ECONOMIC CONTRIBUTION OF GANDAKI HYDRO POWER PROJECT: A CASE STUDY OF REVAN VDC, KASKI DISTRICT

A Thesis

Submitted to the Department of Economics,

Faculty of Humanities and Social Sciences of Tribhuvan University,
in Partial Fulfillment of the Requirements for the Degree of

MASTER OFARTS

in

ECONOMICS

Submitted by PRAKASH CHALISE

Department of Economics

Prithivi Narayan Campus, Pokhara

Tribhuvan University

March 2018

Department of Economics

LETTER OF RECOMMENDATION

This thesis entitled "Economic Contribution of Gandaki Hydro Power Project: A

Case Study of Revan VDC, Kaski District, has been prepared by Prakash Chalise

under my supervision. I hereby recommend this thesis for approval by the thesis

committee.

.....

Ananda Raj Parajuli

Associate Professor

Thesis Supervisor

Date: 13rd March 2018

ii

Department of Economics

APPROVAL SHEET

We certify that the thesis entitled "Economic Contribution of Gandaki Hydro Power Project: A Case Study of Revan VDC, Kaski District," submitted by Prakash Chalise to Department of Economics, Prithvi Narayan Campus, Pokhara Faculty of Humanities and Social Sciences, Tribhuvan University, in partial fulfillment of the requirements for the degree of MASTER OF ARTS in ECONOMICS has been found satisfactory in scope and quality. Therefore, we accept this thesis as part of the said Degree.

,	Thesis Committee
	Prof. Deo Narayan Sutihar Head, Department of Econo
_	
]	Prof. Dr. Bed Nath Sharma
	External Examiner
_	
	Ananda Raj Parajuli
	Associate Professor
	Thesis Supervisor

Date: 22nd March, 2018

ACKNOWLEDGEMENT

First of all, I consider myself to be very fortunate to get an opportunity to study work

and complete my thesis under the guidance of my respected teacher Mr. Ananda Raj

Parajuli who generously took time out from his own busy schedule and provided me

with a continual stream of creative suggestion and encouragement to complete this

thesis.

I am very much obliged to Prof. Deo Narayan Sutihar, Head, Department of

Economics for his kind support and suggestion in my research work.

I am very much thankful to Pratibha Gurung, Pradeep Subedi, Baman Chalise, Madan

Chalise, Srijana Poudel, Pratap Chalise, and my all friends for their valuable

suggestion and help for preparing this thesis. Similarly, thanks for all my family and

relatives for their contribution and cooperation.

Last but not least, my special thanks goes to the respondents of my study area of

Revan and Lawang Ghalel, Gandaki Hydropower Project, Specially to Purna Bahadur

Gurung for providing various information, co-operation and positive response.

Date: 22nd March 2018

Prakash Chalise

Campus Roll No. 43/067

T.U. Reg. No. 6-2-48-3104-2005

iv

ABSTRACT

This study, in general attempts to appraise the importance of electricity in the development of Nepal. This research, however, focuses on the significance of the small hydropower project in the context of our country. Obviously Nepal has been facing many challenges due to lack of capital, infrastructure and technology to install large hydropower projects. In Such case, it is rather wise and practical to install small hydropower projects to fulfill our demand for electricity because it can be installed with small amount of capital to fulfill our demand for electricity because it can be installed with small amount of capital. So, we can encourage the private sector to invest on it. Likewise, it does not demand as sophisticated technology as the large projects to do. Moreover, it is free of hazardous environment impact. In all, it unlike the big projects, has more positive impacts than negative ones. So, the small hydropower projects can play a key role in the overall hydropower projects into the limelight through the study of impacts of Gandaki Hydropower Project in the overall sectors of the study area. Nepal has immense endowment of water resources. Theoretical and technical potentialities of hydropower are endowment of water resources. Theoretical and technical potentialities of hydropower are estimated to be 83,290 MW and 45,610 MW respectively. However economically viable capacity is accounted to be 42,133 MW. It is expected that electrification will create various opportunities of development activities in the rural areas. Neither traditional sources are in the position to meet the requirements of energy nor sustainable.

The hydropower plant of Zurich of Switzerland built in 1882 is the first hydropower plant in the world. In the context of Nepal, Fharping Hydro plant (500 KW) is the first hydropower plant. Nowadays, the demand for electricity is increasing day by day, the total hydro-electricity generate in Nepal is 846MW. The Gandaki Hydropower is based on run-off-river type project with 48000 KW capacities. The project has created abundant opportunities for knowledge and skill. So, their economic status has become better than before.

In conclusion, installation of small hydropower project like Gandaki is relevant/significant from various angle in the present context of Nepal to fulfill the national of electricity. The protect increase economic activities in the rural areas, uplift living standard of rural people, employment, and reduce regional imbalance of development.

TABLE OF CONTENTS

				Pa	ge No.
ACKNOWLE	DGEME	NTS			iv
ABSTRACT					v
LIST OF TAE	BLES				viii
LIST OF FIG	URES				ix
LIST OF ACE	RONYMS	S			X
CHAPTER 1.	INTROI	DUCTION			1
	1.1	General Background			1
	1.2	Statement of the problem			3
	1.3	Objectives of the study			4
	1.3.1	General objectives			4
	1.3.2	Specific objectives			4
	1.4	Significance of the study			4
	1.5	Limitations of the study			5
	1.6	Organization of the study			5
CHAPTER 2.	REVIEV	V OF THE LITERATURE	C		7
	2.1	Introduction			7
	2.2	Theoretical Review			7
	2.2.1	Theoretical, Technical and	Economical Hydr	ropower	
		Potential of Nepal			8
	2.2.2	Energy Consumption in Ne	epal		9
	2.3	Research Review			11
	2.4.	Research Gap			19
CHAPTER 3.	METHO	DOLOGY			21
	3.1	Research Design			21
	3.2	Sources of Data Collection			21
	3.2.1	Primary information			21
	3.2.2	Secondary information			22
	3.3	Sampling Technique			22
	3.4	Data Processing			22
	3.5	Data Analysis	•••••		23

CHAPTER 4.	DATA	ANALYSIS	•••••		24
	4.1	Introduction			24
	4.2	Interpretation			24
	4.2.1	Ward wise population distrib	oution of the st	udy	
		area	•••••		24
	4.2.2	Ward wise population distrib	oution of the sa	ample	
		survey			25
	4.2.3	Age wise Distribution of Res	spondents and	Their	
		Family Members	•••••		26
	4.2.4	Change in study habits after	SHP		26
	4.2.5	Teaching Methodology use i	n school after		
		SHP			27
	4.2.6	Number of employed in fami	ily		28
	4.2.7	Main Occupation of Househo	old		29
	4.2.8	Side occupation of Househol	d		31
	4.2.9	Extra time spend in productive	ve activities af	ter the	
		project			32
	4.2.10	Impact of project on human l	nealth		33
	4.2.11	Place of Treatment			34
	4.2.12	Change in expenditure after S	SHP per mont	h	35
	4.2.13	Electricity using for various	propose		36
	4.2.14	Advantage through SHP			37
	4.2.15	Uses of new instruments or E	Electronics dev	vices after	
		SHP			38
	4.2.16	Family who use internet			38
	4.2.17	Purpose for use internet			39
	4.3	Major Findings			40
CHAPTER 5.	SUMN	IARY AND CONCLUSION			42
	5.1	Summary			42
	5.2	Conclusions			43
	5.3	Suggestions			44
APPENDIX					46
BIBLIOGRAI	PHY				53

LIST OF TABLE

Table No.		Page No.
2.1	Theoretical, Technical and Economical Hydropower Potentia	ıl
	of Nepal	9
4.2.1	Ward wise population distribution of the study area.	25
4.2.2	Ward wise population distribution of the sample survey	25
4.2.3	Age wise Distribution of Respondents and Their Family	
	Members	26
4.2.4	Change in study habits after SHP	27
4.2.5	Teaching Methodology use in school after SHP	28
4.2.6	Number of employed in family	28
4.2.7	Main Occupation of Household	30
4.2.8	Side occupation of Household	31
4.2.9	Extra time spend in productive activities after the project	33
4.2.10	Impact of project on human health	34
4.2.11	Place of Treatment	34
4.2.12	Change in expenditure after SHP per month	35
4.2.13	Electricity using for various propose	37
4.2.14	Advantage through SHP	37
4.2.15	Uses of new instruments or Electronics devices after SHP	38
4.2.16	Family who use internet	39
4.2.17	Purpose for use internet	40

LIST OF FIGURE

Figure No.		Page No	
2.1	Energy Consumption in Nepal	10	
4.1	Number of employed in family	29	
4.2	Main Occupation of Household	30	
4.3	Side occupation of Household	32	
4.4	Family who use internet	39	

LIST OF ACRONYMS

AREAP : Asian Regional Environment Assessment Program

CBS : Central Bureau of Statistics

CEDA : Centre for Economic Development and Administration

 CO_2 : Carbon dioxide

DFID : Department of International Development

DOED : Department of Electricity Development

GHP : Gandaki Hydropower Project

GW : Gegawatt

HH : Household

HMG/N : His Majesty Government of Nepal

Hz : Hertz

ICSHP : International Centre on Small Hydro Power

INGO : International Non Government Organization

INSHP : International Network on Small Hydro Power

KW : Kilowatt

KWh : Kilowatt hour

KWp : Kilowatt, peak

l/s : litre/second

m³/s : Cubic metre per second,

MHP : Micro Hydro Power

MOWR : Ministry of Water Resource

MPWR : Ministry of Water Resource

MVA : Mega Volt Ampere

MW : Megawatt

NEA : Nepal Electricity Authority

NEFAS : Northeast Florida Astronomical Society

NGO : Non Government Organization

REDP : Rural Energy Development Program

Rpm : Rate per minute

SHP : Small Hydro Power

SHPDF : Small Hydropower Development Fund

SIA : Social Impact Assessment

Sq.mi : Square Mile

Sq. KM : Square Kilometer

SSWM : Sustainable Sanitation & Water Management

TW : Tega Watt

VDC : Village Development Committee

WB : World Bank

WECS : Water Energy Commission Sector