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ABSTRACT 

The interaction between plasma and confining material surface is crucial for better 

understanding of plasma-wall interactions. In this work, we have studied the 

interactions of carbon and tungsten surfaces in an oblique magnetic field with 

deuterium and tritium plasmas using Kinetic Trajectory Simulation (KTS) approach 

not considering the induced emissions of electrons by incident ions. The parameters 

including ion reflection coefficient, ion absorption coefficient, total charge density 

and Thomas Fermi reduced energy at various ion temperatures has been calculated. 

The choice of plasma facing material surface is also important to study plasma-wall 

interaction phenomenon. It has been observed that ion reflection coefficient decreases 

with the increase in ion temperature and its value is comparatively higher on tungsten 

wall and in tritium plasma respectively. On the other hand the ion absorption 

coefficient increases due to increase in projectile energy as the ion temperature 

increases. The total charge density increases linearly with the temperature. The 

Thomas Fermi reduced energy by carbon and tungsten surface are higher in deuterium 

plasma and also increases linearly with ion temperatures. For carbon wall the ion 

reflection coefficient is found to be 0.0076 at 0.5 eV and decreases to 0.0010 at 2.5 

eV in deuterium plasma which slightly increases to 0.0085 and 0.0012 at the 

respective temperatures. Similarly for tungsten wall the ion reflection coefficient is 

0.2576 and 0.1164 in deuterium plasma but is slightly higher in tritium plasma which 

is found to be 0.2582 and 0.1170 at 0.5 eV and 2.5 eV respectively. 

 

Keywords: Reflection Coefficients, Ion Reflection, Ion Absorption, Plasma-Wall 

Interaction, Thomas Fermi Reduced Energy.  
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1.1 Plasma 

The term "plasma" was introduced by Irving Langmuir 1928 to describe the state of 

matter in the positive column of the glow discharge tube. Plasma is a mixture of 

ionized gas consisting approximately equal number of negatively charged electrons 

and positively charged ions. When the temperature of the gas is increased beyond a 

certain limit, it ionizes to the mixed population of charged particles and neutral 

particles called Plasma. The Characteristics of plasma are significantly different from 

that of the ordinary natural gases. So, Sir William Cookes identified plasma as the 

fourth state of matter in 1879. Plasma is the state attained by ionized gases but all 

ionized cases cannot be called plasma. Thus, the most suitable definition to describe 

plasma would be, "Plasma is quasineutral gas of charged and neutral particles which 

exhibit collective behaviour." Quasineutrality of plasma simply implies that the ion 

and electron densities are nearly equal (𝑛𝑖 = 𝑛𝑒 =  𝑛), where 𝑛 is plasma density) 

but not so neutral that all the intersecting electromagnetic force vanishes. The 

collective behaviour of plasma implies that not only local conditions but also the state 

of plasma far away from the point of interest also affects the motion of ions in plasma. 

Plasma can be created by heating a gas and subjecting it to a strong electromagnetic 

field applied with a laser or microwave generator. If the temperature of the gas is 

increased beyond a certain limit, it doesn't remain as gas; it enters into the regulated 

system where the thermal energy of its constituent particles overcomes the 

electrostatic force which binds the electrons with atomic nuclei to create plasma. 

Plasma is the most abundant form of ordinary matter found in the universe, most of 

which are found in the intergalactic region, intracluster medium in stars including the 

sun [1]. 

1.2 Plasma Criterion 

Not all ionized gases can be called plasma so the mixture of interacting charged 

particles and neutral particles to exhibit plasma behaviour, it must satisfy following 

criterion. 

(i) Debye length must be very short compared to the physical size of plasma;  

   𝜆𝐷 << L 

(ii) There must be a large number of particles (ions or electrons) within the Debye 

sphere;              𝑁𝐷 >> 1 
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(iii) Mean time between the collisions of ions is usually long in comparison with the 

period of plasma oscillation;  𝜏 >> 1 

Where  is the frequency of plasma oscillation and 𝜏 is the mean time between the 

collisions with neutral atoms [2]. 

1.3 Debye Shielding 

The most fundamental characteristics of plasma is that, it can shield out applied 

electrostatic perturbations. When a test charge is inserted in the unperturbed spatially 

uniform and neutral plasma, the plasma gets perturbed forming a cloud of oppositely 

charged plasma particles, which both shields the remaining plasma from the test 

charge and lowers the electrostatic potential induced by the test charge to make the 

whole plasma to be neutral. This phenomenon is called Debye shielding. Debye 

shielding occurs within a very small spherical region with a radius of Debye length 

[3]. 

The mathematical expression for electron Debye length is; 

𝜆𝐷 = √є0𝐾𝐵𝑇𝑒𝑒2𝑛  (1.1) 

Where 𝐾𝐵 is the Boltzmann constant, є0 is the permittivity of vacuum, 𝑇𝑒 is the 

electron temperature, 𝑛 is the density of electrons and  𝑒  is the electronic charge. [1] 

  

 

 

Figure1.1: Debye Shielding 
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1.4 Sheath 

As we know electrons in plasma are much faster than ions, when plasma comes in 

contact with a material surface, the surface becomes negatively charged with respect 

to plasma potential, due to the absorption of the fast moving electrons. The negatively 

charged surface repels the electrons but attracts ions forming a positive space charge 

region called Sheath in front of material in contact with the plasma. The negative 

potential of the surface is effective only in the sheath region with the dimension of 

few Debye lengths away from the wall within the sheath region due to the shielding 

effect of plasma [4]. Within the sheath region, the plasma is significantly non-neutral, 

however becoming practically quasi-neutral at the sheath entrance or the sheath edge, 

the potential falls rapidly towards the wall. Due to this, the electric field is relatively 

strong and the motion of the plasma particles is dominated by electric forces rather 

than the magnetic forces. The sheath structure is responsible for the flow of the 

particles, and energy towards the wall may also affect the bulk plasma behaviour [5]. 

 

 

 

 

 

 

 

 

 

 

 

Figure: 1.2 Potential profile decreasing monotonically from 𝑥 = 𝐿 towards 𝑥 =  0   [6] 
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1.5 Presheath 

Presheath region starts when the charge neutrality begins to breakdown. Since the 

shielding effect of the wall is not perfect; a residual electric field penetrates beyond 

the sheath edge deep into the bulk plasma. This forms a weak region called Presheath 

from where the ions are accelerated and entered into the sheath region. 

For the formation of the sheath the Bohm criterion needs to be satisfied. The in-

streaming ions must be accelerated up to speed equal or greater than the ion acoustic 

velocity at the sheath edge. This inequality can be expressed as [7]; 

  ‹ 1𝑣2 ›  ≤     ‹ 1𝐶𝑠2 ›       (1.2) 

Where ‹ › denotes averaging over the ion distribution function and 

  𝐶𝑠 = √𝐾𝐵(𝑖𝑇𝑖+𝑒𝑇𝑒)𝑚𝑖       (1.3) 

is the ion acoustic velocity with 𝐾𝐵 as Boltzmann Constant. Here 𝑖 and 𝑒are the ion 

and electron Polytropic constants respectively and 𝑇𝑖 and 𝑇𝑒 are the ions and electron 

temperatures at the presheath side of sheath edge respectively. This condition requires 

that ion enters the sheath region with high velocity and the ion acceleration is also 

aided by an electric field penetrating the presheath region, since the thermal motion of 

the ions alone cannot create such  an acceleration. 

In the presence of non-vanishing oblique magnetic field, the presheath consists of two 

distinct regions. Collisional presheath adjacent to the bulk plasma, where the electron 

pressure gradient force accelerates electron along magnetic field lines and the 

magnetic Presheath adjacent to sheath, where the electric field is strong enough to 

deflect the ions from their motion along the magnetic field [4]. 

The Bohm criterion mentioned above is only for the special case when no magnetic 

field is applied or when magnetic field is applied perpendicular to the wall. In case of 

oblique magnetic field, Bohm condition is [8] 𝑣𝑥=𝑐𝑜𝑠𝜃 𝐶𝑠 (1.4) 

Where 𝜃 is the angle made by magnetic field along x- direction. 

collisional 
presheath
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In magnetized plasma the ambient magnetic field B is strong enough to significantly 

alter particle trajectories. In particular, magnetized plasma responds differently to 

forces which are parallel and perpendicular to the direction of the magnetic field  𝐵. 

1.6 Ion Reflection Coefficient 

The ion reflection from the plasma facing materials in magnetic fusion experiments 

can affect the performance in fusion experiments. In tokomaks, particles confinement 

time is much smaller than the discharge time length due to which the average plasma 

ion hits a material surface and recycles back into plasma many times during a typical 

discharge [6]. 

The particle and energy reflection coefficients at plasma facing surface for hydrogen 

isotope plasma ions which are incident on the carbon surface are functionally 

dependent on the energy and angle of incidence. Thus, particle and energy reflection 

coefficient depends functionally on the plasma temperature and sheath potential [9]. 

Plasma surface interaction at the wall and diverter also introduces a controlling factor 

on the boundary plasma conditions through recycling and the production of 

impurities. In Tokomak devices, these surfaces would include the first wall, the 

diverter plates or limiters and any other structures close to plasma. When the ions and 

the neutral particles interact with the material surface, there are two possibilities [6]; 

 (i) It may get backscattered or reflected with some fraction of energy 

 (ii) It may get permanently trapped inside the material wall. 

The ion reflection is characterized by the Number Reflection Coefficient RN, defined 

as the ratio of all the particles backscattered from the material surface to the number 

of the particles incident on the material surface; and the Energy Reflection Coefficient 

RE [10]. 

The reflection coefficient of the light particles from the material surface varies in a 

systematic fashion with the projectile energy, projectile mass and the mass of the 

target. Here, in our case, reflection is described in terms of number reflection 

coefficient RN 𝑅𝑁 = 𝐴1 ln (𝐴2є+𝑒)1+𝐴3є𝐴4+𝐴5є𝐴6  (1.5) 
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where 𝐴1,𝐴2,𝐴3,𝐴4,𝐴5,𝐴6 depend on the mass ratio of the incoming particles to the 

substrate particles, 𝑒 is the base of natural logarithms and є is the Thomas Fermi 

reduced energy which can be expressed as [10]; є =  0.0325 µµ+1  1
𝑍1𝑍2(𝑍123+𝑍223)12 𝐸0  (1.6)  

Where µ =  𝑚2𝑚1, 𝑚1 and 𝑍1 are the mass and charge of the incoming particles and 𝑚2 

and 𝑍2 are the mass and charge of the target nucleus respectively and 𝐸0 is the 

projectile energy expressed in 𝐾𝑒𝑉. 
Finally, ion absorption coefficient is calculated by subtracting the value of the ion 

reflection coefficient from the unitary value considering no possibilities of 

transmission. 

The values of constant Hydrogen isotopes bombardment of the carbon and the 

tungsten atoms are presented in table [10]. 

Table 1: Constant values for hydrogen isotopes bombardment of carbon and tungsten. 

Material Parameter A1 A2 A3 A4 A5 A6 

Carbon RN 0.6192 20.01 8.922 0.6669 1.864 1.889 

Tungsten RN 0.8250 21.41 8.606 0.6425 1.907 1.927 

 

1.7 D-T Plasma 

Fusion is a form of power generation that can create electricity by using heat from 

nuclear fusion devices. Fusion process needs fuel and confinement environment with 

enough temperature, pressure and confinement time to create plasma. Although 

different isotopes of light elements can be fused to achieve fusion, the deuterium and 

the tritium reaction has been identified as the most efficient for the fusion devices. 

Thus, the proposed model of the fusion reactor here generally uses Deuterium and 

Tritium which react more easily than Hydrogen and allow them to meet the Lawson 

criterion without extreme conditions. Deuterium can be distilled from all forms of 

water. It is widely available, with no harm and is virtually inexhaustible resource. 
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Tritium is a fast decaying radioelement of hydrogen which occurs only in trace 

quantities in nature. It can be produced during the fusion reaction through contact 

with the lithium. When neutrons escaping the plasma interact with the lithium, tritium 

can be produced. In comparison with hydrogen plasma, the lower transport in the 

deuterium plasma is observed in both ion and electron heat diffusivities, indicating a 

significant isotope effect [11].  
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Irving Langmuir [12] introduced the concept of the electron temperature for 

measuring the temperature and the density with an electrostatic probe called 

Langmuir probe. He also studied the interaction of the electrons with the positive 

space charged ions in the sheath region to give the better understanding of the plasma 

sheath transition. In his works, he found that the motion of the ions means the rate at 

which the ions arrive at sheath is determined by the potential distribution in the 

plasma. Soon after Langmuir introduced plasma and developed the theory on plasma 

sheath, many research works have been carried out to study and understand the 

characteristics features of the plasma. Moreover, the choice of the plasma facing 

material surface and the complex plasma parameters still remain an issue for ITER 

[13]. 

Bohm [7] formulated the Bohm criterion for the formation of the sheath. Bohm 

criterion is an inequality stating that the in-streaming ions in the plasma be 

accelerated upto speed equal or greater than the ion acoustic velocity at the sheath 

edge. Boyd [14] suggested that Langmuir probe technique is not suitable for 

measuring ion densities above 1mm of Hg pressure because the probe dimension 

exceeds the ionic and electronic mean free paths. So he made an examination of the 

possibility of using a probe collecting positive ions to find ion densities. He found it 

possible to calculate potential distribution outside the space charge sheath, if the 

radius of sheath is known. He also came to a conclusion that depending on ion 

concentration and pressure the sheath thickness is determined around the probe and 

for thick sheath, thickness of the sheath must be known to get compatible solutions. 

Cavaliere et al. [15] studied that, whatever may be the boundary conditions assumed 

for the perturbations at the plasma edge, they can never provide a coupling between 

the wave travelling towards the wall of finite amplitude and the one propagating into 

the plasma whose amplitude is divergent at the plasma boundary. Stangeby & 

Allen[16]  demonstrated that a sufficient and necessary condition for the formation of 

sheath is that the plasma fields should accelerate the ions until their velocity normal to 

the sheath is equal to the Bohm speed, independent of the ion velocity component 

tangential to the sheath. Chodura [8] studied the magnetic effect on the plasma wall 

transition layer in an oblique magnetic field using numerical model, which simulates 

the motion of the plasma particles in an electric and magnetic fields for certain 

particle flux at plasma boundary. He also generalized the Bohm's condition for the 
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existence of a monotonic profile of the layer. He found the transition layer comprises 

of a quasineutral magnetic presheath preceeding the electrostatic debye sheath. He 

found that the total potential drop between plasma and wall is fairly insensitive to the 

magnitude and the angle of magnetic field. 

Riemann [17] did the kinetic analysis in the vicinity of the sheath edge that allowed 

him to generalize Bohms' criterion not only for arbitrary ion and electron distribution, 

but also for general boundary conditions at wall. He also found that, in order to fulfil 

Bohm criterion the ions should be pre-accelerated in quasineutral pre-sheath region 

dominated at least by geometric current concentration, collisional ion friction, 

ionization or the magnetic ion deflection. He also studied the collisional presheath in 

an oblique magnetic field and showed that in plane geometry, the presheath ion 

acceleration depends on elementary process. The main effect of a strong magnetic 

field is to compress the collisional presheath onto a thin layer with a characteristics 

extension of the ion gyro radius [18]. Ordonez & Peterjn studied the particle and 

energy reflection coefficients at plasma facing surface for hydrogen isotope plasma 

ions which are incident on the carbon surface. The expression obtained were first fit 

to Monte- Carlo simulation to obtain reflection coefficients which are functionally 

dependent on the energy and angle of incidence. The expressions thus obtained were 

again integrated over the distribution function for plasma ions at the sheath surface 

interface to obtain particle and energy reflection coefficient which depends 

functionally on the plasma temperature and sheath potential [9]. 

Luo et al. [19] studied the reflection coefficients of D-T ions in fusion plasma incident 

to the first wall of a fusion reactor which is necessary to understand and evaluate the 

energy balance, fuel recycling in the fusion reactor operation. He developed a new 

method based on the scaling property of ion transport for calculating the reflection 

coefficient of Maxwell D-T ions of fusion plasma with different temperatures. 

Wesson [20] investigated the effect of the temperature gradient on plasma sheath and 

found out that the combined effect of the dominance of fast moving electrons and the 

rapid decrease in the collisional frequency with velocity leads to the significant 

modification of the sheath and possibly also to substantial errors in the interpretation 

of probe signals. Chauhan et al. [21] investigated the reflection of compressive and 

rarefactive ion acoustic solitons propagating in the inhomogeneous plasma containing 

negative ions. They found out that for both compressive and rarefactive incident 
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solitons, amplitude goes up whereas the width decreases with increasing density ratio 

of negative to positive ions. It has also been found that increasing positive ion density 

weakens the reflection of both compressive and rarefactive solitons. Ahedo [22] 

investigated the influence of the magnetic field strength and the angle of incidence on 

the one dimensional structure of weakly collisional plasma near a charged wall and 

recovered the model of Chodura [7] as special case of intermediate magnetic field 

strength and the model of Riemann as the case of weak magnetic field strength and 

compared with the third case of strong magnetic field, where the space- charge sheath 

is partially magnetized. 

Ogawa et al. [23] investigated the deuterium plasma of LHD by integrated simulation 

code TASK3D and 5D drift kinetic equation solver GNET. He found that more than 20% of the ion temperature increment is obtained in the deuterium plasma due to the 

isotope effect assuming the turbulent transport model. The trition burn up simulation 

also showed that the trition slowing down distribution and the strong magnetic 

configuration dependency of the trition burn up ratio in LHD. Singha, Chutia & 

Sarma [24] investigated the variation of the electron temperature and the plasma 

density in a magnetized plasma experimentally in the presence of a grid placed at the 

middle of the system. It was revealed that with increasing magnetic field and negative 

grid biasing voltage, the sheath thickness expands. Franklin [25] investigated the 

significance of the Bohm criterion in an active collisional plasma sheath and 

concluded that the ions remain in collisional equilibrium with the electric field and 

there is no such thing as a collisionally modified Bohm criterion. 

Crowley [26] developed the method for modelling the electrical conductivity of dense 

multicomponent plasma using well-known Ziman formula in hot Lorentzian plasmas 

as well as to systems of arbitrary electron degeneracy. Kawata & Ohya [27] 

developed a Monte Carlo simulation model to study the ion reflection and sputtering 

for plasma irradiated surface in an oblique magnetic field and found that some of the 

emitted particles were ionized and gyrated in the plasma immersed in an oblique 

magnetic field. Zhang, Shen & Yu [28] studied the effect of plasma temperature on 

electrostatic shock generated by circularly polarized laser pulse in overdense plasma 

using PIC simulation and found that the ions are much more accelerated at low but 

finite temperatures than when they were cold. Kaufmann & Neu [29] studied the use 

of tungsten as first wall material in fusion devices. They studied the physical side of 
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the interaction between plasma and the tungsten wall surface and the transport of 

tungsten in the plasma boundary and also in the core. 

Khanal [30] developed a Kinetic Trajectory Simulation (KTS) model for 1𝐷1𝑉, time 

independent, collision less bounded plasma for the modelling of various situation of 

interest with high accuracy. Electrons were supposed to have half Maxwellian 

velocity distribution function at injection so their density can be calculated 

analytically. While on the other hand, the exact ion trajectories are followed to 

calculate ion distribution function assuming arbitrary ion distribution at injection. The 

method is exemplary applied to a single emitter diode and one dimensional plasma 

sheath. In this method, starting from the initial guess, the potential profile is iterated 

towards the final time independent self-consistent rate. 

Chalise & Khanal [31] studied the magnetized plasma wall transition in an oblique 

magnetic field. He used KTS model to obtain the final self-Consistent solution to the 

time independent, collision less plasma for the given electron and ion density 

distribution at the Sheath entrance. The plasma parameters reaching the material wall 

is insensitive to the magnitude and orientation of the magnetic field but is highly 

influenced near the sheath entrance. Thus, he found that the electric field doesn't show 

the usual monotonic nature at the magnetic presheath region. Chalise and Khanal [32] 

presented the KTS model for magnetized plasma sheath and found out that the 

magnetic effect is prominent near the Sheath entrance and has almost no effect at the 

wall. They also developed a self-consistent one dimensional in space and three 

dimensional in velocity (1𝐷3𝑉) Kinetic Trajectory Simulation Model of magnetized 

plasma wall transition for the study of the various types of plasma sheaths [33]. 
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Principles and Equations of Kinetic Theory 
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3.1 Principles of Kinetic Trajectory Simulation 

In the Kinetic Trajectory Simulation (KTS) method the velocity distribution function 

of particle species involved are directly calculated by solving the related kinetic 

equations along the respective collisionless particle trajectories. In order to obtain the 

distribution function at any point of the phase-space we trace the related trajectories 

of phase-space where the distribution function is given. Here, we assume the electron 

and ion velocity distribution functions at the sheath edge to be cut-off Maxwellian 

[30]. 

KTS is an iterative method for numerically calculating self-consistent, time-

independent kinetic plasma states in some given bounded spatial region. The plasma 

states are generally characterized by [1]; 

 the velocity distribution function 𝑓(�⃗�, �⃗�, 𝑡) 
 the electric field �⃗⃗�(�⃗�) 
 the magnetic field �⃗⃗�(𝑥 ⃗⃗⃗ ⃗) 
 the given boundary conditions. 

3.2 Basic Concepts of Kinetic Theory 

In the general case of time-dependent, collisional kinetic theory, the species-s velocity 

distribution function satisfies the kinetic equation. 

𝑑𝑓𝑠𝑑𝑡 = ( 𝜕𝜕𝑡 + �⃗�. 𝜕𝜕�⃗� + 𝑎𝑠. 𝜕𝜕�⃗⃗⃗�) 𝑓𝑠(�⃗�. �⃗�)   

=𝐶𝑠 (3.1) 

with �⃗�(�⃗�, �⃗�, 𝑡) = 𝑞𝑠𝑚𝑠  [�⃗⃗�(�⃗�, 𝑡) + �⃗� × �⃗⃗�(�⃗�, 𝑡)] (3.2) 

Here, the locally averaged electric and magnetic fields are �⃗⃗�(�⃗�, 𝑡) and �⃗⃗�(�⃗�, 𝑡), the 

macroscopic acceleration of the species-s particles is �⃗�𝑠(�⃗�, �⃗�, 𝑡) and 𝑐𝑠 is the species-s 

collision term. The time derivative 𝑑𝑑𝑡 = ( 𝜕𝜕𝑡 + �⃗�. 𝜕𝜕�⃗� + 𝑎𝑠. 𝜕𝜕�⃗⃗⃗�)        (3.3) 
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is the “Lagrangian” or total time derivative along the species-s trajectory. For 

collisionless cases the kinetic equation Eq. (3.1) takes the well-known from of 

“Vlasov equation” [1] ( 𝜕𝜕𝑡 + �⃗�. 𝜕𝜕�⃗� + 𝑎𝑠. 𝜕𝜕�⃗⃗⃗�) 𝑓𝑠 = 0     (3.4) 

 i.e. 𝑑𝑠𝑓𝑠𝑑𝑡 = 0 𝑓𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      (3.5) 

This means that the velocity distribution function is constant for an observer moving 

along a collisionless trajectory. Hence, the distribution function at every point along 

the trajectory can be obtained if its value at one point is known. Here we assume the 

boundary distribution function is given. 

3.3 Basic Equations Involved 

The following basic equations correspond to one-dimensional, time-independent, 

collisionless, electrostatic problems. 

(a) For electrons (𝑞 = −𝑒), the velocity distribution functions satisfy the time-

independent Vlasov equation in differential forms as 

𝑑𝑓𝑒𝑑𝑡 = [�⃗� 𝜕𝜕�⃗� − 𝑒𝑚𝑒 (�⃗⃗�(�⃗�) + (�⃗� × �⃗⃗�(�⃗�)) 𝜕𝜕�⃗⃗⃗�] 𝑓𝑒(�⃗�. �⃗�)  (3.6) 

The electron equations of motion are: 

𝑑�⃗�𝑒𝑑𝑡 = �⃗�𝑥𝑒       (3.7) 

and velocity component 

𝑑�⃗⃗⃗�𝑥𝑒𝑑𝑡 = �⃗�𝑥𝑒       (3.8) 

𝑑�⃗⃗⃗�𝑦𝑒𝑑𝑡 = �⃗�𝑦𝑒        (3.9) 

𝑑�⃗⃗⃗�𝑧𝑒𝑑𝑡 = �⃗�𝑧𝑒       (3.10) 

with the macroscopic acceleration component defined by, �⃗�𝑥𝑒 = 𝑒𝑚𝑒 [�⃗⃗�(�⃗�) + (�⃗� × �⃗⃗�(�⃗�)]𝑥    (3.11) 
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�⃗�𝑦𝑒 = 𝑒𝑚𝑒 [�⃗⃗�(�⃗�) + (�⃗� × �⃗⃗�(�⃗�)]𝑦    (3.12) 

�⃗�𝑧𝑒 = 𝑒𝑚𝑒 [�⃗⃗�(�⃗�) + (�⃗� × �⃗⃗�(�⃗�)]𝑧    (3.13) 

(b) Similarly, for the singly charged ions,(𝑞 = +𝑒), the velocity distribution functions 

satisfy the time independent Vlasov equations in differential form as 

𝑑𝑓𝑖𝑑𝑡 = [�⃗� 𝜕𝜕�⃗� − 𝑒𝑚𝑖 (�⃗⃗�(�⃗�) + �⃗� × �⃗⃗�(�⃗�)) 𝜕𝜕�⃗⃗⃗�] 𝑓𝑖(�⃗�. �⃗�)  (3.14) 

The ion equations of motion are: 

𝑑�⃗�𝑖𝑑𝑡 = �⃗�𝑥𝑖        (3.15) 

and velocity component 

𝑑�⃗⃗⃗�𝑥𝑖𝑑𝑡 = �⃗�𝑥𝑖        (3.16) 

𝑑�⃗⃗⃗�𝑦𝑖𝑑𝑡 = �⃗�𝑦𝑖        (3.17) 

𝑑�⃗⃗⃗�𝑧𝑖𝑑𝑡 = �⃗�𝑧𝑖        (3.18) 

with the acceleration component is given by, �⃗�𝑥𝑖 = 𝑒𝑚𝑖 [�⃗⃗�(�⃗�) + (�⃗� × �⃗⃗�(�⃗�)]𝑥    (3.19) �⃗�𝑦𝑖 = 𝑒𝑚𝑖 [�⃗⃗�(�⃗�) + (�⃗� × �⃗⃗�(�⃗�)]𝑦    (3.20) 

�⃗�𝑧𝑖 = 𝑒𝑚𝑖 [�⃗⃗�(�⃗�) + (�⃗� × �⃗⃗�(�⃗�)]𝑧     (3.21) 

 

(c) The electrostatic potential ∅(𝑥) is to be found from Poisson's equation 

𝑑2∅(𝑥)𝑑𝑥2 = 𝜌(𝑥)є0        (3.22) 

The space charge density is defined as, 𝜌(𝑥) = ∑ 𝑞𝑠𝑛𝑠(𝑥𝑗)𝑠       (3.23) 

With the electron and ion densities given as 𝑛𝑠(𝑥) = ∫ 𝑑𝜐𝑓𝑠(𝑥, 𝜐), 𝑠 = (𝑒, 𝑖)∞−∞     (3.24) 
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These equations are solved iteratively for given field and particle boundary 

conditions. 

(d) The ion reflection coefficient is defined as [10], 𝑅𝑁 = 𝐴1ln (𝐴2𝜖+𝑒)1+𝐴3𝜖𝐴4+𝐴5𝜖𝐴6      (3.25) 

and Thomas Fermi reduced energy is given by [10], 𝜖 = 0.0325 𝜇𝜇+1 1
𝑍1𝑍2(𝑍123+𝑍223)12𝐸0    (3.26) 

(e) The ion absorption coefficient is given by, 𝑅𝐴 = 1 − 𝑅𝑁       (3.27) 

3.4 Significance of Kinetic Theory 

It is insufficient to describe plasma using fluid model and requires the consideration 

of velocity distribution which leads us to the kinetic theory. The kinetic theory of 

plasma not only describes but also predicts the overall condition of plasma from the 

macroscopic interactions and the motion of its constituent particles. It also deals with 

the relationship between velocity and forces and the study of particles in velocity 

space. It provides an essential basis in the introduction to plasma physics and 

subsequently advanced kinetic theory. The knowledge of the plasma parameters helps 

us to understand the dynamics of plasma. The most important of these parameters 

include plasma temperature, plasma density, Debye shielding and Debye length. The 

conditions in the plasma strongly depend on the distribution of the charged particles 

over a velocity space. Thus kinetic theory is more significant for the better 

understanding of the plasma behaviours [34]. 

 

 

 

 

 



 

 

19 

 

 

 

 

 

 

Chapter 4 

Plasma Sheath Model and Numerical Method 
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The Kinetic trajectory Simulation Method [30, 32] has been adopted and modified 

according to our considerations. 

4.1 Description of the Model 

We first consider the 1d3v model [32] of collisionless bounded plasma as shown in 

Figure 4.1. In this work, we restrict ourselves to the energy of projectile particles lie 

between 10 eV to 100 keV and considered an oblique magnetic field. The electron 

emission from the wall induced by incoming ion is neglected for both deuterium and 

tritium plasmas. 

Here the right hand boundary is the region from where our sheath region starts which 

is also called the sheath entrance which generally separates out the collisionless and 

non-neutral sheath region from the bulk plasma and in the left hand region there is 

partially absorbing material wall of carbon and tungsten. 

 

   

  

 

  

 

   

    

Figure 4.1: Plasma sheath model [32]. 

We are assuming that the angle between an oblique magnetic field along with the 𝑥-

axis and denoted by 𝜃. Here electric field is along 𝑥-axis. For simplicity, consider the 

plasma parameter vary only along 𝑥-direction. At 𝜃 = 0 magnetic field is 

perpendicular to the wall or parallel to the electric field. And at  𝜃 = 𝜋2, magnetic field 

is parallel to the wall or perpendicular to the electric field. The resultant magnetic 

field is 𝐵 = 𝐵0[𝑐𝑜𝑠𝜃�̂� + 𝑠𝑖𝑛𝜃�̂�]     (4.1) 

Sheath entrance 

�⃗⃗� 𝜃 

�⃗⃗� 𝑥 0 𝑧 

𝑦 

Right hand boundary 

Carbon/tungsten wall 

Left hand boundary 
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Hence, in this case the plasma sheath is collisionless time independent and 

electrostatic. 

4.2 Boundary Conditions 

To solve the set of equations complied in Sec.(2.3), we need to know the boundary 

conditions for the velocity distribution functions (particle boundary conditions) and 

the potential (field boundary conditions) and the potential (field boundary conditions) 

at the two boundaries of the simulation region. The boundary potentials ∅(𝑥 = 0) and ∅(𝑥 = 𝐿), the boundary injection distribution function 𝑓𝑠(𝐿, v) and the distribution 

function at the wall 𝑓𝑠(0, v) are considered to be given. Hence, they must be specified 

before the iteration is started and are kept constant throughout the entire simulation. 

(a) Particle Boundary Conditions 

Here, we consider that the plasma particle enters the simulation region for the right-

hand boundary with cut-off  Maxwellian velocity distributions functions the left hand 

boundary absorb some fraction of particles that depends on the energy of incident 

particles. Due to this, the distribution function satisfies the following boundary 

conditions. 𝑓𝑠(𝑥 = 0, 𝜐 ≤ 0) = 0  𝑠 = (𝑒, 𝑖)   (4.2) 

at the left-hand boundary. 𝑓𝑒(𝑥 = 𝐿, 𝜐 ≤ 0) = 𝐴𝑒𝑒𝑥𝑝 [−(𝑚𝑒(𝜐𝑥2+𝜐𝑦2+𝜐𝑧2)2𝑘𝑇𝑓𝑒 )] (4.3) 

𝑓𝑒(𝑥 = 𝐿, 𝜐 ≤ 0) = 𝐴𝑒𝑒𝑥𝑝 [−(𝜐𝑥2+𝜐𝑦2+𝜐𝑧2(𝜐𝑡𝑓𝑒 )2 )]  

and 

𝑓𝑖(𝑥 = 𝐿, 𝜐 ≤ 0) = 𝐴𝑖𝑒𝑥𝑝 [−𝑚𝑖[(𝜐𝑥𝑖 −𝜐𝑚𝐿𝑖 )2+(𝜐𝑦𝑖 )2+(𝜐𝑧𝑖 )2]2𝑘𝑇𝑓𝑖 ]Θ(𝜐𝑐𝐿𝑖 −)𝜐𝑥
           (4.4) 

Where 𝑇𝑓𝑒 and 𝑇𝑓𝑖 and are the electron and ion thermal temperature respectively, 𝜐𝑡𝑓𝑠  is 

the thermal velocity of species particle given by, 

𝜐𝑡𝑓𝑠 = √2𝑘𝑇𝑓𝑠𝑚𝑠        (4.5) 
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𝜐𝑚𝐿𝑖  is the ion "Maxwellian-maximum" velocity at 𝑥 = 𝐿. Also 𝜐𝑐𝐿𝑖  (with 𝜐𝑐𝐿𝑖 < 0) is 

the ion cut-off velocity at 𝑥 = 𝐿. Where Θ(𝑥) is the Heaviside function whose value 

is 1 if 𝑥 ≥ 0 otherwise zero. 

As we are considering the electrons enter at injection plane with half Maxwellian and 

out potential profile is decreasing monotonically towards the left-hand boundary. So, 

the electron velocity distribution function is given by, 

𝑓𝑒(𝑥, 𝜐) = 𝐴𝑒𝑒𝑥𝑝 [−(𝜐𝑥2+𝜐𝑦2+𝜐𝑧2(𝜐𝑡𝑓𝑖 )2 ) + 𝑒∅(𝑥)𝑘𝑇𝑓𝑒 ] Θ(𝜐𝑐𝐿𝑒 (𝑥) − 𝜐𝑥) (4.6) 

where, 

𝜐𝑐𝑒(𝑥) = √2𝑒[∅(𝑥)−∅0]𝑚𝑒       (4.7) 

is the electron cut-off velocity at point x. 

For 𝑥 = 𝐿, m particular we have, 

𝑓𝑒(𝑥 = 𝐿, 𝜐) = 𝐴𝑒𝑒𝑥𝑝 [−(𝜐𝑥2+𝜐𝑦2+𝜐𝑧2(𝜐𝑡𝑓𝑒 )2 )]Θ(𝜐𝑐𝐿𝑒 − 𝜐𝑥)  (4.8) 

where, 

𝜐𝑐𝐿𝑒 = √−2𝑒∅0𝑚𝑒        (4.9) 

Similarly, from Eq. (4.2-4.7) and using the fact that our potential profile is 

monotonically decreasing towards the wall or electrode (left-hand boundary) and ions 

enter the sheath entrance with cut-off Maxwellian velocity distribution function, we 

get the total velocity distribution function at 𝑥 = 𝐿 as 

𝑓𝑖(𝑥 = 𝐿, 𝜐) = 𝐴𝑖𝑒𝑥𝑝 [−((𝜐𝑥𝑖 −𝜐𝑚𝐿𝑖 )2+(𝜐𝑦𝑖 )2+(𝜐𝑧𝑖 )2(𝜐𝑡𝑓𝑖 )2 )]Θ(𝜐𝑐𝐿𝑖 − 𝜐𝑥)  

 (4.10) 

In the right-hand side of the Eq.(3.8) and Eq. (3.10), there are seven parameters, 𝐴𝑒 , 𝑇𝑓𝑒 , 𝜐𝑐𝐿𝑒 ,  𝐴𝑖 , 𝑇𝑓𝑖, 𝜐𝑚𝐿𝑖  and 𝜐𝑐𝐿𝑖  which must be specified according to the physical situation 

considered. Now the particle density and other physical parameters at 𝑥 = 𝐿 are given 

by 
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𝑛𝐿𝑒 = ∫ 𝑑3𝜐𝑓𝑒(𝐿, v)+∞−∞      (4.11) 𝑛𝐿𝑖 = ∫ 𝑑3𝜐𝑓𝑖(𝐿, v)+∞−∞      (4.12) 

For the velocity distribution given by Eq. (4.8), we evaluate Eq. (4.11) for electron. 

The electron density at 𝑥 = 𝐿 is 𝑛𝐿𝑒 = ∫ 𝑑3𝜐𝑓𝑒(𝐿, v)∞−∞   

= ∫ 𝑑𝜐𝑥∞−∞ ∫ 𝑑𝜐𝑦∞−∞ ∫ 𝑑𝜐𝑧𝐴𝑒∞−∞ 𝑒𝑥𝑝 [−((𝜐𝑥2+𝜐𝑦2+𝜐𝑧2)(𝜐𝑡𝑓𝑒 )2 )]Θ(𝜐𝑐𝐿𝑒 (𝑥) − 𝜐𝑥)
  

𝑛𝐿𝑒 = 𝐴𝑒∫ 𝑑𝜐𝑥𝑒𝑥𝑝 [−( 𝜐𝑥𝜐𝑡𝑓𝑒 )2]∫ 𝑑𝜐𝑦𝑒𝑥𝑝 [−( 𝜐𝑦𝜐𝑡𝑓𝑒 )2]∞
−∞

𝜐𝑐𝐿𝑒−∞ ∫ 𝑑𝜐𝑧𝑒𝑥𝑝 [−( 𝜐𝑧𝜐𝑡𝑓𝑒 )2]∞
−∞  

 (4.13) 

Using  ( 𝜐𝑥𝜐𝑡𝑓𝑒 ) = 𝜉, we get 

𝑛𝐿𝑒 = 𝐴𝑒 ∫ 𝑑𝜉𝜐𝑡𝑓𝑒 𝑒𝑥𝑝(−𝜉2)𝑑𝜉 × √∏(𝜐𝑡𝑓𝑒 )2𝜐𝑐𝐿𝑒𝜐𝑡𝑓𝑒−∞ × √∏(𝜐𝑡𝑓𝑒 )2  

=  𝐴𝑒∏(𝜐𝑡𝑓𝑒 )3 [√𝜋2 + √𝜋2 𝑒𝑟𝑓 (𝜐𝑐𝐿𝑒𝜐𝑡𝑓𝑒 )]  

= 𝜋32(𝜐𝑡𝑓𝑒 )3𝐶𝑒𝐴𝑒2        (4.14) 

Where, 𝐶𝑒(𝑇𝑓𝑒 , ∅0) = 1 + 𝑒𝑟𝑓 (𝜐𝑐𝐿𝑒𝜐𝑡𝑓𝑒 )  

= 1 + 𝑒𝑟𝑓√−𝑒∅0𝑘𝑇𝑓𝑒             (4.15) 

and 'erf' represents the "error function" which is defined as erf(𝑥) = 2√𝜋∫ 𝑑𝜉𝑒𝑥𝑝(−𝜉2)𝑥0      (4.16) 

Now, from the velocity distribution function, Eq. (4.10) and Eq. (4.12), we get ion 

density as, 
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𝑛𝐿𝑖 = ∫ 𝑑3𝜐𝑓𝑖(𝐿, v)+∞−∞   

= ∫ 𝑑3𝜐𝐴𝑖𝑒𝑥𝑝+∞−∞ [−((𝜐𝑥𝑖 −𝜐𝑚𝐿𝑖 )2+ (𝜐𝑦𝑖 )2+(𝜐𝑧𝑖 )2(𝜐𝑡𝑓𝑖 )2 )]Θ(𝜐𝑐𝐿𝑒 − 𝜐𝑥)  
= ∫ 𝑑𝜐𝑥∞−∞ ∫ 𝑑𝜐𝑦∞−∞ ∫ 𝑑𝜐𝑧𝐴𝑖∞−∞ 𝑒𝑥𝑝 [−(((𝜐𝑥𝑖 )2−𝜐𝑚𝐿𝑖 )2+ (𝜐𝑦𝑖 )2+(𝜐𝑧𝑖 )2(𝜐𝑡𝑓𝑖 )2 )]Θ(𝜐𝑐𝐿𝑖 (𝑥) − 𝜐𝑥)
  

𝑛𝐿𝑖 = 𝐴𝑖 ∫ 𝑑𝜐𝑥𝑒𝑥𝑝 [−(𝜐𝑥𝑖 −𝜐𝑚𝐿𝑖𝜐𝑡𝑓𝑖 )2] ∫ 𝑑𝜐𝑦𝑒𝑥𝑝 [−( 𝜐𝑦𝑖𝜐𝑡𝑓𝑖 )2]∞−∞𝜐𝑐𝐿𝑖−∞ ∫ 𝑑𝜐𝑧𝑒𝑥𝑝 [−( 𝜐𝑧𝑖𝜐𝑡𝑓𝑖 )2]∞−∞
  

Using  (𝜐𝑥𝑖 −𝜐𝑚𝐿𝑖𝜐𝑡𝑓𝑖 ) = 𝜉, then limit; 

At 𝜐𝑥 = −∞, 𝜉 = −∞ and 

At 𝜐𝑥 = 𝜐𝑐𝐿 , 𝜉 = 𝜐𝑐𝐿1 −𝜐𝑚𝐿2𝜐𝑡𝑓𝑖  

𝑛𝐿𝑖 = 𝐴𝑖 ∫ 𝑑𝜐𝑐𝐿𝑖 −𝜐𝑚𝐿𝑖𝜐𝑡𝑓𝑖−∞ 𝜉𝜐𝑡𝑓𝑖 𝑒𝑥𝑝(−𝜉2) 𝑑𝜉 × √∏(𝜐𝑡𝑓𝑖 )2 × √∏(𝜐𝑡𝑓𝑖 )2  

= 𝐴𝑖∏(𝜐𝑡𝑓𝑖 )3 [√𝜋2 + √𝜋2 𝑒𝑟𝑓 (𝜐𝑐𝐿𝑖𝜐𝑡𝑓𝑖 )]    (4.17) 

= 𝜋3 2⁄ (𝜐𝑡𝑓𝑖 )3𝐶𝑖𝐴𝑖2       (4.18) 

where, 𝐶𝑖 = 1 + 𝑒𝑟𝑓(Γ𝑐𝐿𝑖 )      (4.19) 

and Γ𝑐𝐿𝑖 = (𝜐𝑐𝐿𝑖 −𝜐𝑚𝐿𝑖𝜐𝑡𝑓𝑖 )      (4.20) 

We can also define the "complementary error function" as 𝑒𝑟𝑓𝑐(𝑥) = 1 − erf (𝑥)     (4.21) 

(b) Field Boundary Conditions 
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The potential profile at 𝑥 = 𝐿 is chosen as zero, whereas the one at 𝑥 = 0 is fixed to a 

negative constant value, i.e. ∅(𝑥 = 0) = ∅0 = 𝑐𝑜𝑛𝑠𝑡. < 0     (4.22) ∅(𝑥 = 𝐿) = ∅(𝐿)  = 0        (4.23) 

We restrict ourselves to the potential distribution which decreases monotonically from 𝑥 = 𝐿 to 𝑥 = 0 such that the electric field is always negative as shown in Figure 1.2. 

4.3 Presheath-Sheath Approximation 

The plasma flowing towards the plasma transition region to a wall passes through two 

regions: the narrow region in which there is large gradient of electric field and 

supersonic velocity known as "sheath" and the region attached with the side of bulk 

plasma in which relatively weak gradient of variables and in general subsonic flow 

known as "presheath". 

The scale lengths of the sheath and presheath are different. So, usually they are 

studied separately using different models and methods [6]. However, for our case to 

couple the different solutions at the presheath and sheath side is important. This 

coupling scheme satisfies the most crucial requirement of the presheath-sheath 

transition, i.e. quasinentrality, the sheath edge singularity condition and kinetic Bohm 

criterion. In the numerical method section, we show the discretization of the 

simulation region. 

4.4 Presheath Parameters 

We assume that the parameters at the presheath side of the sheath region are given or 

can be obtained by velocity distribution function. Let us assume the ion and electron 

densities, 𝑛𝑝𝑠𝑒 = 𝑛𝑝𝑠𝑖        (4.24) 

and the condition of sheath formation 𝑢𝑝𝑠𝑖 = −𝐶𝑠𝑐𝑜𝑠 𝜃       (4.25) 

where, 𝜃 is the angle made by the magnetic field, and 
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𝐶𝑖 = √𝑘𝛾𝑖𝑇𝑝𝑠𝑖 +𝛾𝑒𝑇𝑝𝑠𝑒𝑚𝑖       (4.26) 

Also, the electric current density at presheath region is defined by 𝑗𝑝𝑠 = 𝑒(𝑛𝑝𝑠𝑖 𝑢𝑝𝑠𝑖 − 𝑛𝑝𝑠𝑒 𝑢𝑝𝑠𝑒 )     (4.27) 

and the sheath-edge plasma density, 𝑛𝑝𝑠𝑒 = 𝑢𝑝𝑠𝑖 − 𝑛𝑝𝑠      (4.28) 

In summary, at the sheath edge (𝑥 = 𝐿) our two-fluid presheath plasma is can be 

characterized by the presheath parameters: 𝑛𝑝𝑠𝑒 , 𝑛𝑝𝑠𝑖 , 𝑢𝑝𝑠𝑖 , 𝑢𝑝𝑠𝑒 , 𝑇𝑝𝑠𝑖 , 𝑇𝑝𝑠𝑒 , 𝐶𝑠 and 𝑗𝑝𝑠, 
which are related by conditions Eq. (4.24) - Eq. (4.28). 

Thus, for the given presheath parameters the corresponding sheath parameters can be 

obtained by solving these coupling equations. 

4.5 Discretization of the Simulation Region 

We are interested only in the region between 𝑥 = 0 and 𝑥 = 𝐿, which we called 

'simulation region'. The entire simulation region is discretised uniformly in 

configuration and velocity space, as shown in fig. 4.2. Here, the position grid point in 

this region is denoted as 𝑥𝑗  (𝑗 = 1,2,3, ……… . . 𝑛𝑥, with 𝑛𝑥 the total number of grid 

points) and the separation between consecutive grid points is denoted by ∆𝑥. In our 

discretization, 𝑗 = 1 and 𝑗 = 𝑛𝑥 correspond to the left-hand boundary (𝑥 = 0) and the 

right-hand boundary (𝑥 = 𝐿) respectively. In our computations we choose the region 

to be large enough such that the grid size is always less than the Debye length of the 

injected electrons. If the values of any quantity 𝑄(𝑥) at the grid points are denoted as 𝑄𝑗 = 𝑄(𝑥𝑗), its value at any point ′𝑥′ between two grid points 𝑄𝑗 and 𝑄𝑗+1 can be 

approximated by means of linear interpolation in the form, 𝑄(𝑥) = (𝑥𝑗+1−𝑥∆𝑥 )𝑄𝑗 + (𝑥−𝑥𝑗∆𝑥 )𝑄𝑗+1    (4.29) 

where 𝑥𝑗 ≤ 𝑥 ≤ 𝑥𝑗+1. Another standard approximation is the second-order 

interpolation between the points 𝑥𝑗−1 and 𝑥𝑗+1. 𝑄𝑥 = 𝑄𝑗 + 𝑎(𝑥 − 𝑥𝑗) + 𝑏(𝑥 − 𝑥𝑗)2    (4.30) 

and at point 𝑥 = 𝑥𝑗−1 
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𝑄𝑗−1 = 𝑄𝑗 − 𝑎∆𝑥 + 𝑏∆𝑥2     (4.31) 

and at point 𝑥 = 𝑥𝑗+1 𝑄𝑗+1 = 𝑄𝑗 + 𝑎∆𝑥 + 𝑏∆𝑥2     (4.32) 

Form Eq. (4.31) 𝑎 = (𝑄𝑗−𝑄𝑗−1+𝑏(∆)2∆𝑥 )      (4.33) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Schematic representation of the phase-space grid. The vertical and 

horizontal dashed lines represent the position and velocity grids respectively [30]. 

 

Putting the value of 'a' in Eq. (4.32) 𝑄𝑗+1 = 𝑄𝑗 + [𝑄𝑗 −𝑄𝑗−1 + 𝑏(∆)2]    (4.34) 

Solving above equation we get, 
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𝜐𝜏𝑖(𝑥) 
𝜐𝑘 



 

 

28 

𝑏 = (𝑄𝑗+1+𝑄𝑗−1−2𝑄𝑗2(∆𝑥)2 )      (4.35) 

Using this value of 'b' we get the value of 'a' as 𝑎 = (𝑄𝑗+1−𝑄𝑗−12∆𝑥 )      (4.36) 

Putting the value of 'a' and 'b' in Eq. (3.30) 𝑄(𝑥) = 𝑄𝑗 + (𝑥 − 𝑥𝑗) (𝑄𝑗+1−𝑄𝑗−12∆𝑥 ) + 12 (𝑥 − 𝑥𝑗)2 (𝑄𝑗+1+𝑄𝑗−1−2𝑄𝑗(∆𝑥)2 ) 
 (4.37) 

from which the first and second derivatives of any quantity 𝑄(𝑥) are approximated as  (𝑑𝑄𝑑𝑥)𝑗 = (𝑄𝑗+1−𝑄𝑗−12∆𝑥 )      (4.38) 

and (𝑑2𝑄𝑑𝑥2)𝑗 = (𝑄𝑗+1−𝑄𝑗−1−2𝑄𝑗(∆𝑥)2 )     (4.39) 

respectively. 

4.6 Electron Density Distribution 

The electron density at any grid point 𝑥𝑗 is obtained by using the electron distribution 

function Eq. (4.6) in the expression for particle density Eq. (4.11). In order to obtain 

the electron density profile we require ∅(𝑥) to be known. In our calculation, we 

obtain the electron density at the grid point 𝑥𝑗 in terms of potential as 

𝑛𝑗𝑒 = 𝑛𝐿𝑒 = 𝑒𝑥𝑝 (𝑒∅𝑗𝑘𝑇𝑓𝑐) [1 + 𝑒𝑟𝑓√𝑒(∅𝑗−∅0)𝑘𝑇𝑓𝑒 ]   (4.40) 

Where 𝑛𝑗𝑒 = 𝑛𝑒(𝑥𝑗) and ∅𝑗 = ∅(𝑥𝑗). Hence, one can obtain the electron density at 

any point if potential profile is known. 

4.7 Discretizing Ion Velocity Space with a Fixed Grid 

As in the Fig. 4.2, the ion velocity space is discretized uniformly, the 𝑘𝑡ℎ ion velocity 

grid value being denoted as 𝜐𝑘(𝑘 = 1,2,3………… , 𝑛𝜐 with 𝑛𝜐 the total number of 

velocity grid points). In our discretization 𝑘 = 1 and 𝑘 = 𝑛𝜐 correspond to the fastest 

and the slowest ion velocities respectively. Since in our simulation scheme only ions 
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with negative velocities are considered, we set 𝜐𝑛𝑖 = 0 and choose |𝑛1| sufficiently 

large such that the velocity of the fastest ion reaching the left-hand boundary does not 

exceed this value, i.e. |𝜐1| ≥ |𝜐𝑚𝑎𝑥,𝑜𝑖 |. In our case we choose 𝑛𝜐 to be large enough 

for the velocity grid size to be always considerably less than the ion thermal velocity, 𝜐𝑡𝑓𝑖 . 

4.8 Ion Trajectories 

(a) Discrete Set of the Injection Velocities 

The ions are injected at the right-hand boundary, 𝑥 = 𝐿, in the velocity range −∞ < 𝜐 ≤ 𝜐𝑐𝐿𝑖 . In our numerical implementation, we approximate this domain by the 

finite 𝜐𝑚𝑎𝑥,𝐿𝑖 ≤ 𝜐 ≤ 𝜐𝑐𝐿𝑖  and discretize the latter with 𝑛𝑡𝑟𝑎 equidistant ion injection 

velocities 𝜐𝑚𝑎𝑥,𝐿𝑖 and 𝜐𝑐𝐿𝑖  respectively. Choice of 𝜐𝑐𝐿𝑖  depends on the problem 

considered and the maximum injection velocity, 𝜐𝑚𝑎𝑥,𝐿𝑖 , is chosen sufficiently large 

for the ion distribution function corresponding toe velocities larger than this velocity 

to be negligible. In our computations, we use 𝜐𝑚𝑎𝑥,𝐿𝑖 = 𝜐𝑐𝐿𝑖 − 4𝜐𝑡𝑓𝑖 , where 𝜐𝑡𝑓𝑖  is the 

ion thermal velocity. 

(b) Discrete Set of Ion Trajectories 

The injection velocity at right-hand boundary, 𝑥 = 𝐿, represents the starting velocity 

of a collisionless ion trajectory the 𝑛𝑡𝑟𝑎 discrete injection velocities 𝜐𝜏𝐿𝑖 , define 𝑛𝑡𝑟𝑎 

related trajectories labeled by the index ′𝜏′. We denoted the trajectory corresponding 

to some injection velocity 𝜐𝑐𝐿𝑖  by 𝜐𝜏𝑖(𝐿), and the velocity with which it crosses a grid 

point 𝑥𝑗 is 𝜐𝜏𝑗𝑖 = 𝜐𝜏𝑖(𝑥𝑗), so that 𝜐𝜏𝑛𝑥𝑖 ≡ 𝜐𝜏𝐿𝑖 = 𝜐𝜏𝑖(𝐿) in phase space. The velocities 𝜐𝜏𝑖 , 
represent the intersections of ion trajectories 𝜐 = 𝜐𝜏𝑖(𝐿) and the velocity with which it 

crosses a grid point 𝑥 = 𝑥𝑗 , 𝜐𝜏𝑗𝑖 = 𝜐𝜏𝑖(𝑥𝑗), which is said to be "intersection velocities". 

The ion injection velocities, 𝜐𝜏𝐿𝑖 , are independent of the ion grid velocities 𝜐𝑘, but in 

practice we will often choose them such that each 𝜐𝜏𝐿𝑖  coincide with one of the 𝜐𝑘 's. 

(c) Numerical Calculation of Ion Trajectories 

In the KTS method, we trace the collisionless trajectories to calculate the related 

velocity distribution functions along them. In this section, we consider only ion 

trajectories and hence omit the species index ′𝑖′. For the calculation of the ion 



 

 

30 

trajectory, we simply discretize the ion equations of motion (4.14), (4.15) and (4.17) 

in a time-centred manner as 

𝑥𝑚+12−𝑥𝑚−12∆𝑡 = 𝜐𝑥𝑚      (4.41) 

and for change in 𝜐𝑥 

𝜐𝑥𝑚−𝜐𝑥𝑚−1∆𝑡 = 𝑎𝑥𝑚−12  

= 𝑒𝑚𝑖 [𝐸 (𝑥𝑚−12) + (𝜐 × 𝐵)𝑥𝑚−12]  

𝜐𝑥𝑚−𝜐𝑥𝑚−1∆𝑡 = 𝑒𝑚𝑖 𝐸 (𝑥𝑚−12) − 𝑒𝐵0𝑠𝑖𝑛𝜃𝑚𝑖 𝜐𝑧𝑚−12 (4.42) 

For change in 𝜐𝑦 

𝜐𝑦𝑚−𝜐𝑦𝑚−1∆𝑡 = 𝑎𝑦𝑚−12  

= 𝑒𝑚𝑖 [0 + (𝜐 × 𝐵)𝑦𝑚−12]  

𝜐𝑦𝑚−𝜐𝑦𝑚−1∆𝑡 = 𝑒𝐵0𝑐𝑜𝑠𝜃𝑚𝑖 𝜐𝑧𝑚−12     (4.43) 

For change in 𝜐𝑧 
𝜐𝑧𝑚−𝜐𝑧𝑚−1∆𝑡 = 𝑎𝑧𝑚−12  

= 𝑒𝑚𝑖 [0 + (𝜐 × 𝐵)𝑧𝑚−12]  

𝜐𝑧𝑚−𝜐𝑧𝑚−1∆𝑡 = 𝑒𝐵0𝑚𝑖 (𝜐𝑥𝑚−12𝑠𝑖𝑛𝜃 − 𝜐𝑦𝑚−12𝑐𝑜𝑠𝜃)   (4.44) 

respectively, where ∆𝑡 is the numerical time-step size, 𝑚 ≥ 0 is an integer such that 

the integral or half integral superscript 𝑚 ≥ 0 is such that 𝜐𝑚 = 𝜐(𝑡𝑚), 𝑥𝑚+12 =𝑥 (𝑡𝑚+12) etc. This corresponds to the total time elapsed in steps of Δ𝑡 for an ion 

having been injected at time zero at the right-hand boundary. So, 𝑚 = 0 corresponds 

to 𝑡 = 0 with the injection (or starting) values. 𝑥0 = 𝐿        (4.45) 
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and 𝜐0 = 𝜐𝜏𝐿𝑖        (4.46) 

 

The choice of positions at half integral times and velocity at integral times in Eq. 

(4.41), Eq. (4.42), Eq.(4.43) and Eq. (4.44) makes the numerical scheme time-centred. 

For any time step 𝑚 ≥ 1, with 𝑥𝑚−12 and 𝜐𝑚−1 being given from the (𝑚 − 1)𝑠𝑡 step, 

we calculate the new ion velocity from Eq. (4.42) as 𝜐𝑚 = 𝜐𝑚−1 + 𝑒Δ𝑡𝑚𝑖 𝐸(𝑥𝑚−12)     (4.47) 

and we can also find new position of the ions from Eq. (3.41) 𝑥𝑚+12 = 𝑥𝑚−12 + 𝛥𝑡𝜐𝑚     (4.48) 

Thus, the numerical scheme ends up with 𝑥 −points at half-integral time (𝑥𝑚+12) and 

velocities at integral time (𝜐𝑚) along a collisionless trajectory. We can also find the 

ion velocity at 𝑥𝑚+12 by the relation 

𝜐𝑚+𝜐𝑚+12 = 𝜐𝑚+12      (4.49) 

(d) Intersection Velocities 

The velocities at half integral time as in Eq. (4.49) may not coincide with our fixed 

grid points 𝑥𝑗. For the calculation of the intersection velocities for the 𝜏𝑡ℎ trajectory at 

some inner grid point, 𝑥𝑗, the linear interpolation can be used as 

𝜐𝜏𝑗𝑖 = (𝑥𝑚−12−𝑥𝑗)𝜐𝑚+12+(𝑥𝑗−𝑥𝑚−12)𝜐𝑚−12(𝑥𝑚−12−𝑥𝑚+12)     (4.50) 

Where, 𝑥𝑚−12 and 𝑥𝑚+12 are the adjacent points along the trajectory on the right and 

the left-hand side of the grid point 𝑥𝑗, respectively. In order to calculate the ion 

velocity at the left-hand boundary (𝑥 = 0) we use a parabolic extrapolation scheme. 

For this, considering the last three calculated points along the trajectory which lie to 

the right-hand side of the left-hand boundary 
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[(𝑥𝑚−12, 𝜐𝑚−12) , (𝑥𝑚−32, 𝜐𝑚−32)  𝑎𝑛𝑑 (𝑥𝑚−52, 𝜐𝑚−52)], the ion velocity near the left-

hand boundary is approximated as 

𝜐(𝑥) = 𝜐𝑚−52 + 𝑎 (𝑥 − 𝑥𝑚−52) + 𝑏 (𝑥 − 𝑥𝑚−52)2  (4.51) 

where 'a' and 'b' are constants. The value of the constants are calculated and at the 

point 𝑥 = 𝑥𝑚−12, the velocity is approximated as 

𝜐𝑚−12 = 𝜐𝑚−52 + 𝑎 (𝑥𝑚−12 − 𝑥𝑚−52) + 𝑏 (𝑥𝑚−12 − 𝑥𝑚−52)2 (4.52) 

𝑎 = 𝜐𝑚−12+𝜐𝑚−52−𝑏(𝑥𝑚−12−𝑥𝑚−52)2
(𝑥𝑚−12−𝑥𝑚−52)     (4.53) 

at the point 𝑥 = 𝑥𝑚−32 the velocity is approximated as 

𝜐𝑚−32 = 𝜐𝑚−52 + 𝑎 (𝑥𝑚−32 − 𝑥𝑚−52) + 𝑏 (𝑥𝑚−32 − 𝑥𝑚−52)2 (4.54) 

using the value 'a' from Eq. (4.53) in Eq. (4.54), we obtain 

𝜐𝑚−32 = 𝜐𝑚−52 + [𝜐𝑚−12−𝜐𝑚−52−𝑏(𝑥𝑚−12−𝑥𝑚−52)2(𝑥𝑚−12−𝑥𝑚−52) ] (𝑥𝑚−32 − 𝑥𝑚−52) + 𝑏 (𝑥𝑚−32 − 𝑥𝑚−52)2
 (4.55) 

Then from above equation, we obtain the value of 'b' as 

𝑏 = (𝑥𝑚−52−𝑥𝑚−32)(𝜐𝑚−12−𝜐𝑚−52)−(𝑥𝑚−52−𝜐𝑚−12)(𝜐𝑚−32−𝜐𝑚−52)
(𝑥𝑚−52−𝑥𝑚−12)(𝑥𝑚−52−𝑥𝑚−32)(𝑥𝑚−32−𝑥𝑚−12)  (4.56) 

using this value of 'b' in Eq. (4.53), the value of 'a' is obtained as 

𝑎 = (𝑥𝑚−52−𝑥𝑚−32)2(𝜐𝑚−12−𝜐𝑚−52)−(𝑥𝑚−52−𝑥𝑚−12)2(𝜐𝑚−32−𝜐𝑚−52)
(𝑥𝑚−52−𝑥𝑚−12)(𝑥𝑚−52−𝑥𝑚−32)(𝑥𝑚−32−𝑥𝑚−12)  (4.57) 

Then using the value of constants 'a' and 'b' from Eq. (4.56) and Eq. (4.57) onto the 

Eq. (4.50), the ion velocity at the left-hand boundary is calculated as 

𝜐𝜏𝑖(𝑥 = 0) = 𝜐𝑚−52 − 𝑎𝑥𝑚−52 + 𝑏 (𝑥𝑚−52)2   (4.58) 
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4.9 Ion Velocity Distribution Function 

When we trace the ion trajectories for all 𝑛𝑡𝑟𝑎 injection velocities 𝜐𝜏𝐿𝑖 , we can 

calculate the corresponding intersection velocities Eq. (4.50) and the related 

distribution functions at all grid point 𝑥𝑗. The injection velocity from where we start 

are usually uniformly spaced, but, the corresponding ion velocities at the other grid 

points, 0 ≤ 𝑥𝑗 < 𝐿, are non-uniformly spaced and usually do not coincide with the 

fixed grid velocities, 𝜐𝑘. For our 1𝑑3𝜐 model, it is not necessary to know the ion 

distribution function at these uniformly spaced grid velocities. 

We can calculate the ion distribution function at the fixed grid points (position and 

velocity) by inner interpolation of the value associated with the trajectory intersection 

points to the nearest desired grid points. 

4.10 Ion Density Distribution 

The ion density distribution, 𝑛𝑖(𝑥), is obtained from the following two approaches: 

(a) Distribution-Function Approach (DFA) 

In the DFA, the ion density 𝑛𝑖(𝑥𝑗) is obtained by integrating the ion velocity 

distribution function over velocity space. For the plasma model we have chosen, we 

obtain the ion distribution function only at the intersection points [𝑥𝑗 , 𝜐𝜏𝑖(𝑥𝑗)] and can 

also be obtained at the fixed grid point [𝑥𝑗 , 𝜐𝑘)] where the distribution function is 

given. The ion density at 𝑥𝑗, where the distribution functions, 𝑓𝑖(𝑥𝑗 , 𝜐𝜏𝑗𝑖 ), and the 

intersection velocities of all 𝑛𝑡𝑟𝑎 ion trajectories, 𝜐𝜏𝑗𝑖 , are given, may be obtained by 

the following discretized from 𝑛𝑖(𝑥𝑗) = 12∑ [𝑓𝑖(𝑥𝑗 , 𝜐𝜏𝑗𝑖 ) + 𝑓𝑖(𝑥𝑗 , 𝜐𝜏+1,𝑗𝑖 )]𝑛𝑡𝑟𝑎−1𝜏=1 (𝜐𝜏+1𝑗𝑖 − 𝜐𝜏𝑗𝑖 )  

 (4.59)  𝑛𝑖(𝐿) = 12∑ [𝑓𝑖(𝐿, 𝜐𝜏𝑗𝑖 ) + 𝑓𝑖(𝐿, 𝜐𝜏+1𝑗,𝐿𝑖 )]𝑛𝑡𝑟𝑎−1𝜏=1 (𝜐𝜏+1,𝐿𝑖 − 𝜐𝜏𝑗𝑖 ) 
        (4.60) 

4.11 Solution of Poisson's Equation 

After the calculation of the electron and ion densities from Eq. (4.40) and Eq. (4.60), 

the space charge density distribution can be obtained using 
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𝜌(𝑥𝑗) = ∑𝑞𝑠𝑛𝑠(𝑥𝑗)  = 𝑒[𝑛𝑖(𝑥𝑗) − 𝑛𝑒(𝑥𝑗)]      (4.61) 

By the knowledge of the space charge distribution, 𝜌(𝑥𝑗), from Eq. (3.22) we can 

solve the Poisson's Eq. (3.21) numerically to obtain the related new potential 

distribution, 𝜙(𝑥𝑗), Using Eq. (4.39), the discretized from of Poisson's equation is 

given by 𝜙𝑗+1−2𝜙𝑗+𝜙𝑗−1(Δ𝑥)2 = − 𝜌𝑗𝜖0      (4.62) 

Now we write this equation for all internal grid points in the simulation region 𝑗 = 2,3, ……… . . 𝑛𝑥 − 1) which yields the following 𝑛𝑥 − 2 equations involving 𝑛𝑥 

unknowns, 𝜙1, 𝜙2…… . 𝜙𝑛𝑥: 𝜙1 − 2𝜙2 + 𝜙3 = − (Δ𝑥)2𝜖0 𝜌2     (4.63) 

𝜙2 − 2𝜙3 + 𝜙4 = − (Δ𝑥)2𝜖0 𝜌2  

𝜙𝑛𝑥−2 − 2𝜙𝑛𝑥−1 + 𝜙𝑛𝑥 = − (Δ𝑥)2𝜖0 𝜌𝑛𝑥−1  

We have fixed the potential values at the two boundaries as 𝜙(𝑥 = 𝐿) = 𝜙𝑛𝑥  = 𝜙𝐿         (4.64) 

and 𝜙(𝑥 = 0) = 𝜙1  = 𝜙0        (4.65) 

By solving the Eq. (4.63), Eq. (4.64) and Eq. (4.65) we now obtain the potential 

distribution, i.e. the potential values 𝜙1, 𝜙2…… .𝜙𝑛𝑥 which can be expressed as a 

single matrix equations as, 
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( 
   
1     0     0     0     .     .     01  − 2     1    0     .      .    00     1  − 2     .     .       .     0.       .      .      .       .       .       ..       .       .       .       .       .      ..        .      .      .      1 − 2     1.        .       .       .     0     0    1) 

   ×(  
 𝜙1𝜙2..𝜙𝑛𝑥−1𝜙𝑛𝑥 )  

 =
( 
    
 𝜙0−(𝛥𝑥)2є0 𝜌2..− (𝛥𝑥)2є0 𝜌𝑛𝑥−1𝜙𝐿 ) 

    
 

 

  (4.66) 

The matrix on the left-hand side and the one at the right-hand side are known. In order 

to solve the matrix equation inverse of the first matrix is multiplied with the right-

hand side matrix which is done using a simple command in MATLAB program. 

4.12 Relaxation Scheme 

The exact solution of Poisson's equation converges only for short systems (a few 

Debye lengths). As the system length increase, small fluctuation of the potential 

causes unphysical accumulation of the charges and the scheme breaks down. To 

overcome this difficulty we use the relaxation scheme [35]. The numerically exact 

potential distribution function ∅𝑒𝑥(𝑚) obtained by numerically solving Eq. (4.66) is 

linearly combined with old potential distribution ∅(𝑚−1)(𝑥𝑗) to obtain the "re-

adjusted" new potential distribution function ∅(𝑚)(𝑥𝑗), which is actually used as the 

relevant result of the 𝑚𝑡ℎ iteration: ∅(𝑚)(𝑥𝑗) = 𝜔𝜙𝑒𝑥(𝑚) + (1 − 𝜔)𝜙(𝑚−1)(𝑥𝑗)   (4.67) 

with 0 < 𝜔 < 2. 

4.13 Iteration Scheme 

We are dealing with collisionless, time independent system only. The initial-guess 

potential, ∅(0)(𝑥𝑗), is taken as input to the main iteration block (located between the 

points A and B in Fig. 4.3, which will yield the first iteration to the potential 

distribution ∅(1)(𝑥𝑗). With the new potential as input, the main iteration block will be 

invoked again yielding ∅(2)(𝑥𝑗) until the potential distribution has converged in the 

sense outlined in Sec. 4.14 below. 
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(a) Boundary Conditions: 

The boundary potentials, 𝜙(0) and 𝜙(𝑥 = 𝐿), and the boundary injection distribution 

functions, 𝑓𝑠(𝐿, 𝑣), are to be provided as input parameters. Hence, they must be 

specified before entering the iteration scheme and are kept constant throughout the 

entire simulation. 

(b) Initial guess to 𝝓(𝒙): 
To start the scheme, we must suitably prescribe an initial-guess potential distribution. 

As we restrict ourselves to potential distributions 𝜙(𝑥), which decrease 

monotonically from 𝜙(𝐿) = 0 to 𝜙(0) = 𝜙0 < 0. The starting potential distribution is 

chosen to be a linear interpolation between the potential values at the boundaries. 

4.14 Main Iteration Block 

Here we describe the main iteration scheme discussed in the Fig. 4.3. The main 

iteration block carries out the 𝑚𝑡ℎ iteration (i.e. it calculates the new distributions, 𝜙𝑚(𝑥𝑗) for a given input (old) potential distribution, 𝜙𝑚−1(𝑥𝑗), by performing the 

following three steps. 

Step 𝟏: The new electron density distribution 𝑛𝑒(𝑚)(𝑥𝑗) is calculated analytically 

using Eq. (4.40). The new ion density 𝑛𝑖(𝑚)(𝑥𝑗) is calculated by velocity-space 

integration of the new velocity distribution function [cf. Sec. 4.10(a)]. 

Step 𝟐: From the new densities, 𝑛𝑒(𝑚)(𝑥𝑗), obtained in step 1, the new space-change 

dinsity, 𝜌(𝑚)(𝑥𝑗), is calculated using the Eq. (4.16). 

Step 𝟑: The new potential distribution, 𝜙(𝑚)(𝑥𝑗), is calculated by solving the matrix 

Eq. (4.66) numerically with the new space-change density, 𝜌(𝑚)(𝑥𝑗), inserted on the 

right-hand side. 

Step 𝟒: The Thomas Fermi reduced energy e is calculated analytically using Eq. (1.6). 

Step 𝟓: The ion reflection coefficient 𝑅𝑁 is calculated by solving Eq. (1.5). 
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4.15 Convergence Check 

The new potential distribution 𝜙(𝑚)(𝑥𝑗), obtained in Step 3 of the main iteration block 

is compared with the old potential distribution, 𝜙(𝑚−1)(𝑥𝑗), and we consider the 

convergence to be reached if at each point 𝑥𝑗 the condition |𝜙(𝑚)(𝑥𝑗) − 𝜙(𝑚−1)(𝑥𝑗)| ≤ 𝛿    (4.68) 

is satisfied, where 𝛿 is a defined accuracy parameter. 

4.16 Ion Reflection Coefficient 

The velocity of ions 𝜐𝑖𝜔 at wall is calculated using Eq. (4.58). The kinetic energy is 

than calculated as 𝐸𝑖𝑜𝑛𝑠 = 12𝑚𝜐𝑖𝜔2      (4.69) 

The sum of all energies is 𝐸0 = 𝑠𝑢𝑚(𝐸𝑖𝑜𝑛𝑠)      (4.70) 

After calculating 𝐸0, the Thomas Fermi reduced energy is calculated using Eq. (1.6). 𝜖 = 0.0325 𝜇𝜇+1 1
𝑍1𝑍2(𝑍123+𝑍223)12𝐸0    (4.71) 

And ion reflection coefficient is obtained by using Eq. (1.5) 𝑅𝑁 = 𝐴1ln (𝐴2𝜖+𝑒)1+𝐴3𝜖𝐴4+𝐴5𝜖𝐴6      (4.72) 
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Figure 4.3: The flowchart showing Iteration scheme. 

Specify boundary potentials ( 𝝓𝟏 and 𝝓𝟐 ) and injection distribution 

function 𝒇𝒙𝒔(𝑳,𝒗). 
 

 𝒎 = 𝟎 

Prescribe initial guess potential distribution  𝝓(𝒐)(𝒙𝒋)  
 

 𝒎 =𝒎+ 𝟏 

Step 1: Calculate 𝒏𝒆(𝒙𝒋 ) by means of the analytical approach 

 Calculate 𝒏𝒊(𝒙𝒋 ) by the distribution function approach 

 

Step 2: Calculate 𝝆(𝒎)(𝒙𝒋 ) = 𝒆[𝒏𝒊(𝒙𝒋 ) − 𝒏𝒆(𝒙𝒋 )] 
 

Step 3:  Find 𝝓(𝒎)(𝒙𝒋) by solving the Poisson's equation 

 

Check of convergence  |𝝓(𝒎)(𝒙𝒋) −𝝓(𝒎−𝟏)(𝒙𝒋)| ≤ 𝜹 

Step 4: Calculate the Kinetic energy at wall 

 

Step 5: Obtain the final profiles and parameters 
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4.17 Numerical Parameters 

We are using Kinetic Trajectory Simulation approach to a plasma sheath model, 

considering the parameters at the presheath side of the sheath-presheath boundary to 

be given. As we are dealing with both deuterium and tritium plasmas we are 

considering the following parameters at the presheath side of the sheath-presheath 

boundary. 

(i) deuterium and tritium plasma with their respective mass and charge but with the 

same plasma density, 𝑛𝑝𝑠 = 1018 𝑚−3. 

(ii) electron temperature is taken to be constant at 4eV. 

(iii) sheath width is taken as 10 times the electron debye length i.e. 10𝜆𝐷𝑒  . 

(iv) ion temperature is varied from 0.5 eV to 2.5 eV. 

The dimensional sheath parameters at the sheath side of the sheath-presheath 

boundary can then be obtained from the coupling scheme. At the sheath entrance the 

ion injection velocities are discretized uniformly with 300 injection velocity grid 

points in such a way that the ion injection velocity grid step is considerably less than 

the thermal velocity of ions. The region between x=0 to x=L is discretized uniformly 

with 31 grid points and if the maximum difference in potential values before and after 

iteration equals 10
-7

 V  or less then we consider the system to have reached the 

convergence. 
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Chapter 5 

Results and Discussion 
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5.1 Ion Reflection Coefficient 

The respective ion reflection coefficient by carbon and tungsten wall with magnetic 

field 30 mT at angle 300 for different ion temperatures in the presence of deuterium 

(D-plasma) and tritium (T-plasma) plasma is shown by figures 5.1 and 5.2. It is 

observed that ion reflection coefficient by both carbon and tungsten wall decreases 

with the increase in the ion temperature. Also, ion reflection coefficient by tungsten 

wall is higher compared to that of  carbon wall as the atomic mass of tungsten is much 

larger. The energy transfer during the elastic collision between the ion and the target 

nucleus increases as the temperature increases and when it exceeds the threshold 

value called displacement energy, the target atom leaves its lattice site vacant called 

vacancy and the ions are absorbed. From this it can be concluded that ion reflection 

coefficient is energy dependent, higher the projectile energy ions are less likely to be 

reflected from material wall. Furthermore, ion reflection coefficient in Tritium plasma 

is comparatively higher than in Deuterium plasma at a given temperature. 

Figure 5.1: Reflection coefficient vs. ion temperature on Carbon wall in D and T 

plasma. 
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Figure 5.2: Reflection coefficient vs. ion temperature on Tungsten wall in D and T 

plasma. 

5.2 Ion Absorption Coefficient 

Figure 5.3 and 5.4 shows the variation of the ion absorption coefficient by the carbon 

and tungsten wall in the presence of magnetic field of 30 mT at angle 30
0
 in 

deuterium and tritium plasma for varying ion temperatures. From the figure, it can be 

observed that the ion absorption coefficient of both carbon and tungsten increases as 

the ion temperature is increased regardless of the choice of plasma. As the 

temperature is increased, the energy of the projectile particles is also increased, which 

leads to the increase in the particle absorption coefficient. Further, it has been 

observed that that the ion absorption coefficient by tungsten is less compared to that 

by carbon as it varies with projectile energy, projectile mass and mass of the target 

atom. It also has been observed that the ion absorption coefficient for carbon and 

tungsten wall in deuterium plasma is higher than in tritium plasma. 
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Figure 5.3: Ion absorption coefficient vs. ion temperature on carbon wall in D and T 

plasma

 

Figure 5.4: Ion absorption coefficient vs. ion temperature on tungsten wall  

of D and T plasma. 
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5.3 Reflected Ion Density 

Figure 5.5 and 5.6 shows the variation of the reflected ion density by the carbon and 

tungsten wall in deuterium plasma and tritium plasma for different ion temperatures 

keeping the remaining parameters fixed. From the figure, it can be clearly observed 

that the reflected ion density decreases as the temperature is increased. When the 

temperature increases, the ion reflection coefficient on carbon and tungsten wall also 

decreases and hence the reflected ion density by wall also decreases. It has been 

observed that the reflected ion density by tungsten wall is greater than that by carbon 

wall, since the ion reflection coefficient is not only dependent on the energy of the 

incident particles but also depends on the mass ratio of the incident particles and the 

target atom. Also, it has been observed that the ion reflection coefficient by tungsten 

wall is higher than by carbon wall regardless of the choice of plasma which is due to 

the higher atomic mass of tungsten. But reflected ion density by tungsten wall in case 

of tritium plasma is larger compared to the case when deuterium plasma is used, as 

the mass ratio of tritium plasma to tungsten wall is comparatively higher. 

 

Figure 5.5: Reflected ion density through carbon wall in D and T-plasma for 

different ion temperatures. 



 

 

45 

 

Figure 5.6: Reflected ion density on tungsten wall in D and T-plasma for different 

ion temperatures. 

5.4 Absorbed Ion Density 

Figure 5.7 and 5.8 shows the variation of the absorbed ion density on the carbon and 

tungsten wall with D and T-plasma at different ion temperatures. From the figure it 

can be clearly observed that the absorbed ion density by carbon and tungsten wall 

increases as the increase in temperature of ions. As the temperature is increased the 

thermal velocity of the incident particles is also increased and thus the energy is also 

increased. Also, it has been observed that the ion absorption by carbon wall is greater 

than by tungsten wall. It can also be observed that ion absorption by carbon wall in D-

plasma is higher compared to T-plasma. Since the ion absorption by the material wall 

depends on the particle absorption coefficients, projectile energy and mass ratio of the 

projectile and the target atom. 
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Figure 5.7: Absorbed ion density vs. ion temperature on carbon wall in D and T 

plasma. 

Figure 5.8: Absorbed ion density vs. ion temperature on tungsten wall in deuterium 

and tritium plasma. 
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5.5 Total Charge Density 

Figure 5.9 and 5.10 shows the distribution of total charge density on the carbon and 

tungsten wall having different ion temperatures. From the figure, it can be concluded 

that the total charge density increases with the increase in temperature. The density of 

both the ion and electron species increases with the increase in temperature and hence 

the total charge density is increased. The ion reflection coefficient by the tungsten 

wall is greater than by the carbon wall, thus the density at carbon wall is higher than 

at tungsten wall. Therefore the total charge density by carbon wall is comparatively 

higher. 

 

 

 

 

Figure 5.9: Total charge density vs. ion temperature on carbon wall. 



 

 

48 

 

Figure 5.10: Total charge density vs. ion temperature on tungsten wall. 

5.6 Thomas Fermi Reduced Energy 

Figure 5.11 and 5.12 shows the variation of the Thomas Fermi reduced energy at 

different temperatures on carbon and tungsten wall in D and T-plasma. From figure it 

is observed that the Thomas Fermi reduced energy increases linearly with the increase 

in ion temperature. It can also be observed that Thomas Fermi reduced energy of 

carbon is higher than that of tungsten for a given ion temperature in a particular fuel 

component. 

It is also clearly observed that the Thomas Fermi reduced energy of carbon and 

tungsten are comparatively higher in case of D-plasma than in the case of T-plasma at 

a certain ion temperature and the result is in well agreement with the ion reflection 

coefficients. 
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Figure 5.11: Thomas Fermi reduced energy vs. ion temperature on carbon wall in D and T-

plasma. 

 

Figure 5.12: Thomas Fermi reduced energy vs. ion temperature on tungsten wall in D and T-

plasma. 
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Chapter 6 

Conclusion and Future Works 
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6.1 Conclusion 

We have used Kinetic Trajectory Simulation (KTS) method to study the interaction 

between plasmas with confining material wall (carbon and tungsten surfaces). We 

have assumed the plasma with a magnetic field of 30 mT at an orientation of 300 

normal to the wall. The electron temperature is kept constant at 4 eV and the ion 

reflection coefficient, ion absorption coefficient, reflected ion density, absorbed ion 

density, total charge density and Thomas Fermi reduced energy have been studied. 

As the ion temperature is increased, the energy transfer during the elastic collision 

exceeds the threshold value leaving behind a vacant site and hence ions are absorbed. 

Thus, absorption of ion increases as we increase the ion temperature and hence the 

reflection of ion decreases. The reflection coefficient of tungsten is higher than that of 

carbon in both deuterium and tritium plasmas which is due to the higher mass of 

tungsten. Also the reflection coefficient of both carbon and tungsten in T-plasma is 

slightly higher than in D- plasma since the mass ratio of the projectile to the target is 

also responsible for reflection of ions. For carbon wall the ion reflection coefficient is 

found to be 0.0076 at 0.5 eV and decreases to 0.0010at 2.5 eV in D-plasma which 

slightly increases to 0.0085 and 0.0012 at the respective temperatures. Similarly for 

tungsten wall the ion reflection coefficient is 0.2576 and 0.1164 in D-plasma but is 

slightly higher in T-plasma which is found to be 0.2582 and 0.1170 at 0.5 eV and 2.5 

eV respectively. The thermal velocity of the projectile particles increases with the 

increase in temperature which leads to the increase in the ion and electron densities at 

wall and hence the total charge density of both ions and electrons increases. It is also 

seen that Thomas Fermi reduced energy also increases linearly with the ion 

temperature. 

This study implies that the ion temperature has significant role in determining the 

plasma-wall interactions. It also shows the importance of choice of plasma and the 

confining material surface for applications of plasma where they come into contact 

with material surfaces. 
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6.2 Future Works 

This study provides a basis for the study of plasma-wall interactions using Kinetic 

Theory and can be extended further: 

 to study the effect of varying electron temperature. 

 to study other confining  material surfaces like molybdenum, boron, etc. 

 to study multicomponent dense plasma. 

 to study scattering of ions and electrons in plasmas. 
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Appendix 

 

A MATLAB files 

Input 

% To study the sheath structure for an oblique magnetic field: 

Angle =input('Put  value of angle made by an oblique magnetic field along x-axis :'); 

Theta=(Angle*pi/180);       % In terms of radian 

% Basic parameters: 

B0=-30e-3;                           % Applied magnetic field(Tesla)  

vy=-2.3045e4;                      % Value of Y-component velocity  

vz=-2.3045e4;                      % Value of Z-component 

kB=1.38062e-23;                  % Boltzmann constant(J/K) 

epsilon=8.85419e-12;            % Permittivity of the medium(F/m) 

e=1.602192e-19;                      % Electronic charge(C) 

Ze=e;                                          % Ion charge(C) 

Mi=1.672e-27;                           % Mass of ion(Kg) 

Me=9.109e-31;                           % Mass of electron(Kg) 

mu=Me/Mi;                      % Ratio of Electron to ion mass used in  coupling scheme 

gammai=3;                         % Polytropic constant ions(Isothermal  case only) 

z1=1;                                            % charge of hydrogen ion 

m1=2.014;                                    % mass of deuterium atom   

z2c=6;                                           % charge of carbon nucleus 

z2w=74;                                          % charge of tungsten nucleus 

m2c=12;                                           % mass of carbon nucleus  

m2w=183.92;                                 % mass of tungsten nucleus                                      

% presheath parameters: 
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Jps=1;                                               % Total current density at presheath side 

Tpse=4*11604.5;                              % Electron temperature at presheath side(k) 

Tpsi=0.25*Tpse;                               % Ion temperature at presheath side(k) 

 nps=1e18;                                           % Plasma density at presheath side(1/m^3) 

cpsi=sqrt(kB*(Tpse+gammai*Tpsi)/Mi);% Ion acoustic velocity at presheath(m/s) 

upsi=-cpsi;  % Average fluid velocity along x-axis(S.E singularity condition)(m/s) 

% Normalized quantities: 

JpsN=Jps/e/nps*sqrt(Mi/2/kB/Tpse);   % Normalized current density 

TpsiN=Tpsi/Tpse;                                    % Normalized ion temperature  

upsiN=upsi/sqrt(2*kB*Tpse/Mi);         % Normalized average fluid velocity 

% sheath parameters: 

JL=Jps;                                             % Total current density at x=L(sheath entrance)  

 phiL=0;                                             % Potential at x=L(sheath entrance) 

rhoL=0;                                             % Total charge density at x=L(sheath entrance) 

L ='10*DLe';           % System length(length between the wall & sheath entrance) 

% numerical input parameters: 

ntra=300;  % Total number of trajectories at sheath entrance between vicL & vimaxL 

phi0x='phi0*(1-X/L)';     % Potential at X-position iss obtained by interpolation 

nx=41;                             % Total number  of x-grids 

dt=1e-11;                     % Time step size(s) 

deltaphi=1e-7;        % Desired accuracy in the iteration((phi2-phi1)>deltaphi)(volt) 

w=.08;                         % Relaxation parameter(relating to relaxation scheme) 

nv=400;                       % Total number of velocity grids 

phifNi=linspace(-5,-0.001,1001);      % Initial guess (always negative) 

Tau_min=-5.8877254338;   % useless to keep below: -5.8877254338, since f -> 0. 

TcLiNi=linspace(-5.88,0,90);   %upper limit for TpsiN=.1 -> 2.2373356648402 
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asymTcLiN=-4.5;                % limit below which we use the asymptotic expression 

DFAMAIN 

close all,                                              % Close all active figure, if any 

clear all,                                              % Clear all previous data, if any 

global niL vmLi vtfi kB vmaxLi vcLi Ef dx X nx     % Defining global parameters 

Input                                     %% input('Type the name of your input file:');  

NecessaryParameters     % Gives value of constants for sheath by P-S coupling 

DLe=sqrt(epsilon*kB*Tfe/neL_/e^2);        % Debye length of injected electron 

L=eval(L);                                               % Evaluate the value of L from 

vmaxLi=Tau_min*vtfi-vmLi;    % Maximum  injection  velocity of ion  at x=L 

 I=1;                                                   % Initializing the number of iteration counter 

X=linspace(0,L,nx);            % Linear position grid with nx grid point between 0&L 

dx=X(2)-X(1);                     % x-grid mesh size 

VLi=linspace(vmaxLi,vcLi,ntra);   % Linear velocity grid with ntra point between 

vmaxLi & vcLi 

dVLi=abs(VLi(2)-VLi(1));          % Velocity mesh grid size 

if   dx/DLe > .8         % If Grid width is larger than Debye length ,stop the calculation  

disp(' Attention: Your grid width is comparable/larger than Debye length.') 

disp('Press ENTER to continue or CTRL-C to stop.') 

pause 

end   %  Done the calcualtion if grid size is less then debye length 

                         % Initial guess of potential profile(given at wall & sheath entrance)  

phi=eval(phi0x);phi(1)=phi0;  phi(nx)=phiL; 

for  j=2:nx-1               % Selecting an inner jth x-grid point from 2 to nx-1. 

Ef(j)=.5*(phi(j-1)-phi(j+1))/dx;      %  Calculate E at grid point(j) in simulation region 

end                                                       % End of the loop started for j=2:nx-1 
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Ef(1)=.5*(3*phi(1)-4*phi(2)+phi(3))/dx;          % Electric field at(wall) x=0 

Ef(nx)=.5*(-3*phi(nx)+4*phi(nx-1)-phi(nx-2))/dx; 

DFAiondensity 

ne=neL_*exp(e*phi/kB/Tfe).*(1+erf(sqrt(e*(phi-phi(1))/kB/Tfe))); 

% Electron density distribution at grid point(xj) 

ni=niL*ni/max(ni); ne=niL*ne/max(ne);  % Check density goes off boundary region 

nin=ni/niL;                                               % Normalized density of ion 

rho=Ze*ni-e*ne; 

d=-2*ones(1,nx); d(1)=1; d(nx)=1;u=ones(1,nx-1);                                                            

% Electric field at(sheath entrance) x=L     d=-2*ones(1,nx); d(1)=1; d(nx)=1; 

u=ones(1,nx-1);         % Diagonal value of the Matrix of Left hand side matrix 

ML=diag(d)+diag(u,1)+diag(u,-1); ML(1,2)=0;ML(nx,nx-1)=0; % Determinant of 

Matrix of left hand side matrix 

clear d u                                                % Clear the value of d & u 

Poissionsolver  

comet(X/DLe,phi) 

hold, pause(.1)  % Solve the poission equation and gives the new potential as 'phin' 

while max(abs(phin-phi))>deltaphi     % Check the fluctuation of old & new potential 

 I=I+1                                                    % Next iteration 

% fluctuation=max(abs(phin-phi))          % Shows the fluctuation of potential 

comet(X/DLe,phi)    % plot the graph between normalized distance and potential 

pause(.1) 

phi=phin;                  % Replacing the old potential by calculated  new potential 

for j=2:nx-1                  % Selecting an inner j
th

 x-grid point 

Ef(j)=.5*(phi(j-1)-phi(j+1))/dx; % Electric field at j
th

 point in the simulation region 

end                                               % End of loop started as for j=nx-2 

Ef(1)=.5*(3*phi(1)-4*phi(2)+phi(3))/dx;     % Electric field at the x=0 
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Ef(nx)=.5*(-3*phi(nx)+4*phi(nx-1)-phi(nx-2))/dx;   % Electric field at the x=L 

 DFAiondensity             % Calculate the new ion density using DFA 

ne=neL_*exp(e*phi/kB/Tfe).*(1+erf(sqrt(e*(phi-phi(1))/kB/Tfe))); 

% Electron density distribution at grid point 

ni=niL*ni/max(ni); ne=niL*ne/max(ne);  % Check density goes off boundary region 

nin=ni/max(ni);                                          % Normalised ion density 

nen=ne/max(ne);                                         % Normalised electron density 

vcLe=sqrt(-2*e*phi0/Me);                         % Cut off velocity of electron at x=L  

ELe=0.5*Me*vtfe^2*(0.5-vcLe*De/vtfe/Ce/sqrt(pi))/e; 

Exe=0.5*Me*vtfe^2*(0.5-sqrt(e*(phi-phi(1))/kB/Tfe).*exp(-1*(e*(phi-

phi(1))/kB/Tfe))./(1+erf(sqrt(e*(phi-phi(1))/kB/Tfe)))/sqrt(pi)); 

Ee=Exe/e; 

Een=Exe/max(Exe); 

rho=Ze*ni-e*ne;                % Charge density distribution for new potential profile  

 Poission solver                   % Solving the poission equation for new potential 

end                                      % End the calculation while max(abs(phin-phi))>deltaphi 

comet(X/DLe,phi)           % plot the graph between normalized distance and potential 

 ne=neL_*exp(e*phi/kB/Tfe).*(1+erf(sqrt(e*(phi-phi(1))/kB/Tfe)));  

% Electron density distribution at grid point 

ni=niL*ni/max(ni); ne=niL*ne/max(ne); % Check density goes off boundary region 

nin=ni/max(ni);                                          % Normalised ion density 

nen=ne/max(ne);                                          % Normalised electron density 

ELe=0.5*Me*vtfe^2*(1.5-vcLe*De/vtfe/Ce/sqrt(pi))/e; 

Exe=0.5*Me*vtfe^2*(0.5-sqrt(e*(phi-phi(1))/kB/Tfe).*exp(-1*(e*(phi-

phi(1))/kB/Tfe))./(1+erf(sqrt(e*(phi-phi(1))/kB/Tfe)))/sqrt(pi)); 

Ee=Exe/e; 

Een=Exe/max(Exe); 
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DFAIon Density 

Q=Ze*dt/Mi;                                  % Defined for simplicity 

for T=1:ntra                                    % Calculate for 1-ntra 

m = 1;                                           % Initializing time counter 

vxL = VLi(T);                            % Ion velocity for the selected trajectory at injection 

Vxm = vxL;                % The initial value of x-component velocity at sheath edge                                        

Vym = -2.3045e4;          % The value of y-component velocity 

Vzm = -2.3045e4;         % The value of z-component velocity 

Vxmplus14 = Vxm +0.25*Q*DFAEfield(L)-0.25*Q*B0*Vzm*sin(Theta);  

% Value of x-component velocity after at (dt/4) time  

Xmplushalf = L + 0.5*dt*Vxmplus14;    % Value of X moving after (dt/t) time 

Vymplus14 = Vym + 0.25*Q*B0*Vzm*cos(Theta); % Value of y-component 

velocity moving by (dt/4) time 

Vzmplushalf = Vzm + 0.5*Q*B0*(Vxmplus14*sin(Theta) - Vymplus14*cos(Theta)) 

; % Value of z-component velocity moving by (dt/4) time  

Vxm(m) = Vxm;                    % storing the value 

Vym(m) = Vym;                       % storing the value 

Vzm(m) = Vzm;                         % storing the value 

Xm2(m) = Xmplushalf;              % storing the value 

Vm2(m)= Vxm;                             % storing the value 

  

if Xm2(m) <= X(nx-1)              % Done only if Xm2(m) <= X(nx-1)    

disp('Time step is too large. Press a key to continue.') 

pause                                           % Stop if not valid condition 

end                                                % End the loop if Xm2(m) <= X(nx-1)    

 while Xm2(m)>0 & Xm2(m)<=L     % solving equation of motion until ion crosses 

x=0 or x=L 



 

 

61 

for m=m+1                                         % Next time step 

Vxm(m) = Vxm(m-1) + Q*DFAEfield(Xm2(m-1))- Q*B0*Vzm(m-1)*sin(Theta); 

% Value of x-component velocity moving after dt time 

Vym(m) = Vym(m-1) + Q*B0*Vzm(m-1)*cos(Theta); % Value of y-component 

velocity moving after dt time 

Vxmminushalf = 0.5*(Vxm(m) + Vxm(m-1));   % Value of x-component velocity at 

half integral centred 

Vymminushalf = 0.5*(Vym(m) + Vym(m-1));    % Value of y-component velocity at 

half integral centred  

Vzm(m)=Vzm(m-1)+Q*B0*(Vxmminushalf*sin(Theta) - Vymminushalf*cos(Theta)) 

; % Value of z-component moving after dt time 

Xm2(m) = Xm2(m-1) + dt*Vxm(m); % Value of position at half integral time centred 

Vm2(m)=0.5*(Vxm(m)+Vxm(m-1)); % Value of x-comp. vel. at half time centred 

end                            %Done regularly & end while Xm2(m)>0 & Xm2(m)<=L 

Xt=[L,Xm2(1:m-1)]; % Position trajectory in matrix of half integral time centred 

Vt=Vm2;               %  Corresponding velocity at half integral time centred  position  

a=((Xt(m-2)-Xt(m))^2*(Vt(m-1)-Vt(m-2))-(Xt(m-2)-Xt(m-1))^2*(Vt(m)-Vt(m-

2)))/(Xt(m-2)-Xt(m-1))/(Xt(m-2)-Xt(m))/(Xt(m-1)-Xt(m)); 

b=((Xt(m-2)-Xt(m))*(Vt(m-1)-Vt(m-2))-(Xt(m-2)-Xt(m-1))*(Vt(m)-Vt(m-

2)))/(Xt(m-2)-Xt(m-1))/(Xt(m-2)-Xt(m))/(Xt(m)-Xt(m-1)); 

vx0= Vt(m-2)+ a*Xt(m-2) + b*Xt(m-2)^2;     % The velocoty at wall(x=0) 

Xt=[Xt,0];                                                                       

Vt=[Vt,vx0];    % Position (from x=L to x=0) and corresponding vel. along trajectory 

Vti=interp1(Xt,Vt,X);        % Interploating for the velocity at fixed grid(x) 

Vi(T,:)=Vti; % Storing ion velocities at X-grid points for  Tth trajectory as Tth 

element of matrixVL 

Df(T)=Dfun(VLi(T));                 % Distribution function On (vxL=VLi(T)) 

clear Vm Vm2 Vt Vti Xm2 Xt a b m r vx0 
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end                    % End of loop started as:'for T=1:ntra' 

 % ni calculating without interpolating onto the fixed velocity grid points 

ni=zeros(1,nx);                                  % Initializing ni 

for j=1:nx;                                         % Selecting j-th grid 

V_xi=Vi(:,j);     % Velocities of all traced trajectories through selected j-th grid point 

for T=1:ntra-1                      % Integrating for ion density                                                       

ni(j)=ni(j)+.5*(Df(T)+Df(T+1))*abs(V_xi(T+1)-V_xi(T)); % Density at j
th

 grid point   

end         % End of the loop started as for j=1:ntra-1                                                         

end          % End of the loop started as for j=nx 

Ei=zeros(1,nx); 

Eti=zeros(1,nx); 

for j=1:nx; 

V_xi=Vi(:,j); 

for T=1:ntra-1 

j=1:nx; 

      

Ei(j)=Ei(j)+(0.5*0.5*Mi*(V_xi(T+1).^2+V_xi(T).^2)*(Df(T)+Df(T+1))*abs(V_xi(T

+1)-V_xi(T)))./(ni(j)+0.5*(Df(T)+Df(T+1))*abs(V_xi(T+1)-V_xi(T))); 

Eti(j)=Ei(j)/e; 

Ewi=Eti(1); 

end 

clear  V_xi T 

end  

Coupling Scheme 

% Coupling sheath with presheath. 

% For given presheath plasma parameters (nps, Tpsi, Tpse, Jps, gammai, mu, etc.) 

this program 



 

 

63 

% calculates sheath plasma parameters (Ai, Ae, vcLi, vmLi, Tfe, Tfi, phi0, etc.) 

required for our 1d3v plasma-sheath simulation. 

% 1) Provide the name of your input file, where all required input parameters are 

specified. 

% 2) Solves the electron irreducible equation to obtain 'phifN', and then the other 

corresponding electron parameters (TfeN, AeN, phi0N, etc.) are calculated. 

% 3) Solves the ion irreducible equation to obtain 'TaucLiN', and then the other 

corresponding ion parameters (TfiN, AiN, vmLiN, vcLiN, etc.) are calculated. 

% 4) Once all normalized parameters are known, the dimensionless physical 

parameters are calculated 

%    using their respective normalizing equations solving the electron irreducible 

equation for 'phifN' --- start --- : 

% Calculating the lhs (Le) of the equation (independent of 'JpsN' & 'TpsiN'): 

for rphifN=1:length(phifNi) 

phifN=phifNi(rphifN); 

Ce=1+erf(sqrt(-phifN)); 

De=exp(phifN); 

TfeN=1/abs(1 - sqrt(-4*phifN/pi)*De/Ce - 2/pi*(De/Ce)^2); 

Le(rphifN)=De/Ce*sqrt(TfeN/pi);      % lhs of the electron irreducible equation 

end %for r=1:length(phifNi)      

% Calculating the rhs (Re) of the equation (function of 'JpsN', 'TpsiN', 'gammai' and 

'mu'): 

Re=sqrt(mu)*(JpsN+sqrt(.5*(1+gammai*TpsiN)));   % rhs of the equation 

phifN_sol=interp1(Le, phifNi, Re);      % Interpolating for the solution (phifN) for 

which Le = Re.    

% Thus obtained 'phifN_sol' is the required value. 

if isnan(phifN_sol) 

disp('Could not find the solution. Change the input-range for phifN and start again.') 
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pause 

else 

phifN=phifN_sol                   % Calculating other parameters: 

Ce=1+erf(sqrt(-phifN)); 

De=exp(phifN); 

TfeN=1/abs(1 - sqrt(-4*phifN/pi)*De/Ce - 2/pi*(De/Ce)^2); 

AeN=1/Ce/sqrt(TfeN); 

end     % if isnan(phifN_sol) 

% solving the electron irreducible equation for 'phifN' --- end --- 

% solving the ion irreducible equation for 'TcLiN' ------------- start ------------ 

% Calculating the rhs (Ri) of the equation (function of 'phifN'; independent of 'JpsN' 

& 'TpsiN'): 

Ri=(sqrt(pi) + De/Ce/sqrt(-phifN))/TfeN; 

% Calculating the lhs (Li) of the equation: 

rr=1; 

for r=1:length(TcLiNi) 

TcLiN=TcLiNi(r); 

if TcLiN<asymTcLiN 

% using asymptotic expansion: erf(x)=1-exp(-x^2)/sqrt(pi)/x*(1 - 1/2/x^2 + 3/2^2/x^4 

- 1.3.5/2^3/x^6 + ...) 

Ci=exp(-TcLiN^2)/abs(TcLiN)/sqrt(pi)*(1 - .5/TcLiN^2 + .75/TcLiN^4 - 

15/8/TcLiN^6 + 105/16/TcLiN^8 - ... 

         945/32/TcLiN^10 + 10395/64/TcLiN^12 - 135135/128/TcLiN^14 + 

2027025/256/TcLiN^16 - 34459425/512/TcLiN^18 + ... 

         654729075/1024/TcLiN^20 - 13749310575/2048/TcLiN^22 + 

316234143225/4096/TcLiN^24 - 7905853580625/8192/TcLiN^26); 

else %if TcLiN<asymTcLiN 
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Ci=1+erf(TcLiN); 

end  %if TcLiN<asymTcLiN 

Di=exp(-TcLiN^2); 

TfiN=TpsiN/abs(1 - 2*TcLiN*Di/Ci/sqrt(pi) - 2*(Di/Ci)^2/pi); 

vmLiN=-sqrt(0.5*(1+gammai*TpsiN)) + Di/Ci*sqrt(TfiN/pi); 

a=vmLiN/sqrt(TfiN);  % abbreviated for simplicity 

if TcLiN < -a    % checking the integerability 

Tau=linspace(Tau_min,TcLiN,ntra); % Discretizing for integration 

dTau=Tau(2) - Tau(1);                 % Width of the Tau-grid 

for rTau=1:ntra 

FnTau(rTau)=exp(-Tau(rTau)^2) / (Tau(rTau) + a)^2; 

end 

LHS = dTau * ( sum(FnTau) - 0.5*(FnTau(1) +FnTau(ntra)) ); 

Li(rr) = LHS/Ci/TfiN; 

TcLiNM(rr)=TcLiN;             % storing the values for which the equation is integrable.  

rr=rr+1; 

end    % if TcLiN < -a 

end   %for r=1:length(phifNi) 

% obtaining the solution by locating the point of intersection of 'Li' & 'Ri': 

%%plot(TcLiNM, Li) 

%%hold 

%%plot([min(TcLiNM) max(TcLiNM)],[Ri Ri],'k--') 

TcLiN_sol=interp1(Li,TcLiNM,Ri);    % required solution 

% This method of obtaining the solution can be RISKY. The point where we have 

found 'Li=Ri' is 

% the point of marginal validity of the Bohm's criterion, which, in our case, is Li <= 

Ri. When we consider the marginal point it may be possible that because of numerical 
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limitations it lies in fact in the region, where the Bohm's criterion is not satisfied. 

Hence, in order to be sure we take a point very close to the zero-point but still lying in 

the negative side of sure side of (Li - Ri), so that we may say that Li <~ Ri, in place of 

Li <= Ri. 

% We have tested it many times and concluded that it has also negligible effect to the 

other ion parameters derived there from. 

a=find(Li-Ri<0);                        % points where Li < Ri 

a=a(length(a));                     % points closest to the zero-point but still Li < Ri 

TcLiN_sol=TcLiNM(a);    % value of the closest point to the zero-point => Li <~ Ri 

%plot(TcLiNM(a), Li(a),'mo') 

% solving the ion irreducible equation for 'TcLiN' ------------- end ------------ 

% calculating other dimensionless ion parameters: 

% Thus obtained 'TcLiN_sol' is the required value. 

if isnan(TcLiN_sol) 

disp('Could not find the solution. Change the input-range for TcLiN and start again.') 

pause 

else 

TcLiN=TcLiN_sol   % Calculating other parameters: 

if TcLiN<asymTcLiN 

% using asymptotic expansion: erf(x)=1-exp(-x^2)/sqrt(pi)/x*(1 - 1/2/x^2 + 3/2^2/x^4 

- 1.3.5/2^3/x^6 + ...) 

Ci=exp(-TcLiN^2)/abs(TcLiN)/sqrt(pi)*(1 - .5/TcLiN^2 + .75/TcLiN^4 - 

15/8/TcLiN^6 + 105/16/TcLiN^8 - ... 

         945/32/TcLiN^10 + 10395/64/TcLiN^12 - 135135/128/TcLiN^14 + 

2027025/256/TcLiN^16 - 34459425/512/TcLiN^18 + ... 

         654729075/1024/TcLiN^20 - 13749310575/2048/TcLiN^22 + 

316234143225/4096/TcLiN^24 - 7905853580625/8192/TcLiN^26); 

else   %if TcLiN<asymTcLiN       
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Ci=1+erf(TcLiN); 

end   %if TcLiN<asymTcLiN 

Di=exp(-TcLiN^2); 

TfiN=TpsiN/abs(1 - 2*TcLiN*Di/Ci/sqrt(pi) - 2*(Di/Ci)^2/pi); 

vmLiN=-sqrt(0.5*(1+gammai*TpsiN)) + Di/Ci*sqrt(TfiN/pi); 

AiN=1/Ci/sqrt(TfiN); 

vcLiN=vmLiN + TcLiN*sqrt(TfiN); 

end   %if isnan(TcLiN_sol) 

 % calculating dimensional physical parameters: 

% electron dimensional parameters: 

Tfe=TfeN*Tpse; 

vtfe=sqrt(2*kB*Tfe/Me); 

Ae=AeN*nps*sqrt(2*Me/pi/kB/Tpse); 

neL_=Ae*vtfe*sqrt(pi)/2; 

phi0=phifN*kB*Tfe/e; 

 % ion dimensional parameters: 

Tfi=TfiN*Tpse; 

vtfi=sqrt(2*kB*Tfi/Mi); 

Ai=AiN*nps*sqrt(2*Mi/pi/kB/Tpse); 

niL=nps; 

vmLi=vmLiN*sqrt(2*kB*Tpse/Mi); 

vcLi=vcLiN*sqrt(2*kB*Tpse/Mi); 

Particle Absorption 

% Refletion coefficient of carbon at wall clc 

 Viw=Vi(:,1)';                % Velocity of ion at wall 

Energywall=0.5*Mi*(Viw).^2/(1.6e-19);                %energy at wall 
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Energy_refletion=find(10<Energywall<100000);  

EF=Energywall(Energy_refletion);    %element with energy more than threshold 

EOC=sum(Energywall(Energy_refletion)); 

Lm=length(Energy_refletion); 

Vmth=Viw(Energy_refletion);     %velocity of ion corresponding to Em
th

 

 %Check the density goes out of the boundary region. 

Thomas_Fermi_energy_carbon=32.5*(m2c/(m1+m2c))*1/(z1*z2c*(z1^(2/3)+z2c^(2/

3))^(1/2));                              %Thomas Fermi energy for carbon 

Ac1=0.6192; Ac2=20.01; Ac3=8.922; Ac4=0.6669; Ac5=1.864; Ac6=1.899;  

RFE=EOC*Thomas_Fermi_energy_carbon;      %Thomas_fermi_reduced_energy 

RC=Ac1*log(Ac2*RFE+2.718)/(1+Ac3*RFE^Ac4+Ac5*RFE^Ac6); 

niC=(1-RC)*ni(1);                   %ion density at wall 

niRC=RC*ni(1);                       %reflected ion density from wall 

rhoC=e*(niC-ne(1));                 %total charge density 

% Refletion coefficient of tungsten wall 

Thomas_Fermi_energy_tungsten=32.5*(m2w/(m1+m2w))*1/(z1*z2w*(z1^(2/3)+z2

w^(2/3))^(1/2));                                            %Thomas Fermi energy for carbon 

Aw1=0.8250; Aw2=21.41; Aw3=8.606; Aw4=0.6425; Aw5=1.907; Aw6=1.927;  

RFEW=EOC*Thomas_Fermi_energy_tungsten; %Thomas_fermi_reduced_energy 

RW=Aw1*log(Aw2*RFEW+2.718)/(1+Aw3*RFEW^Aw4+Aw5*RFEW^Aw6); 

niW=(1-RW)*ni(1);                                         %ion density at wall 

niRW=RW*ni(1);                                   %reflected ion density from wall 

rhoW=e*(niW-ne(1)); 
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