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ABSTRACT 

We optimize lattice parameter and identify the nature and values of band gap of iron and 

nickel using quantum espresso and Pseudo-Potential density functional Theorem. During 

optimization, the kinetic energy cut-off energy is found to be 95 Ry for Fe having k-point grid 

(8×8×8) for Fe. Then we estimate the lattice Parameter is found to be 5.42 Bohr for Fe which 

is very near with experimental results as well as previous calculated data. Which is only 

0.05  deviated from experimental result and previous data. The kinetic energy cut-off energy 

is found to be 95 Ry for having k-point grid (6×6×6) for Ni. Then we estimate the lattice 

Parameter is found to be 6.66 Bohr for Ni which is very near with experimental results as well 

as previous calculated data. Which is only 0.015  deviated from experimental result and 

previous data. Thus the lattice parameter of Fe and Ni estimated with GGA method is in close 

agreement with experimental values. Then we have study the band structure and found bands 

are overlap, density of states and partial density of states is very smooth and p-orbital have 

very less contribution in PDOS using GGA method in QE package. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Consideration 

The solidification or freezing of matter may lead to formation of ordered or disordered 

state in which ordered state is known as crystalline state where as the disordered one is 

termed the amorphous state. Crystalline state refers to an infinitive array of atoms or a 

group of atoms. The whole volume of crystal is constructed by moving block of 

smallest size along its edges which block is called a unit cell. The three-dimensional 

structure of a crystal is built from a repetitive arrangement of the simplest structural 

unit, called the unit cell, just as a single tile is often a unit cell for a two-dimensional 

ceramic tiling pattern. It received direct experimental configuration in 1913 through 

the work of W. and L. Bragg, who founded the subject of X-ray crystallography and 

began investigation of atoms arranged in solids. Depending on the nature of the unit 

cell, Bragg’s law is satisfied only at certain orientations of the crystal, and a beam of 

X-rays will then emerge from the crystal at a certain angle to the incident beam. 

Bragg’s law requires that the diffracted radiation from different layers of unit cells be 

in phase [1]. Every crystal structure satisfies the requirements of a specific group of 

certain symmetry operation (to show visualization of motional operations performed 

on atoms with unit cell). Different combination of symmetry operations results in 

different crystal structure. 

Crystal 

Crystals may be classified in terms of the dominant type of chemical binding force 

keeping the atoms together. All these bonds involve electrostatic forces, with the chief 

differences among them lying in the ways in which the outer electrons of the structural 

elements are distributed. The distinct types of bonds that provide the cohesive forces 

in crystals can be classified as follows: (i) the ionic bond (ii) the covalent bond (iii) 

the metallic bond (iv) the van der Waals bond and (v) the hydrogen bond. We briefly 

discuss the different types of bonds in crystals. 
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The ionic bond 

The electron state is little affected by the coming together of the ions to from the solid 

and the interaction of any two ions within the solid can be represented by the 

interionic potential curve of two isolated ions. At large separation the interionic 

potential is dominated by the long-range electrostatic interaction      𝜀   ⁄  the 

+sign for two ions of same sign and -sign for ions of opposite sign [2]. 

The covalent bond 

In the covalent bonded crystal, the binding energy is associated with the sharing of 

valence electrons between atoms. The states of the valence electrons are profoundly 

changed by the approach of the atoms to form the solid, and where an atom forms 

more than one bond the energy depends strongly on their relative orientation. A pair of 

electros is necessary feature of covalent bond, an atom cannot in general form more 

bonds than valence electrons. In an ideal covalent bond between two atoms the two 

electrons are equally shared.  

The metallic bonding 

Metallic bonding, which is formed when electrons are shared by all the atoms in the 

solid, producing a uniform ―sea‖ of negative charge; the solids produced in this way 

are the usual metals. 

The Vender Wall Bond 

It is an additional type of bond. However, the van der Waals bond is only significant 

in case where other types of bonding are not possible, for example, between atoms 

with closed electron shell, or between saturated molecules. The physical source of this 

bonding is charge fluctuations in the atoms due to zero-point motion. Van der Waal 

forces are responsible for the bonding in molecular crystals. The bonding energy is 

dependent on the polarizability of the atoms involved and is mostly of order of 0.1eV. 

Typical atomic bonding radii for van der Waals bonding are considerably larger than 

for chemical bonding. 
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The Hydrogen Bond 

In a chemical bond when a atom is bond to two other atoms. At 

first, it's surprising that such a bond can exist since hydrogen has just 

one electron. However, one can imagine the chemical bond as follows: when 

hydrogen takes part during a chemical bond with a strongly electronegative 

atom, for instance, oxygen, its single electron is nearly completely transferred to 

partner atom. The proton which remain can then exert a beautiful force on a 

second negative atom and very small size of the proton with its strongly reduced 

electron screening, it's impossible for a 3rd atom to be bound. Generally, 

speaking, the phenomena related to hydrogen bonding are quite diverse and this 

sort of bonding is harder to characterize than most other types. The binding 

energies of hydrogen bonds are of the order of 0.1eV per bond [3]. 

An infinite array of points in space called a lattice (space lattice) and arrangement 

of points defined the lattice symmetry. when an atom or a uniform group of atom 

s attached to each lattice point, we get a crystal structure. The attached atom or 

group of atoms called basis, which is identical for each lattice point in terms of 

composition, relative orientation, and separation. The lattice is defined by three 

fundamental translation vector a, b and c such the atomic arrangement looks an 

equivalent in every respect when viewing from the purpose r as when viewed 

from the purpose . Draw a vector t connecting two lattice point P1 and P2 (fig 

1.1) represent vectors r1 and r2 respectively then, the vector t is defined as 

  ⃗+ ⃗⃗=  ⃗ˈ 

Such that 

 ⃗     ⃗     ⃗⃗     ⃗ 
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Fig. 1.1: Two lattice points P1 and P2 of a three-dimensional lattice connected by 

translation vector t [46] 

When all the lattice points can be located for the arbitrary choice of only integral 

values of n1, n2 and n3, the crystal axes a, b and c are called primitive and the resulting 

unit is called primitive cell. A lattice is a mathematical abstraction; the crystal 

structure is formed when a basis of atom is attached identically to every lattice point. 

The logical relation is 

Lattice + basis = crystal structure 

 

Fig 1.2: Crystal structure [47] 

An alternate primitive cell is known as Wigner-Seitz cell. A lattice point is joined to 

all the nearby lattice point s with the help of lattice vectors. Then, a plane 

perpendicular to each of these vectors, connecting the central lattice point, is draw at 

the midpoint of the vector. The planes form a completely closed polyhedron which 
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contains one lattice point at the Centre which is named Wigner and Seitz [4]. Figure 

1.3 shows the pictures of cell in two-dimension lattice. 

 

Fig.1.3: The construction of Wigner-Seitz cell for a two-dimensional space 

lattice[48]  

Lattice planes and miller indices  

A well-formed crystal or internal planes through a crystal structure are laid out 

in terms of Miller Indices, h, k, and l, written in round brackets, (hkl). an 

equivalent terminology is employed to specify planes during a lattice. Miller 

indices, (hkl), represent not only one plane, but the set of all identical parallel 

lattice planes. The values of h, k and l are the reciprocals of the fractions of 

a unit edge, a, b and c respectively, intersected by an appropriate plane.  this 

suggests that a group of planes that lie parallel to a unit edge is given the index 0 

(zero) no matter the lattice geometry. Thus, a group of planes that transit the ends 

of the unit cells, cutting the a-axis at an edge 1 a, and parallel to the b- and c-axes 

of the unit has Miller indices (100), (Figure 1.4a, b). an equivalent principles 

apply to the opposite planes shown. The set of planes that lies parallel to the a- 

and c-axes, and intersecting the top of every unit at an edge 1 b have Miller 

indices (010), (Figure 1.4c, d). The set of planes that lies parallel to the a- and b-

axes, and intersecting the top of every unit at an edge 1 c have Miller indices 

(001), (Figure 1.4e, f). Planes cutting both the a-axis and b-axis at 1 a and 1 b are 

going to be (110) planes, (Figure 1.4 g, h), and planes cutting the a-, b- and c-axes 

at 1 a, 1 b and 1 c are going to be (111).  

Remember that the Miller indices ask a family of planes, not only one . for 

instance , Figure 1.5 shows a part of the set of (122) planes, which cut 
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the unit edges at 1 a, ½ b and ½ c. The Miller indices for lattice planes are 

often determined employing a simple method [5]. 

  

 

Figure 1.4 Miller indices of lattice planes: (a, b) (100); (c, d) (010); (e, f) (001), (g, 

h)  (110); (i) (111) [49] 

 

 

Figure 1.5: Part of the set of (122) lattice planes Bravais lattice in two dimensions 

[50] 

The five Bravais lattice that can be received in two-dimension are depicted in fig.1.6a 

along with the primitive cell 

Here they are described in terms of the elementary translation vectors a1 and a2 and of 

the angle ϕ that they form: 
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Properties 

P1. Squared: |a1| = |a2| and a1, a2 placed at angle 𝜑 = π/2 

P2. Rectangular: |a1| ≠|a2|, and ϕ = π/2 

P3.   Body-centered rectangular: As in the rectangular case in P2, but an extra lattice 

point is located at the center of each rectangle. Note that this is a cell with two lattice 

points, located at center and vertex positions of the rectangle. A cell including more 

than one lattice site and designed to have all the symmetries of the given lattice is 

usually named convention a cell. In particular, here the conventional cell is actually 

not the primitive cell. The latter can instead be represented considering the cell origin 

at the rectangle center and choosing a1 and a2 to be the vectors connecting the center 

with two vertexes of the same rectangle. In this representation, |a1| = |a2| but ϕ ≠ π/2. 

P4. Slanted or oblique: |a1| ≠ |a2|and ϕ ≠π/2. 

P5. Hexagonal: |a1|= |a2|and ϕ = 2π/3. 

 

Fig. 1.6: Bravais lattice in 2D. The five conceivable Bravais lattices in 2D are 

depicted from (a) to (e) [51] 

The point-group symmetries related to these 5 lattices are easily picked out. Starting 

from that with lower symmetry, the slanted lattice in P4 has binary-axes symmetries. 

To the above binary-axes   symmetries, the rectangular P2 and the body-centered 

rectangular P3 add reflections with respect to the straight-dashed lines in Fig. 1.4 (b) 

or any other straight line parallel to the latter and crossing at the rectangles centers. 
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The squared lattice in P1 adds quaternary axes symmetries. Finally, the hexagonal P5 

has ternary and scenery-axes symmetries, besides reflection symmetries. Note the 

peculiarity here that two different Bravais lattices, the rectangular and the body-

centered rectangular, share the same point-group symmetry. 

Three-Dimension Lattice Types 

The point symmetry group in thee dimension require the 14 different lattice types 

listed in Table 1. The general lattice is triclinic, and there are 13 special lattices. These 

are grouped for convenience into systems classified according to seven types of cells, 

which are triclinic, monoclinic, orthorhombic, tetragonal, cubic, trigonal, and 

hexagonal. The division into systems is expressed in the table in terms of the axial 

relations that describe the cells. The cells in Fig. 6 are conventional cells: of these only 

the (SC) is a primitive cell. Often a non-primitive cell has a more obvious relation 

with the point symmetry operations than has a primitive cell. There are three lattices in 

the cubic system: the simple cubic (SC) lattice, the body-centered cubic (HCC) lattice, 

and the face-centered cubic (FCC) lattice 

Cubic System 

The point-group symmetries are those which leave a cube unchanged and can be 

counted in the number of 48. Three different Bravais lattices are classified in the cubic 

system: simple cubic, body-centered cubic and face-centered cubic. All of them are 

described below, since a great variety of materials occur in either one of these 

structures. 

Tetragonal system 

A tetragonal lattice is originated by a cube that is transformed into a parallelepiped 

with square base. Two different Bravais lattices are classified in the tetragonal system: 

simple and body-centered tetragonal lattice. 

Orthorhombic system 

The orthorhombic system is originated from the tetragonal one, after relaxing the 

requirement that the base be squared. Four different Bravais lattices are classified in 

the orthorhombic system: simple, base-centered, body-centered, and face-centered 

orthorhombic lattice. 

Monoclinic system 
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The monoclinic system is originated from the orthorhombic ones, after making the 

base to be a rhomb. Two different Bravais lattices are classified in the monoclinic 

system, simple and face-centered. 

Triclinic system 

The triclinic system is originated from the monoclinic one, after slanting vector a3 

with respect to the direction orthogonal to the plane containing a1 and a2. 

Trigonal system 

The trigonal system is originated from the simple cubic lattice, after deforming the 

cube along its diagonal: all the faces are rhombus, and each vertex is composed of 

three corners, each two of them forming the same angle. 

Hexagonal system 

The hexagonal system is obtained by layering hexagonal lattice planes one on top of 

the other, at distance c. The layering is arranged so that corresponding lattice points in 

adjacent planes are connected by lines perpendicular to the planes [5]. 

Table 1.1: Different types of lattice system [6] 

System  Bravais lattice  unit cell 

characteristics 

Characteristics 

symmetry elements  

Cubic  Simple  

Body centered  

Face centered  

 

a = b = c   

𝛼= 𝛽 = 𝛾 = 90° 

Four 3-fold rotation 

axes (along cube  

diagonal)  

Tetragonal  Simple  

Body centered  

a = b ≠ c   

𝛼= 𝛽 = 𝛾 = 90° 

One fourfold 

rotation axis  

Orthorhombic  Simple   

Base centered  

Body centered  

Face centered  

 

a≠ b ≠ c 𝛼 = 𝛽 

= 𝛾 = 90° 

 

 

Three mutually 

orthogonal 2-fold 

rotation axes.  

Monoclinic  Simple   

Base centered  

a≠  b ≠ c   

𝛼= 𝛽 =90° ≠ 𝛾 

One twofold 

rotation axis  

Triclinic Simple  a≠ b ≠ c   

𝛼 ≠ 𝛽 ≠90° ≠ 𝛾 

None   

Trigonal(rhombohedra)  Simple  a = b = c   

𝛼= 𝛽 = 𝛾 ≠90  

One threefold 

rotation axis  

Hexagonal  Simple  a = b = c   

𝛼= 𝛽 = 90  

𝛾= 120 

One threefold 

rotation axis  

The unit cell of a crystal is defined as that volume of space that its translations allow 

all the space without intervals and superposition to be covered. The PUC is the 

minimal volume Va = a1[a2 × a3] unit cell connected with one Bravais lattice point. 
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Conventional unit cells are defined by two, four and two lattice points, for the base-, 

face- and body-centered lattices, respectively. 

Table 1.2: Characteristics of cubic lattices [7]  

                                             Simple                   body-centered             Face-centered 

Volume, conventional call             

Lattice Points per cell  1 2 4 

Volume primitive cell       
 

 
   

 

 
   

Lattice points per unit volume   
 

    
 

   
 

   

Number of nearest neighbors   6 8 12 

Nearest-neighbor distance                ⁄   ⁄                      ⁄⁄         

Number of second neighbors 12 6 6 

Second neighbor distance     ⁄       

Packing Fraction 
 

 
 =0.524    

 

 
 √ =0.680         

 

 
 √ =0.740 

Miller indices 

All the faces of crystal can be described and numbered in terms of their axial 

intercepts where, axes represent crystallographic axes which are chosen to fit the 

symmetry; one or more of these axes may be axes of symmetry or parallel to them, but 

three convenient crystal edges be used if desire. The intercept X, Y and Z of this plane 

on the axes x, y and z are called parameters a, b and c. the ratio of parameter a: b and 

b:c are called the axial ratios, and by convention the values of parameters are reduced 

so that value of b is unity. W. H. Miller suggested in 1839, that each face of crystal 

could be represented by the indices h, k and l, defined by [8] 

  
 

 
   

 

 
   

 

 
 

The Reciprocal Lattice  

The set of all wave vectors K that yield plane waves with the periodicity of a given 

Bravais lattice is known as its reciprocal lattice. Analytically, K belongs to reciprocal 

lattice of Bravais lattice of point R. so we characterize the reciprocal lattice as the set 

of wave vectors K satisfying  

   ⃗⃗⃗  ⃗⃗    

For all R in Bravais lattice 
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That the reciprocal lattice is itself a Bravais lattice follow most simply from the 

definition of Bravais lattice. Let a1, a2, and a3 be a set of primitive vectors for the direct 

lattice. Then reciprocal lattice can be generated by three Primitive vectors 

  
⃗⃗ ⃗⃗    

  ⃗⃗⃗⃗⃗    ⃗⃗⃗⃗⃗

  ⃗⃗⃗⃗⃗(  ⃗⃗⃗⃗⃗    ⃗⃗⃗⃗⃗)
 

  
⃗⃗⃗⃗⃗    

  ⃗⃗⃗⃗⃗    ⃗⃗⃗⃗⃗

  ⃗⃗⃗⃗⃗(  ⃗⃗⃗⃗⃗    ⃗⃗⃗⃗⃗)
 

  
⃗⃗⃗⃗⃗    

  ⃗⃗⃗⃗⃗    ⃗⃗⃗⃗⃗

  ⃗⃗⃗⃗⃗(  ⃗⃗⃗⃗⃗    ⃗⃗⃗⃗⃗)
 

To verify above equation gives a set of primitive vectors for the reciprocal lattice, one 

first note that the bi satisfy  

        𝛿    

Where 𝛿   is the Kronecker delta symbol 

𝛿          

𝛿          

Since the reciprocal lattice is itself a Bravais lattice. 

The reciprocal of reciprocal lattice is the set of all vectors G satisfying 

   ⃗  ⃗⃗⃗    

For all K in reciprocal lattice, where                   [9] 

The Brillouin zone construction gives the all wave vectors which suffer diffraction 

from the crystal [10]. The first Brillouin zone has the shape of the truncated 

octahedron. 
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Figure 1.7: Brillouin zone [52] 

Density of states 

We may find the number of energy levels   ( ) within energy interval   and      

(or with n between n and n + dn) by counting the number of points that lie in a 

spherical shell or radius E and thickness dE. It may be noted here that although the 

energy E (and therefore n) is quantized, the spacing between the successive energy 

levels becomes infinitesimally small as L becomes large. We can then treat E and 

therefore n as continuous variables. Then energy interval    corresponds to an 

interval    given by 

   
    

    
       

Now the number of points in the positive octant of a spherical shell of radius n and 

thickness    is    
 

 
         we find 

  ( )  
 

   
[
  

  
]

 
 
  √    

 

   
[
  

  
]

 
 
 √    

Where,   is the volume of the box (occupied by the system). 



13 
 

 

Fig 1.8: When a particle is enclosed in cubical box of dimension L the energy 

levels are discrete [53] 

Each energy state corresponds to a point in three-dimensional (        )space in the 

positive octant. The spacing between the successive energy levels can be made as 

small as desired by choosing L sufficiently large [11]. 

1.2 Study Material: Iron and Nickel 

Iron is a transition element with symbol Fe and atomic number 26. It lies in group 8 

and period 4 in the periodic table. Humans started to extracted in Eurasia only about 

2000BCE and use of iron tools and weapons began to displace copper alloys only 

around 1200BC [10 ]. The body of an adult human contains about 4 grams(0.005% 

body weight) of iron, mostly in hemoglobin and myoglobin. At least four allotropes of 

iron (differing atom arrangements in the solid) are known, conventionally denoted α, 

γ, δ and ε. The melting point of iron is experimentally well defined for pressures less 

than 50 Gpa which is along with enthalpy of atomization [32]. Below its Curie point 

of 770°C, α-iron changes from paramagnetic to ferromagnetic: the spin of two 

unpaired electrons in each atom generally align with the spin of its neighbors, creating 

an overall magnetic field  .It has four stable isotopes: 
54

Fe,
56

Fe,
57

Fe and 
58

Fe.Iron 

found in rocky planets like Earth is due to its abundant production by fusion in high-

mass stars, where it is the last element to be produced with release of energy before 

the violent collapse of a supernova, which scatters the iron into space. Most of the iron 
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in the crust is combined with various other elements to form many iron minerals. An 

important class is the iron oxide minerals such as hematite(Fe2O3), magnetite(Fe3O4) 

and siderite(FeCO3) . Iron and its compound is used in various sector like food diet, 

steel making, structural material etc. [32] 

Because the ores of nickel are easily mistaken for ores of silver, understanding of this 

metal and its use dates to relatively recent times. However, the unintentional use of 

nickel is ancient, and can be traced back as far as 3500 BCE[10 ]. Bronzes from what 

is now Syria have been found to contain as much as 2% nickel. Some ancient Chinese 

manuscripts suggest that "white copper" (cupronickel, known as baitong) was used 

there between 1700 and 1400 BCE. This Paktong white copper was exported to 

Britain as early as the 17th century, but the nickel content of this alloy was not 

discovered until 1822 [39 ] 

It was discover by Baron Axel Frederik Cronstedt  in 1751. Nickel is a chemical 

element with the symbol Ni and atomic number 28 with highly reactive but larger 

pieces are slow to react with air under standard conditions because an oxide layer 

forms on the surface and prevents further corrosion (passivation). Even so, pure native 

nickel is found in Earth's crust only in tiny amounts, usually in ultramafic rocks and in 

the interiors of larger nickel–iron meteorites that were not exposed to oxygen when 

outside Earth's atmosphere[45]. Nickel is a silvery-white metal with a slight golden 

tinge that takes a high polish. It is one of only four elements that are magnetic at or 

near room temperature. Its Curie temperature is 355°C (671°F), meaning that bulk 

nickel is non-magnetic above this temperature. The unit cell of nickel is a face-

centered cube with the lattice parameter of 0.352nm, giving an atomic radius of 

0.124nm .It have five stable isotopes 
58

Ni,
60

Ni,
61

Ni,
62

Ni and 
64

Ni . On Earth, nickel 

occurs most often in combination with sulfur and iron in pentlandite, with sulfur in 

millerite, with arsenic in the mineral nickeline, and with arsenic [34]   

1.2.1 Crystal Structure  

Iron and Nickel can take shape in different gem structures. In any case, every change 

is just steady inside specific temperature ranges. The total change from one into 

another precious stone structure is called allotropic change; the particular change 

temperature is known as the transus temperature. Iron has two different crystal 

structure at atmospheric pressure: the body centered cubic (bcc) and the face centered 
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cubic (fcc).In ground state the bcc α-phase is stable and at the temperature T=1184K 

(A3 point), α-Fe transforms into fcc α-Fe, which is stable up to 1665K (A4 point). 

Above this temperature, iron transforms back into the bcc phase (ζ-Fe), which 

remains stable up to the melting point Tm=1809K. Since α and ζ Fe are isomorphic, 

the two are usually not distinguished when referred to bcc Fe. Steels with bcc and fcc 

structures are usually referred to as ―ferrite‖ and ―austenite‖ respectively. The boiling 

point of iron is about 3300K and third form of iron which has the hexagonal close 

packed (hcp) structure, can be stabilized under high pressures. The melting and 

boiling point of Fe is 1538 °C and  2861 °C with specific gravity 7.874 and atomic 

radius 156pm[32]  

Nickel is a silvery-white metal with a slight golden tinge that takes a high polish. It is 

one of only four elements that are magnetic at or near room temperature, the others 

being iron, cobalt and gadolinium. Its Curie temperature is 355°C (671°F), meaning 

that bulk nickel is non-magnetic above this temperature.[39] The unit cell of nickel is 

a face-centered cube with the lattice parameter of 0.352nm, giving an atomic radius of 

0.124nm. This crystal structure is stable to pressures of at least 70GPa. Nickel belongs 

to the transition metals. It is hard, malleable and ductile, and has a relatively high 

electrical and thermal conductivity for transition metals [34] 

 

Fig. 1.9: Crystal structure of bcc, fcc and hcp phase [54] 
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Iron and Nickel introduction in short 

Table 1.3: Introduction of Fe and Ni 

Titles   Concerned( values ,formulas and others) 

1. symbol  Fe Ni 

2. Group  8 10 

3 .Block  d    

4.Atomic number  26 28 

5.density  7.874 g      8.908g     

6.melting point  1811 k   1728k 

7.Boiling point   3134 k  3186k 

8. Relative atomic mass 55.845 58.6934 

9.Specific heat capacity  449J/(kg K) 445J/(kg K) 

10.Stable Isotopes   
56

Fe 
58

Ni 

11. Electron Configuration  [Ar] 4s
2 

3d
6
 [Ar] 4s

2
 3d

8
 

12. Curie point 1043 K 631 K 

                                               

1.2.2 Scope of  the Present Work 

The study of properties of solid is one of the most interesting and fruitful branches of 

physics. By knowing the lattice dynamics, we can predict different physical properties 

of solid and help to uses these solid in daily life application, which we can easily 

observed in this time period. 

In this present work, we have studies the density of state (DOS) of transition metal 

Iron and Nickel. From the study of DOS, we can get idea about nature of the solid and 

magnetic properties.  

The main objectives of our study are: 

1. To study about the crystal structure done by previous worker. 

2. To estimate the lattice parameter of Fe and Ni. 

3. To study and plot the density of state of Fe and Ni. 
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1.3 How we Approach? 

Mainly this research work is done is computational by using Quantum ESPRESSO 

(QE) package. First, we optimized structure of Transition metal by optimizing lattice 

parameters, then we study the band structure, DOS and PDOS of Iron And Nickel. In 

this study, we choose bcc structure for iron and fcc structure for nickel because of its 

computational cost and simplicity of structure. 

The outline of the present work is summarized follows: 

In this work, Chapter 1 includes general introduction about crystal structure and lattice 

dynamics with attachment of objective and scope of work. In chapter 2, we discuss the 

literature review of the elements Iron and Nickel. In chapter 3, we discuss the 

theoretical models of the method employed in calculations such as Born-

Oppenheimer, Hartree-Fock method, Density functional theory with local density 

approximation (LDA), General gradient approximation (GGA) and Pseudo potential. 

In chapter 4 we described some detail about Quantum ESPRESSO and its execution. 

Then in chapter 5 we discuss and present about main finding of this research. Finally, 

in chapter 6 we summarize our results and mention about further advantage of same 

field research. References are listed at end of chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW OF IRON AND NICKEL 

In 1986 Tashi Nautiyal and Sushil Auluck study about Electronic structure of 

ferromagnetic iron: Band structure and optical properties and in which a theoretical 

study of the band structure, density of states, and the optical properties of 

ferromagnetic iron is presented by using first principle[35 ]  

In 1989 L.M Sandratskii, P.G. Gulestskii study about Energy band structure of BBC 

iron at finite temperatures  by Using the KKR method generalized for the case of non-

collinear spin structures, and calculated the electron spectrum, the density of states, 

and the total energy of a number of helical magnetic configurations for bcc iron.[36 ]  

In 2018 Vivek Kumr Jain, N.Lakshmi, Rakesh Jin and Aarti Rani Chandra 

published an article Electronic Structure, Elastic, Magnetic, and Optical Properties 

ofFe2MnZ (Z= Si, Ge, and Sn) Full Heusler Alloys: First-Principle Calculations where 

Investigations of the electronic structure, elastic, magnetic, and optical properties of 

Fe2MnZ full Heusler alloys show mechanical stability with cubic symmetry in all 

three alloys.[ 37 ]  

In 1997 Carme Rovira, Karel Kunc, Jürg Hutter, Pietro Ballone, and Michele 

Parrinello   published an article of Equilibrium Geometries and Electronic Structure 

of Iron−Porphyrin Complexes:  A Density Functional Study in which performed 

density functional theory (DFT) calculations of iron−porphyrin (FeP) and its 

complexes with O2, CO, NO, and imidazole (Im).[38 ]  

The energy band structure of nickel was first investigate by Slater (1936) is an 

attempt to explain the occurrence of ferromagnetism in this material. He obtained a 

density of states for nickel by an extrapolation from the energy bands of copper, which 

had been calculated by Krutter(1935) using the cellular method of Wigner and 

Seitz(1933) by the modified tight-binding approximation and the Green's function 

method.[39 ]   

 

https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Karel++Kunc
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Jürg++Hutter
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Pietro++Ballone
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In 1974 C. S. Wang and J. Callaway published an article Band structure of nickel: 

Spin-orbit coupling, the Fermi surface, and the optical conductivity in which previous 

self-consistent calculation of energy bands in ferromagnetic nickel using the tight-

binding method has been extended to include spin-orbit coupling.[40]  

In 1978 N.I .Kulikov, V.N. Borzunov, and A.D. Zvonkov published a paper The 

electronic band structure and interatomic bond in nickel and titanium hydrides in 

which Using an approximation for solving the Korringa‐Kohn‐Rostoker equation the 

band structure of titanium and nickel di-hydrides and nickel hydride are calculated. 

The results are compared with experimental data [41 ] 
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CHAPTER 3 

THEORY 

3.1 General consideration 

Determination of the electronic structure of solids is a many-body problem that 

requires the Schrödinger equation to be solved for an enormous number of nuclei and 

electrons. Even if we managed to solve the equation and find the complete wave 

function of a crystal, we face the not less complicated problem of determining how 

this function should be applied to the calculation of physically observable values. 

While the exact solution of the many-body problem is impossible, it is also quite 

unnecessary. 

3.2 Born-Oppenheimer approximation 

To describe the various motions of the molecule we begin with the Schrodinger 

equation. The Hamiltonian is given by 

 ̂   ̂   ̂                   (2.1.1) 

Where 

 ̂  ∑
 ̂ 
 

  

 
         (2.1.2) 

Represents  the kinetic energy of the electrons and 

 ̂  ∑
 ̂ 
 

   

 
         (2.1.3) 

 

is the kinetic energy of the nuclei.     Represents the attractive electron-nuclei 

potential.     Describes the repelling electron-electron interaction.     indicates the 

repelling Coulomb interaction between the nuclei. Since the masses of the nuclei are 

very large,  ̂  can be neglected. This step is called the Born-Oppenheimer 

approximation. In the following, we will explain the ap- proximation in more detail. 
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If we neglect the kinetic energy  ̂  of the nuclei (static approximation: fixed distance 

R of the nuclei), the relative distance R between the nuclei only occurs as a parameter. 

The Schrodinger equation becomes 

[ ̂|     ( )     (   )]𝜑 (   )  ,𝜀 ( )     ( )-𝜑 (   )       (2.1.4) 

Here r indicates the position of the electron. The solutions 𝜑 (   )  depend 

parametrically on the distance between the nuclei. The energy of this state is given by 

the electronic energy 𝜀 ( ) lowered by    ( ). The solutions 𝜑 (   ) represent a 

complete set of functions. The true wavefunction  (   ) can be expanded within this 

set: 

 (   )  ∑   ( ) 𝜑 (   ).                          (2.1.5) 

The coefficients   ( ) are to be found and, in general, depend on R. 𝜑 (   ) is the 

solution of the full Schrodinger equation, which takes into consideration the kinetic 

energy  ̂  of the atomic nuclei, i.e. 

( ̂|   ̂             ) (   )    (   )        (2.1.6) 

Inserting (2.1.5) into (2.1.6) and using (2.1.4), we obtain 

∑ (𝜀 ( )   ̂ )  ( ) 𝜑 (   )   ∑   ( )𝜑 (   )   (2.1.7) 

Now we multiply from the left-hand side with 𝜑 
 
(   ), integrate over the full space, 

and get 

∑ ∫ ∫    𝜑 
 
(   ) ̂    ( )𝜑 (   )  𝜀 ( )  ( )     ( )   (2.1.8) 

Here we have used the orthogonally of the functions𝜑 (   ).  ̂  is proportional to 

the Laplace operator   , which acts on 𝜑 𝜑 . It holds that 

  ( 𝜑)  (   )𝜑         𝜑     𝜑    (2.1.9) 

The index R indicates the action of the operators in R space. The first term in (2.1.9) is 

proportional to  ̂   . The rest is brought to the right-hand side of (2.1.8). The result 

reads 

[ ̂  𝜀 ( )]  ( )     ( )  ∑      ( )   (2.1.10a) 
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With 

     ( )     ∑
 

   
 

∫    𝜑 
 
(   )   

[    
  ( )    

𝜑 (   )   ( )   
𝜑 (   )]  (2.1.10b) 

The sum over a comes from  ̂  and    
acts only on the co-ordinate   of the 

nucleus𝛼, which appears in   √(     ) . Now, the order of magnitude of     is 

(  ⁄ )  ⁄ times smaller than the electronic kinetic energy. This can be seen as 

follows. The order of magnitude of the term ~      
𝜑    ⁄  (the kinetic energy of 

the nucleus) is proportional to   (   ⁄ )  (  𝜑  ⁄  )  we have simply replaced 

   
 by    and introduced the electronic kinetic energy       

𝜑    ⁄ . The factor 

m/Ma indicates that the contribution of    
 to     is smaller by this factor than the 

kinetic energy of the electron. 

The first term in (2.1.10b) remains to be estimated. For this we approximate    by a 

harmonic oscillator wavefunction:        ,   being the equilibrium position of 

nucleus 𝛼. We have 

   
   |    |

  

 
   

(  )  

 
      (2.1.11) 

𝛿 indicates the shift from the equilibrium position. The factor M is cancelled by 1/M 

in (2.1.10b) and the contribution is proportional to the vibrational energy  . As noted 

earlier, this goes like ~ (  ⁄ )  ⁄ . As a summary, the     term can be neglected or 

treated with the help of perturbation theory. Without the     term, (2.1.10a) reduces 

to 

[ ̂  𝜀 ( )]  ( )     ( )     (2.1.12) 

This equation has an interesting interpretation: the energy of the electron states 𝜀 ( ) 

acts like an effective potential in R. We imagine that the electrons build a "medium" in 

which the atomic nuclei move. This medium acts as an elastic band. If the nuclei try to 

leave the equilibrium position, they will be drawn back. There is an equilibrium 

position where 𝜀( ) has a minimum deep enough to generate binding. The elastic 

band behaviour is then nothing other than the expansion up to the order  (    )
 . 
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The     produce a mixing between different states𝜑  and 𝜑 . This mixing between 

the 𝜑 ( ) stages can be neglected in lowest order, because the     are small [of order 

(  ⁄ )  ⁄ , as explained previously]. Accordingly, the wave function is 

approximately given by 

   (   )     ( )𝜑 (   )    (2.1.13) 

Here v stands for all quantum numbers of level n.     indicates the energy of the 

molecule, which is calculated from (2.1.12). 

In order to describe vibrations and rotations of the molecule 𝜀 ( ) is expanded in 

coordinates describing vibration and rotation, respectively. The expansion in𝛿  

|    | up to the squared order leads to a harmonic vibrational potential (see Fig. 

12.1). 𝜀 ( )does not depend on the angles (Euler angles). Hence the rotations of the 

molecule are free. An excitation of the molecule is a combination of excitations of the 

harmonic vibrational oscillator and of the rotations. 

 

Fig. 3.1: Typical molecular potential for the nuclei in the molecule. Ro 

characterizes the relative equilibrium position of the two nuclei. R 

represents the relative nuclear distance [55] 

We summarize: in the Born-Oppenheimer approximation, first the energy levels of the 

electrons are determined for fixed distances R of the nuclear centers. The electron 

energy 𝜀 ( )plays the role of a potential, in which the nuclei are moving. If this 

potential  has one or several deep enough minima, one or several bound states of the 

molecule can exist. If the minima are only weak or do not exist at all, then the 

molecule is not bound.  
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3.3 Hartree-Fock Approximation 

The simplest approach is to assume a specific form for the many-body wave function 

which would be appropriate if the electrons were non-interacting particles, namely 

  (*  +)    (  )  (  )     ( | )    (2.1.14) 

with the index running over all electrons. The wave functions   (  ) are states in 

which the individual electrons would be if this were a realistic approximation. These 

are single-particle states, normalized to unity. This is known as the Hartree-

approximation (hence the superscript H). With this approximation, the total energy of 

the system becomes  

   ⟨  | |  ⟩ 

∑ ⟨  |
     

 

   
     ( )|   ⟩  

  

 
∑  (   )        (2.1.15) 

Using a vibrational argument, we obtain from this the single-particle Hartree 

equations: 

[
     

 

   
     ( )    ∑ ⟨   

 

|    |
  ⟩   ]   ( )      ( )  (2.1.16) 

where the constants   are Lagrange multipliers introduced to take into account the 

normalization of the single-particle states   (the bra     and ket |   notation for 

single-particle states). Each orbital   ( )  can then be determined by solving the 

corresponding single-particle Schrödinger equation, if all the other orbitals   (  )   

 were known. In principle, this problem of self-consistency, i.e. the fact that the 

equation for one   depends on all the other   ’s, can be solved iteratively. We assume 

a set of   ’s, use these to construct the single-particle hamiltonian, which allows us to 

solve the equations for each new    we then compare the resulting   ’s with the 

original ones, and modify the original   ’s so that they resemble more the new   ’s. 

This cycle is continued until input and output   ’s are the same up to a tolerance𝛿     

as illustrated in Fig. 2.2 (in this example, the comparison of input and output 

wavefunctions is made through the densities, as would be natural in Density 

Functional Theory, discussed below). The more important problem is to determine 

how realistic the solution is. We can make the original trial   s orthogonal, and 
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maintain the orthogonality at each cycle of the self-consistency iteration to make sure 

the final   s are also orthogonal. Then we would have a set of orbitals that would look 

like single particles, each   ( ) experiencing the ionic potential     ( ) as well as a 

potential due to the presence of all other electrons,   
 ( )given by 

  
 ( )     ∑ ⟨   

 

|    |
  ⟩         (2.1.17) 

 

Figure 3.2: Schematic representation of iterative solution of coupled single-

particle equations. This kind of operation is easily implemented on the 

computer [56] 

This is known as the Hartree potential and includes only the Coulomb repulsion 

between electrons. The potential is different for each particle. It is a mean-field 

approximation to the electron–electron interaction, taking into account the electronic 

charge only, which is a severe simplification [16]. 
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3.4 Density functional theory 

There are numerous fields inside the physical sciences and building where the way to 

scientific and mechanical advancement is understanding and controlling the properties 

of *issue at the degree of individual iotas and particles. Thickness utilitarian 

hypothesis is an incredibly fruitful way to deal with finding answers for the essential 

condition that depicts the quantum conduct of ion as and atoms, the Schrödinger 

condition, in settings of down to earth esteem. This methodology has quickly 

developed from being a specific workmanship rehearsed by few physicists and 

scientific experts at the front line of quantum mechanical hypothesis to a device that is 

utilized normally by huge quantities of analysts in science, material science, materials 

science, substance building, topography, and different controls. A hunt of the Science 

Citation Index for articles distributed in 1986 with the words "thickness useful 

hypothesis" in the title or dynamic yields under 50 passages. Rehashing this quest for 

1996 and 2006 gives more than 1100 and 5600 passages, separately [17]. Right now, 

start an audit of some key thoughts from quantum mechanics that underlie DFT (and 

different types of computational science).  

The whole field of thickness useful hypothesis lays on two basic numerical hypotheses 

demonstrated by Kohn and Hohenberg and the inference of a lot of conditions by 

Kohn and Sham in the mid-1960s [17].The first theorem, proved by Hohenberg and 

Kohn, is: The ground-state vitality from Schrödinger's condition is a one of a kind 

utilitarian of the electron thickness.  

Tragically, in spite of the fact that the first Hohenberg–Kohn hypothesis thoroughly 

demonstrates that a practical of the electron thickness exists that can be utilized to 

tackle the Schrödinger condition, the hypothesis says nothing regarding what the 

utilitarian really is. The second Hohenberg–Kohn hypothesis defines a significant 

property of the practical: The electron thickness that limits the vitality of the general 

utilitarian is the genuine electron thickness comparing to the full arrangement of the 

Schrödinger condition. In the event that the "genuine" utilitarian structure were 

known, at that point we could fluctuate the electron thickness until the vitality from 

the practical is limited, giving us a solution for finding the significant electron 

thickness. This vibrational guideline is utilized by and by with surmised types of the 

useful. 
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3.5 The Kohn-Sham approach 

While the Hohenberg–Kohn theorem rigorously establishes that we may use the 

density and therefore the density alone, as a variable to find the ground-state energy 

of an N-electron problem, it does not provide us with any useful computational 

scheme. This is provided by the Kohn–Sham formalism. Let us then start by 

considering a non-interacting N-electron system in an external potential   . The 

Hamiltonian    of this system is given by: 

             (2.1.18) 

We then apply the Hohenberg–Kohn theorem to the present  system. Accordingly, 

there exists a unique energy functional 

  , -   , -  ∫   ( ) ( )        (2.1.19) 

We note here that   , -   is the kinetic energy functional of a system of N 

noninteracting electrons. The ground-state density of this system is easily obtained. It 

is simply 

  ( )  ∑ |  ( )|
  

         (2.1.20) 

where we have occupied the N single-particle states, or orbitals, that satisfy the 

Schrödinger-like equation 

[
   

  
     ]   ( )      ( )               (2.1.21) 

and have the N lowest eigenvalues  i. But we are really interested in a system of N 

interacting electrons in an external potential     , so the question we would like to 

answer is the following: can we determine the form that Vs (the external potential of 

the non-interacting system) must take in order for the non-interacting system to have 

the same ground-state density as the interacting system in the external potential     ? 

The strategy we use is to solve for the density using the auxiliary noninteracting 

system, and then insert this density (which by construction is the same as that for the 

interacting system) in an approximate expression for the total energy of the interacting 

system. The first step in this process is to rewrite the energy functional  [n] of the 

interacting system, which was given in Eq. (2.1.21), as 
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 , -    , -  { , -    , -   , -  
  

 
∬

 ( ) (  )

|    |
     }

 
  

 
∬

 ( ) (  )

|    |
      ∫  ( )     ( )   

    
  

 
∬

 ( ) (  )

|    |
      ∬  ( )     ( )      , - (2.1.22) 

Here we have added and subtracted both the kinetic energy functional   , -  of a 

noninteracting system and the direct, or Hartree, term in the electrostatic energy. We 

have then defined the sum of the terms in braces to be the exchange-correlation energy 

functional    , - is 

   , -     , -  
  

 
∬

 ( ) (  )

|    |
        , -   (2..1.23) 

We have thus swept all our ignorance about electron interactions beyond the Hartree 

term under the rug that we call    , -. What we gain in writing    , - this way is 

that we can eventually focus on developing reasonable approximations for    , -. 

According to the Hohenberg–Kohn theorem, the density n that minimizes the 

functional  , -   is the ground-state density. Thus, by taking the variation of Eq. 

(2.1.22) with respect to the particle density we obtain 

  , -

  ( )
 

   , -

  ( )
   ∫

 (  )

|    |
        ( )    , ( )-      (      ) 

where we have formally defined the exchange-correlation potential as 

   , ( )-  
𝛿   , -

𝛿 ( )
  

We now use the auxiliary non-interacting system and its Schrödinger equation, from 

which we are able to similarly show that 

𝛿  , -

𝛿 ( )
   ( )     

By comparing this result with Eq. (2.5.6) we see that this ejective potential Vs (r) must 

satisfy 

  ( )      ( )    ∫
 (  )

|    |
       ( )   (      ) 
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We are now doing a position to implement the self-consistent Kohn–Sham scheme. 

We first choose an initial trial form of the function n(r) and substitute into Eq. (2.1.25) 

to find a trial form of Vs. We then solve Eq. (2.1.19) for the single-particle wave 

functions  ( ), and use Eq. (2.1.18) to find the next iteration for n(r). When this 

procedure has been repeated a sufficient number of times that no further changes 

occur, then a solution for n(r) has been found that not only satisfies the Schrödinger 

equation for the reference non-interacting electrons, but also is the correct density for 

the interacting system. We close this section by highlighting a few points about the 

Kohn–Sham formalism. First of all, it is formally exact, supposing that we can find the 

exact exchange-correlation potential    ( ). Second, we have cast the solution of the 

interacting N-electron problem in terms of non-interacting electrons in an external 

potential   ( ). This is of great practical importance. The ground state wavefunction 

of the noninteracting system is just a Slater determinant of the N orbitals, the so-called 

Kohn–Sham orbitals, with the lowest eigenvalues E. It is relatively easy to unravel for 

these single-particle orbitals even for as many as a couple of hundred electrons [18]. 

The Kohn–Sham equations formally look considerably like self-consistent Hartree 

equations, the only difference being the presence of the exchange-correlation 

potential. This makes them much simpler to solve than the Hartree–Fock equations, in 

which the potential is orbital-dependent. In the Kohn–Sham and Hartree equations, the 

effective potential is the same for every orbital. 

3.6 The Local Density Approximation 

In band calculations, usually certain approximations for the exchange–correlation 

potential    ( ) are used. The simplest and most frequently used is the local density 

approximation (LDA), where    (   
   )a form similar to that for a homogeneous 

electron has gas, but with the density at every point of the space replaced by the local 

value of the charge density,  ( )for the actual system: 

   (   
   )   ( ) ∫     (         ( ))   

 

 
     (2.1.26) 

Where,    is the pair correlation function of a homogeneous electron system. 

Substituting (2.1.26) into (2.1.27) we obtain the local density approximation [44]: 

   , -  ∫  ( )𝜀  ( )       (2.1.27) 
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Here, 𝜀   is the contribution of exchange and correlation to the total energy (per 

electron) of a homogeneous interacting electron gas with the density ( ) . This 

approximationcorresponds to surrounding every electron by an exchange– correlation 

hole and must, as expected, be quite good when  ( )varies slowly. The DFT includes 

the exchange and correlation effects in a more natural way in comparison with 

Hartree-Fock-Slater method. Here, the exchange– correlation potential     may be 

represented as 

   ( )  𝛽(  )    ( )      (2.1.26) 

where      is the Gaspar–Kohn–Sham potential, and    is given by 

  ( )  [
 

  
 ( )]

  ⁄

     (2.1.29) 

This parameter corresponds, in order of magnitude, to the ratio of the potential energy 

of particles to their average kinetic energy 

3.7 The Generalized Gradient approximation 

An early endeavor to improve the LSDA was the inclination development estimation 

(GEA). Figuring for molecules and a jellium surface appeared, be that as it may, that 

the GEA doesn't improve the LSDA if the stomach muscle initio coefficients of the 

slope revision are utilized. The blunders in the GEA were examined by Langreth and 

Perdew and later by Perdew and colleagues. It was demonstrated that the second 

request developments of the trade and relationship openings in angles of the thickness 

are genuinely sensible near the electron, yet not far away. In the first work of Langreth 

and associates a summed up inclination guess (GGA) was developed by means of cut-

off of the deceptive little wave-vector commitment to the Fourier change of the second 

request thickness angle extension for the trade relationship opening around an 

electron. Later Perdew and associates contended that the inclination developments can 

be made increasingly practical by means of genuine space shorts picked to authorize 

careful properties regarded by zero-request or LSD terms however abused constantly 

request extensions: The trade gap is rarely positive, and incorporates to - 1, while the 

relationship opening coordinates to zero. Various GGA plans were created by 

Langreth and Mehl, Hu and Langreth (LMH), Becke, Engel and Vosko, and Perdew 

and collaborators (PW), the three best and well known ones are those by Becke (B88), 



31 
 

Perdew and Wang (PW91), and Perdew, Burke, and Ernzerhof (PBE). In GGA the 

trade relationship utilitarian of the electron turn densities    and    takes the form 

   
   ,     -  ∫     (             )    (2.1.30) 

The GGA functionals were tried in a few cases, and were found to give improved 

outcomes for the ground-state properties. For iotas it was discovered that both all out 

energies and expulsion energies are improved in the LMH practical contrasted and the 

LSDA. The PW practical gives a further improvement in the all out vitality of iotas. 

The coupling energies of the first push diatomic atoms are additionally improved by 

both functional. In an investigation of the band structure of V and Cu, Norman and 

Koelling found that the LMH potential gave an improvement in the Fermi surface for 

V yet not for Cu. The strong vitality, the cross section parameters, and the mass 

modulus of third-push components have been determined utilizing the LMH, PW, and 

the angle extension functional in. The PW practical was found to give to some degree 

preferred outcomes over the LMH utilitarian and both were found to commonly 

evacuate a large portion of the mistakes in the LSD estimate, while the GEA gives 

more terrible outcomes than neighborhood thickness guess. For Fe GGA functional 

accurately anticipates a ferromagnetic bcc ground state, while the LSDA and the angle 

extension foresees a nonmagnetic FCC ground state. Likewise, the GGA amends 

LSDA underestimation of the cross section constants of Li and Na. Enormous number 

of test estimations demonstrated that GGA functional yield incredible improvement 

over LSD in the portrayal of finite frameworks: they improve the complete energies of 

particles and the strong vitality, harmony separation, and vibrational recurrence of 

atoms, however have blended history of achievements and disappointments for solids. 

This might be on the grounds that the trade connection opening can have a diffuse tail 

in a strong, yet not in a particle or little atom, where the thickness itself is all around 

confined. The general pattern is that the GGA thinks little of the mass modulus and 

zone focus transverse optical phonon recurrence, remedies the coupling vitality, and 

amends or overcorrects, particularly for semiconductor frameworks, the cross section 

consistent contrasted with LDA. The GGA doesn't take care of the issues experienced 

in the change metal monoxides FeO, CoO, and NiO. The attractive minutes and band 

structures acquired with the GGA for the oxides are basically indistinguishable off 

base ones from got with the LSDA. As of late, various endeavors have been made to 
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broaden the GGA by including higher request terms, specifically the Laplacian of the 

electron thickness, into the extension of the trade connection gap. Be that as it may, no 

broad trials of the nature of these new possibilities with application to solids have yet 

been made [19]. 

3.8 Pseudo-potentials 

The key thought of "pseudo-potential" is the supplanting of one issue with another. 

The essential application in electronic structure is to supplant the solid Coulomb 

capability of the core and the impacts of the firmly bound center electrons by a 

powerful ionic potential following up on the valence electrons. Pseudo-potential can 

be created in a nuclear estimation and afterward used to process properties of valence 

electrons in atoms or solids, since the center states remain practically unaltered. 

Moreover, the way that pseudo-potentials are not special permits the opportunity to 

pick shapes that disentangle the computations and the translation of the subsequent 

electronic structure. The approach of "stomach muscle initio standard saving" and 

"ultra-soft" pseudo-potentials has prompted precise estimations that are the reason for 

a great part of the momentum innovative work of new techniques in electronic 

structure, as portrayed in the accompanying sections. A large number of the thoughts 

started in the orthogonalized plane wave (OPW) approach that throws the eigenvalue 

issue as far as a smooth piece of the valence capacities in addition to center (or center 

like) capacities. The OPW technique has been brought into the advanced system of all 

out vitality functional by the projector increased wave (PAW) approach that 

utilizations pseudo-potential administrators yet keeps the full center wave functions. 

Norm-conserving pseudo-potentials 

Pseudo-potentials generated by calculations on atoms (or atomic-like states) are 

termed "ab initio" because they are not fitted to experiment. The concept of "norm-

conservation" has a special place in the development of ab initio pseudo-potentials; at 

one stroke it simplifies the application of the pseudo-potentials and it makes them 

more accurate and transferable. Norm-conserving pseudo-functions    ( )  are 

normalized and are solutions of a model potential chosen to reproduce the valence 

properties of an all electron calculation. In the application of the pseudopotential to 
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complex systems, such as molecules, clusters, solids, etc., the valence pseudo-

functions satisfy the usual orthonormality conditions as  

⟨  
       

     ⟩  𝛿   𝛿          (2.1.31) 

so that for the Kohn-Sham equations have the same form as  

(   
       

 )  
    ( )        (2.1.32) 

Ultra-soft pseudo-potential (USPP) 

One goal of pseudo-potentials is to create pseudo-functions that are as "smooth" as 

possible, and yet are accurate. "Norm-conserving" pseudo-potentials achieve the goal 

of accuracy, usually at some sacrifice of "smoothness." 

A different approach known as "ultra-soft pseudo-potentials" reaches the goal of 

accurate calculations by a transformation that re-expresses the problem in terms of a 

smooth function and an auxiliary function around each ion core that represents the 

rapidly varying part of the density. We will focus upon examples of states that present 

the greatest difficulties in the creation of accurate, smooth pseudo-functions: valence 

states at the beginning of an atomic shell, Is,2p, 3d, etc.  

 

Figure 3.3: 2p radial wave function  ( )  for oxygen treated in the LDA, 

comparing the all-electron function (solid line), a pseudofunction 

generated using the Hamann approach (dotted line), and the smooth 

part of the pseudofunction ~ in the "ultrasoft" method (dashed line) 

[57] 
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For these states, the OPW transformation has no effect since there are no core states of 

the same angular momentum. Thus, the wave functions are needless and extend into 

the core region. Accurate representation by norm-conserving pseudo-functions 

requires that they are at best only moderately smoother than the all-electron function 

(see Fig.2.3) The difference in the norm equation    ∫     ( )
   

 
from that norm-

conserving function     ~ (either an all-electron function or a pseudofunction) is 

given by 

       ∫         ( )
  

 
     (2.1.33) 

Where 

      ( )    ( )   ( )   ~ ( ) ~  ( )   (2.1.34) 

A new non-local potential that operates on the $y can now be defined to be 

𝛿 ̂  
   ∑       𝛽  𝛽            (2.1.35) 

Where 

           𝜀               (2.1.36) 

For each reference atomic states s, it is straightforward to show that the smooth 

functions 

 ~ are the solutions of the generalized eigenvalue problem 

[ ̂  𝜀  ̂] ~         (2.1.37) 

With ̂  
  

 
          𝛿 ̂  

   and  ̂ an overlap operator, 

 ̂   ̂  ∑           |𝛽  𝛽  |        (2.1.38) 

which is different from unity only inside the core radius. The eigenvalues 𝜀  agree 

with the 

All-electron calculation at as many energies s as desired. The full density can be 

constructed from the functions      ( ), which can be replaced by a smooth version 

of the all-electron 
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density. The advantage of relaxing the norm-conservation condition          is that 

each smooth pseudofunction  ~  can be formed independently, with only the constraint 

of matching the value of the functions  ~ (  )    (  )   at the radius  . Thus, it 

becomes possible to choose    much larger than for a norm-conserving 

pseudopotential, while maintaining the desire accuracy by adding the auxiliary 

functions       ( ) and the overlap operator S. An example of the un-normalized 

smooth function for the 2p state of oxygen is shown in Fig. 2.9.1, compared to a much 

more rapidly varying norm-conserving function [20] 

3.9 Band Structure 

If we knew the potential  ( ), and could solve the one-electron Schrödinger equation  

(
   

   
   ( )    ( ) ( )    ( ) 

we could ascertain the energies E of the entirety of the different potential states. There 

are a few different ways of moving toward such figuring from first standards, and we 

won't go into those here. The after effects of such counts give what is known as a band 

structure. The electronic conditions of precious stones are portrayed by the band 

hypothesis of solids. The external orbital’s of the molecules in a thickly stuffed strong 

cover with one another as the synthetic bonds that hold the gem together are framed. 

This causes the discrete vitality levels of the free ion as to be expanded into groups. 

The differentiation between a protector and a semiconductor is identified with the size 

of the band gap. Semiconductors have littler band holes than encasings. The free 

electrons in the conduction band can direct power effectively in a similar way as the 

free electrons in metals. Semiconductors, hence, have a higher conductivity than 

encasings, yet a littler conductivity than metals as a result of the modest number of 

free electrons [21]. There are various groups in a band structure (in actuality a 

limitless number), yet generally, just a couple are significant in deciding specific 

properties of a material. Fig. 8.4 outlines a basic band structure. Each band has an all 

outnumber of permitted k-states equivalent to the number of unit cells in the precious 

crystal. 
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Fig. 3.4: Figurative illustration of a semiconductor band structure, plotted along 

one crystal direction. The upper “band” (line) will be essentially empty 

of electrons, and is called the conduction band; the lower band will be 

essentially full of electrons, and is called the valence band [58] 

Fig. 2.4 illustrates a simplified band structure. In each band, we only have to plot k-

values from −π / a to π / a. The band structure in Fig. 2.4 is also drawn to be 

symmetric about k = 0.  Band structures are often symmetric in this way. In our simple 

one-electron model, neglecting magnetic effects, the existence of symmetries like this 

is easily proved [22]. 

3.10 GW approximation 

While we have given some justifications to utilizing a straight forward LSDA band 

structure way to deal with assessing excitation energies, various materials with 

intriguing attractive properties include firmly corresponded electronic states, and other 

estimated approaches have been created to go past the LSDA. For the quasi-particle 

issue, the focal issue is a sufficient estimation for the self-vitality administrator, 

   (      )  . A working technique for tackling this issue is the purported GW 

estimation. On the off chance that the pinnacle is sufficiently sharp, well-defined 

quasi-particle vitality can be acquired. Where the self-energy is 

   (      )    (      ) (      )    (2.1.39) 



37 
 

The self-vitality in the GW A has a similar structure as that in the Hartree-Fock 

estimate aside from that it relies upon the vitality and contains a term that relies upon 

abandoned states as an outcome of relationship impacts. In this manner, the GW A can 

be deciphered as a speculation of the Hartree-Fock estimate with a potential that 

contains dynamical screening of the Coulomb potential. The GWA has been fruitful in 

treating the quasi-particle frameworks, for example, free-electron like metals and 

semiconductors It can be demonstrated that the GWA hypotheses might be identified 

with a Hartree-Fock hypothesis with a recurrence and orbital-subordinate screened 

Coulomb association and, at any rate for confined states, for example, d or f orbital’s 

of progress metal or uncommon earth metal particles [23]. 
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CHAPTER 4  

METHODOLOGY 

4.1 General Consideration 

In this chapter, we discuss details about our present work with the first 

principle pseudo-potential-based density functional calculations including norm-

conserving pseudo-potential in the DFT approach by using The quantum ESPRESSO 

(QE) computational package. Some practicable commands along with their functions 

are well detailed here.  

4.2 Quantum Espresso Program  

In this activity, you will use the Density Functional Theory (DFT) to investigate the 

properties of different materials. DFT is broadly utilized in industry, and in the 

scholastic research network since it is one of the computational techniques that can 

(roughly) tackle reasonable quantum mechanical issues numerically [24]. Quantum 

ESPRESSO-a condensing for Quantum Open-Source Package for Research in 

Electronic Structure, Simulation, and Optimization program is a multi-reason and 

multi-stage PC coding program for electronic-structure figuring and materials 

demonstrating. This bundle is essentially utilized in the stomach muscle ab-initio 

estimations of dense issue frameworks. In a controlled issue material science, its 

ordinary application in the stomach muscle ab-initio estimations like-basic 

advancements (both at zero and limited temperature), direct reaction computations 

(Phonons, flexible constants, dielectric, and some more) and so forth stretches out to 

high-temperature atomic elements. The significant element of the bundle remembered 

for the product are : 

 Plane Wave self-consistent field (PWscf)   

 First-Principles Molecular Dynamics (FPMD) and  

 Car-Parrinello (CP). QE, based on DFT, implements a variety of methods and 

algorithms for a chemically realistic modeling of materials from the Nano-

scale upwards  
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 Chemical reactivity and transition-path sampling, using Nudged Elastic Band 

(NEB) method  

 Computational microscopy (STM). This package uses a plane waves (PWs) 

basis set for the expansion of electronic wave function, a pseudo-

potentials (PPs) to represent electron-ion interactions and DFT for the 

description of electron-electron interaction. 

 Some basic computations/simulations that can be performed by this package 

include:  

 Calculations of the Kohn-Sham (KS) orbitals and energies for isolated and 

extended systems, and of their ground states energies.  

 Structural modeling (equilibrium structures of molecules, crystals, surfaces).  

 Atomic forces and stresses. 

 Ground state studies of magnetic or spin-polarized systems.  

 Dynamical modeling (first-principles molecular dynamics) either in the 

electronic ground state (Born-Oppenheimer) or with fictitious electronic 

kinetic energy (Car-Parrinello).  

Density-Functional Perturbation Theory (DFPT) used in the package to calculate the 

energy derivatives and related quantities. QE package are used as our first —

 principles code. QE is a full ab- initio package implementing electronic structure and 

energy calculation, linear response method (to calculate dielectric constants, Born 

effective charge and phonon dispersion curves) and third order an-harmonic 

perturbation theory. It also contains two molecular- dynamics codes, CPMD (Car-

Parrinello Molecular Dynamics) and FPMD (First-Principles Molecular Dynamics). 

Among them, to perform the total energy calculations, PWscf code is used, which 

used both norm-conserving pseudo-potential (PP) and Ultra soft Pseudo-potentials 

(US-PP) within DFT. In our case, we use Quantum ESPRESSO integrated module of 

codes, based on DFT by using plane basis set for expansion of wave function 

and pseudo-potential with required content in first-principle method of calculation to 

calculate total energies and optimize geometries of transition metal Fe and 

Ni. Also, by using this package, band structure is calculated and partial density of 

states (PDOS) is used to find the nature of material.  
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4.2.1 PWscf  

PWscf stands for Plane Wave self-consistent field (which in earlier releases 

included Phonon and PostProc), developed by Stefano Baroni, Stefano de Gironcoli, 

Andrea Dal Corso (SISSA) Paolo Giannozzi (Univ. Udine), and many others 

[25]. PWscf implements an iterative approach for self-consistency, in the framework 

of the plane-wave pseudo potential method. This package uses the well-established 

LDA and GGA exchange-correlation functional, including spin-polarizations. The 

main feature of PWscf calculation is the self-consistency calculations, structural 

relaxation, electronic structure calculations, variable cell molecular dynamics 

calculation etc. performed by invoking executable file called pw.x. The structural 

optimization is performed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [42] 

 Some of the most important parameters in the input file of the Quantum espresso are 

as indicated below.  

 &CONTROL: general variables controlling the run  

 &SYSTEM: structural information on the system under investigation and 

 &ELECTRONS: electronic variables: self-consistency, smearing  

 ibrav : 2, this keyword generates face centered cubic (fcc) structure.  

 celldm(1): specifies the lattice constant of the crystal and are usually given in 

atomic unit. 

 ecutwfc: kinetic energy cutoff (Ry) for wave functions (1 Ry=13.6ev).  

 nat: number of atoms in the unit cell which is 1.  

 ntyp: number of types of atoms in the unit cell.  

 nbnd: represents the number of electronic stated (bands) to be calculated.  

 Atomic Species: It specifies the symbols of the atoms, their corresponding 

masses (in amu) and the name of the files containing the pseudo-potentials.  

 Atomic Positions: specifies the atomic co-ordinates of the atoms which are 

defined for the proper structure.  

 K-points: represents the rectangular grid of points of dimensions, spaced 

evenly throughout the Brillouin zone and this keyword requires appropriate 

unit.  
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4.2.2 Post Processing  

The package called Post processing was Originally developed by 

Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso (SISSA), Paolo Giannozzi 

(Univ. Udine), and many others. After the Self Consistent calculation has been 

converged, we use many small calculations such as plotting of band, density of states 

(DOS) etc.  

The main post processing codes which extract the specified data/files from 

the PWscf calculations and perform further calculations are as follows; 

 pw.x: We use this command to run the input files of scf and nscf calculations 

of energy and wave functions at each k-points, which extracts the output files 

for the energy calculation at every k-points.  

 bands.x : This extracts the files from PWscf calculation and records its 

eigenvalues at different K-points with corresponding energies values ready for 

further processing. The code bands.x also performs the symmetry analysis of 

the band structure.  

 plotband.x : The output file of bands.x is directly read and converted 

to plottable format by auxiliary code plotband.x. The value of k-points must be 

correctly put in a sequence, otherwise unpredictable plots may result if k-

points are not in sequence along lines or if two consecutive points are 

same. Thus, proper choice of sequence of k-points is important.  

 dos.x : This code helps us to calculate the electronic density of states at 

different k-points. • projwfc.x : This code calculates projections of wave 

functions over atomic orbitals. It gives the contributions of the atomic orbitals 

s, p, d, f. 
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CHAPTER 5 

RESULTS AND CONSIDERATION  

5.1 General Consideration 

This thesis has describes the comparative study of element iron (Fe) and nickel (Ni). 

One of the main challenges in first principle calculation is the geometric optimization 

of structures. We have taken out the energy minimization of Fe and Ni, followed by 

the study of electronic band structures and the density of states. The calculation has 

been carried out using density functional theory using generalized gradient 

approximation. At first, in the GGA method, energy minimization is done with respect 

to the lattice parameter then the same lattice parameter corresponding to the minimum 

energy state is used to carry out further calculations. In-band structure calculations, 

We plotted the graph of energy versus the high symmetry k-points and then analyzed 

the properties of the substance on the basis of band lines and band gap. To view the 

individual contribution of different orbital electrons, we study the conduction band 

edge and valance band edge. Likewise, the Density of states (DOS) is performed to 

get information about the nature of the band gap and the Partial Density of states 

(PDOS) gives information about the origin of bands. In all these self-consistent fields 

(SCF) calculations, we have used the convergence criteria as the difference between 

energy in the order of      Rydberg.  

In this chapter, we discuss about: 

 Calculation of lattice parameter. 

 Calculation of Density of states (DOS) as well as Partial Density of States 

(PDOS) and plotting. 

Then we have performed the series of following convergence tests and energy 

minimization: 

5.2 Structural Optimization: 

We carried out the self- consistent field (scf) calculations to determine basic 

parameters: 
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kinetic energy cut-off for the plane wave basis and k-points grid by testing the 

convergence of total energy with these parameters individually and calculation of 

lattice parameter by energy minimization. 

5.2.1 Kinetic Energy cut-off (ecutwfc) 

The plane wave scf code implemented in the Quantum Espresso expands the electron 

wave-function in terms of the infinite basis function that are plane waves. The value of 

the kinetic energy cut-off corresponds to the neighboring interactions in the periodic 

system. If we take this cut-off energy large, we include long range interactions and the 

results will be more accurate, but this takes more computing resources. If we take this 

energy small, the results could be inaccurate though computationally cheap. 

Therefore, we have to take optimum value of this cut-off energy. It is expressed in unit 

of the energy Ry. The plane wave expansion in the reciprocal space is 

  ( )  
 

 
∑  

     (   )          (4.1) 

where Ω is the volume of the box, G are the reciprocal lattice vectors defined by 

        for all  , where   is a lattice vector of the crystal and m is an integer, 

    are the coefficients for the plane waves and k represent the reciprocal space 

vectors within the first Brillouin zone of the periodic cell. 

In principle, we need infinite numbers of plane waves but in order to reduce the 

computational cost we have to truncate the plane wave expansion from some 

acceptable value. To make the plane wave expansion (5.1) finite, we truncated 

according to the condition. 

|   | 

  
≤             (4.2) 

We performed the scf calculations using the experimental value of the lattice 

parameter (a=5.4168 Bohr) and some arbitrary k-point mesh in the scf input file for 

Fe. The scf calculations were performed for different values of the ecutwfc ranging 

from 40 Ry to 120 Ry. At these different values of cut-off energy, we found different 

values of total scf energy. Then we plot the graph between the scf total energy versus 

kinetic energy cut-off value and the appropriate value of kinetic energy cut-off is 

chosen from which the convergence of total energy starts to occur. In the case of Iron, 

it is found to be 95 Ry, which is shown in the Fig. (5.1). So, for further calculations, 
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the value of ecutwfc = 95 Ry is appropriate to use for Iron. In our case, the pseudo-

potential used is PredewBerke-Erzndof (PBE) pseud o-potentials generated using 

―atomic‖ code by A. Dal Corso (espresso distribution).  

When a graph was plotted for the relationship between cut-off energy along X-axis 

versus total energy along Y-axis of Fe, following graph was obtained. 

 

Figure 5.1: The plot of Total energy with cut-off energy of Fe 

To determine the value of kinetic energy cut-off we performed the scf calculation 

using lattice parameter a=6.659 from literature and some arbitrary k-point mess (8, 8, 

8) in scf input file for Ni. Similarly we perform same ecutwfc range as Fe in this case 

and we get different values of total energy in self-consistent field. Then plot of total 

energy versus kinetic energy cut-off value for FCC structure of Ni is shown in Figure 

(5.2). Clear from the Fig. (5.2) that there is nominal variation in total energy above 95 

Ry. Therefore in the rest of calculations, our cut-off energy is 95 Ry. 
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Figure 5.2: The plot of Total energy with cut-off energy of  Ni 

5.2.2 Lattice Parameter 

Lattice constant is a property of crystal lattice i.e. periodic arrangement of atoms in 

three dimensions whether it is not a property of atoms. Basically, the lattice constant is 

the length of periodicity of the lattice repeats itself, for most crystals the lattice 

constant are few angstroms. After the calculation and value of ecutwfc and, we 

performed a convergence test for lattice parameter by using the converged value of 

ecutwfc for both Fe and Ni. For Fe, we performed the scf calculations for total scf 

energy with different value of lattice parameters ranging from 5.02 to 5.82 Bohrs to 

optimizing lattice parameter by using optimized value of ecutwfc. Then we plot a 

graph between total energy with lattice parameter which is shown in Fig. 5.3 
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Figure 5.3: The plot of Total energy with lattice parameter of Fe 

At different value of lattice parameter we found different value of total energy. Then, 

we obtained the suitable value of parameters for the input file at which the total energy 

is minimum. From Fig. 5.3, the appropriate value of lattice parameter is at which the 

minimum total energy is at 5.42 Bohr. The experimental value of lattice parameter 

is5.4168 Bohr which is closer to our calculate value of lattice parameter and we get 

0.05 error from previous work [27]. 

For Ni, we performed the scf calculations for total scf energy with different value of 

lattice parameters ranging from 6.26 to 7.16 Bohr by using optimized ecutwfc. 
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Figure 5.4: The plot of Total energy with lattice parameter of Ni 

Then, we obtained the suitable value of parameters for the input file at which the total 

energy is minimum. From Fig. 5.4, the minimum total energy is at 6.66 Bohr. The 

experimental value of lattice parameter is6.659 Bohr which is closer to our calculate 

value of lattice parameter and we get 0.0152  from previous work [29]. 

5.2.3 k-point grid 

In order to perform the Brillouin zone interaction in discrete scheme, it is essential to 

have a large number of grid points. But in practice, due to limitations of computational 

resources, we optimize the number of k-points grids. By calculating total energy 

versus k-point grids the rectangular grid of points of dimensions Kx×Ky×Kz, spaced 

evenly throughout the Brillouin zone is called k-points grid. More the number of the 

grid points sampling will be more finer and accurate but computationally expensive. 

Here, the size of grid required depends on the system under study. We can estimate 

appropriate size by means of total energy calculation. Our approach of k-point 

sampling is as suggested by Monkhrost and Pack [26]. At first, we performed the scf 

calculations of Fe for total scf energy with different values of k-points grid starting 

from 2×2×2 to 18×18×18. The calculated data of k-point grid vs its corresponding 

total scf energy is shown in Fig. 5.5. 



48 
 

 

Figure 5.5: The plot of Total energy with k-point grid of Fe 

From Fig.5.5 it is clearly seen that total energy of Fe remains almost constant from the 

k-point grid 8×8×8. So, it is appropriate to use the value of k-point grid as 8×8×8 for 

our further calculation. Then we performed the scf calculations of Ni for total scf 

energy with different values of k-points grid starting from 2×2×2 to 18×18×18. The 

calculated data of k-point grid vs its corresponding total scf energy is shown in Fig. 

5.6. 

 

Figure 5.6: The plot Total energy with k-point grid of Ni 
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From Fig. 5.6, it is clearly seen that total energy remains almost constant from the k-

point grid 6×6×6. So, it is appropriate to use the value of k-point grid as 6×6×6 for our 

further calculation. 

5.2.4  Degauss 

In the case of degauss you should use the smallest value at which your calculation 

does not struggle to converge. After optimization of all Structure of Fe and Ni, we are 

intended to study the effect of degauss on elements. To account the degauss, we have 

taken all optimized value and apply degauss in the range of 0.01 to 0.1. Then we 

plotted a graph between degauss value vs. total kinetic energy which is shown in 

Figure 5.7 and figure 5.8 for Fe and Ni respectively. From the graph it is observed that 

degauss is constant to 0.02 so further calculation take place by using degauss 0.02. 

 

Figure 5.7: The plot of Total energy with degauss  of Fe 
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Figure 5.8: The plot of Total energy with degauss of Ni 

We have also calculated the band structure of Transition Metal Fe and Ni. For other 

calculations of Fe and Ni, we took (8×8×8) and (6×6×6) respectively k-points along 

specific direction of irreducible Brillouin zone in order to obtain fine band structure 

which is performed by executable pw.x. Then, we performed post processing 

calculations with executable plotband.x in order to obtain band structure of Iron(Fe) 

and Nickel(Ni). Further, we have calculated the DOS and PDOS for both Fe and Ni 

structure. Finally we performed scf calculation and then nscf calculation; we used 

denser k-point mesh in order to obtain smooth partial density of states curve. These 

calculations were performed using the executable pw.x. Then, we performed PDOS 

calculation using executable projwfc.x command. In this section, we discussed the 

results of the first principles calculations carried out to obtain: Band structure 

calculation of Fe and Ni, Density of states of structure of Fe and Ni and Partial 

Density of states of structure of Fe and Ni 

5.3  Band structure 

In the first principles electronic structure calculation of crystals, the electronic band 

structure is one of the most widely applied analytical tools especially within the 

Kohnsham framework of density functional theory. The band structures of solid are 

helpful to determine different electronic properties of solid. It contains the basic 

ingredients to almost all the crystal properties. Since the atoms in a solid are closely 

packed the interaction between them perturbed the initial atomic levels when a large 
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number of atoms are brought together. Electrons in the orbitals are filled up according 

to Pauli’s exclusion principle i.e. no two electrons can occupy the same energy state. 

A band constitutes a sort of energy continuum, in which separate level due to 

individual atoms cannot be identified. In the process of inter atomic interaction, the 

inner shell electron stated are the least affected. Whereas the valance electron, which 

are closest to neighboring ions, are the most affected. The effect of bringing one atom 

closer to the other is to split a single sharp level. The bands structures of solids are 

helpful in determining different electronic and optical properties of the solid. 

The band structure is calculated by pseudo potential and plane wave basis set method 

within the Density functional theory (DFT), treating exchange- correlation functional 

with generalized gradient approximation (GGA) in the form of PredewBerke- Erzndof 

(PBE) functional. All pseudo potential used in the calculations were norm- conserving 

scalar relativistic and full relativistic pseudo potentials. All calculation was performed 

within the Quantum- ESPRESSO package, plane wave kinetic energy cut-off were set 

at 95 Ry for Fe and  Ni. We took uniform grid of k-vector (k-points) in X-Y plane 

ranging from 1 to 1 in the unit of 2π a. There is overlap of band in iron and nickel 

shows metallic character of iron and nickel. 

The band structure calculation of Fe is shown in Fig. 5.9. 

 

Figure 5.9: the plot of energy gap between conduction and valence band of Fe 
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The band structure calculation of Ni is shown in Fig. 5.10. 

 

Figure 5.10: The plot of energy gap between conduction and valence band of Ni 

5.4 Density of States 

The density of states (DOS) is defined as the number of states per unit energy range 

available for the particles to be occupied. In other words, the density of states refers to 

the number of quantum states per unit energy range and it indicates how density 

packed quantum states in a particular system. In solid state and condense matter 

physics, the density of states is of immense important as it can be used to calculate the 

various parameters that give the insight of the different electronic, magnetic and 

transport properties. For example, Specific heat and paramagnetic susceptibility of a 

substance, mobility of charge carriers, diffusion properties and so on can be readily 

computed with the knowledge of density of states (DOS). Moreover, the density of 

states provides numerical information on the states that are available at each energy 

level. The value of zero density of states indicates that there are no available states for 

occupation in an energetic level  

The density of sates is calculated by pseudo-potential and plane wave basis set method 

within the Density functional theory (DFT), treating exchange- correlation functional 

with generalized gradient approximation (GGA) in the form of PredewBerke- Erzndof 

(PBE) functional. All pseudo-potential used in the calculations were norm- conserving 

scalar relativistic and full relativistic pseudo-potentials. All calculation was performed 

within the Quantum- ESPRESSO package, plane wave kinetic energy cut-off was set 
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at 95 Ry for Fe and Ni. The smooth nature of graph shows iron and nickel can ionic 

bond. 

 

Figure 5.11: DOS curve of Fe with energies at DeltE=0.01 
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Figure 5.12: DOS curve of Ni with energies at DeltE=0.01 

5.5 Partial Density of States 

The results of partial densities of states (PDOS) of Fe and Ni help to further elaborate 

the nature of band gap as shown in Fig. 5.13 and Fig.5.14. The partial density of states 

gives information about the origin of bands and the graph shows transfer of electron 

from s orbital to p orbital. 
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Figure 5.13: PDOS curve of Fe with energies at DeltE=0.01 

 

Figure 5.14 PDOS curve of Ni with energies at DeltE=0.01 
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CHAPTER 6 

CONCLUSION AND CONCLUDING REMARKS: 

This thesis has successfully employed to examine the structural properties of 

transition element Fe and Ni with the help of DFT, GGA, implemented with Quantum 

ESPRESSO code. At first we have constructed optimized structure of unit cell of BCC 

structure of Fe and FCC structure of Ni. During optimization, the kinetic energy cut-

off energy is found to be 95 Ry having k-point grid (8×8×8) for Fe. Then we estimate 

the lattice Parameter is found to be 5.42 Bohr for Fe which is very near with 

experimental results as well as previous calculated data. Which is only 0.05  deviated 

from experimental result and previous data. Thus the lattice parameter of Fe estimated 

with GGA method is in close agreement with experimental values. Then we have 

study the band structure and found bands are overlap, density of states and partial 

density of states of Fe in which p-orbital have very less contribution in PDOS using 

GGA method in QE package. 

Similarly, optimization, the kinetic energy cut-off energy is found to be 95 Ry having 

k-point grid  (6×6×6) for Ni. Then we estimate the lattice Parameter is found to be 

6.66 Bohr for Ni which is very near with experimental results as well as previous 

calculated data. Which is only 0.015  deviated from experimental result and previous 

data. Thus the lattice parameter of Ni estimated with GGA method is in close 

agreement with experimental values. Then we have study the band structure and found 

that bands are overlap, density of states and partial density of states of Ni in which p-

orbital have very less contribution to PDOS by using GGA method in QE package. 

This shows that Quantum ESPRESSO code using the plane-wave pseudo-potential 

method can be used to perform first-principles calculations to study the electronic and 

other system which is more complex of transition element. We believe code can be 

used to study correlated systems for interest to current research to amble technological 

potential they support. All our study method which we have performs in this work can 

be used standard frame work to calculate the electronic, magnetic, and structural 

properties of materials in the elements and other related materials for which 

experimental data are not available. 
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6.1 Further Enhancement 

The unanswered question from this work are: 

1. We can study optical, thermal expansion, magnetic properties, and phonon 

properties of Fe and Ni. 

2. We also can study the effect of doping of other suitable atom with Fe and Ni. 

3. We also study same from other different method suitable for these elements. 
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APPENDIX 

[A]. LIST OF TABLES:  

Cut-off kinetic energy and its corresponding total energy of Fe: 

cut-off energy (Ry) Total energy (Ry) 

40 -254.26503904 

45 -254.32064508 

50 -254.33723513 

55 -254.34065383 

60 -254.34159182 

65 -254.34300724 

70 -254.34484420 

75 -254.34654298 

80 -254.34779072 

85 -254.34848899 

90 -254.34863179 

95 -254.34883173 

100 -254.34885412 

110 -254.34901763 

115 -254.34916002 

120 -254.34926717 
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Cut-off kinetic energy and its corresponding total energy of Ni 

cut-off energy (Ry) Total energy (Ry 

40 -428.63746167 

45 -428.99429593 

50  -429.11107644 

55 -429.14241792 

60 -429.14828925 

65 -429.14956689 

70  -429.15156048 

75 -429.15456226 

80 -429.15762339 

85 -429.16005990 

90  -429.16167985 

95 -429.16259609 

100 -429.16302437 

105 -429.16320536 

110 -429.16330685 

115 -429.16341569 

120 -429.16367707 
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Variation of total energy with k-point grid of Fe 

K-point Total energy (Ry) 

2 -254.32327541 

4 -254.33580763 

6 -254.34767814 

8  -254.34883173 

10 -254.34829623 

12 -254.34886663 

14 -254.34893799 

16 -254.34861295 

18 -254.34862690 

 

Variation of total energy with k-point grid of Ni: 

K-point Total energy (Ry) 

2 -429.17649712 

4 -429.16386628 

6 -429.16250472 

8 -429.16271115 

10  -429.16265779 

12 -429.16263758 

14 -429.16263666 

16 -429.16263752 

18  -429.16263796 

20 -429.16263844 
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Variation of total energy with lattice constant of Fe: 

Lattice constant (Bohr) Total energy (Ry) 

5.02 -254.31838407 

5.12 -254.33139824 

5.22 -254.33912828 

5.32 -254.34254759 

5.42 -254.34255156 

5.52 -254.33971232 

5.62 -254.33462185 

5.72 -254.32606852 

5.82  -254.31913943 

5.92 -254.31071264 

 

Variation of total energy with lattice constant of Ni 

Lattice constant (Bohr) Total energy (Ry) 

6.26 -429.13448406 

6.36 -429.14406075 

6.46  -429.15029904 

6.56 -429.15367126 

6.66 -429.15468396 

6.76 -429.15366412 

6.86 -429.15096893 

6.96 -429.14688179 

7.06 -429.14163804 

7.16 -429.13546671 
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Variation of total energy with degauss of Fe 

Degauss Total energy (Ry) 

0.01 -254.34883173 

0.02 -254.34883931 

0.03 -254.34874287 

0.04 -254.34813266 

0.05 -254.34668386 

0.06 -254.34442172 

0.07 -254.34174617 

0.08 -254.33873066 

0.09 -254.33564958 

0.1 -254.33290207 

 

The Variation of total energy with degauss of Ni 

Degauss Total energy (Ry) 

0.01  -429.16253574 

0.02  -429.16271115 

0.03 -429.16235014 

0.04  -429.16126019 

0.05 -429.15963922 

0.06 -429.15761303 

0.07 -429.15525609 

0.08 -429.15259987 

0.09  -429.14965993 

0.1 -429.14648094 

 

  



67 
 

[B]. Different input Files: 

List 1: Input script for scf final 

Fe 

 &control 

    Calculation = 'scf' 

    Prefix='Fe', 

    pseudo_dir = '/home/anup/qe-6.5/pseudo/', 

    outdir='./' 

 / 

 &system     

    ibrav=  3,  

    celldm(1) =5.42,  

    nat=  1,  

    ntyp= 1, 

    noncolin=.true. 

    lspinorb=.true. 

    starting_magnetization(1)=0.5, 

    occupations='smearing', 

    smearing='mv', 

    degauss=0.02, 

    ecutwfc=95.0,  

    ecutrho=760.0, 

    angle1(1)=90.0 
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    angle2(1)=0.0     

    lda_plus_u=.true. 

    lda_plus_u_kind=1 

    Hubbard_U(1)=2.2 

    Hubbard_J(1,1)=1.75 

    Hubbard_J(2,1)=0.0 

 / 

 &electrons 

    conv_thr =  1.0d-10 

!    diagonalization='cg' 

 / 

ATOMIC_SPECIES 

Fe  55.845    Fe.rel-pbe-spn-rrkjus_psl.0.2.1.UPF 

 

ATOMIC_POSITIONS alat 

Fe  0.00   0.00   0.00   

K_POINTS AUTOMATTIC 

8  8  8  1  1  1 

 

Ni 

&control 

    calculation='scf' 

    restart_mode='from_scratch', 
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    prefix='Ni', 

    pseudo_dir =  '/home/anup/qe-6.5/pseudo', 

    outdir='./' 

 / 

 &system 

    ibrav=2,  

    celldm(1) =6.66,  

    nat=1,  

    ntyp=1, 

    nspin = 2,   

    starting_magnetization(1)=0.7, 

    ecutwfc = 95,  

    ecutrho = 760, 

    occupations='smearing',  

    smearing='mv',  

    degauss=0.02 

 / 

 &electrons 

    conv_thr = 1.0e-10 

    mixing_beta = 0.7  

 / 

ATOMIC_SPECIES 

 Ni 58.69    Ni.pbe-spn-kjpaw_psl.1.0.0.UPF 
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ATOMIC_POSITIONS alat 

 Ni 0.0 0.0 0.0 

K_POINTS (automatic) 

6 6 6 1 1 1 

List 2: Input script for nscf calculation of Band 

Fe 

&control 

    calculation = 'nscf’ 

    prefix='Fe', 

    pseudo_dir = '/home/anup/qe-6.5/pseudo/', 

    outdir='./' 

 / 

 &system     

    ibrav=  3,  

    celldm(1) =5.42,  

    nat=  1,  

    ntyp= 1, 

    noncolin=.true. 

    lspinorb=.true. 

    starting_magnetization(1)=0.5, 

    occupations='smearing', 

    smearing='mv', 

    degauss=0.02 
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    ecutwfc=95.0,  

    ecutrho=760.0, 

    angle1(1)=90.0 

    angle2(1)=0.0     

    lda_plus_u=.true. 

    lda_plus_u_kind=1 

    Hubbard_U(1)=2.2 

    Hubbard_J(1,1)=1.75 

    Hubbard_J(2,1)=0.0 

 / 

 &electrons 

    conv_thr =  1.0d-10 

!    diagonalization='cg' 

 / 

ATOMIC_SPECIES 

Fe  55.845    Fe.rel-pbe-spn-rrkjus_psl.0.2.1.UPF 

 

ATOMIC_POSITIONS alat 

Fe  0.00   0.00   0.00   

K_POINTS AUTOMATTIC 

12  12  12  0  0  0 

 

Ni 
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&control 

    calculation='nscf' 

    restart_mode='from_scratch', 

    prefix='Ni', 

    pseudo_dir =  '/home/anup/qe-6.5/pseudo', 

    outdir='./' 

 / 

 &system 

    ibrav=2,  

    celldm(1) =6.66,  

    nat=1,  

    ntyp=1, 

    nspin = 2,   

    starting_magnetization(1)=0.7, 

    ecutwfc = 95,  

    ecutrho = 760, 

    occupations='smearing',  

    smearing='mv',  

    degauss=0.02 

 / 

 &electrons 

    conv_thr = 1.0e-10 

    mixing_beta = 0.7  
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 / 

ATOMIC_SPECIES 

 Ni 58.69  Ni.pbe-spn-kjpaw_psl.1.0.0.UPF 

ATOMIC_POSITIONS alat 

 Ni 0.0  0.0  0.0 

K_POINTS (automatic) 

10  10  10  0  0  0  

List 3: Input script for Bands.in 

Fe 

&bands 

prefix ='Fe' 

outdir ='./' 

filband  ='Fe.bands.dat' 

lsym  =.true., 

/ 

Ni 

&bands 

prefix ='Ni' 

outdir ='./' 

filband  ='Ni.bands.dat' 

lsym  =.true., 

/ 
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List 4: Input script for DOS.in 

Fe 

&dos 

    prefix='Fe' 

    outdir='./' 

    ngauss=-1 

    degauss=0.02 

    DeltaE=0.01 

    fildos='Fe.dos.dat' 

/ 

Ni 

&dos 

    prefix='Ni' 

    outdir='./' 

    ngauss=-1 

    degauss=0.02 

    DeltaE=0.01 

    fildos='Ni.dos.dat' 

/ 
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List 5: Input script for PDOS.in 

Fe 

&projwfc 

    prefix='Fe' 

    outdir='./' 

    ngauss=-1 

    degauss=0.02 

    DeltaE=0.01 

    filpdos='Fe.pdos.dat' 

/ 

 

Ni 

&projwfc 

    prefix='Ni' 

    outdir='./' 

    ngauss=-1 

    degauss=0.02 

    DeltaE=0.01 

    filpdos='Ni.pdos.dat' 

/ 
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List 7: Input script for dos plot 

Fe 

set term postscript enhanced color 'Helvetica-Bold' 20  

set output 'Fe.dos.ps' 

set autoscale 

unset log 

unset label 

set xtic -10,1 

set ytic 0,0.5 

set xlabel "E-Ef (ev)" 

set ylabel "Dos" 

#set key 0.01,100 

set xr [-9:6] 

#set yr [0:325] 

ef=17.8639 

plot "Fe.dos.dat" using ($1-ef):2 title 'Dos of Fe'  w l lw 5 lt 5 lc rgb "red" 

set output 

! ps2pdf Fe.dos.ps 

! rm Fe.dos.ps 

pause -1 "Hit any key to continue\n"    

Ni 

set term postscript enhanced color 'Helvetica-Bold' 20  

set output 'Ni.dos.ps' 
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set autoscale 

unset log 

unset label 

set xtic -10,1 

set ytic 0,0.5 

set xlabel "E-Ef (ev)" 

set ylabel "Dos" 

#set key 0.01,100 

set xr [-9:6] 

#set yr [0:325] 

ef=17.8637 

plot "Ni.dos.dat" using ($1-ef):2 title 'Dos of Ni'  w l lw 5 lt 5 lc rgb "red" 

set output 

! ps2pdf Ni.dos.ps 

! rm Ni.dos.ps 

pause -1 "Hit any key to continue\n"    
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List 7: Input script for bands plot 

Fe 

set terminal postscript enhanced color "Helvetica" 20 

set output "Fe.band.ps" 

set autoscale 

unset xtics 

set ytics -6,1 

set bmargin 3 

set xlabel "kpaths" offset 0,-1,0 

set ylabel "E-Ef (eV)" 

set label "{/Symbol G}" at -0.02,-6.4 

set label "{/Symbol G}" at 2.39559,-6.4 

set label "H" at 0.98094,-6.4 

set label "N" at 1.68536,-6.4 

set label "P" at 3.26301,-6.4 

set arrow from 1.00405, graph 0 to 1.00405, graph 1 nohead 

set arrow from 1.70960, graph 0 to 1.70960, graph 1 nohead 

set arrow from 2.41414, graph 0 to 2.41414, graph 1 nohead 

set arrow from 3.28954, graph 0 to 3.28954, graph 1 nohead 

#set key 0.01,100 

set xr [0.0:3.29154] 

set yr [-6:8] 

ef=17.5446 
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plot "Fe.bands.dat.gnu" using 1:($2-ef) title 'bands of Fe' w l lw 3 lt 4 lc rgb "black" 

set output 

! ps2pdf Fe.band.ps 

! rm Fe.band.ps 

pause -1 "Hit any key to continue\n" 

Ni 

set terminal postscript enhanced color "Helvetica" 20 

set output "Ni.band.ps" 

set autoscale 

unset log 

set xzeroaxis lw 1 lc -1 

unset xtics 

set ytics -10,4 

set bmargin 3 

set xlabel "k-paths" offset 0,-1,0 

set ylabel "E-Ef (eV)" 

set label "{/symbol G}" at 0.00000,-10.75 

set label "{/symbol G}" at 5.534831,-10.75 

set label "X" at 0.945531, -10.75 

set label "W" at 2.40989,  -10.75 

set label "K" at 4.39793,  -10.75 

set label "L" at 6.23081,  -10.75 

set label "U" at 6.79328,  -10.75 
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set label "W" at 8.34492,  -10.75 

set label "L" at 9.39694,  -10.75 

set arrow from 0.00000,  graph 0 to 0.00000,  graph 1 nohead 

set arrow from 5.534831, graph 0 to 5.534831, graph 1 nohead 

set arrow from 0.945531, graph 0 to 0.945531, graph 1 nohead 

set arrow from 2.40989,  graph 0 to 2.40989,  graph 1 nohead 

set arrow from 4.39793,  graph 0 to 4.39793,  graph 1 nohead 

set arrow from 6.23081,  graph 0 to 6.23081,  graph 1 nohead 

set arrow from 6.79328,  graph 0 to 6.79328,  graph 1 nohead 

set arrow from 8.34492,  graph 0 to 8.34492,  graph 1 nohead 

set arrow from 9.39694,  graph 0 to 9.39694,  graph 1 nohead 

#set key 0.01,100 

set xr [0:10] 

set yr [-10:30] 

ef=17.8637 

plot "Ni.bands.dat.gnu" using 1:($2-ef) title 'bands of Ni' w l lw 3 lt 4 lc rgb 

"blue" 

set output 

! ps2pdf Ni.band.ps 

! rm Ni.band.ps 

pause -1 "Hit any key to continue\n" 
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List 8: Input script for plot pdos 

Fe 

set term postscript enhanced color 'Helvetica-Bold' 20  

set output 'Fe.pdos.ps' 

set autoscale                

unset log                    

unset label                  

set xtic auto               

set ytic 0,0.8                

set xlabel "Energy (ev)" 

set ylabel "pdos" 

set xr [10:22] 

set arrow from 17.5446,0.0 to 17.5446,4.8, 2 nohead ls 10 dt 2   

plot  "atom_Fe_s.dat" using 1:2 title 'Fe s orbital' w l lw 3 lt 1 lc rgb "red",\ 

      "atom_Fe_p.dat" using 1:2 title 'Fe p orbital' w l lw 3 lt 1 lc rgb "blue",\ 

      "atom_Fe_d.dat" using 1:2 title 'Fe d orbital' w l lw 3 lt 1 lc rgb "green",\ 

      "atom_Fe_tot.dat" using 1:2 title 'Fe total' w l lw 3 lt 1 lc rgb "yellow",\ 

       

set output 

 ! ps2pdf Fe.pdos.ps 

 ! rm Fe.pdos.ps 

pause -1 "hit any key to continue\n" 

Ni 
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set term postscript enhanced color 'Helvetica-Bold' 20  

set output 'Ni.pdos.ps' 

set autoscale                

unset log                    

unset label                  

set xtic 10,2              

set ytic auto                

set xlabel "Energy (ev)" 

set ylabel "Pdos" 

set xr [10:20] 

set yr [0:3] 

set arrow from  17.8601,0.0 to  17.8601,3, 2 nohead ls 10 dt 2   

plot  "atom_Ni_s.dat" using 1:2 title 'Ni s orbital' w l lw 3 lt 1 lc rgb "blue",\ 

      "atom_Ni_p.dat" using 1:2 title 'Ni p orbital' w l lw 3 lt 1 lc rgb "red",\ 

      "atom_Ni_d.dat" using 1:2 title 'Ni d orbital' w l lw 3 lt 1 lc rgb "green",\ 

      "atom_Ni_tot.dat" using 1:2 title 'Ni total orbital' w l lw 3 lt 1 lc rgb 

"yellow",    

set output 

 ! ps2pdf Ni.pdos.ps 

 ! rm Ni.pdos.ps 

pause -1 "hit any key to continue\n" 


