SERO-EPIDEMIOLOGY OF JAPANESE ENCEPHALITIS IN SOME SELECTED HOSPITALS OF NEPAL

А

Dissertation Submitted to the Central Department of Microbiology Tribhuvan University

In Partial Fulfillment of the Requirement the Award of the Degree of Master of Science in Microbiology (Environment and Public Health)

By

KRISHNA PRASAD PANT

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal 2009

RECOMMENDATION

This is to certify that **Mr. Krishna Prasad Pant** has completed this dissertation work entitled **"Sero-epidemiology of Japanese encephalitis in some selected hospitals of Nepal"** as a partial fulfillment of **M.Sc. Degree in Microbiology (Environment and Public Health)** under our supervision, to our knowledge this work has not been submitted for any other degree.

Mr. Binod Lekhak, M.Sc. Lecturer Central Department of Microbiology Tribhuvan University, Kirtipur, Kathmandu, Nepal Date:

Dr. Basu Dev Pandey, PhD Senior Medical Officer Sukra Raj Tropical and Infectious Disease Hospital, Teku, Kathmandu, Nepal Date

.....

CERTIFICATE OF APPROVAL

On the recommendation of **Mr. Binod Lekhak** and **Dr. Basu Dev Pandey**, this dissertation work of **Mr. Krishna Prasad Pant** is approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirements for **M.Sc. Degree in Microbiology (Environment and Public Health)**.

Date:

Dr. Dwij Raj Bhatta, M.Sc., PhD Head Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal

BOARD OF EXAMINERS

Recommended by:

Mr. Binod Lekhak Supervisor

Dr. Basu Dev Pandey Supervisor

Approved by:

Dr. Dwij Raj Bhatta Head of Department

Examined by:

•••••

Dr. Basista Prasad Rijal External Examiner

••••••

Mr. Megha Raj Banjara Internal Examiner

Date:

ACKNOWLEDGEMENT

I would like to express my sincere and profound gratitude, and earnest compliment to my respected supervisor **Mr. Binod Lekhak** Lecturer, Central Department of Microbiology, T.U., for his all long guidance, constant inspiration, tremendous support and encouraging attitude.

It gives me an immense pleasure to express heartfelt appreciation and an enormous debt to my supervisor **Dr. Basu Dev Pandey**, Senior physician Sukra Raj Tropical hospital, Teku and Director, EICRC for laboratory Facility, his superb guidance, kindness, motivation, all time technical support and invaluable suggestions that I received during entire research period.

I would like to express my sincere gratitude to **Dr. Dwij Raj Bhatta**, Head, Central Department of Microbiology for his kind cooperation and encouragement. I am also highly indebted to my respected teachers Mr. Dev Raj Joshi, Mr. Megha Raj Banjara, and other faculty members of Central Department of Microbiology for their guidance and invaluable suggestions during the research period.

I would like to express my heartfelt gratitude to Everest International Clinic and Research Centre (EICRC) for providing ELISA kits, associated reagents and laboratory facility. Thanks are also due to Mr. Kiran Pandey, lab technician of EICRC for his necessary assistance.

Thanks are due to Dr. Durga Datt Joshi chief of the National Zoonoses Food Hygiene and Research Center, Tahachal, Kathmandu for his invaluable suggestions and superb guidance throughout the research period.

Thanks are also due to Dr Jagdish Prasad Agrawal Department of Internal Medicine Tribhuvan University Teaching Hospital Maharajgunj, Kathmandu, Dr. Krishna Bahadur Shrestha, Director of Lumbini Zonal hospital, Butwal, Dr. Shyam Sundar Yadav, Director of Bheri Zonal Hospital Nepalgunj giving permission to collect serum samples from suspected AES and viral fever cases. Many thanks go to Mr. Mahmood Ahamad Siddiqi, lab technician, Bheri Zonal Hospital, and Mr. Binod Gnwyali, senior lab technician, Lumbini Zonal Hospital for their co-operation during sample collection.

I would like to express my heartfelt thanks to all my friends and especially to Ramesh Pun for providing me necessary assistance and invaluable suggestions during the entire research period. Similarly many thanks go to my friends Santa Raj Khanal, Dhiraj Acharya, Shardulendra Prasad Sherchand, Dhiraj Thapa Magar, Kul Raj Rai, Saurav Aryal, Hari Krishna Devkota, Vishowa Nath Paudyal and class friends for their assistance.

Finally, as always, I would like to express my gratitude to my family members especially my respected parents, brother, sister in law, sister and niece for their deep love, continuous inspiration and encouragement in each and every step of my life.

Date:

Krishna Prasad Pant

ABSTRACT

Japanese encephalitis (JE) is one of the major public health problems in Nepal especially in terai region and other non endemic regions where the sporadic cases of JE occurs annually. The diagnosis of JE in Nepal is based on clinical signs and symptoms. The objective of this study was to find the epidemiological status of Japanese encephalitis in some selected hospitals of Nepal. The laboratory diagnosis of JE is made with IgM capture enzyme linked immunosorbent assay (ELISA).

In this study, a total of 267 serum samples from suspected acute encephalitic syndrome (AES) cases and viral fever cases were collected and confirmed by IgM capture ELISA. Among 267 serum samples, 242(90.6%) were clinical suspects of AES and 25(9.4%) were clinical suspects of viral fever. Out of 242 AES cases, 84(34.7%) were found to be positive for the presence of anti-JEV IgM and out of 25 viral fever cases, nine (36%) were found to be positive for the presence of anti-JEV IgM. Out of 267 cases, 93(34.8%) were found to be positive for the presence of anti-JEV IgM. Among positive cases, 60(65.5%) of total positive cases were male and rest 33(35.5%) of total positive cases and sero-positivity. The children had both lowest number of positive cases and sero-positivity. Males and adults are more affected by the disease. Both the highest numbers of positive cases and sero-positivity was observed in Tribhuvan University Teaching Hospital.

This study concludes that the sero-positivity is quite higher than that of national data. The epidemiological pattern of the disease has been changed in hospitals of Nepal. Continuation of active surveillance in JE endemic areas should be strengthened.

TABLE OF CONTENTS

Title Page	i
Recommendation	ii
Certificate of Approval	iii
Board of Examiners	iv
Acknowledgement	V
Abstract	vi
Table of Contents	vii
List of Abbreviations	xi
List of Tables	xiii
List of Figures	xiv
List of Photographs	XV
List of Appendices	xvi
CHAPTER-I: INTRODUCTION	1-3
1.1 Introduction	1
CHAPTER II: OBJECTIVES	4
2.1 General objective	4
2.2 Specific objective	4
CHAPTER III- I ITERATURE REVIEW	5-40
3.1 Japanese Encenhalitis	5
3.2 History	5
3.3 Morphology and Structure	5 7
3.4 Replication	9
3.5 Vectors	9
3.6 Reservoir Hosts	10
3.7 Transmission Cycle	10
3.7 Immunology	12
	15

3.7.1 Humoral immunity	13
3.7.2 Cell mediated immunity	14
3.8 Pathogenesis of JEV	14
3.9 Clinical Features	15
3.10 Diagnosis	17
3.10.1 Clinical Diagnosis	17
3.10.2 Laboratory diagnosis	17
3.10.2.1 Culture	17
3.10.2.2 Antigen Detection	18
3.10.2.3 Antibody Detection by Serology	18
3.10.2.3.1 Haemagglutination Inhibition Assay (HI)	19
3.10.2.3.2 Plaque Reduction Neutralization Titer Assay (PRNT)	19
3.10.2.3.3 Complement Fixation Test (CF)	19
3.10.2.3.4 IgM and IgG enzyme Immunoassay	20
3.10.2.3.5 IgM Capture ELISA (MAC Capture ELISA)	22
3.10.2.4 Immunocytochemistry	22
3.10.2.6 Molecular Techniques	23
3.10.2.6.1 Polymerase Chain Reaction (PCR)	23
3.10.2.6.2 Real Time RT-PCR	23
3.10.2.6.3 Loop-Mediated Isothermal Amplification Assay (LAMP)	24
3.11 Nepal: National Guidelines for JE Diagnosis	24
3.11.1 Disease Surveillance	25
3.12 Treatment	25
3.13 Prevention and Control	25
3.13.1 Mosquito Control	26
3.13.2 Amplifying Host Control	27
3.13.3 Vaccination	28
3.13.3.1 Immunization against JE	28
3.13.3.1.2 Inactivated mouse brain derived JE vaccine	29
3.13.3.1.3 Inactivated PHK cell culture derived vaccine	29

3.13.3.1.4 Cell culture-derived live attenuated vaccine	30
3.14 JE vaccination in Nepal	30
3.15 Disease Distribution	32
3.15.1JE Burden and Research Activities: Worldwide distribution	32
3.15.2 JE among Travelers	35
3.15.3 JE Situation in Nepal and research activities	36
CHAPTERIV: MATERIALS AND METHODS	41-44
4.1 Materials	41
4.2 Methods	41
4.2.1 Study Design	41
4.2.2 Study Period	41
4.2.3 Study site	41
4.2.4 Sample size	41
4.2.5 Specimen collection, storage and transport	41
4.3 Laboratory Tests	42
4.3.1 IgM Capture ELISA	42
4.3.1.1 JE-Dengue IgM Combo ELISA Test	42
4.5 Interpretation of the Result	43
4.5.1 ELISA Result Analysis	43
4.6 Statistical Analysis	44
CHAPTER-V: RESULTS	45-49
5.1 Socio-epidemiological Distribution of JE	45
5.2 Serological Studies	46
5.2.1 Results from IgM Capture ELISA	47
CHAPTER-VI: DISCUSSION AND CONCLUSION	50-54
6.1 Discussion	50
6.2 Conclusion	54

CHAPTER-VII: SUMMARY AND RECOMMENDATION	55-57
7.1 Summary	55
7.2 Recommendation	57
REFERENCES	58-69
APPENDICES	i-xi

LIST OF ABBREVIATIONS

ABC	Avidin biotin system
AES	Acute encephalitis syndrome
AFP	Acute flaccid paralysis
BZH	Bheri Zonal Hospital
CDC	Centre for Disease Control and Prevention
CF	Complement fixation
CFR	Case fatality rate
CI	Case incidence
CMI	Cell mediated immunity
CNS	Central nervous system
CSF	Cerebrospinal fluid
Cx.	Culex
DoHS	Department of Health Services
Е	Envelope protein
EDCD	Epidemiology and Disease Control Division
EICRC	Everest International Clinic and Research Centre
ELISA	Enzyme Linked Immunosorbent Assay
EPI	Expanded programme of immunization
EWARS	Early Warning Reporting System
Ha-Ny beads	Hydroxyapatite- coated nylon beads
HI	Haemagglutination Inhibition
HMIS	Health management Information System
IFA	Indirect fluorescent antibody
IgG	Immunoglobulin G
IgM	Immunoglobulin M
IPD	Immunization preventable diseases
JE	Japanese encephalitis
JEV	Japanese encephalitis virus
LAMP	Loop-Mediated Amplification Assay

LZH	Lumbini Zonal Hospital
MAb	Monoclonal antibody
MAC-ELISA	IgM antibody capture ELISA
MOAC	Ministry of Agriculture and Co-operative
MoHP	Ministry of Health and Population
NS	Non-structural protein
NTA	Neutralization assay
NTR	Nontranslated region
PCR	Polymerase chain Reaction
РНК	Primary Hamster Kidney
PrM	Pre-membrane protein
PRNT	Plaque reduction neutralization test
RT-PCR	Reverse Transcriptase Polymerase Chain Reaction
RT-PCR	Reverse transcriptase polymerase chain
SEAR	South East Asian Regional
SLE	St. Louis encephalitis
TUTH	Tribhuvan University Teaching Hospital
WDR	Western Development Region
WHO	World Health Organization
WNV	West Nile Virus

LIST OF TABLES

Table 1: Reservoir Population in Nepal, 2008

Table 2: Sex wise Distribution of AES and viral fever Cases

Table 3: Total number of Suspected AES and Viral Fever Cases

Table 4: Distribution of AES viral fever cases in different Hospitals

Table 5: Age wise distribution of AES and viral fever cases

Table 6: Anti-JEV IgM Positivity rate among suspected AES and viral fever cases by IgM capture ELISA

Table 7: Sex wise Positivity of anti-JEV IgM among suspected AES and viral fever cases by IgM capture ELISA

Table 8: Evaluation of anti-JEV IgM titres of tested samples

Table9: Hospital wise distribution of positive cases among suspected AES and viral fever cases by IgM capture ELISA

Table 10: Age wise distribution of positive cases among suspected AES and viral fever cases by IgM capture ELISA

LIST OF FIGURES

Figure 1: Structure of Japanese encephalitis virus

Figure 2: Mature proteins generated by proteolytic processing cascade

Figure 3: Transmission cycle of Japanese encephalitis

Figure 4: Schematic antibody responses in JE infection

Figure 5: Japanese encephalitis endemic districts (n = 24) of Nepal

LIST OF PHOTOGRAPHS

Photograph 1: Pig a reservoir host of JEV.

Photograph 2: Culex mosquito, the principal vector of JEV in Nepal

Photograph 3: IgM capture ELISA plate after addition of stop solution.

Photograph 4: Set of IgM capture ELISA reagents (Panbio Diagnostics)

LIST OF APPENDICES

- Appendix I: Materials
- Appendix II: Protocol of the test
- Appendix III: Flow chart of methodology
- Appendix IV: Japanese encephalitis case details form
- Appendix V: Statistical Analysis