DIVERSITY OF GROUND DWELLING ANTS (HYMENOPETRA: FORMICIDAE) IN RAJBIRAJ, SAPTARI, NEPAL

Kopila Yadav
T.U Registration No:5-2-0033-0293-2013

T.U Examination Roll No: 619

Batch: 2074/2076

A Thesis submitted in Partial fulfillment of the requirement for the award of degree of the Master of Science in Zoology with special paper Entomology

Submitted to:

Department of Zoology
Amrit Campus
Institute of science and technology
Tribhuvan University
Lainchaur, Kathmandu,
Nepal
April 2022

DECLARATION

I hereby declare that the work presented in the thesis entitled "DIVERSITY OF GROUND DWELLING ANTS (HYMENOPTERA: FORMICIDAE) IN RAJBIRAJ, SAPTARI, NEPAL" has been done by myself, and has not been submitted elsewhere for the award of any degree. All sources of information have been specifically acknowledged by reference to the author(s) or institution(s).

Date 078-11:23 \qquad

TRIBHUVAN UNIVERSITY AMRIT CAMPUS

Coordinator M. Sc. Program
Department of Zoology
Amrit Campus
1OST, Tribhuvan Universlt

Date.

RECOMMENDATION

This is to recommend that the thesis entitled "DIVERSITY OF GROUND DWELIING ANTS (HYMENOPTERA: FORMICIDAE), IN RA.JBIRA.J, SAPTARI, NEPAL" has been carried out by Kopila Yadav for partial fulfillment of Master Degree of science in Zoology with special paper Entomology. This is her original work and has carried out under my supervision. To the best of my knowledge, this work has not been submitted for any other degree in any institutions.

Date: 0.78-11-23......

Supervisor
Mr. Shambhu Adhikari
Teaching Assistant
Department of Zoology, Amrit Campus
Lainchour, Kathmandu,
Nepal

Co-supervisor
Mrs. Dibya Rai Teaching Assistant

Department of Zoology, Amrit Campus
l.ainchour, Kathmandu,

Nepal

TRIBHUVAN UNIVERSITY
 AMRIT CAMPUS
 M. Sc. Program

Department of Zoology Amrit Campus
IOST, Tribhuvan Universth
Date.

CERTIFICATE OF ACCEPTANCE

This thesis work submitted by Kopila Yadav entitled "DIVERSITY OF GROUND DWELLING ANTS (HYMENOPTERA: FORMICIDAE), IN RAJBIRAJ, SAPTARI, NEPAL"has been accepted as a partial fulfillment for the requirements of Master's Degree of Science in Zoology with special paper Entomology.

Supervisor
Mr. Shambhu Adhikari Department of zoology

Amrit Science College Lainchaur, Kathmandu,

Nepal

Mrs. Mamila Pradhan
Assistant Professor
Amrit Campus
Lainchaur, Kathmandu, Nepal

EVALUATION COMMITTEE

Babita Maharjan
Department of zoology
Amrit Science College
Lainchaur, Kathmandu,
Nepal

Date of Examination $5^{\text {th }}$ April, 2022 ($22^{\text {nd }}$ Chaitra, 2078)

ACKNOWLEDGEMENT

Firstly, I woud like to express my gratitude to my supervisor Mr.Sambhu Adhikari and co-supervisor Mrs. Dibya Rai Teaching Assistant, Amrit Campus, Department of Zoology for the continuous support, guidance, motivation and immense knowledge during my study.
I am thankful to Mrs. Babita Maharian, co-ordinator, Department of Zoology for providing such anopportunitytocarryoutthisdissertation work.
I would like to extend my special thanks to farmers of Ra jbiraj Municipality for valuable help and information.
Sincerely, I especially thank Miss Sangita Pandey, Kamana Shrestha, Mamta Subedi and Asant Dewan for their great help in lab and field work.
Most importantly, without which the continuous blessing an d support of my family work is impossible to complete. So, I am blessed for being a member of such a wondertul family. I also acknowledge to all the teachers, friends and staffs of Amrt Campus for their continuous support and motivation.

Kopila Yadav
ExaminationRollNo.:619
Batch No.: 074
Email:yadavkopila60@gmail.com

Table of Contents

DECLARATION II
RECOMMENDATION III
LETTER OF APPROVAL IV
CERTIFICATE OF ACCEP TANCE V
ACKNOWLEDGEMENT VI
LIST OF FIG URES IX
LIST OF ABBREVIATION S X
ABSTRACT XI

1. INTRODUCTION 1
1.1. BACKGROUND 1
1.2 OBJECTIVES 2
1.2.1 General Objective 2
1.2.2. Specific Objectives. 2
1.3 RAtionAle ofthe study 2
2. LITERATURE REVIE W 3
2.1. INTHECONTEXTOF Nepal 3
2.2. INTHEGLOBALCONTEXT. 4
3. MATERIALS AND METHOD S 7
3.1. Study Area 7
3.2MAterals 8
3.3. Methods 8
3.3.1 Sampling Methods 8
3.3.2 Identification of Ants 9
3.4DATA PROCESSING ANDSTATISTICALANALYSES. 9
4. RESULTS 10
4.1. Species RICHNESS. 11
4.2. DIVERSITYOFANTSIN DIFFERENTHABITATS 11
4.3. VARIATIONOFANTSIN WINTERANDSPRINGSEASON 13
4.4. VARIATION OF ANTS COLLECTED THROUGH DIFFERENTMETHODS 14
5. DISCUSSIONS 16
5.1 SPECIES RICHNESS 16
5.2 ANTDIVERSITY COMPARISONAMONGHABITATS 16
5.3 SEASONAL VARIATION 17
5.4 EFFECTIVENESSOFANT COLLECTIONMETHODS 18
6. CONCLUSIONS AND RECOMMENDATIONS 19
6.1 Conclusions 19
6.2 RECOMMENDATIONS 19
7. REFERENCES 20
8. APPENDICES 27
APPENDIXI:РHOTOPLATEOFREPRESENTATIVEGENUSRECORDEDINSTUDY AREA 27
Appendix II:ANTGenera WITH Shannonindex reportedinthe Research 29
ApPENDIX III: ANTS REPORTED IN DIFFERENT HABITATS 30
Appendixiv:DataAnalysisoftwo season 32
Appendix V:ANT COLLECTED FROM SPECIFIC COLLECTION METHODS 33

LIST OF TABLES

Table 1:Antgenera reported from the study area 11
Table 2: Ant diversity reported in two seasons with habitat 14
LIST OF FIGURES
Figure1: Map of study area 7
Figure 2:Subfamily wise ant abundance 10
Figure 3: Ants abundance reported in different habitats 12
Figure 4: Subfamilies,genus, morphospecies of ants in forests, cultivated land and grassland.
..... 13
Figure 5: Sorensen index between habitats 13
Figure 6: Abundance of ants collected in different sampling methods. 15

LIST OF ABBREVIATIONS

Abbreviated form	Detailed of Abbreviations
asl	abovesealevel
B	Baittraps
cm	centimeter
GPS	Global Positioning System
H	Handcollection
Km	Kilometer
P	Pittall traps
Sp	Species
Spp	Morespeciesof samegenus

Abstract

Ants are important in terms of biodiversity as they are the most diverse, abundant and ecologically significant organisms on earth. Ants were collected using pitfall traps, bait traps and manual collection in three different habitats viz. forest, cultivated land and grass land in springandwinterseasons.Thisstudy documentedtheant'sgeneraandassessspeciesrichness and their diversity in different habitats and seasons using different methods. Altogether 1350 antswerecollectedrepresentingfoursubfamilies, 17 genera and36morphspecies. Formicinae was the most dominant sub-family (62.59%), followed by Myrmicinae (22.59\%), Ponerinae (13.92\%),Pseudomyrmicinae(0.89\%). Camponotous was themostabundantgenusaswellas themostadaptedgenus whichwas mostspeciousgenus(12 morphospecies).Among thethree sites, the similarity index (0.85) was found highest between forest and grassland. Species richness (10), Shannon diversity index (0.97) and abundance (448) were higher in spring in comparison to winter season. Similarly species richness (17), Shannon diversity index (1.03) and evenness (0.36) were found highest in forest, while species abundance was least in cultivate land. The One-way ANOVA concluded that relationships between habitats and ant diversity as $\mathbf{w e l l}$ as \mathbf{w} th seasons were statitistically insignificant as the $p<0.05$. Pitfall trap was most effective method for ants collection as the ants collected through this method was maxmum (946) as compared to bait trap (404) and manual hand collection in all habitats and seasons.

1. INTRODUCTION

1.1. Background

Ants are one of the most successful groups of organisms, present in all the terrestrial ecosystems of the earth (Holdobler and WVilson, 1990). They are eusocial organism, characterized by brood care overlapping generation of workers withinthe colony and a highly developedcastsystem (Agostietal.2000). Ground dwellingantspecieshavesmallbodysize, small stationary nests and fairly restricted foraging range (Holdobler and \mathbf{W} ison 1990). These attributes guarantee a tight habitat connection for the ant and make them sensitive to environmental changes (Agosti et al. 2000). Ants are important functionally at many different tropical levels and play critical ecological roles in soil turn over, nutrient cycling, plant protection, seed dispersal and seed production (Agosti et al. 2000). Ants are responsible for a wide range of scientific research including studies in behavior, ecology and evolutionary biology (Andersen et al. 2003) Ants perform several significant funct ional roles, as predators of other arthropods whereas sometmes behaving as destructors in nature of being serious herbivores (Holldobler and \mathbf{W} ison 1990). Ground dwelling ants exert a strong influence on the arthropod community in tropical rain forests (Holldobler and WVison, 1998). Ants canbe sampled rapidly, and the diversity of ants in a community is a good indicator for the diversity ofotherinvertebrate species(Alonso,2000). Theyhavebeenusedasapowerultoolinseveral ecological studies (Folgrait, 1998; Lach et al. 2010).
Ants are the social insects evolving since cretaceous period. There are 17 extant subfamilies, 338 genera and 13,911 species (Bolton 2021). Over 80% of the ants, species described fall under four subfamilies viz: Myrmicinae, Formicinae, Ponernae and Dolichoderinae (Guenard, 2013).Different collecting methods have been used to sample ant fauna and these vary in their efficacy and selectivity in capturing ant species (Bestemeyer et al .2000). A large percentage of the ground dwelling fauna was captured using a combination of different trapping system (Bestelmeyer et al. 2000; Fisher, 1999; Olson, 1991). Pitfall traps are cost- effective techniques and are probably most widely and frequently used method for ground -dweling ants. It provides a reasonably good estimation of species richness and relative abundance. These traps are easy to use and can be operated continuously during day and night over extended periods of time with little attention required but may not be effective fo r species associated with soil, deep litter
and vegetation (Majer,1997). Nepalese myrmeco fauna represent includes 8 known subfamilies; Amblyoponinae Dolichoderinae, Dorylinae, Formicinae, Leptanillinae, Myrmicinae, Ponerinae and Pseudomyrmicinae with 48 genera and 128 species with 33% of total species (Subedi, et al. 2020).Among eight subfamilies, Myrmicinae is the largest subfamily which comprises of 41.37% ant species of genera Myrmica, Strumigenys, Meranoplus and Pheidole having more species followed by sub-family Formicinae which comprises of 20.68% ant species with genera Formica, Polyrhachis, Camponotus and Prenolepis having more species (Bharti and Subedi 2020). The data on Nepalese ants are also available in different web -based resources such Ant Web,2020 and AntWiki,2020. Ants in Nepal occupy avariety of habitats such as leaf litter, trees, soil anddead logs while tramp species prefer human modilied habitats (BhartiandSharma 2009).

1.2 OBJECTIVES

1.2.1. General Objective

To explore the diversity of ground-dwelling ants in Rajbiraj, Saptari district, Nepa.

1.2.2. Specific Objectives

To evaluate diversity of ants in different habitats.
Tocomparediversityof antsinwinterandspringseason. To
access the efficacy of collection methods.

1.3 Rationale of the study

Ants are important components of ecosystem not only because they constitute a great part of the animal biomass but also because they act as ecosystem engineers. Despite in great importance of ant ecology, the diversity and distrib ution of ants in Nepal is not well known. Few researches have been done in diversity and distribution of ants in Nepal (Collingwood, 1970, Elmes and Radchenko, 2009, Adhikari 2017,Neupane 2018, Adhikari, 2020, Bharti, Subedi and Alonso, 2020) were done in Nepal. However, no study in ants was seen from Rajbiraj, Saptari. Study was conducted to determine ant diversity, species richness and evenness index according to various habitats, seasons and methods. The research will create a preliminary base for the study of the ground dwelling ants in the future for the other researchers. Identifying ants in genus level can provide useful information on environmental monitoring, conservation, evaluation and ecological research.

2. LITERATURE REVIEW

2.1. In the context of Nepal

Forel (1906) first reported Nepalese ants; Aphaenogaster pachei and Myrmica pachei.
Colingwood (1970) published the first list of 34 species of ants of Nepa firm the collections ofthe 1954 BritishMuseumexpeditiontotheKhumbuHimalRegion. Hecollected34species of ants trom different parts of Nepal from the altitudes ranging 850 m to 4500 m asl. Out of which, 12 were generally distributed over the whole Himalayan region, 12 were eastern Himalayan, eight were western Himalayan and two were endemic to Nepal.
Emes and Radchenko (2009) recorded the two different species of Myrmica: M. webri and M. alperti from Makau-Barun National Park, Nepal.
Adhikari etal. (2016) documented 30 genera and 70 morphospecies in three habitats and two seasonsinLahachowk, Kaski.
Sixteen genera using bait traps, pitfall traps and leaf litter method in Shivapuri Nagargun National Park, Nepal were recorded and reported new genera ; Pachycondyla and Echinopola to Nepal (Neupane and Subedi 2018)..
Subed et al. (2020) updated checklist of Nepaese ants that included 128 named species in 48 genera and 8 sub-families (Myrmicinae, Formicinae, Ponerinae, Dolichoderinae, Doryinae, Pseudomyrmicinae, Leptanillinae and Amblyoponinae) with 33% of total species where Myrmicnae was the largest with 53% of total species tollowed by Formicinae.
Adhikari et al. (2020) recorded 12 genera using pittall traps, using bait traps and opportunistic hand collection in attitudinally and seasonaly in Phuchowk hill, Lalitpur, Nepal.
Subed et al. (2021) recorded six sub-families and 36 genera trom 70 ant species along the north and south belt transects in eastern, central and western Nepal by using vegetation beating, sweeping and hand collection methods in selected forest types. Forest an t species richness was high in western forests of Nepal.

2.2. In the global context

Andrade \& Del- Claro (2007) investigated the variety of ant diversity on the ground of an ecological reserve in three different areas of Cerrado forest. Found 77 ant spe cies distributed in 22 genera and 6 subfamilies. Camponotous and Pheidole were the mostcommon genera. Similarly, Chavhan and Pawar (2011) explored ants in forest, grassland and human habitats locatedaround Amrawai city. Theyfound34species,20genera bycollectingsamplesinthree habitats where Crematogaster, Pheidole and Camponotus were the most dominant species. Raja (2017) studied ants of Medinipur West Benga, India and applied all search out method where34species and20 genera of antspecies werefoundin which Crematogaster was most dominantone.

Ryder et al. (2010) surveyed species diversity and distribution patterns of the ants in a lowand primary rainforest in Western Amazonan Ecuador, using canopy, fogging, pitfall traps, baits, hand collecting, mini -W Vinker devices and subterranean probes to sample ants. A total of 489 ant species compromising 64 generain nine subfamilies were identified.
Mahaakshmi and Channaveerappa (2016) explored the diversity of ants in the Campus of Maharan's Science college, Karnataka Captured a total of 978 individuals representing 20 morphospecies belonging to 12 genera and four subfamilies. Myrmicinae was the most dominant subfamily followed by Formicinae, Ponerinae and Pseudomyrmicinae Manikandan, Anusuyadevi and Sevarkodyone (2018) studied diversity of ants in three different sites of Thiruthanga, Sivaksi taluk, Virudhunagar, India. Noted totally eleven species of ants belonging to four subfamilies where seven species found in residential sites, five ant species were found in industrial sites and eleven species found in agricultural sites. Myrmicinae was a dominant subfamily in three study sites and Dolichoderinae had a low relativeabundanceduring thestudyperiod.Khan(2018)surveyedthediversityofoutdoorants inacollegecampusof Kajaracity, Ahmednagardistrict, Maharashtra,India. Ninespecieswere recorded belonging to subiamily Myrmicinae, Formicinae and Dolichoderinae.
Hazra (2018) surveyed ant species diversity at Contac Municipality, Purbi, Medinipur West Benga, India and recorded 15 species belonging to five subiamilies of ants. Out of the five subfamilies, Formicinae was the most dominant family in terms of species richness tolowed by Myrmicinae, Psudomyrmicinae, Dolichoderinae and P onerinae.

FisherandRobertson(2002)studiedspeciesrichness andcomposition of ant's assembling in adjacentmountan forestandsecondarygrasslandhabitatsinthecentral plateauof Madagascar was evaluated .They used five quantitative methods and compared methods within and across habitats. They collected 26 species in grassland and 31 species in forest. Deblauwe and Dekoninck(2007) was studieddiversity and distribution of ground-dwelling ants inlowland rainforest in Southeast Cameroon where they studied the effect of vegetation type on ant species density, activity and composition and observed 145 ant species with the help of pitfall trap. Differences in species density, activity and composition between vegetation types were explained by developmental stage of vegetation type.
Graham et al. (2004) studied habitat disturbance, species richness, equitability and abundance of ants in the Fall -Line Sandhills, at Fort Benning, Georgia. They collected 48 species of ants belonging to 23 genera over four years of sampling and noted that highly disturbed areas had fewer species and greater number of ants than did moderately or lightly disturbed areas. Leal et al. (2012) surveyed the relative effects of habitat fragmentation and habitat structure on ant species and functional composition in the Atantic forests of northeast Brazil were examined and found fragment size and tree density were the most important variables predicting species richness and functional diversity. Chavan and Patkar (2014) compared grou nd-dwelling ants in undisturbed and disturbed habitat of Great Indian Bustard Widlife Sanctuary in Maharashtra state, India. They used pitfall trap, scented trap and visual searching to collect ants and found more in undisturbed site.
ForysandAllen(2005)exploredtherelationshipbetweensprawlandbiodiversityusingadata set of ant species collected from 46 habitat patches located in the increasingly suburbanized Florida Keys, USA They identified 24 native and 18 nonnative species of ants using bai t transects and found that neither the overall number of native species nor the number of rare native speciesweresignificantly affectedby theamount of developmentorproximityto roads and the number of non-native species was significantly correlated with the amount of development.
Bruhl and Eltz (2010) studied the community of ground -dwelling ants in different plantations in Sabah, Malayesia, over 2 years using tuna baiting. Nine of the 23 ant species baited in the plantations were never recorded inside forest and most common species was Anoplolepis
gracilipes, an invasive species present at 70\% of all bait sites and known to cause ecological meltdown in other situations.

Santoandre et al.(2019) studied ant taxonomic and functional diversity showing di fferential response to plantation age in two contrasting biomes in Argentina. A total of 12,435 ants collected during samplings in both biomes and found opposite environmental similarity gradientbetween natural habitatsandplantationages.
Levings (1983) examined patterns of species distributions in ground ants on Barro Colardo island (BCl), Republic of Panama, using baited transect samples and Berlesc extraction of litter arthopods. More species and more individuals were collected in wet than dry seasons using either methods. Evenness of species abundance at baits also increased during the wet seasons. Overall seasons, fewer species and fewer individuals were collected at drier,

3. MATERIALS AND METHODS

3.1. Study Area

Thestudy was carried outin Rajbiraj, Saptari ($26^{\circ} 3^{\prime 2} 60^{\prime \prime}$ Nand $86^{\circ}{ }^{\circ} 45^{\prime} 0^{\prime \prime} \mathrm{E}$.) Nepal. The study was conducted in three habitats viz forest, cultivated land and grass land in winter (January - February) 2020 and spring (April-May)2020. The average temperature of spring was 32으 (maximum 38응 and minimum $26^{\circ} \mathrm{C}$), winter was $21^{\circ} \mathrm{c}$ (maximum $27^{\circ} \mathrm{C}$ and minimum $14^{\circ} \mathrm{c}$). This study area has tropical climate. Different types of vegetation were found in different habitats. In forest, vegetation like Carica papaya, Cocus nucifera, Dalbergia sissoo, Ficus racemosa, Litchi chinensis, Mangifera indica, Melian azedarach. In grassland Cynodon dactylon, Imperata cylindrical, Oplimenus sp. of grass were available. Zea mays, Brassica species, Triticum astivum, Eleusine corocana, Oryza sativa, Glysine max werecropsspecies found in cultivated land. Forest contains sandy soil with stone but cultivated, and grassland had alluvial soil. In forest, anthropogenic activities were relatively low in comparison to cultivated land and grassland. Forest and cultivated land were protected against grazing but grasslandwasopentype.

Figure 1: Map of study area

3.2 Materials

Pitfall traps, Bait trap, Camera ,Digger, Ethyl Alcohol ,Cotton ,GPS ,Vials, Measuring tape, Feather weight forceps ,Stereo microscope.

3.3. Methods

3.3.1. Sampling Methods

Samples were collected three tmes in two season: winter season (January -February) 2020 and spring season (April-May 2020. Ants were collected at three sites: forests, cultivat ed land and grass land using pitfall traps (Santondare et al. 2019), bait traps (Adhikari 2020) and hand collection method (Subedi et al. 2021). For removal of samping errors, three different ant collection methods to collect maxmum number of ant species trom study area. The trapped ants of all this methods were preserved in vials containing 70% ethanol.

1. Pitfall Trap

Pittall trap consists of a plastic cup with opening of 12 cm in height and eight cm in diameter, buried at ground level. Ten pitfall tra ps were placed in 100 m area in 10 m distance at each site. Each cup carried 25 m of soapy water. Samples were collected after 48 hrs.

2. Bait Trap

Bait traps consists of paper ($10^{*} 10$) cm . Ten Bait traps were placed in 100 m area with the distance of 10 m apart. 0.25 gm of sugar and butter were added in each trap and samples were collected after 30 minute of its pacement with the help of feather -weight forceps and collected specimens were preserved in 70\% ethanol.

3. Opportunistic Manual Collection

Hand collection of ants trom each samping plot was carried out to collect representative individuals of all species found in the each site (under stones, under logs, under moss) after using the baits.

3.3.2. Identification of Ants

Ants were photographed by using Samsung digital camera and identified genus level with the help of stereo-zoom trinocular microscope, based with the help of taxonomic keys (Bolton 1994, Holdobler and Wilson, 1990) . Collected specimens were deposited to the Zoology Department of Amrit Campus.

3.4 Data processing and statistical analyses

The data were analyzed using Microsoft Office Excel, 2007. The results were used to indicate the ant diversity in habitats, season and method. Species diversity was simply calculated by counting the number of species in different habitats and seasons. Shannon-Weinner index was used to calculate the species diversity indices. Evenness index was used to know the closeness of species of ant in type of habitats, method and seasons. The diversity index of each samping plot was first calculated with the presence data of species richness and the frequency of each speciesbyusing
Shannon-W einnerDiversityindex $\left(\mathrm{H}^{\prime}\right)=-\sum(\mathrm{Pi}) *(\operatorname{lnPi})$
Pielou's Evenness Index (J)'= H'/ Hmax
To measure the similarity between two community samples, coefficient of Sorensen was used as the following equation.
$Q C=2 a /(2 a+b+c)$
One- way ANOVA was used to calculate the relation between the habitats heterogeneity and species richnessas well astofindouttheassociationbetweentheseasonsandspecies richness.

4. RESULTS

In total 1350 ant specimens were collected which represented four subfamilies (Formicinae, Myrmicinae, Ponerinae and Pseudomyrmicinae), 17 genera (Camponotus, Polyrachis, Catalacus, Oecophylla, Par atrechina, Nylanderia, Aphaenogaster, Crematogaster, Pheidole, Monomorium, Lophomyrmex, Tetramorium, Leptogeny, Brachyponera, Odontoponera, Odontomachus, and Tetraponera) and 36 morphospecies through three different methods (Pitfall traps, Bait traps and opportunistic manual collection)(Table 1). Out of four subfamilies, Formicinae represented the most abundant subiamily where as Pseudomyrmicinae the least(Figure 2)

Figure 2:Subiamily wise ant abundance

Figure 3:Subiamily wise ant morphospecies

4.1. Species richness

Four subfamilies (Myrmicinae, Formicinae, Ponerinae and Pseudomyrmicinae), 17 genera (Camponotus sp, Polyrhachis sp, Oecophylla sp, Paratrechina sp, Nylanderia sp, Aphaenogaster sp, Crematogaster sp, Pheidole sp, Monomorium sp, Catalacus sp, Lophomyrmex sp, Tetramorium sp, Leptogeny sp, Brachyponera sp, Odontoponera sp, Odontomachus sp, and Tetraponera sp) are reported. Formicinae bear five genera with 18 morphospecies followed with Myrmicinae with seven genera and nine morphospecies, Ponerinae with four genera and seven morphospecies and Pseudomyrmicinae with single genera and twomorphospecies(Table 1).
Table 1:Ant genera reportedirom the study area

S.N	Sub-Family	Genus	Morphospecies
1.	Formicinae	Camponotus Mayer, 1861	12
		Polyrachis Smith,1857	2
		Nylandria Forel, 1894	1
		Oecophylia Smith, 1866	1
		Paratrechina Fisher, 2014	2
2.	Myrmicinae	Pheidole Westwood, 1839	2
		Aphenogaster Mayar,1853	
		Crematogaster Lund,1831	2
		Tetramorium Mayr,1855	1
		Lophomyrmex Emery,1892	1
		Catalacus Smith, 1853	1
		Monomorium Mayr,1855	
3.	Poneriane	Brachyponera Emery, 1900	2
		Leptogeny Roger, 1861	2
		Odontoponera Mayr, 1862	2
		Odontomachus Latreille,1804	1
4	Pseudomyrmicina e	Tetraponera Smith, 1852	2
	Total	17	36

4.2. Diversity of ants in different habitats

The study was conducted in three sites: forest, cultivated land and grassland. In forests, species richness (S), Shannon's index of species diversity (H) and evenness index (J) were calculated as: $\mathrm{S}=17, \mathrm{H}=1.00$ and $\mathrm{J}=$ 0.36 . The maxmum number of ant individuals collected at this site
was Camponotous sp1, Aphaenogaster sp, Odontoponera sp1, Odontomacus sp and Crematogaster sp(Appendix III).
In cultivated land, species richness (S), Shannons̀ index of species diversity (H) and evenness index (J) were calculated as $\mathrm{S}=15, \mathrm{H}=0.97$, and $\mathrm{J}=0.35$. The number of ant individuals collected at this site was Polyrachis sp1, Camponotous sp. 12 were most abundant species at this site (Appendx III).
In grass land, species richness (S), Shannon's index of species diversity (H) and evenness index (J) were calculated as $\mathrm{S}=16, \mathrm{H}^{\prime}=0.96$ and $\mathrm{J}=0.34$. The number of ant individuals collected at this site was Catalacus sp1, Tetraponera sp1 were most abundant species at this site. (Appendix III).
In one- way ANOVA it is proved that significant difference between ant species composition in various habitat at $p<0.05$ level of significance (p-value $=0.002$), F - value (16.9)

Figure 3: Ants abundance reported in different habitats

Figure 4: Subfamilies,genus, morphospecies of ants in forests, cultivated land and grassland.

4.3. Variation of ants in winter and spring season

This research was done in winter and spring season four sub -families, 17 genera and 36 morphospecies. Four subfamilies 16 genera, 32 morphospecies were collected in spring season and three subfamilies, 12 genera, 20 morphospecies were collected in winter seasons. Maxmum species richness (20) was recorded in spring as compared to winter (16). Similarly, the Shannon index of species richness $\left(\mathrm{H}^{\prime}\right)$ was recorded as the highest during spring season as $\mathrm{H}^{\prime}=1.06$ and winter $\mathrm{H}^{\prime}=0.93$ as a greater number of individuals was collected in spring (902), and winter (448). Higher species richness (16) in forests was recorded in spring as
compared to winter (15)(Table 2). The ANOVA comparisons of ant species richness across the two seasons detected significant difference between the seasons at p<0.005 level of significance (pvalue $=0.015$), F-value (16.9).

Table 2: Ant diversity reported in two seasons with habitats

Seasons	Habitats	Species richness(S)	Shannon diversity Index (H’)	Evenness index (J)	No. of ants collected
winter	Forests	15	0.59	0.22	226
	Cultivated land	16	0.55	0.20	98
	Grassland	15	0.56	0.20	124
	Forests	16	1.00	0.36	473
	Cultivated land	17	0.59	0.21	211

4.4. Variation of ants collected through different methods

Pitfall method collected maxmum ant ind ividuals (946) followed by Bait method (347) and Opportunistic hand collection (57)(Figure 5). Majority of ants collected by pitfall method included Camponotus sp1, Camponotous sp2, Camponotous sp3, Camponotous sp4, Camponotus sp5, Camponotous sp8, Camponotus sp10, Aphaenogaster sp , Polyrachis sp, Leptogeny sp, Brachyponera sp, Pheidole sp2, Odontomachus sp and Odontoponera sp. Camponotous sp6, Camponotus sp7, Camponotous sp9, Camponotus sp12, Polyrachis sp
,Nylandria sp, Paratrechina sp, Aphenogaster sp, Crematogaster sp1, Tetramorium sp, Lophomyrmex sp, Monomorium sp, Leptogeny sp, Brachyponera sp were collected through bait traps and Catalacus sp, Oecophylla sp and Tetraponera $s p$ were collected through hand collection only.

Figure 6: Abundance of ants collected in different samping methods.

5. DISCUSSIONS

5.1 Species richness

The present study recorded 1350 ant specimens representing four subfamilies (Formicinae, Myrmicinae, Ponerinae and Pseudomyrmicinae), 17 genera and 36 morphospecies in Raibira(Table 2). Out of 17 genera most speciose genus was Camponotus (12 morphospecies) followed by Crematogaster , Pheidole ,Leptogeny, Odontoponera and Brachyponera with two morphospecies were more diverse genera and with single specimen. This result somehow agree with the study that recorded phedole,crematogaster and Camponotus are the most prevalent genera globally (Wison, 1976; Ryder WWikey et al . 2010).In this study, camponotus ,aphenogaster,crematogaster and Leptogenywere the most abundant genera,occurring almost 89% oi samples out of the five subfamilies formicinae was the most dominant family in term of species richness Hazara(2018).Similar result was documented from Cerrado forest by Andrade and Del- Claro (2007) theydocumented Camponotous and Pheidole were the most common genera. Camponotous was the most frequent occurring species visual everywhere. These are called carpenterantsbecause oftheirnestingbehaviours (ChavanandPawar,2011). Abundance of Myrmicinae is more due to availability of food and nesting sites and they have high potential to adopt varying environmental conditions. Theyare foundindifferenthabitats, Pheidole nests in soil while Crematogaster nests on dead wood of trees (Anderson, 2000). Only genus Tetraponera represents Pseudomyrmicinae has been recorded. These are solitary forages and make them in dead woods and rotten logs (Chavan, 2014).

5.2 Ant diversity comparison among habitats

Study show that considerable variation of the an t diversity in habitat wise i.e forest was slightly richer in ant species (35morphospecies) than the cultivated land (32morphospecies) and the grassland (30 morphospecies)(Figure 5). This finding was agreed with the Fischer and Robertson (2002), recorded 19 species from grassland and 31 species from forest in Plateau of Madagascar. Species recorded by Fischer and Robertson (2002) was highly maxmum in compared to the verdict because they used five methods of data collection. Species composition in grassland and cultivated land was different from forest due to the absent of higher vegetation line (Fischer and Robertson, 2002). Calcattera et al. (2010) recorded higher
species 39 in forest and 29 in grassland of Argentina that was parallel with Rajbiraj outcome. Similarly, in Amravali City of India, Chavan and Pawar (2011) recorded 30 species of ants in forest, 22 species of antsinhumansetlementand15speciesingrasslandthatwasagree with this finding. Lower species richness and evenness of ants in differ ent habitats is due to disturbance(Bruhl etal.2003). Similar resultwas documentedirom Georgiaby Graham etal. (2004). They documented that highly disturbed areas had fewer species and greater number of ants than moderately or lightly disturbed areas. Leal et al. (2012) found fragment size and tree density were the most important variables predicting species richness and functional diversity. Study area, anthropogenic disturbance in cultivated land mostly occurred during tilling and harvesting period.Similarly in grassland livestock disturbance occurred. Due to this reasoningrassland, least number of morphospecieswascollected in comparison to forestand cultivatedland. Grazingis also acauseto reduce and affectedthefaunal composition, includin g ant species in grassland Hays and Holl (2003) that is similar to result of study. Deblauwe and Dekoninck (2007) reported the ant species richness generally increases with increase in vegetation. By the similarity measurement, forest and grass land (0.86) showed the most similar ant species diversity. It is possible that the places of forest may coexist of similar microhabitat types occuring in grassland. Similar result with the study of ants in Lahachowk, Kaski, Nepal (Adhikari et al. 2020).

5.3 Seasonal variation

The study was carried in winter and spring season. Maximum species richness (20 morphospecies) was recorded in spring compared to winter. Study shown considerable variation of the ant community due to seasonal variation. This conclusion was mostly compared to the conclusion described by some of the researchers as for seasonal pattern of ants was studied in five seasons in Punjabshivalik range of North -West Himalaya which conclude the only 5 species were recorded during winter season and 40 species during summer season (Bharti et al. 2009).Similarly ,composing and activity patterns of ants was observed by various methods in three different habitats in summer and winter in the semi -arid Karoo, south Africa which showed the result that ant abundance was greater during summer than winter (Lindsey and skinner,2001). Species richness varied in different seasons temperature and moisture availability (Adhikan 2016). (RicoGray et al. 1998). They alter and gradually halt their
activities and process to hibernation due to cold as temperature and moisture availability decreases in winter and gradually increased from spring. Thus species richness is low in winter in comparison to spring season correlated with outcome result. Anusuyadevi and Sevarkodiyone (2018). found that species richness was high in dry season than wet season fewer species and fewer individuals were collected at drier, sunnier sites. He found that moisture availability is an important contributes to these patterns of among site an d among season variation as well as moisture availability may affect the distribution of suitable nest sites. As the weather warmed the activity increased in different rates in different habitats, depending upon the temperature and moisture availability (Le vings, 1983).

5.4 Effectiveness of ant collection methods

The study has shown variation in the total individuals of the ants collected Pitfall method was the most successful method of ant collection (946) followed by bait method (374) and then hand collection method (57)(Figure7). Thisstudywas covalentto the study doneuponthe ant by using different techniques in eight different localities in the Venezuelan Llanos, Savannas Romero and Jaffe(1989). The bestresult of antcollection was obtained by a combination of hand collecting and pitfall traps. It was concluded the pitfall method was the most successful method with 28 genus and 91 species Gadagkar et al.(1993).Majer and Delabie (1994) compared leaf litter and soil and fauna which had shown that a combination of pitfalls, litter shifting, baiting and hand sorting increase the efficiency and of specimens captures in comparison to any single method by itself. Martelli et al (2004). Litter sifting yielded more individuals, more species and more occurrences of most species than pitfall traps, but neither method capturedall species.Barechetal. (2016)sampledantsinthesaline Dry LakeChott El Hodna in Alergia, a Ramsaar Conservation Weiland. More species of ants were collected by pitfall trapping (20) than hand samping (15). This result was correlated withthe study. In the same way, composition and activity patterns of ants was observed by various methods (pitfall method, quadrant method and dig sampling method) in three different habitats in summe rand winter inthe semi-arid Karoo, South Africa which concluded that pitfall method recorded the most species as compared to dig sampling method or quadrant sampling (Lindsey and Skinner,2001). So, pitfall traps was the easiest and most effective method as these traps were fully opened for whole day and night and highest number of ant species were collected

6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The present study has been carried out to explore the species richness, species diversity, evenness and abundance of ants in Rajbiraj. Altogether four subfamilies, 17 genera and 36 morphospecies were recorded. This study concludes that subfamily Myrmicinae and Formicinae were the dominant among the other recorded sub-families. This study showed that the most preferred habitat was forestareainhabiting largenumber of morphospeciesfollowed by Cultivated land and grass land. In case of Season, spring season was the most diverse (20 morphospecies) in comparison to winter season (16 morphospecies). Likewise, Shannon diversity index was highest in spring season. Pitfall traps was the most effective technique for ant collection over bait traps and manual collection in all habitats and seasons. This result indicated ,spring season and forest were the best time and habitat for ant fauna respectively.

6.2 Recommendations

Based on the results following are the recommendations.
The research was carried out for two seasons so; in depth, research should be designed to cover more season within a year and in between year.
Moreover, continuous monitoring of the ant fauna is necessary so that any changes in the environment that may occur in future can be identified and appropriate measures can be taken to counterthem.
Inthis researchthreemethodswereusedfor datacollection,formoreexploration of ants' other effective method leaf litter shifting could be used.
The taxonomic work of present study was done up to genus, further the taxonomic study could be extended up to species level.

7. REFERENCES

Adhikari, S. 2016. Diversity of ground dwelling ants (Hymenoptera: Formicidae) in Lahachowk VDC Kaski, Nepal. M.Sc. Thesis. Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal.
Adhikari, S., Rai, D., Gurung, S. and Subedi, I.P. 2020. Diversi ty of ground dwelling ants (Hymenoptera: Formicidae) in Lahachowk VDC Kask, Nepal. Proceedings of first National Conternce on Zoology (NCZ 2020), 28-30 November 2020. Biodiversity in Changing World, Central Department of Zoology and Alumni Assosciation of CDZ 267-278p.
Adhikari, T.R., Shakya, S.R., Adhikari, S. and Subedi, I.R. 2020. Diversity of ground dwelling ants (Hymenoptera:Formicidae) in Phuchowk hill, Lalitpur, Nepal. Tribhuwan University Journal 35(1):11-20
Agosti, D., and Alonso, L.E. 2000. The all protocol: A standard protocol for the collection of ground dwelling ants In Agosti, D., Majer J.D., Alonso L.E., et al. 2000. Albrecht, M and Gotelli, N.J. 2001. Spatial and temporal niche partitioning in grassland ants. Oecologia 126: 134-141.
Agosti, D., Majer, J., Alonso, L. and Schulz, T. 2000. Samping ground dweling ants case studies from world's rain forests Perth, Australia. Curtain University School of Environmental Biology2000-04.
Alonso, L.E. 2000. Ants as indicators of diversity. In Ants: Standard method for measuring and monitoring biodiversity, Agosti, D., Majer, J.D., Alonso, L.E. and Schultz, T.R. (eds.). Smithsonian Institution Press, W ashington, U.S.A. p. 80-88.
Andersen, A.N. 1990. The use of ant communities to evaluate change in Australian terrestrial ecosystems: A review and a recipe. Proceedings of the Ecological Society of Australia 16:347-357.
Andersen, A.N., Hoftman, B.D., Muller, WV.J. and Griffiths, A D. 2002. Using ants as bio indicators in land management: simplifyin g assessment of ant community responses. Journal of applied Ecology 39:8-17
Andersen, A. N., Hoftman, B. D. and Somes, J. 2003. Ants as indicators of mine site restoration: communty recovery at one of eight rehabilitation sites in central Queensland. Ecological Management and Restoration 4 (1): 12-19

Andrade, T. and Del- Claro, K. 2007. Diversity of ground dwelling Ants in Cerrodo: An analysis of temporal Variaions and Distinctive Physiognomies of Vegetation (Hymenoptera: Formicidae). Sociobiology 50(1):1-14.
AntWeb 2021. California Academy of Science. Onine at https://www.antweb.org accessed on $1^{\text {st }}$ October,2021.
AntWik 2021. Nepal ants. http://www.antwik.org/wiki/Nepal accessed on 1st October, 2021)
Anusuyadevi, P. and Sevakodiyone, S.P. 2018. Diversity of ground dwelling ants (Hymenoptera: Formicidae) in Anjac Campus, Savakis, Tamil Nadu. Global Journal of Zoology.
Barech, G., Khadi, M. Zane, S., Zedam, A ., Doumandi; S., Sharaf, M. et al. 2016. A first checklist and diversity of ants (Hymenoptera: Formicidae) of the Saline Dry Lake Chott El Hodnain Algeria, a Ramsaar Conservaion Welland. African Entomology 24:143-2152.
Basu, P. 1997. Seasonal and spatial patterns in ground foraging ants in a rain forest in the \mathbf{W} estern Ghats, India. Assosciaion for Tropical Biology and Conservaion 29(4):489-500.
Bestemeyer, B.T., 2000. Field techniques for the study of ground -dweling ant: an overview, description and evaluation In: Agosti, D., Majer, J.D., Alonso, L., and Shultz, T.R. (eds.) Standard method for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, D.C.p.122-144.

Bharti, H. and Subedi, I.P. 2020.Ants of Nepal. https://ww w.antweb.orgtaxonomic Page.do?rank=subiamily\&country Name=Nepal. accessed 18 august 2020.
Bharti, H. and Sharma, Y.P. 2009. Diversity and abundance of ants along an elevational gradientinJammu Kashmir Himalayan-I. Halteres 1(1):10-24
Bharti, H., Sharma, Y.P. and Kaur, A. 2009. Seasonal patterns of ants (Hymenoptera: Formicidae) in PuniabShivalik. Halteres 1(1):36-47.
Boton, B. 1994. Identification Guide to the Ant Genera of the Word. Harvard University Press, Cambridge,222p.
Bolton, B. 2020. AntWeb. California Academy of Science. https://www.antweb.org. accessed on 20August,2020.

Botion, B., 2021. An online catalog of the ants of the world. https://www.anticat.org. accessed on $3^{\text {rd }}$ January, 2021.
Boulton, A.M., Davies, K.F. and Ward, P.F. 2005. Speci es richness, abundance and compositionof ground-dwelling ants in northern California grasslands: role of plants, soil, and grazing. Entomological Society of America 34(1): 96-104.
Calcaterra, L.A., Cuezzo, F., Cabrera, S.M., and Briono, J.A. 2010. Ground a nt diversity (Hymenoptera: Formicidae) in the lberas Nature Reserve, the largest wetland of Argentina. Entomological Society of America 103(1):71-83.
Chavan, A and Pawar, S.S. 2011. Distribution and diversity of ant species (Hymenoptera: Formicidae) in and around Amravali City of Maharashtra, India. W ord Journal of Zoology 6 (4): 395-400.
Chavan, R. 2014. Diversity of Ant (Hymenoptera: Formicidae) from undisturbed and disturbed habitats of Great Indian Bustard Widlife Sanctuary. International Journal of Scientific Research 2277-8179.

Colingwood, C.A. 1970. Formicide (Hymenoptera: Aculeate) from Nepal. Khumbu Hima 3(3):371-387.
Deblauwe, I. and Dekoninck, W 2007. Diversity and distribution of ground -dwelling ants in a lowland rainforest in Southeast Cameroon. Insects Sociaux 54:334-342.

Defoliart, G.R. 1999. Insects as food: why the western altitude is important. Annual Review of Entomology 44:21-50.
De-Toro, L., Ribbons, R.R. and Pelini, S.L. 2012. The little things that run the word revisited: a review on ant mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News 17:133-146.
Fisher, B.L. 2004. Diversity patterns of ants (Hymenoptera: Formicidae along an elevatioal gradient on Mounts Doudou in southwestern Gabon. California Academy of Sciences, Memoir 28:269286.

Fisher, B.L. and Robertson, H.G. 2002. Comparison and origin of forest and grassland ant assemblages in the high plateau of Madagascar (Hymenoptera: Formicidae). Biotropica 34:155-167.

Forel, A. 1906. Les fourmis del Himaalaya. Bulletin de la Societe Vaudoise. des Sciences .Naturelles. 42: 79-94.

Forys, E.A. and Allen, C.R. 2005. The impacts of sprawl on biodiversity: the ant fauna of the lower Florida Keys. Ecology and Society 10(1): 1-25.
Gadagkar, R., Nair, P., Chandrashekara, K. and Bhat, D.M. 1993. Ant species richness and diversityinsomeselected localities in WesternGhats, India. Hexapoda 5(2):79-94.
Graham, J.H., Hughie, H.H., Jones, S., Winn, K., Krzysik, A.J., Duda J.J., et al. 2004. Habitat disturbance and the diversity and abundance of ants (Formicidae) in the southeastern Fall -Line Sand hills. Journal of InsectScience 4(1):30.
Guenard,B. 2013.Anoverview oftheSpecies andEcological Diversity of Ants. In: eLS.John Wiley and Sons, Ltd: Chichester. Doi: https://doi.org/10.1002/9780470015902 a0023598. Hayes ,G.F .,and Holl, K.D. 2003.Cattle grazing impacts on annual forbs and vegetation composition of mesic grassland of California. Conservation biology,17:1694-1702.
Hazra, K. 2018. Diversity of ants in two different sites at Contai Municipality, Purba Medinipur, West Bengal, India. International Journal of Creative Researches Thoughouts (IJCRT)6(2):566-571.
Holdobler, B. and Wilson, E.O. 1990. The ant. Harvard University Press, Cambridge, Massachusetts.
Ipser, R.M., Brinkman, M.A., Gardner, W.A and Peeler, H.B. 2004. A survey of ground dwelling ants (Hymenoptera: Formicidae) in Georgia. Florida Entomological Society 87(3):253-260.
Jory, T.T. and Feitosa, RM 2020. First survey of the ants (Hymenoptera: Formicidae) of Piaui: filling a maiorgapaboutantdiversityin Brazil.Pap. AvulsosZool60:14
Kaspari, M and Majer, J.D. 2002. Using ants to monitor environmental cha nges. In: Agosti, D., Majer, J.D., Alonso, L. and Shultz, T.R. eds. Standard method for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, D.C.pp89-98.
Kenne, M., Mony, R., Tindo, M., Nijaleu, L.C.K., Orivel, J., Rendus, C. , et al. 2005. The predatory behavior ant species in its native range. Comptres Rendus Biologies 328 (10-11): 1025-1030.
Khan, M.R. 2018. Diversity of ants (Hymenoptera: Formicidae) in a college campus of Kariat city, District Ahmednagar, Maharashtra, Indi a. International Journal of Researches in Biosciences, Agriculture and Technology 6(2):182-186.

Lach, L., Tillberg, C.V. and Suarez, A.V. 2010. Contrasting effects of an invasive ant of a native and aninvasive plant. Biological invasions 12 (9):3123-3133
Lessard, J.P., Dunn, R.R., Parker, C.R. and Sanders, N.J. 2007. Ranity and diversity in Forest ant assemblages of Great Smoky Mountans Naional Park. Eage Hill Institute 6(2): 215-228. Levings, S.C. 1983. Seasonal, annual and among-site variation in the ground ant community of a deciduous tropical forest: some causes of patchy species distributions. 53(40):435-455.
Lindesy, P.A. and Skinner, J.D. 2001. Ant composition and activity patterns as determined by pitfall trapping and other methods in three habit ats in the semi-arid Karoo. Journal of Aid Environments 48(4):551-568.
Majer, J. D. 1983. Ants: bio-indicators of mine site rehabilitation, land -use and land conservation. EnvironmentManagement 7: 375-383.
Majer, J.D. 1990. The abundance and diversity of arboreal ants in Northern Austraia. Biotropica 22 (2):191-199.
Maier, J.D., 1997. The use of pitfall traps for sampling ants - a critique. Memores of the Museum of Victoria 56(2):323-329.
Majer, J.D. and Delabie, J.H.C., 1994. Comparsons of the ant comm unities of annually inundated and terra firme forests at Trombetas in the Brazillian Amazon. Insectes Sociaux 41 (4):343-359.

Mahaakshmi, B.R. and Channaveerappa, H. 2016. Diversity of ant species (Hymenoptera: Formicidae) in the campus of Maharani's science college for women: a mini model of habitat persistence. International Journal of Pure and Appled Zoology 4(3):277-281.
Manikandan, B., Anusuyadevi, P. and Sevarkodiyone, S.P. 2018. Diversity and abundance of ants (Hymenoptera: Formicidae) from Thiruthangal, Sivakasi (Taluk), Tamil Nadu. International Journal of Agricultural Science and Food Technology 4(1):1-10
Martelli, M.G., Ward, M.M. and Fraser, WA. 2004. Ant diversity samping on the Southern Cumberand Plateau: a comparson of liter sititing and pitfall trapping. Eage Hill Institute 3(1): 113-126. Neupane, P. and Subedi, I.P. 2018. Ant Diversity in Muhan Pokhari area of ShivapuíNagariun National Park, Kathmandu, Nepal. Journal of Natural History Museum 30:180-191.

Olson, D.M. 1991. A comparison of the efficacy of litter sifting and pitfall traps for samping leaf litter ants (Hymenoptera: Formicidae) in a tropical wet forest, Costa Rica. Biotropica 23(2): 166-172.
Pokhrel, P.R. (2020). Ant diversity along an elevational gradient in Champad evi Hill, Central Nepal. M.Sc. Thesis. Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal. Radchenko, A.G. and Emes, G.W. 1999. Taxonomic revision of the ritae species -group of the genus Myrmica(Hymenoptera: Formicidae). VestinikZopologii 33(3):27-46.
Ribas, C.R., Schoereder, J. H., Pic, M andSoares, S.M. 2003. Tree heterogeneity, resource availability and larger scale processes regulating ant species richness. Australian Ecology 28: 305-314.
Rico- Gray, V., Garcia- Franco, J.G., Palacios- Rios, Castelazo, C., Parra- Tabla, V., and Navarro, J.A., 1998. Geographical and seasonal variation in the richness of ant - plant interactions in Mexico. Biotropica 30 (2), 190-200.
Robertson, H.G. 2002. Comparison of leaf litter ant communities in woodlands, lowland forests and montane forests of north-eastern Tanzania. Biodiversity and Conservation 11:1637-1652.
Romero, H;Jaffe, K (1989) A comparison of methods for sampling ants (Hymenoptera:Formicidae) in savannas.Biotropica 21(4):348-352.
Ruiz, G.B. and Ahrendts, M.B. 2020. Diversity of Ants (Hymenoptera: Formicidae) inside and outside hives of the Western Honey bee Apis mellifera (Hymenoptera: Apidae), Jujuy, Argentina. ChileanJournal of Agricultural andanimalsciences, 36(1)
Ryder Willkie, K. T., Mert, A.L. and Traniello, J.F.A. 2010. Species diversity and distribution patterns of the Ants of Amazonian Ecuador. PloS ONE 5(10):e13146.
Samson, D.A., Ricckart, E.A., Gonzales, P.C. 2006. Ant diversity and abundance along an elevational gradient in the Phillipines. Biotropica 29:349-363.
Sabu, T.K., Vineesh, P.J. and Vinod, K.V.2008. Diversity of forestlitter -inhabiting ants along elevations in the W ayanad region of the Western Ghats. Journal of Insects Science 8:69 Santoandre, S., Filloy, J., Zurita, G.A. and Bellocq, M.l. 2019. Ant taxonomic and functional diversity show differential response to plantation age in two contrasting biomes. Forest Ecology and Management 437:304-313.

Santos, M.N., Delabie, J.H.C. and Queiroz, J.M. 2019. Biodiversit y conservation in urban parks: a study of ground- dwelling ants (Hymenoptera:Formicidae) in Rio de Janerio City. Uraban Ecosystem 22:927-942.Doi:https://doi.org/10.1007/s11252-019-00872-8
Shannon, C.E., and Weiner, W 1949. The mathematical theory of commu nication. University of Illinois Press. Urban.
Sorenson, T. 1948. A method of establishing group of equal amplitude in plant society based on similarity of species content. K. Danske Vidensk, Selsk 5:1-34.
Subedi, I.P. 2021. Diversity and distribution of forest ants (Hymenoptera: Formicidae) in Nepa: Implicationsforsustainableforestmanagement, Insectsp1-14.
Subedi, I. P. and Budha, P. B. 2020. Diversity and distribution patterns of ants along elevational gradients. NepaleseJournal of Zoology 4(1):44-49.
Subedi, I.P., Budha, P.B., Bharti, H. and Alonso, L. 2020. An updated checklists of Nepalese ants (Hymenoptera: Formicidae), Zookeys 1006:99-136.
Sunilkumar, M., Shrihari, K.T., Nair P., Varghese,T. and Gadagkar, R. 1997. Ant species richness at selected localities of Banglore.Insect Environment, 3(1):3-5.
Tadu, Z., Djeto-Lordon Yede, C., Messop Youbi, E.B., Fomena, A and Babin, R. 2014. Ant diversity in different cocoa agro forest habitats in the centre region of Cameroon. Entomological Society of Southern Africa 22(2):388-404.
Turner, E.C. and Foster, WN 2009. The impact offorest conversion to oil palm on arthropod abundance and biomass in Sabah, Malaysia. Journal of Tropical Ecology, 25:23-30.
Underwood, E.C. and Christian, C.E. 2009. Consequences of prescribed fire and grazing on grasslandandcommunities.Entomological Society of America 38(2):325-332.
Wetterer, J.K (2017).Geographical distribution of the weather ant (Oecophylla smaragdina). Asian Myrmecology 9:1-12.
Whittord, W.G. 1978. Structure and seasonal activity of Chihuahuan desert ant communites. InsectsSociaxus 25:79-88.

Wilson, E.O. 1976. Which are the most prevalent and genera? Studia Entomological 19: 187200.

8. APPENDICES

APPENDIX I: Photo plate of representative genus recorded in study area

Catalacus(Myrmicinae)
Odontoponera(Ponera)

Appendix II: Ant Genera with Shannon index reported in the Research

S.N	Sub-family	Genus	No of ants	Shanno n diversity index
1.	Formicinae	Camponotous sp1	105	0.19864
2.		Camponotous sp2	90	0.36524
3.		Camponotous sp3	75	0.36709
4.		Camponotous sp4	37	0.30102
5.		Camponotous sp5	16	0.1917
.		Camponotous sp6	30	0.27293
7.		Camponotous sp7	28	0.2636
8.		Camponotous sp8	45	0.3257
9.		Camponotous sp9	60	0.35509
10.		Camponotous sp10	35	0.29367
11.		Camponotous sp11	16	0.1917
12.		Camponotous sp12	8	0.12129
13.		Polyrachis sp1	58	0.35227
14.		Polyrachis sp2	37	0.30102
15.		Nylandria sp1	73	0.36635
16.		Oecophylia sp1	20	0.21915
17.		Paratrachina sp1	48	0.3332
18.		Paratrachina sp2	64	0.35981
19.		Pheidole sp1	39	0.30787
20.		Pheidole sp2	34	0.2898
21.		Aphenogaster sp1	35	0.29367
22.		Crematogaster sp1	32	0.28165
23.		Crematogaster sp2	8	0.12129
24.		Tetramorium sp1	60	0.35509
25.	Myrmicinae	Lophomyrimex sp1	45	0.3257
26.		Catalacus sp1	2	0.04304
27.		Monomorium sp1	50	0.33772
28.		Brachyponera sp1	26	0.25361
29.		Brachyponera sp2	19	0.21267
30.	Ponerinae	Odontoponera sp1	31	0.27737
31.		Odontoponera sp2	24	0.24291
32.		Odontomachus sp1	33	0.2858
33.		Leptogeny sp1	28	0.2636
34.		Leptogeny sp2	27	0.25869
35.		Tetraponera sp1	9	0.13158
36.	Pseudomyrmicin ae	Tetraponera sp2	3	0.05898

Appendix III: Ants reported in different habitats

S.N.	Species	Forests	Shanno \mathbf{n} index	Cultivate \mathbf{d} land	Shannon index	Grassland	Shanno n index
1.	Camponotous sp1	44	0.17408	30	0.22642	31	0.21762
2.	Camponotous sp2	49	0.18631	17	0.15955	24	0.18644
3.	Camponotous sp3	23	0.11234	27	0.21299	25	0.19122
4.	Camponotous sp4	23	0.11234	8	0.0946	6	0.07093
5.	Camponotous sp5	9	0.05604	4	0.05627	3	0.04155
6.	Camponotous sp6	19	0.098	6	0.07654	5	0.06177
7.	Camponotous sp7	14	0.07832	5	0.06673	9	0.09573
8.	Camponotous sp8	20	0.10169	18	0.16561	7	0.0796
9.	Camponotous sp9	36	0.15276	12	0.12615	12	0.11754
10.	Camponotous sp10	17	0.09039	7	0.0858	11	0.11054
11.	Camponotous sp11	8	0.05116	3	0.045	5	0.06177
12.	Camponotous sp12	4	0.02955	4	0.05627	0	-
13.	Polyrachis sp1	26	0.12243	15	0.14686	17	0.1492
14.	Polyrachis sp2	25	0.11913	5	0.06673	7	0.0796
15.	Nylandria sp	39	0.16103	16	0.15331	18	0.15497
16.	Oecophylia sp	11	0.06534	5	0.06673	4	0.05203
17.	Paratrachinas p1	21	0.1053	14	0.14019	13	0.12429
18.	Paratrachina sp2	31	0.13818	13	0.1333	20	0.16603
19.	Pheidole sp1	23	0.11234	7	0.0858	9	0.09573
20.	Pheidole sp2	22	0.10885	5	0.06673	7	0.0796
21.	Aphenogaster sp	22	0.10885	8	0.0946	5	0.06177

22.	Crematogaste r sp1	17	0.09039	8	0.0946	7	0.0796
234.	Crematogaste r sp2	6	0.04084	2	0.03262	0	-
24.	Tetramorium sp	29	0.13203	16	0.15331	15	0.13714
25.	Lophomyrimex sp	27	0.12568	5	0.06673	13	0.12429
26.	Catalacus sp	0	-	2	0.03262	0	-
27.	Monomorium sp	27	0.12568	12	0.12615	11	0.11054
28.	Brachyponera sp1	15	0.08244	4	0.05627	7	0.0796
29.	Brachyponera sp2	9	0.05604	2	0.03262	8	0.08784
30.	Odontoponer a sp	22	0.10885	4	0.05627	5	0.06177
31.	Odontoponer a sp2	14	0.07832	3	0.045	7	0.0796
32.	Odontomachu s $s p 1$	12	0.06978	8	0.0946	13	0.12429
33.	Leptogeny sp	14	0.07832	7	0.0858	7	0.0796
34.	Leptogeny sp2	14	0.07832	5	0.06673	8	0.08784
35.	Tetraponera sp	5	0.03534	2	0.03262	2	0.03007
36.	Tetraponera sp2	2	0.01676	0	-	1	0.01706

Appendix IV: Data analysis of two season

Diversity index/ Seasons	Spring	Winter
Species richness (S)	20	16
Shannon Diversity (H)	0.9350	1.0694
Evenness Index (J)	0.3372	0.4644
Number of ants collected	902	448

Appendix V: Ant collected from specific collection methods

S.N.	Season \rightarrow	Winter			Spring		
	Site						
		Forests	Cultivate land	Grass land	Forests	Cultivate land	Grass land
1	Componotous sp1	P,B,H	P,B	B	P, B	P,B	P,B,H
2	Componotous sp2	P,B	B	H	P,B,H	B	P,B,H
3	Componotous sp3	P	B,H	P,B	B	H	P,B
4	Componotous sp4		B	H	PB	P,B,H	H
5	Componotous sp5		P,B,H	P,B	B	H	
6	Componotous sp6	P,B,H	H	P,B	B,H	P,B	
7	Componotous sp7		P,B	H	P,B,H	B,H	H
8	Componotous sp8	P	P,B		P,B	H	H
9	Componotous sp9				P,B	B,H	H
10	Componotous sD10	P,B,H		P	B	P,B	B
11	Componotous				H,B		
12	Componotous sp12	P,B		H		P,B	P,B
13	Polyrachis sp1	P,B,H	P,B,H		P, B	B,H	P,B,H
14	Polyrachis sp2	P	P,B		B,H	P,B,H	H
15	Nylandria sp1				P,B,H	P,B,H	B,H
16	Oecophylia sp1		H			P,H	
17	Paratrechina sp1	P,H	P,B,H			P,B,H	P,B
18	Paratrechina sp2		P,B			H	
19	Pheidole sp1	P,B	P,H	H		P,B,H	P,B

20	Pheidole sp2	P,B,H	P,B		P,B,H	P, B	
21	Aphenogaster sp1		P, B	P,B	P,B,H	P, B	B,H
22	Crematogaster sp1	P,B,H			P,B,H	P,B,H	B,H
23	Crematogaster sp2	P	B		P,B,H	B	P,B
24	Tetramorium sp1			P,B,H	B	B,H	B
25	Lophomyrmex sp1	P,B,H	P,B	P,B		P,B,H	B,H
26	Catalacus sp1		H	H		H	H
27	Monomorium sp1	B,H	P,B		P,B,H	B,H	P,B,H
28	Brachyponera sp1	P,B	P,B	B,H		P,B,H	P,B,H
29	Brachyponera sp2		B		P,B,H	B,H	P,B,H
30	Leptogeny sp1			P,B	P,B,H	H	
31	Leptogeny sp2		P,B		B,H	P,B,H	P,B
32	Odontoponera sp1		P,B,H		P,B,H	P,B,H	B,P
33	Odontoponera sp2				P,B,H	B	P
34	Odontomachus sp1	P,B,H	B	B,H	P,B,H	H	P,B,H
35	Tetraponera sp1		H		H	H	
36	Tetraponera sp2		H			H	

