[1]=tempProcess->PCB->ir[3];

RAForIO=ADDRESSMAP(tempProcess,atoi(va));

//RAForIO=GetMemoryRAForIO(ptr,va);
Task=5;
StartCH3();

}
}

}
}
else if(PCBQueueSQHead!=NULL)
{

tempProcess=NULL;
tempProcess=

FindProcessTableNode(PCBQueueSQHead->pid);

if(CheckFrame()==1)
{

//Allocate
int FrameNo=GetFrameFromMemory();
//Update PidForFrame[30]
PidForFrame[FrameNo]=tempProcess->pid;
//Update page table
int PageTableFrameNo=

GetPageTableFrameNo(tempProcess);
int PageTableLength=

GetPageTableLength(tempProcess);
UpdatePageFrameNo(tempProcess,

tempProcess->PCB->FaultedPage,FrameNo);
//Adjust TrackForPage[10]
if(tempProcess->PCB->TrackForPage

[tempProcess->PCB->FaultedPage]==-1)
{

if(CheckTrack()==1)
{

int TrackNo=GetTrackFromDrum();
tempProcess->PCB->TrackForPage
[tempProcess->PCB->FaultedPage]=

TrackNo;
UpdatePageTableLength
(tempProcess,PageTableLength+1);

}
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else
{

tempProcess->PCB->ErrorMessage=9;
ADDpidTo(PCBQueueSQHead->pid,6);
DELpidFrom(5);
return;

}
}
//Adjust IC,If necessary
FForSQR=FrameNo;
Task=7;
StartCH3();

}
else  //frame not available
{

//--V-- Victim Process
//--S-- Swap Queue Head Process
struct ProcessTableNode *VtempProcess=NULL;
int VPageTableFrameNo;
int modified=0;

int SPageTableFrameNo=
GetPageTableFrameNo(tempProcess);

int SPageTableLength=
GetPageTableLength(tempProcess);

int VFrameNo=-1;
//Run page replacement algorithm
//and Find a victim frame
while(1)
{

VFrameNo=FindVictimFrame();
VtempProcess=FindProcessTableNode

(  PidForFrame[VFrameNo]  );
VPageTableFrameNo=

GetPageTableFrameNo(VtempProcess);
if(VFrameNo==VPageTableFrameNo)
{

continue;
VtempProcess=NULL;

}
else

break;
}
int VPageFrameNo=-1;
//Updating Victim Process
for(int page=0;page<10;page++)
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{
if(M[VPageTableFrameNo*BLOCKSIZE+page][0]==

'1')
// if allocated page
{

VPageFrameNo=
GetPageFrameNo(VtempProcess,page);
if(VPageFrameNo==VFrameNo)
{

//Update PidForFrame[30]
PidForFrame[VFrameNo]=
PCBQueueSQHead->pid;
//updating victim process
M[VPageTableFrameNo*

BLOCKSIZE+page][0]='0';
if(M[VPageTableFrameNo*BLOCKSIZE
+page][1]=='1')
{

modified=1;
M[VPageTableFrameNo*
BLOCKSIZE+page][1]='0';
}

M[VPageTableFrameNo*BLOCKSIZE+page][2]=NULL;
M[VPageTableFrameNo*BLOCKSIZE+page][3]=NULL;
//updating swap process
UpdatePageFrameNo
(tempProcess,tempProcess->PCB->FaultedPage,VFrameNo);
if(modified==1)
{

VFForSQW=VFrameNo;
TrackNoForSQW=VtempProcess->PCB->

TrackForPage[page];
}
else

FForSQR=VFrameNo;
break;

}//if(atoi(PageFrameNo)==VFrameNo)
}//if(M[VPageTableFrameNo*BLOCKSIZE+page][0]=='1')
}
//Locate Drum Track with faulted page
if(tempProcess->PCB->TrackForPage

[tempProcess->PCB->FaultedPage]==-1)
{

if(CheckTrack()==1)
{

int TrackNo=GetTrackFromDrum();
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tempProcess->PCB->TrackForPage
[tempProcess->PCB->FaultedPage]=TrackNo;
UpdatePageTableLength

(tempProcess,SPageTableLength+1);
}
else
{

tempProcess->PCB->ErrorMessage=9;
ADDpidTo(PCBQueueSQHead->pid,6);
DELpidFrom(5);
return;

}
}
if(modified==1)

Task=6;
else

Task=7;
StartCH3();
}  //else frame not available
}//else if(PCBQueueSQHead!=NULL)
}

Appendix B
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B.1 Data Set for the Workload with Quantum Size=1

PID  ARRIVAL  FINISH  TURNAROUND  WAITING
0    37       78      41          0
1 77       166     89          5
2    128      262     134         19
3    185      330     145         16
5    285      400     115         18
4    241      461     220         41
6    347      534     187         62
7    375      538     163         65
8    414      570     156         49
9    450      658     208         43
13   659      745     86          13
10   502      763     261         48
11   560      830     270         25
12   621 926     305         50
16   848      959     111         29
14   760      1005    245         39
15   812      1035    223         39
17   887      1135    248         42
21   1099     1201    102         17
18   951      1203    252         43
20   1061     1316    255         45
19   998      1334    336         55
23   1264     1395    131         32
22   1224     1452    228         40
24   1338     1481    143         20
25   1378     1559 181         32
27   1479     1650    171         33
26   1426     1667    241         50
29   1582     1670    88          10
28   1538     1739    201         26
32   1774     1865    91          31
31   1728     1867    139         34
30   1688     1868    180         34
33   1812     1994    182         43
34   1861     2134    273         26
37   2017     2162    145         11
35   1914     2164    250         22
39   2173     2294    121 17
36   1972     2333    361         46
40   2207     2346    139         18
38   2065     2450    385         41
41   2247     2494    247         44
45   2517     2579    62          8
43   2367     2582    215 36
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42   2316     2619    303         31
44   2425     2683    258         18
47   2642     2788    146         30
48   2678     2810    132         32
46   2592     2840    248         37
49   2730     2943    213         54
53   2933     3028    95          12
51   2835     3046    211         25
50   2780     3064    284         32
56   3127     3212    85          19
55   3081     3240    159         18
54   3041     3286    245         18
52   2893     3335    442         42
57   3164     3480    316         48
58   3237     3520    283         33
61   3390     3563    173         15
59   3283     3608    325         39
63   3565     3716    151         16
60   3353     3730    377         48
64   3597     3793    196         17
62   3517     3819    302         21
65   3645     3886    241         31
67   3787     3999    212         40
69   3920     4043    123         8
70 3940     4127    187         22
66   3741     4141    400         32
71   4040     4143    103         3
68   3850     4211    361         35
72   4072     4258    186         11
73   4156     4397    241         15
75   4256 4451    195         24
77   4354     4489    135         5
74   4206     4495    289         19
76   4313     4570    257         15
79   4528     4687    159         51
80   4564     4709    145         46
78   4480 4771    291         60
81   4602     4795    193         58
82   4652     4905    253         49
85   4844     4906    62          18
83   4709     4966    257         24
84   4806     5025    219         20
87   4983     5131    148         46
88   5019     5153    134         45
86   4943     5202    259         53
89   5057     5275    218         61
90   5106     5360    254         45
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91   5158     5387    229         28
93   5307     5405 98          10
92   5220     5457    237         24
94   5400     5547    147         16
95   5450     5605    155         27
97   5548     5659    111         20
96   5510     5700    190         50
98   5598     5734    136 32
99   5639     5736    97          29

B.2 Data Set for the Workload with Quantum Size=2

PID  ARRIVAL  FINISH  TURNAROUND  WAITING
0    37       78      41          0
1    77       173     96          10
2    128      269 141         17
3    184      346     162         18
5    284      382     98          9
4    240      455     215         33
7    374      537     163         54
6    330      561     231         54
8    418      574     156 50
9    472      673     201         48
10   510      754     244         49
11   562      796     234         29
13   663      824     161         13
12   625      882     257         32
15   831      982     151 50
16   875      998     123         43
14   791      1018    227         56
17   916      1114    198         49
21   1124     1257    133         21
19   1021     1275    254         30
20   1079     1327    248 22
18   967      1345    378         43
24   1322     1438    116         12
23   1272     1463    191         23
22   1170     1547    377         33
25   1362     1596    234         33
26   1410     1668    258         36
27   1460     1692    232         21
28   1520     1752    232         17
29   1633     1782    149         6
32   1791     1870    79          25
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31   1745     1890    145         25
30   1705     1952    247         42
33   1829     2038    209         52
35   1931     2126    195         35
34   1887     2127    240         45
37   2031     2128    97          8
36   1992     2242    250         23
38   2121     2337    216         35
40 2251     2350    99          31
39   2205     2378    173         37
41   2289     2485    196         54
42   2338     2573    235         30
43   2391     2575    184         26
45   2520     2599    79          9
44   2449     2688    239         29
46   2613     2791    178         36
47   2663     2799    136         42
48   2697     2828    131         36
49   2736     2926    190         42
50   2785     3040    255         28
53   2941 3052    111         13
51   2839     3082    243         25
56   3115     3211    96          15
55   3079     3232    153         18
54   2989     3290    301         42
52   2897     3356    459         47
61   3381     3458    77          7
58   3229     3516    287         9
57   3155     3528    373         37
59   3277     3622    345         14
60   3341     3692    351         20
62   3473     3750    277         32
63   3555     3795 240         25
64   3591     3822    231         33
67   3776     3978    202         10
65   3641     3990    349         28
66   3719     3998    279         16
69   3875     4058    183         3
72   4103     4224    121         40
68   3837     4238    401         45
71   4069     4248    179         36
70   4017     4362    345         52
73   4141     4418    277         54
75   4293     4447    154         13
74   4243     4488    245 13
77   4451     4590    139         22
80   4574     4666    92          39
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79   4541     4667    126         44
78   4501     4689    188         52
76   4351     4801    450         66
82   4684     4878    194 21
81   4615     4896    281         44
83   4734     5006    272         40
85   4919     5020    101         10
84   4826     5046    220         18
86   4967     5123    156         14
88   5079     5177    98          14
87   5043     5204    161         25
89   5116     5272    156         27
90   5167     5385    218         35
93   5319     5415    96          25
91   5221     5431    210         35
92   5285     5491    206         29
95   5464     5587    123         15
94   5424     5616    192         22
97   5562     5692    130         29
96   5524     5707    183         33
99   5652     5748    96          30
98   5612     5750    138         22

B.3 Data Set for the Workload with Quantum Size=4

PID  ARRIVAL  FINISH  TURNAROUND  WAITING
0    37       78      41          0
1    77       173     96          9
2    128      262     134         15
3    184      341     157         22
5    285      377     92          10
4    240      421     181         22
8    412      515     103         41
7    380      541     161         49
6    332      601     269         65
9    454      645     191         48
13 668      731     63          5
11   558      822     264         26
10   504      835     331         41
15   758      865     107         15
14   716      900     184         22
12   620      902     282         19
16   909      964     55          0
17   950      1078    128         12
18   999      1165    166         22
19   1049     1254    205         35
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21   1149     1266    117         16
20   1112     1316    204         25
22   1203 1337    134         16
23   1293     1429    136         22
24   1329     1454    125         17
25   1368     1523    155         21
26   1416     1612    196         39
27   1471     1653    182         17
29   1573     1681    108         13
32   1732     1817    85          40
28   1537     1818    281         60
30   1626     1828    202         47
31   1688     1833    145         47
33   1772     1944    172         32
34   1886     2037 151         11
37   2034     2127    93          7
35   1936     2139    203         27
36   1994     2222    228         34
39   2142     2264    122         25
40   2176     2301    125         28
38   2088     2302    214         33
41   2237     2437    200         33
43   2338     2480    142         32
42   2287     2526    239         29
45   2472     2616    144         22
47   2561     2679    118         41
48   2595     2701    106 31
46   2521     2713    192         38
44   2397     2804    407         57
49   2636     2948    312         38
50   2701     2963    262         33
51   2750     3019    269         27
53   2850     3093    243 19
52   2814     3152    338         54
56   3082     3183    101         28
55   3032     3220    188         31
54   2982     3285    303         46
58   3175     3422    247         32
57   3120     3424    304         54
61   3325     3517    192         17
59   3237     3546    309         36
60   3285     3612    327         22
64   3539     3657    118         12
62   3463     3728    265         41
63   3507     3758    251         31
65   3583     3848    265         30
66   3635     3948    313         34
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69   3793     3992    199         6
71   3989     4102    113         25
68   3755     4104    349         32
67   3684     4105    421         37
72   4023     4119    96          23
70   3883     4131    248         30
73   4126     4316    190         13
74   4177     4392    215         19
77   4331     4455    124         9
75   4227     4472    245         24
80 4469     4573    104         23
79   4429     4576    147         24
76   4285     4650    365         40
78   4377     4696    319         36
82   4594     4845    251         34
85   4742     4899    157         27
83   4640 4955    315         32
81   4511     5022    511         53
84   4706     5058    352         31
88   4992     5078    86          7
87   4926     5172    246         27
86   4888     5223    335         31
89   5054 5257    203         25
90   5103     5343    240         35
93   5254     5377    123         5
91   5151     5519    368         35
95   5384     5536    152         14
92   5214     5539    325         21
94   5304     5621    317         21
97   5558     5670    112         3
99   5650     5746    96          33
98   5608     5747    139         33
96   5442     5762    320         37

B.4 Data Set for the Workload with Quantum Size=5

PID  ARRIVAL  FINISH  TURNAROUND  WAITING
0    37       78      41          0
1    77       173     96          9
2    128      262     134         15
3    184      341     157         22
5    285      377     92          10
4    240      421     181         22
8    412      515     103         41
7    380      541     161         49
6    332      601     269         65
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9    454      645     191         48
13   668      731     63          5
11   558      822 264         26
10   504      835     331         41
15   758      865     107         15
14   716      900     184         22
12   620      902     282         19
16   909      964     55          0
17   950      1078    128         12
18   999      1165    166         22
19   1049     1254    205         35
21   1149     1266    117         16
20   1112     1316    204         25
22   1203     1337    134         16
23   1293     1429    136 22
24   1329     1454    125         17
25   1368     1523    155         21
26   1416     1612    196         39
27   1471     1653    182         17
29   1573     1681    108         13
32   1732     1817    85 40
28   1537     1818    281         60
30   1626     1828    202         47
31   1688     1833    145         47
33   1772     1944    172         32
34   1886     2037    151         11
37   2034     2127    93          7
35   1936     2139    203         27
36   1994     2222    228         34
39   2142     2264    122         25
40   2176     2301    125         28
38   2088     2302    214         33
41   2237     2437    200         33
43   2338     2480    142         32
42   2287     2526    239         29
45   2472     2616    144         22
47   2561     2679    118         41
48   2595     2701    106         31
46   2521     2713    192         38
44   2397     2804    407         57
49   2636     2948    312         38
50   2701     2963    262         33
51   2750     3019    269         27
53   2850     3093    243         19
52   2814     3152    338         54
56 3082     3183    101         28
55   3032     3220    188         31
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54   2982     3285    303         46
58   3175     3422    247         32
57   3120     3424    304         54
61   3325     3517    192         17
59   3237 3546    309         36
60   3285     3612    327         22
64   3539     3657    118         12
62   3463     3728    265         41
63   3507     3758    251         31
65   3583     3848    265         30
66   3635 3948    313         34
69   3793     3992    199         6
71   3989     4102    113         25
68   3755     4104    349         32
67   3684     4105    421         37
72   4023     4119    96          23
70   3883     4131    248         30
73   4126     4316    190         13
74   4177     4392    215         19
77   4331     4455    124         9
75   4227     4472    245         24
80   4469     4573    104         23
79   4429     4576 147         24
76   4285     4650    365         40
78   4377     4696    319         36
82   4594     4845    251         34
85   4742     4899    157         27
83   4640     4955    315         32
81   4511     5022    511 53
84   4706     5058    352         31
88   4992     5078    86          7
87   4926     5172    246         27
86   4888     5223    335         31
89   5054     5257    203         25
90   5103     5343    240 35
93   5254     5377    123         5
91   5151     5519    368         35
95   5384     5536    152         14
92   5214     5539    325         21
94   5304     5621    317         21
97   5558     5670    112 3
99   5650     5746    96          33
98   5608     5747    139         33
96   5442     5762    320         37
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