Environmental Assessment of the Chameliya Hydroelectric Project, Darchula during Construction Phase

A Dissertation Submitted to the Central Department of Environmental Science T.U. Kirtipur For the partial fulfillment of the requirements for Master's Degree in Environmental Science

> Submitted by Laxmi Raj Joshi Symbol No.: - 464 T.U. Registration No: 5-1-61-89-98 May 2010

Acronyms and Abbreviations

%	Percentage
+ve	Positive
oC	Degree Centigrade
1	Minutes
0	degree
$\mu g/m^3$	microgram per meter cube
amsl	Above Mean Sea Level
APHA	American Public Health Association
BOD	Biological Oxygen Demand
BGLB	Brilliant Green Lactose Broth
CBS	Central Bureau of Statistics
CDES	Central Department of Environmental Science
CITES	Convention on International Trade in Endangered Species of Wild Fauna and flora
CHEP	Chameliya Hydroelectric Project
dBA	A-weighted frequency spectrum in dB
DHM	Department of Hydrology and Meteorology
DO	Dissolved Oxygen
d/s	Down Stream
EDTA	Ethylene Diamine Tetra Acetic Acid
EIA	Environmental Impact Assessment
EMP	Environmental Management Plan
EPR	Environment Protection Regulation
EPA	Environment Protection Act
GDP	Gross Domestic Production
GoN	Government of Nepal
GWh	Giga watt hour
ha	Hectare
HHs	Households
ICIMOD	International Centre for Integrated Mountain Development
IEE	Initial Environmental Examination
IUCN	The World Conservation Union
km	kilo meter
kV	Kilo volt
L _{eq}	Equivalent Continuous Sound pressure level
L ₅	Sound presuure level, which is equivalent or exceeded for 5% of the time over a measurement period
L ₁₀	Sound presuure level, which is equivalent or exceeded for 10% of the time overa a measurement period
L ₅₀	Sound presuure level, which is equivalent or exceeded for 50% of the
т	unie over a measurement period Sound produced level which is activatent or exceeded for 000/ of the
L90	sound pressure rever, which is equivalent or exceeded for 90% of the
т	Sound produces lovel acquirement or exceeded for 05% of the time
L95	over measurement period
L _{max}	Maximum Sound Pressure Level

L _{min}	Minimum Sound Pressure Level
L _d	Avg day noise level
m	meter
m^3/s	Cubic Meter per Second
mg/l	milligram per liter
MB	McConkey Broth
ml	milli liter
MW	Mega Watt
NAAQS	National Ambient Air Quality Standard
NEA	Nepal Electricity Authority
NGO	Non Government Organization
Spp.	Species
PAFs	Project Affected Families
PVC	Poly Vinyl Chloride
PM_{10}	Particulate Matter with an equivalent aerodynamic diameter less than
	10 micron
TDS	Total Dissolved Solid
TSP	Total Suspended Particulate
TU	Tribhuvan University
TUCL	Tribhuvan University Central Library
u/s	Up Stream
VDC	Village Development Committee
WHO	World Heath Organization
WECS	Water and Energy Commission Secretariat

ACKNOWLEDGEMENTS

This dissertation work had been benefited from many people and institution in one or various ways to come in the final version. First of all, I express my sincere and deep gratitude to my academic supervisor Prof. Khadag Bahadur Thapa, of Central Department of Hydrology and Metrology, Tribhuvan University who rendered me valuable guidance and suggestion in completing this work. Every time discussion with him made my thesis improved and I really learnt and improved a lot from him.

I gratefully acknowledge Dr. Kedar Prasad Rijal, Head of Central Department of Environmental Science, for being incessant source of inspiration and guidance and all those helping and supporting hands from teachers, administrative and lab staffs of this department. I am also grateful to Mr Rishikesh Sharma, Director and other staffs of Environmental Management Unit of CHEP for providing financial and technical support. I also like to highly acknowledge Mr. Ananta Man Singh Pradhan, Geologist for his help during report preparation.

My special thanks go to Mr. Mohan dev Joshi for supporting me during the field study period. I also need to extend my copious appreciation and thanks to my friends Mr. Damber Bista, Mr. Harish Bhatt, Mr. Om Krishna Uprety, Mr.Dinesh Bhandari, and Mr. Padam Rokaya for their support.

Thanks to all social respondents, local fishermen, and the local residents of Sikhar VDC, Rudreshwor VDC for their help for their valuable time, information and good hospitality, they provided during my field visit. I would like to express my genuine appreciation to all those cooperative and helpful staffs of CDES, TUCL, DHM and ICIMOD for providing valuable information and literature. I am also grateful to all those who directly or indirectly contributed in completing this work.

At last but not least, my paramount dedication is to my family members who have been an uninterrupted some of encouragement and generous support for me throughout this work.

> Laxmi Raj Joshi joshi.laxmier@gmail.com

ABSTRACT

Environmental Assessment is the method to quantify the project induced impact on the environment. Monitoring is also essential aspect of environmental management in River valley project. Chameliya hydroelectric project (30MW) is six hours daily peaking run of river generating system, located in the Darchula district of Far Western Region of Nepal. The entire project structure lie along the Chameliya River bank, a distance of 4067m from weir to powerhouse. The broad objective of the study entitled "*Environmental Assessment of Chameliya Hydroelectric Project, Darchula during Construction Phase*" is to assess various environmental impacts vis-à-vis status of mitigation measures adopted by the project during construction period as recommended by EIA report. The research design involved both field work and laboratory investigations to generate analytical data for the accomplishment of objectives since 2009.

Flood frequency analysis has been conducted with 20 years of data using Gumbel's distribution function. The design flood of $710m^3$ /s has been worked out to be 50 years. All the physico-chemical parameters of Chameliya river water have been found within the limit to support the aquatic ecosystem of river. The study has revealed that there is small increment in pH, alkalinity and BOD₅ but significant increment in some parameters such as Total coli form, conductivity, magnesium, sodium, and total dissolved solid with base line value. The values of TSP and PM₁₀ around the Audits and head works have been found to be higher than the NAAQS guideline values for 24 hours mean. Like wise, the increments in the TSP and PM₁₀ have been observed to be ten folds and four folds higher than the baseline values respectively.

The study has depicted that the average day time noise levels at the monitoring station except at the headwork were within the acceptable range set by W.H.O. Impact of Chameliya hydroelectric project on fishermen's livelihood considering bio-physical and socioeconomic aspect has been assessed revealing a reduction in the over all abundance of fish fauna than the number stated in the EIA project report Project felled 3075 plants of 46 species which were higher than EIA report of CHEP. Impact on wild life was also investigated and the magnitude of impact is low, and site specific. The field study revealed

that the mitigation measures except compensation for land, house, plant, fodder and physical structure, were partially complied and in premature stage but implementations of these were seen not satisfactory in accordance of EMP.

Keywords: *Environmental assessment, Chameliya hydroelectric project, flood frequency, mitigation measure, baseline value*

CONTENTS

	Page Number
Letter of Recommendation	
Letter of Approval	
Acronyms and Abbreviations	
Acknowledgements	
Abstract	
Contents	
List of Figures	
List of Tables	
List of Maps	
CHAPTER I	
INTRODUCTION	1-8
1.1 Background	1
1.2 History of Environmental Assessment	3
1.3 Environmental Monitoring of Hydropower Project	4
1.3.1 Baseline Monitoring	4
1.3.2 Impact Monitoring	4
1.3.3 Compliance Monitoring	4
1.4 Hydropower Development in Nepal	5
1.5 Chameliya hydroelectric project	6
1.6 Justification oh the study	7
1.7 Objectives	7
1.7.1 Broad Objective	7
1.7.2 Specific Objective	7
1.8 Limitations of the Study	8
CHAPTER II	
LITERATURE REVIEW	9-16
2.1 Related Environmental Assessment Studies	9
2.2 Review of Policies, Law, Rules, Regulation and Guidelines	12
2.2.1 The interim constitution of Nepal	12
2.2.2 Acts	12

2.2.3 Rules and regulation	13
2.2. 4 Guidelines	15
2.2.5 Policies	15
CHAPTER III	
STUDY AREA	17-23
3.1 Description of the Study Area	17
3.1.1Topography	18
3.1.2Geology	19
3.1.3 Climate	
19	
3.1.4 Hydrology and Drainage System	21
3.1.5 Vegetation	22
3.1.6 Socioeconomic Status	22
CHAPTER IV	
METHODS AND MATERIALS	24- 32
4.1 Field Visit	24
4.2 Primary data	24
4.3 Site selection	24
4.4 Primary data collection	24
4.4.1Sampling Procedure	25
4.4.1.1 Air Pollution	25
4.4.1.2 Frequency Analysis	25
4.4.1.3 Noise Quality	25
4.4.1.4 Water sample collection and preservation	25
4.4.2 Analysis of physico-chemical parameter of water	26
4.4.2.1 Temperature	26
4.4.2.2 pH	26
4.4.2.3 Total Dissolved Solid	26
4.4.2.4 Dissolved oxygen (DO)	27
4.4.2.5 Biological Oxygen Demand	27
4.4.2.6 Iron	27
4.4.2.7 Total Hardness	28

	4.4.2.8 Calcium Hardness	28
	4.4.2.9 Magnesium Hardnes	28
	4.4.2.10 Total Alkalinity	28
	4.4.2.11 Total Phosphate	29
	4.4.2.12 Potassium	29
	4.4.2.13 Chloride	29
	4.4.2.14 Conductivity	30
	4.4.2.15 Total Coliform	30
	4.4.2.15.1 Presumptive test	30
	4.4.2.15.2 Confirmatory test	30
	4.4.2.15.3 Complete test	31
	4.4.2.16 Faecal coliform	31
4.4.3 Fis	sh diversity	31
4.4.4Ve	getation	32
4.4.5 W	ild Animals	32
4.4.6 Mi	tigation Measures	32
4.5 Seco	ndary data	32
СНАРТ	'ER V	
RESUI	LTS	33-46
5.1 Freq	uency Analysis of River	33
5.2 Impa	act Analysis	33
5.2.1 W	ater quality	33
	5.2.1.1. Temperature	33
	5.2.1.2. pH	34
	5.2.1.3 Dissolved oxygen (DO)	34
	5.2.1.4 Hardness	35
	5.2.1.5 Biological Oxygen Demand	36
	5.2.1.6 Potassium	37
	5.2.1.7 Iron	37
	5.2.1.8 Total Alkalinity	38
	5.2.1.9 Conductivity	38
	5.2.1.10 Total Dissolved Solid	39
	5.2.1.11Total Coliform and Faecal Coliform	39

5.2.2 Air Quality	39
5.2.3 Noise quality	40
5.2.4 Wildlife	43
5.2.5 Fish	43
5.2.5.1 Abundance of Fish	43
5.2.5.1.1 Ghategad khola and Chameliya river confluence	43
5.2.5.1.2 Chameliya River and Karkale section	44
5.2.5.2 Method of fishing and its frequency	45
5.2.6 Vegetation	45
5.3 Mitigation Measures as Adopted during Construction Phase	46
CHAPTER VI	
DISCUSSION	50-60
6.1 Frequency Analysis	50
6.2 Water Quality	50
6.2.1 Comparison of Chameliya River water quality to its baseline data	53
6.3 Air Quality	53
6.3.1 Variation of Air Quality with respect to the baseline	54
6.4 Noise Level	54
6.5Vegetation	55
6.6 Wildlife	55
6.7 Fish	56
6.7.1 Bio-physical Aspect	56
6.7.2 Socio-economic aspect	57
6.8 Socioeconomic and Cultural Environment	58
6.8.1 Acquisition of land	58
6.8.2 House Acquisition	58
6.8.3 Local Economy	58
6.8.4 Social and cultural practices	59
6.9 Implementation of Mitigation Measures	59
CHAPTER VII	
CONSLUSION AND RECOMMENDATIONS	60-61
7.1 Conclusion	60
7.2 Recommendations	61

REFERENCES

ANNEXES

Annex 1: Questionnaires for Wild Animal Study

Annex 2: Questionnaires for Fish Study

Annex 3: Comparison of physico-chemical parameters of river water with baseline value.

Annex 4: Comparison of Air Quality with baseline value.

Annex 5: VDC wise land Acquired for the project

Annex 6: Public land Acquired by the project

Annex7: List of the Household Affected by the House and Toilet Acquisition

Annex 8-Analytical data of Noise Levels at Different Sites

Annex 9: Abundance of Fish species in EIA study period

Annex 10 - Checklist for Proposed Mitigation Measures

Annex11: MPN Chart for Calculation of MPN/100ml for various Combination of Positive

Result When Five Tubes Each of 10, 1 and 0.1ml Sample Fractions are used

Annex12: Flood Frequency Analysis of Chameliya River from Recorded data

Annex-13 Frequency factor for Gumbel's Method

Annex14 Flood frequency Curve by Gumbel's Method

Annex 15- Photo Plate

LIST OF FIGURES

	Page No.
Figure.3.1: Monthly variations in average monthly rainfall (mm)	
for the year 1988-2008	19
Figure 3.2: Annual variations in average annual rainfall (mm)	
for the year 1988-2008	20
Figure 3.3: Average annual max and min temperature of	
Darchula from 1990 – 2007	20
Figure 3.4: Average monthly max and min temperature of	
Darchula from 1990 – 2007	21
Figure 3.5: Annual maximum and minimum discharge of Chameliya River	22
Figure 5.1: Temperature variation at different sites	34
Figure 5.2: pH variation at different sites	34
Figure 5.3: Dissolved oxygen variation at different sites	35
Figure 5.4: Calcium variation at different sites	35
Figure 5.5: Magnesium variation at different sites	36
Figure 5.6: BOD variation at different sites	36
Figure 5.7: Potassium variation at different sites	37
Figure 5.8: Iron Variation at different sites	37
Figure 5.9: Total Alkalinity Variation at different sites	38
Figure 5.10: Specific conductance Variation at different sites	38
Figure 5.11: Total Dissolved Solid Variation at different sites	39
Figure 5.12: Noise Level measured at Powerhouse site	40
Figure 5.13: Noise Level measured at Adit-3	41
Figure 5.14: Noise Level measured at Adit-2	41
Figure 5.15: Noise Level measured at Adit-1	42
Figure 5.16: Noise Level measured at Head Work	42
Figure 5.17 Average equivalent Sound levels for day (L_d)	43
Figure 5.18: Composition of fish species recorded during study period	44
Figure 5.19: Composition of fish species recorded during study period	44
Figure 5.20: Traditional method of fishing and its frequency	45

LIST OF TABLES

Table5.1: Computation of Discharge from Gumbel's Method	Page No 33
Table 5.2- TSP and PM_{10} recorded within CHP construction area	40
Table 5.8: - Attempt to Compare the EIA Prediction and Actual Scenario	
of no of Trees felled during Construction Phase at End of April 2009	45
Table 5.9 – Compliance Status of the Proposed Mitigation Measures	46

LIST OF MAPS

	Page No
Map 1: Hydropower projects of Nepal	5
Map 2: Map showing Chameliya River	16
Map 3: Location map of Chameliya hydroelectric Project	17