
Tribhuwan University

Institute of Science and Technology

Comparative Study of CAST and TWOFISH algorithm using

various Modes of Operations

Thesis

Submitted to

Central Department of Computer Science and Technology

Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements

For the Master's Degree in Computer Science and Information Technology

By

Sabita Maharjan

Roll No.:118/2070
T.U. Regd. No.: 5-2-33-481-2007

Feb, 2020

Supervisor

Mr. Jagdish Bhatta

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than

listed here have been used in this work.

Sabita Maharjan

Feb, 2020

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Supervisor’s Recommendation

I hereby recommend that this thesis prepared under my supervision by Ms. Sabita

Maharjan titled “Comparative Study of CAST and TWOFISH algorithm using

various Modes of Operations” in partial fulfillment of the requirements for the degree

of MSc in Computer Science and Information Technology be processed for the

evaluation.

Asst. Prof. Jagdish Bhatta

Central Department of Computer Science and Information Technology,

Tribhuvan University,

Kathmandu, Nepal

(Supervisor)

Feb, 2020

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

LETTER OF APPROVAL

We certify that, we have read this thesis and in our opinion it is satisfactory in the scope

and quality as a thesis in partial fulfillment for the requirement of Master’s Degree in

Computer Science and Information Technology.

Evaluation Committee

Asst. Prof. Nawaraj Poudel

Central Department of CSIT

Tribhuwan University

Kirtipur, Kathmandu, Nepal

(Head of Department)

Asst. Prof. Jagdish Bhatta

Central Department of CSIT

Tribhuwan University

Kirtipur,Kathmandu, Nepal

(Supervisor)

Internal Examiner External Examiner

Acknowledgement

I am deeply thankful to my supervisor Asst. Prof. Jagdish Bhatta (Tribhuvan

University) for his generous advice, inspiring guidance and encouragement throughout

my research for this thesis. Without his kind and patient review of this work, it would

have been impossible to complete this study.

I would like to extend my gratitude to Asst. Prof. Nawaraj Paudel (Head of

Department, CDCSIT) and faculties for their guidance and help throughout my Masters

Study and help for the completion of my thesis.

Last but not the least; I would like to express my gratitude to all my family members,

friends and all other people who have helped me directly or indirectly in the completion

of this thesis.

Yours Obediently

Sabita Maharjan

(Msc. Computer Science and Information Technology)

i

Abstract

Encryption is a process to encode a message, file, image or video data (intelligent data)

to convert it into a cipher data (i.e. non-intelligent data). This study is about to encrypt

data (text and image file) to analyze the cipher text which was produced by the given

algorithms (CAST and Twofish) in the scenario of memory consumption and time taken

to encrypt it and vise-versa. Here file encryption is used to encrypt the data file while

storing data in local drive for the security purposes which is achieved by converting data

into cipher data by implementing different versions of CAST and Twofish encryption

algorithm, which is then analyzed through their performance (time and memory)

analysis. CAST encryption and Twofish encryption algorithm are used with block

cipher modes of operations to implement and analyze. ECB (Electronic Code Book),

CBC (Cipher Block Chaining), CFB (Cipher Feedback Mode), OFB (Output Feedback

Mode and CTR (Counter Mode) are the modes of operations used in this study. Text

and image files of different sizes are input for this study and different performance

parameters like PSNR, NPCR, UACI, Histogram, and encryption / decryption time are

used to measure the strength of the algorithms. Based on the analysis done during this

study, it is found that for the image and text data, CAST-128 algorithm is found to be

approximately three times better in comparison with other algorithm on encryption and

decryption time analysis. Similarly Twofish algorithm is found to be better for the case

of throughput analysis for both text and image data. In terms of memory utilization,

Twofish-128 is found to be consuming less memory compared to other algorithms.

Similarly, visual assessment and differential analysis for image data analysis, all the

algorithm seems to be performing best since no difference in original and retrieved

image data. And for the case of statistical analysis, there seems to be no difference in

original and retrieved image histogram.

Keywords: encryption, CAST, Twofish, block modes of operation.

ii

TABLE OF CONTENTS

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1. Introduction ... 1

1.2. Statement of Problem .. 3

1.3. Objective .. 3

1.4. Report Organization .. 4

CHAPTER 2 .. 5

BACKGROUND STUDY AND LITERATURE REVIEW 5

2.1. Background Study ... 5

2.1.1. Encryption and decryption ... 5

2.1.2. File Encryption ... 6

2.1.3. Modes Of Operation ... 7

2.1.4. Block Encryption Modes .. 8

2.1.5. Stream Encryption Modes .. 9

2.2. Literature Review .. 12

CHAPTER 3 .. 18

METHODOLOGY .. 18

3.1. Methodology .. 18

3.2. CAST encryption algorithm .. 19

3.3. TWOFISH encryption algorithm ... 22

3.4. Performance Evaluation Parameters .. 28

3.4.1. Computational analysis .. 28

iii

3.4.2. Differential analysis ... 29

3.4.3. Visual assessment analysis ... 30

3.4.4. Statistical Analysis ... 30

CHAPTER 4 .. 31

IMPLEMENTATION AND ANALYSIS ... 31

4.1. Implementation .. 31

4.1.1. C# programming language ... 31

4.1.2. Microsoft .NET Framework ... 31

4.1.3. Matlab R2018a Overview .. 32

4.2. Test Data Description .. 32

4.3. Analysis ... 33

4.3.1. COMPUTATIONAL ANALYSIS ... 33

4.3.2. Differential analysis ... 50

4.3.3. Statistical analysis .. 51

4.3.4. Visual assessment analysis ... 56

4.4. Result ... 58

CHAPTER 5 .. 60

CONCLUSION LIMITATIONS AND FUTURE RECOMMENDATION 60

5.1. Conclusion ... 60

5.2. Limitations ... 61

5.3. Future Recommendation.. 61

References .. 62

iv

LIST OF TABLES

Table 1: Algorithms’ Settings .. 19

Table 2: NPCR and UACI Measures .. 51

Table 3: Histogram Analysis .. 52

Table 4: PSNR Measures ... 57

v

LIST OF FIGURES

Figure 1: Conventional Encryption Model ... 5

Figure 2: Electronic Codebook (ECB) mode encryption ... 8

Figure 3: Cipher Block Chaining (CBC) mode encryption ... 9

Figure 4: Output Feedback (OFB) mode encryption ... 10

Figure 5: Counter (CTR) mode encryption ... 11

Figure 6: Cipher Feedback (CFB) mode encryption ... 12

Figure 7: Encryption algorithm process ... 18

Figure 8: Flowchart of CAST-128 Encryption ... 20

Figure 9: Flowchart of Twofish Algorithm .. 23

Figure 10: Encryption time analysis for ECB mode for text file .. 33

Figure 11: Encryption time analysis for CBC mode for text file .. 34

Figure 12: Encryption time analysis for CFB mode for text file .. 34

Figure 13: Encryption time analysis for OFB mode for text file .. 34

Figure 14: Encryption time analysis for CTR mode for text file .. 35

Figure 15: Encryption time analysis for ECB mode for image file .. 35

Figure 16: Encryption time analysis for CBC mode for image file .. 36

Figure 17: Encryption time analysis for CFB mode for image file .. 36

Figure 18: Encryption time analysis for OFB mode for image file .. 36

Figure 19: CAST-128 image encryption and decryption time for CTR mode 37

Figure 20: Decryption time analysis for ECB mode for text file .. 37

Figure 21: Decryption time analysis for CBC mode for text file ... 38

Figure 22: Decryption time analysis for CFB mode for text file .. 38

Figure 23: Decryption time analysis for OFB mode for text file .. 38

Figure 24: Decryption time analysis for CTR mode for text file .. 39

Figure 25: Decryption time analysis for ECB mode for image file .. 39

Figure 26: Decryption time analysis for CBC mode for image file .. 40

Figure 27: Decryption time analysis for CFB mode for image file .. 40

Figure 28: Decryption time analysis for OFB mode for image file .. 40

vi

Figure 29: Decryption time analysis for CTR mode for image file .. 41

Figure 30: Throughput for encryption and decryption for ECB mode (Text) .. 41

Figure 31: Throughput for encryption and decryption for CBC mode (Text) .. 42

Figure 32: Throughput for encryption and decryption for CFB mode (Text) .. 42

Figure 33: Throughput for encryption and decryption for OFB mode (Text) .. 42

Figure 34: Throughput for encryption and decryption for CTR mode (Text) .. 43

Figure 35: Throughput for encryption and decryption for ECB mode (Image) 43

Figure 36: Throughput for encryption and decryption for CBC mode (Image) 44

Figure 37: Throughput for encryption and decryption for CFB mode (Image) 44

Figure 38: Throughput for encryption and decryption for OFB mode (Image)...................................... 44

Figure 39: Throughput for encryption and decryption for CTR mode (Image) 45

Figure 40: Memory Utilization Graph for text data in ECB mode ... 45

Figure 41: Memory Utilization Graph for text data in CBC mode ... 46

Figure 42: Memory Utilization Graph for text data in CFB mode ... 46

Figure 43: Memory Utilization Graph for text data in OFB mode ... 46

Figure 44: Memory Utilization Graph for text data in CTR mode ... 47

Figure 45: Memory Utilization Graph for image data in ECB mode ... 47

Figure 46: Memory Utilization Graph for image data in CBC mode ... 48

Figure 47: Memory Utilization Graph for image data in CFB mode ... 48

Figure 48: Memory Utilization Graph for image data in OFB mode ... 49

Figure 49: Memory Utilization Graph for image data in CTR mode ... 49

vii

List of Aberrations

ECB : Electronic Codebook Mode

CBC : Cipher Block Chaining Mode

CFB : Cipher Feedback Mode

OFB : Output Feedback Mode

CTR : Counter Mode

NPCR `: Number of Pixel Change Rate

UACI : Unified Average Change Intensity

PSNR : Peak Signal to Noise Ratio

MSE : Mean Square Error

XOR : Exclusive-OR

USB : Universal Serial Bus

IoT : Internet of Things

AES : Advanced Encryption Standard

DES : Data Encryption Standard

3-DES : Triple- DES

RC2 : Rivest Cipher2

RC4 : Rivest Cipher4

RC5 : Rivest Cipher5

RC6 : Rivest Cipher6

GPU : Graphics Processing Unit

DDoS : Distributed Denial of Service

NVM : Non Volatile Memory

XTS : Cipher Text Stealing

BCM : Block Cipher Mode of Operation

viii

OPC : Output Protection Chain

VHDL : Very High speed integrated circuit hardware Description Language

MDS : Maximum Distance Separable

PHT : Pseudo-Hadamard Transform

MATLAB : Matrix Laboratory

TIF : Tagged Image File

BMP : Bit map

PNG : Portable Network Graphics

JPG/JPEG : Joint Photographic Group / Joint Photographic Experts Group

CPU : Central Processing Unit

NASA : National Aeronautics and Space Administration

CAST : Carlisle Adams and Stafford Tavares

.NET : .Network Enabled Technologies

RAM : Random Access Memory

ECMA : European Computer Manufacturer's Association

ISO : International Standards Organization

XML : extensible markup language

VB.NET : Visual Basic .NET

XEX : XOR Encrypt XOR

1

CHAPTER 1

INTRODUCTION

1.1. Introduction

The development of digital information and telecommunication systems has opened a

wide range of new possibilities which were seized to improve the efficiency of different

sorts of processes. The success of these new technologies can be attributed to a number

of intrinsic advantages of digital systems: digital information is nearly insensitive to

noise, it can be sent over long distances, copied or modified without any loss of quality.

However, the same properties which make digital information systems so attractive

render them particularly vulnerable to a broad range of abuses. Securing digital data is

needed to protect the confidentiality, integrity, authenticity, and availability of data only

to the intended recipient. The only way to secure digital systems without sacrificing

their advantages, is to transform the information in such a way that it protects itself,

independently of how it is transferred or stored. This is more common in banking and

other sectors as well where companies don’t want to disclose their sensitive information

to be hacked or leaked to unauthorized users. So there is a need to encrypt files on a

computer to resist the adversary’s attempts to read the contents of the file. File

encryption provides security for files. This is useful for particularly sensitive files, but

is also useful for application-level transfer of files across an insecure channel such as

email. With the increase in file size, along with security strength, the file encryption

should be of better computational efficiency. Any suitably secure modern symmetric

cipher can be used as part of a file encryption mechanism. File encryption usually uses

block ciphers. [1].

The protection of digital information typically involves at least two distinct problems:

secrecy protection (preventing information from being disclosed to unintended

recipients) and authentication (ensuring that received messages originate from the

intended sender, and were not modified on their way). In cryptology, intended senders

and recipients are distinguished from unintended ones by assuming that they know

some secret pieces of information, called keys. These keys can be shared between the

sender and the receiver, or they can be different, in which case the sender and receiver

2

are also prevented from impersonating each other. In this thesis, we will concentrate on

the first case, called symmetric cryptography. [2]

Symmetric cryptography addresses the problem of secrecy protection by using the

shared secret key to transform the message in such a way that it cannot be recovered

any more without this key. This process is called symmetric encryption. Symmetric

encryption is a form of computerized cryptography using a singular encryption key to

guise an electronic message. Algorithms which perform symmetric encryption are

known as ciphers. The trust in a cipher is merely based on the fact that no weaknesses

have been found after a long and thorough evaluation phase. This explains the

importance of a strong interaction between cryptography, the field which studies

techniques to protect information, and cryptanalysis, which focuses on methods to

defeat this protection. Symmetric encryption is also known as private-key encryption

and secure-key encryption. Due to the better performance and faster speed of symmetric

encryption, symmetric cryptography is typically used for bulk encryption / encrypting

large amounts of data [3].

Based on the paradigm used to process the message, ciphers are typically categorized

into one of two classes: block ciphers and stream ciphers. A block cipher processes the

data blocks of fixed size. Usually, the size of a message is larger than the block size.

Hence, the long message is divided into a series of sequential message blocks, and the

cipher operates on these blocks one at a time. Most block ciphers can work with

different keys and data size. It uses a symmetric key to encrypt data of fixed and very

short length (the block size). In order to cope with data of arbitrary length, the cipher

must be combined with a mode of operation. The mode of operation may also provide

application of the block cipher on a stream of plaintext and make the algorithm more

efficient. On the other hand, the mode of operation may convert the block cipher into a

stream cipher and also to strengthen the effect of the encryption algorithm. Each mode

of operation has its own parameters which are important to provide the necessary

security of the algorithm. [2]

3

1.2. Statement of Problem

Security of information in transmission medium is most prime issue in the research

field. Various security mechanisms like authentication, digital signatures, and

cryptographic algorithms are used to protect messages from unauthorized attacks.

Achieving security with low cost computation is integral part of cryptography.

Maintaining the reliability, security, and discretion of secret information is a critical

issue.

Without use of any block modes of operation, there is high chance of encrypting

identical block of text in the same way which is prone to cryptanalysis. In addition, an

encryption process with less computational efficiency, despite of having higher degree

of security features would be impractical for real time processes. There are many modes

of operation for specific purposes, including network traffic protection, hard drive

encryption, etc. Using modes of operation with symmetric block cipher encryption

provide facilities of encryption of large messages by dividing the message into fixed

block length so that similar block of input will even result varied cipher text. This also

reduces cryptanalysis. This is why they are often used in situations where there is a lot

of data that needs to be encrypted. This is to mask the patterns which exist in encrypted

data. At the same time, determining the level efficiency of particular mode on particular

encryption is significant aspect.

1.3. Objective

The objective of this study is:

- To implement CAST and TWOFISH with ECB, CBC, CFB, OFB and CTR

block modes for file encryption.

- To perform differential, statistical, visual assessment and computational

analyses using the parameters NPCR (Number of Pixel Change Rate), UACI

(Unified Average Change Intensity), Histogram, PSNR (Peak Signal to Noise

Ratio) and encryption/decryption time respectively.

4

1.4. Report Organization

The organization of this thesis is as follows:

Chapter 1 consists of introduction, problem statement and objectives.

Chapter 2 describes about the background study for the research and literature review

of the related work by different authors.

Chapter 3 describes the overview of the methodology of CAST and Twofish algorithm

encryption with different modes of operation.

Chapter 4 describes the implementation of the algorithms and the data set description

together with the experimental result of different techniques and comparison using

different measures.

Chapter 5 contains the conclusions of this research work and the directions for the

future works.

5

CHAPTER 2

BACKGROUND STUDY AND LITERATURE REVIEW

2.1. Background Study

Encryption and decryption, file encryption and block cipher modes of operation are

discussed in background study which are given below:

2.1.1. Encryption and decryption

Encryption is the process of converting normal text to unreadable form. Decryption is

the process of converting encrypted text to normal text in the readable form. [4]

Figure 1: Conventional Encryption Model

Encryption is one of the most reliable methods used to protect data confidentiality and

integrity even since the old days. Data encryption is the process of converting data in

plain text format into a meaningless cipher text by means of a suitable algorithm. Data

decryption is the process of converting the meaningless cipher text into the original

information using keys generated by the encryption algorithms. The process of

encryption and decryption of information by using a single key is known as secret key

cryptography or symmetric key cryptography. In symmetric key cryptography, the

same key is used to encrypt as well as decrypt the data. A secure channel is also required

between the sender and the receiver to exchange the secret key. Two ciphers modes are

adopted by symmetric algorithms: Block ciphers and Stream ciphers. A block cipher is

functioning on fixed-length groups of bits, called blocks, with an unvarying

transformation that is specified by a symmetric key. Feistel structure is adopted by

many block ciphers. Such a structure consists of a number of identical rounds of

processing. In each round, a substitution is performed on one half of the data being

processed, followed by a permutation that interchanges the two halves. The original

key is expanded so that different key is used for each round.

Plaintext Encryption

Decryption Cipher text

6

In Asymmetric key cryptography different keys are used for encryption and decryption.

Asymmetric cryptography refers to a cryptographic algorithm which requires two

separate keys, one of which is secret (or private) and one of which is public. Although

different, the two parts of this key pair are mathematically linked. The public key is

used to encrypt plaintext or to verify a digital signature; whereas the private key is used

to decrypt cipher text or to create a digital signature. Asymmetric encryption techniques

are known to be slower than Symmetric encryption which makes it impractical when

trying to encrypt large amounts of data. Also to get the same security strength as

symmetric, asymmetric must use a stronger key than symmetric encryption technique.

[5]

Symmetric encryption techniques are further classified into Block Ciphers and Stream

Ciphers.

Stream Ciphers

 Stream Cipher algorithms peruse the entire intelligible message and convert each

symbol of the plain text directly into a symbol of cipher text. The symbol is generally

a bit, and the transformation performed is generally exclusive-OR (XOR). Due to bit

by bit encoding, they are lighter and quicker schemes relying solely on confusion

concepts. They also have statistically random structures and are easier to implement on

hardware.

Block Ciphers

 Block Cipher cryptographic schemes convert an entire block of plain text into a block

of cipher text at a time. These are bulkier and slower ciphers as they involve the division

of plain text into blocks and rely on both diffusion and confusion concepts. They have

a simpler software implementation and also have distinct modes of operations. [6]

2.1.2. File Encryption

File Encryption means providing security for files that reside on media or in a stored

state. Those are files that are resting on our hard drives, USB drives or any other type

of digital media storage. Those are files that are usually not meant to be sent through

network, they are stored locally, being encrypted and temporarily decrypted while being

7

used and then encrypted again after we finished using them. Encrypting stored files

prevents others from reading, copying, or deleting encrypted files. Most often, those

encrypted files can be seen in a file listing (such as in file explorer), but they cannot be

accessed for reading by unauthorized persons. In this thesis, text file and different

image file formats are taken for file encryption. [7]

2.1.3. Modes Of Operation

The different ways in which encryption can be achieved are called modes of operation.

The purpose of a mode of operation is to extend the cryptographic properties of a block

cipher to larger messages. The property which this thesis mainly focuses on is

confidentiality, but modes providing message integrity and authenticity, possibly in

addition to confidentiality, exist as well. Although security obviously remains the

primary criterion, other (non-cryptographic) considerations often play an equally

important role in the selection of a mode of operation [2]:

Data expansion: Some constructions require the plaintext length to be an exact

multiple of the block length. This implies that the original message may have to be

expanded with extra padding bits, which is usually undesirable.

Error propagation: Single bit transmission errors may have different effects on the

decrypted cipher text. Either the error only affects a single bit or block of the recovered

plain text, or it might propagate to one, a few or all subsequent blocks.

Random access: A number of modes allow cipher text blocks to be decrypted (or even

modified) at arbitrary positions without first having to process all preceding blocks.

This is particularly useful for storage encryption.

Parallel processing: Some modes allow different blocks to be processed

simultaneously, which may be an interesting way to increase the throughput in certain

applications.

8

2.1.4. Block Encryption Modes

Electronic Codebook Mode (ECB): The ECB mode is the most straight forward way

to encrypt messages whose length exceed the block length: the message is simply

partitioned into n-bit blocks, each of which is encrypted independently [8].

Encryption: Ci=EK (Pi)……………………………………….………Eq (2.1)

Decryption: Pi=DK (Ci) ………………………………………………Eq (2.2)

Figure 2: Electronic Codebook (ECB) mode encryption [8]

The advantages of this mode are its simplicity and its suitability for parallel processing.

Blocks at arbitrary positions can be encrypted or decrypted separately and errors do not

propagate from one block to another. However, the major problem of this approach is

that it does not hide all patterns in the plain text: i.e., whenever the plain text contains

identical blocks, so will the cipher text. This limits the applications of the ECB mode

to those (rare) cases where all blocks encrypted with a single key are guaranteed to be

different.

Cipher Block Chaining Mode (CBC): The CBC mode, which is presently the most

widely used mode of operation, masks each plain text block with the previous cipher

text block before applying the block cipher [8].

Encryption: Co=IV, ……………………………………………………….Eq (2.3)

Ci=EK (Ci−1⊕Pi) …………………………….……………………………..Eq (2.4)

Decryption: Co=IV, …………………………………………………… …Eq (2.5)

Pi=DK (Ci)⊕Ci−1 ………………………………………………………… Eq (2.6)

9

Figure 3: Cipher Block Chaining (CBC) mode encryption [8]

Since the output of a good block cipher is supposed to be completely unpredictable for

anyone who does not know the key, all consecutive values of Ci−1⊕Pi will appear to

be independent and uniformly distributed, and this regardless of the plain text

(assuming that the text itself does not depend on the key). Repetitions at the input of

the block cipher are therefore unlikely to occur, which cures the main short coming of

the ECB mode. The cost of masking the plain text in CBC is that the cipher text

feedback in the encryption part prevents the blocks from being processed in parallel.

The decryption, on the other hand, depends only on two consecutive cipher text blocks,

and can still be performed independently for each block. This has the additional benefit

that a bit error in the cipher text can only affect the decryption of two blocks.

2.1.5. Stream Encryption Modes

Block ciphers can also be used to perform stream encryption, as illustrated by the three

modes below. A noteworthy feature of these modes is that they only use the encryption

function of the block cipher [2].

Output Feedback Mode (OFB): The OFB mode, encrypts plain text blocks by

combining them with a stream of blocks called key stream, which is generated by

iterating the block cipher:

Encryption: Zo=IV, ……………………………………………………….. Eq (2.7)

Zi=EK (Zi−1) …………………………………………………………………Eq (2.8)

Ci=Pi⊕Zi ………………………..……………………………………………Eq (2.9)

Decryption: Zo=IV, ……………...………………………………………..Eq (2.10)

10

Zi=EK (Zi−1) ………………………………………………………………..Eq (2.11)

Pi=Ci⊕Zi ……………………………....……………………………………Eq (2.12)

Figure 4: Output Feedback (OFB) mode encryption [8]

The generation of key stream blocks in OFB is independent of the plain text. This means

that the stream can be pre-computed as soon as the IV is known, a feature which may

be useful in real-time applications. The mode is strictly sequential, though: the

decryption of a single block at an arbitrary position in the cipher text requires all

preceding key stream blocks to be computed first. Owing to the invertibility of EK, all

Zi will necessarily be different, until one of them hits the value of Z0 again, at which

point the sequence will start repeating itself. A secure n-bit block cipher is not expected

to cycle in much less than 2n−1 blocks, which implies that this periodicity has no

practical consequences for a typical 128-bit block cipher. The mere fact that all Zi

within a cycle are different leaks some information as well, though. As a consequence,

it is not recommended to encrypt much more than 2n/2 blocks with a single key. [2]

Counter Mode (CTR): The CTR mode takes a similar approach as the OFB mode, but

this time the key stream is generated by encrypting a counter:

Encryption: Z0=IV, …………………………………………………Eq (2.13)

Ci=Pi⊕EK(Zi) ……………………………………………...…………Eq (2.14)

Zi+1=Zi+1 ……………………………………………………..………Eq (2.15)

Decryption: Z0=IV, …………………………………………...…….Eq (2.16)

Pi=Ci⊕EK(Zi) ………………………………………………..…...…..Eq (2.17)

11

Zi+1=Zi+1 ………………………………………………….………..Eq (2.18)

Figure 5: Counter (CTR) mode encryption [8]

As opposed to the OFB mode, the CTR mode allows data blocks at arbitrary positions

to be processed independently, both during encryption and decryption. This also allows

pipelining in hardware, which can result in significant efficiency gains. Apart from this

feature, the OFB and the CTR mode have very similar properties [8].

Cipher Feedback Mode (CFB): Both OFB and CTR require perfect synchronization

during decryption, i.e., in order to decrypt a cipher text block, the receiver needs to

know the block’s exact position in the stream. The CFB mode eliminates this

requirement, and is similar to CBC in this respect. The CFB mode is designed to process

messages in r-bit segments, with 1≤r≤n (typically r=1, r=8, r=n). The encryption mode

consists in shifting successive r-bit cipher text segments back into an internal state block

Si, and combining the left most bits of EK(Si) with the plaintext:

Encryption: S1=IV, …………………………………….……………...….Eq (2.19)

Ci=Pi⊕EK(Si)[1···r] ………………………………….………………….Eq (2.20)

Si+1=(Si≪r)+Ci ……………………………………….………………….Eq (2.21)

Decryption:S1=IV, ……………………………………..…………………Eq (2.22)

Pi=Ci⊕EK(Si)[1···r] …………………………………..……………..…..Eq (2.23)

Si+1=(Si≪r)+Ci ………………………………………..……………..…..Eq (2.24)

12

Figure 6: Cipher Feedback (CFB) mode encryption [8]

The feedback in CFB prevents the parallel encryption of plain text blocks. Still,

arbitrary cipher text blocks can be decrypted independently, provided that the ⌈n/r⌉

preceding blocks are available. As a direct consequence, single bit errors in the cipher

text cannot propagate over more than ⌈n/r⌉ successive blocks. Again, and for similar

reasons as in CBC, a single key should not be used to encrypt more than 2n/2 blocks.

For small values of r, additional precautions should be taken in order to avoid weak IV

values. In particular, if the bits of the IV were to form a periodic sequence, then this

would considerably increase the probability of repeated values at the input of the block

cipher [9].

2.2. Literature Review

Different authors carried out extensive study in this regard. The two most competitive

IoT devices, the Raspberry Pi 3 and Beagle Bone Black processors were tested in [6].

Authors compared different techniques such as Twofish, Blowfish, DES, Triple- DES,

AES, RC2, RC4 and ChaCha20 to test their effects on the Raspberry Pi 3 and Beagle

Bone Black processors and compared different parameters like quickness and

capability. Due to the processing quickness on the Beagle Bone Black being lower than

that of the Raspberry Pi 3, the execution time of these ciphers nearly doubles on it. The

power and memory consumption was also found to be lower on the Raspberry Pi 3. As

a result, for quick, capable, secure and quick data transmission the Raspberry Pi 3

performs better than the Beagle Bone Black.

A system with high reliability and dynamic GPU encryption system for large

multimedia IoT educational Big data was developed and implemented in [10] resisting

real time attacks like DDoS, brutal force attacks and other tampering attacks. The

13

algorithm was compared with other symmetric cryptographic algorithms like AES,

DES, 3-DES, RC6 and MARS based on architecture, flexibility, scalability, security

level and also based on computational running time, throughput for both encryption and

decryption process. Observation was done on flipping the bits in resultant process and

also in algorithm execution process with substitution and permutation of S-boxes in

encryption and decryption process resulting in high avalanche effect. This was

considered to be a novel encryption system combing two symmetric cryptographic

algorithm used for large scale data management to be highly secured.

Author in [11] recommended two methods, called FF1 and FF3-1, for format-preserving

encryption. Both of these methods are modes of operation for an underlying, approved

symmetric- key block cipher algorithm. These two implementations can only

interoperate when they support common values for the base.

Authors from [12] performed the identification of 5 frequently used block ciphers, AES,

DES, 3DES, RC5 and Blowfish. Authors have successfully identified AES from DES,

3DES, RC5 and Blowfish with a high identification rate. However, one to one

identification between any two ciphers of DES, 3DES, RC5 and Blowfish could not be

conducted yet, which was a hard nut to be cracked.

The author in [13] presented an overview of the concepts of and motivation for the OCB

block cipher mode of operation. OCB is well suited for IoT, wireless, and other

constrained devices where processing time and energy consumption are design issues.

The article described two versions of the OCB algorithm (OCB1 and OCB3) that have

been widely accepted. Because of its streamlined design, OCB is well suited for IoT

devices, wireless sensors, and other constrained devices where processing power and

energy consumption are concerns. As well, for larger multicore devices that have the

ability to perform parallel processing, OCB excels at speed of execution. Thus, OCB is

a versatile AE technique for a wide range of applications.

Performance of AES encryption algorithm was evaluated in [14] with different block

cipher modes to find the most efficient mode for NVM storage encryption. It was found

that CTR mode had performance improvement with lower latency. The study also

illustrated CTR mode outperforms CBC mode due to the support of parallel encryption

and decryption operations. There was only a negligible difference between CTR and

14

XTS-AES modes. They reached almost the same percentage and number. Therefore,

XTS-AES was found to be the most suitable block cipher mode for NVM storage given

the efficiency and protection.

Twofish cryptographic algorithm was implemented using library Chilkat Encryption

ActiveX Ms. Visual Basic in [15]. To facilitate the implementation of the coding in Ms.

Visual Basic authors have used Chilkat Encryption ActiveX. The program was

implemented to maintain the confidentiality of the data when transmitted over the

Internet. The speed encryption process needed 3 times longer than the decryption.

In article [16] authors described the security drawbacks of the standard BCMO (Block

Cipher Mode of Operation), and propose the OPC (Output Protection Chain) to improve

the security level of a block ciphering system by protecting the outputs of its BCE unit.

The purpose is avoiding the security system from being attacked by known or chosen-

plaintext/cipher text attacks. However, in the OPC-2, the BCE unit must be invertible,

e.g., DES, 3-DES, or AES. Since the encryption speeds of non-invertible algorithms

are often short, and their encryption keys are difficult to crack, if one replaces the BCE

unit of the CFB, OFB, CTR or OPC-1 with a non-invertible algorithm, the security

levels and the processing performance of these BCMOs will be then higher than before.

The applications of Advanced Encryption Standard (AES) in plain audio or video signal

using five operation modes was discussed in [17] among which ECB is the most popular

one. Due to the feature of each block cipher input being independent to the previous

cipher block output in ECB, it is easy to have patterns appeared in the encrypted signal

which might leave clue to the original signal. Therefore, CBC, CFB, and OFB are the

better choices for the pattern-free encryption. However, if encryption is done after

compressing, ECB is a good choice in terms of pattern-free as well as high speed

parallel operation.

Implementation on VHDL (very high speed integrated circuit hardware description

language) using Xilinx – 6.1 xst software has been done in [18] taking delay as main

constraint. Twofish algorithm was studied and some modules had been modified

keeping delay as main constraint. VHDL description of twofish, had been verified by

functional simulation, using Xilinx xst-6.1, and Model-Sim Simulator for the waveform

generation. The modules MDS and PHT had been modified and implemented for the

15

modified algorithms. All the modules and functions are interrelated hence, after

modifying MDS and PHT function g and function F also got modified. The results

showed the delay of twofish algorithm of 128-bit key and modified twofish of 128-bit

key, and compared their delay results. The analysis showed that modified algorithm has

less delay then the conventional one. After that the delay results of twofish algorithm

with 192-bit key and modified twofish with 192-bit key had been compared. According

to the results it was clear that modified 192-bit key twofish algorithm has less delay

than 192-bit twofish.

Encryption and decryption of images was performed in [19] using a secret-key block

cipher called 64-bits Blowfish designed to increase security and to improve

performance. This algorithm was used as a variable key size up to 448 bits. This

employed Feistel network which iterates simple function 16 times. The blowfish

algorithm is safe against unauthorized attack and runs faster than the popular existing

algorithms. The proposed algorithm was designed and realized using MATLAB. Both

colour and black & white image of any size saved in tagged image file format (TIF),

Bit map (bmp), Portable network graphics (PNG), Joint Photographic Experts group

(jpg), etc. can be encrypted & decrypted using blowfish algorithm. Histogram of

encrypted image was found to be less dynamic and significantly different from the

respective histograms of the original image. Blowfish cannot be broken until an attacker

tries 28r+1 combinations where r is the number of rounds. Hence if the number of rounds

are been increased then the blowfish algorithm becomes stronger. Since Blowfish has

not any known security weak points so far it can be considered as an excellent standard

encryption algorithm.

Authors from [4] provided a fair comparison between three most common symmetric

key cryptography algorithms: DES, AES, and Blowfish. Since main concern was the

performance of algorithms under different settings, the comparison took into

consideration the behavior and the performance of the algorithm when different data

loads were used. The comparison was made on the basis of these parameters: speed,

block size, and key size. Simulation program was implemented using Java

programming. The simulation results showed that Blowfish had a better performance

than other common encryption algorithms used. Since Blowfish had not any known

security weak points so far, that made it an excellent candidate to be considered as a

16

standard encryption algorithm. AES showed poor performance results compared to

other algorithms since it required more processing power. Using CBC mode had added

extra processing time, but overall it was relatively negligible especially for certain

application that requires more secure encryption to a relatively large data blocks. OFB

showed better performance than ECB and CBC but required more processing time than

CFB. Overall time differences between all modes were negligible.

RC4 was found to be fast and energy efficient for encryption and decryption with

compared to AES algorithm in [20] with different modes of operation (block cipher)

and RC4 algorithm (stream cipher). The performance metrics were CPU process time,

memory utilization, encryption and decryption time and throughput at different settings

like variable key size and variable data packet size.

The structure and design of Rijndael cipher (new AES) have been analyzed in [21]

remarking its main advantages and limitations, as well as its similarities and

dissimilarities with DES. The analysis was performed following three criteria: a)

resistance against all known attacks; b) speed and code compactness on a wide range

of platforms; and c) design simplicity; as well as its similarities and dissimilarities with

other symmetric ciphers. Thus, the fact that the new cipher and its inverse used different

components, which practically eliminated the possibility for weak and semi-weak keys,

was one of the principal advantages of this new cipher algorithm, compared to DES.

Also, the nonlinearity of the key expansion, which practically eliminates the possibility

of equivalent keys, is another big advantage. The importance of the Advanced

Encryption Standard and the high security of the Rijndael algorithm had been

examined. It was learnt that Rijndael AES, at that moment was an unbreakable

algorithm. AES had been implemented in a large variety of languages and software

tools. Some code optimizations were suggested for creation of S-box and inverse mix

columns transformation. It was found that the simple transformations of AES can quite

comfortably implemented in any high level or low level languages and software tools.

Finally, a performance comparison among new AES and DES for different

microcontrollers had been carried out, showing that new AES have a computer cost of

the same order.

In reference [22] author talks about the performance evaluation of the popular block

cipher algorithms such as AES, Serpent, Camellia, CAST5, and MARS on 8-bit Atmel

17

microcontroller. The performance of the chosen block ciphers were evaluated in terms

of the code/data memory requirement, execution time, and throughput criteria.

According to the results obtained from target device, it was observed that AES and

Serpent are the most efficient algorithms and Mars is the most inefficient algorithm in

terms of code and data memory usage. In term of execution time, CAST5 can perform

the encryption/decryption procedures faster than the others. However, CAST5 takes 64-

bit block of plaintext and AES take128-bit block of plaintext. AES outperforms CAST

block cipher when this situation is considered. In term of throughput criteria, AES is

the fastest algorithm among the chosen block ciphers. CAST5 and Camellia can be

considered an alternative block cipher for AES. Although Serpent is the slowest

algorithm, it is quite efficient in terms of memory usage. Therefore, it can be used on

an application, which the speed is not important, but the memory size is limited. Mars

has a very high memory requirement. Thus, it is not suitable for the microcontroller

applications.

18

CHAPTER 3

METHODOLOGY

3.1. Methodology

This study includes implementing and analysis of the block modes of operation ECB,

CBC, CFB, OFB and CTR with CAST and Twofish algorithms and testing of these

algorithms with various size of text file and image file. The different sized text file and

image file with different file formats are fed to the each of the modules and each module

is analyzed using various key size and block size of files. Test data are taken from

secondary source (Sample Videos, Satellite Images and NASA Visible Earth) [23] [24]

[25]. Computational analysis is done for text and image file using encryption time and

decryption time. And all of the image results are evaluated in terms of statistical

analysis, differential analysis and visual assessment. The methodology is depicted by

following flowcharts:

Figure 7: Encryption algorithm process

YES

NO

Start

Take Input File

Is CAST?

Is TWOFISH?

Apply Corresponding

Algorithm for

encryption/Decryption

Define

 -Mode of Operation

 -Block size

 -Key size

 -Key

Display

Choose Algorithm Type

YES
NO

End

19

The algorithms are implemented on the different settings. The parameters chosen for

the algorithm testing are of following nature.

Table 1: Algorithms’ Settings

Algorithm Key size (Bits) Block size(Bits) Modes

CAST 128 64 ECB, CBC, CFB, OFB, CTR

TWOFISH 128, 192, 256 128 ECB, CBC, CFB, OFB, CTR

The evaluation is meant to evaluate the results by using block ciphers. Hence, the load

data (plaintext) is divided into smaller block size as per algorithm settings given in

Table 1 above.

3.2. CAST encryption algorithm

CAST-128 is a symmetric block cipher with a block-size of 64-bit and a variable key-

size of up to 128 bits. The algorithm was developed in 1996 by Carlisle Adams and

Stafford Tavares. It is available worldwide on a royalty-free basis for commercial and

non-commercial uses. CAST-128 is a 12 or 16-round Feistel network with a 64-bits

block size and a key size of between 40 to 128 bits (but only in 8-bit increments). The

full 16 rounds are used when the key size is longer than 80 bits. Components include

large 8 × 32-bits s-boxes based on bent functions, key-dependent rotations, and modular

addition/subtraction and XOR operations. S-boxes S1, S2, S3, and S4 are round function

used for encryption and decryption and S-boxes; S5, S6, S7, and S8 are key schedule s-

boxes used are used in the process of key generation. [22]

20

Figure 8: Flowchart of CAST-128 Encryption

The CAST full encryption process is described as below: [26]

INPUT: Plaintext => m1 m2 …… m64; and key => K= k1 k2 .……….. k128. ……..Eq (3.1)

OUTPUT: Ciphertext => c1 c2 .………. c64 ………………………………….…Eq (3.2)

Step 1: Compute 16 pairs of sub keys {Kmi, Kri} from K (key schedule)

Step 2: Split the plain text into left and right 32-bit halves (L0, R0) such that:

L0 = m1 m2 m3 ………………. m32 ………………….………………………………..……………….. Eq (3.3)

R0 = m33 m34 m35 ……………. m64 …………….……………….……………….Eq (3.4)

Step 3: For i from 1 to 16 (16 rounds), compute Li and Ri as follows:

Li = Ri – 1; …………………………………………….………………..………. Eq (3.5)

Ri = Li – 1 XOR Fi [Ri-1, Kmi, Kri) ……………………………………..…..Eq (3.6)

YES

Start

Input File

Is i > 16?

For i=1

Compute Li and Ri using F-function

Exchange final block L16 and R16
and concatenate

Cipher value

End

i ++

NO

Split plain text into left and right 32-
bit halves

21

Where F is the round function (F is of Type 1, Type 2, or Type 3, depending on i).

Step 4: Exchange final blocks L16, R16 and concatenate to form the ciphertext as:

c1...c64 <-- (R16, L16) …………………..…………………….…….……. Eq (3.7)

CipherText = R16||L16 ………………………………..………….……….Eq (3.8)

Decryption is identical to the encryption algorithm given above, except that the rounds

(and the sub key pairs) are used in reverse order to compute (L0, R0) from (R16, L16)

Pairs of Round Keys

CAST-128 uses a pair of sub keys per round: a 32-bit quantity Km is used as a

"masking" key and a 5-bit quantity Kr is used as a "rotation" key. [26]

Substitution Boxes

CAST-128 uses eight substitution boxes: S-boxes S1, S2, S3, and S4 are round function

S-boxes; S5, S6, S7, and S8 are key schedule S-boxes. Although 8 S-boxes require a

total of 8 KBytes of storage, only 4 KBytes are required during actual encryption /

decryption since sub key generation is typically done prior to any data input. [26]

Function F

Function F uses four S-box substitutions, each of size 8 x 32, the left circular rotation

operation, mod 2 addition and subtraction, exclusive OR operations four operation

functions that vary depending on the round number. The strength of the F function is

based primarily on the strength of the S-boxes. There are three alternating types of

round function, but they are similar in structure and differ only in the choice of the exact

operation (addition, subtraction or XOR) at various points. We use I to refer to the

intermediate 32-bit value after the left circular rotation function and the labels Ia, Ib, Ic

and Id to refer to the 4 bytes of I. With these conventions, function F is defined as

follows: [26]

22

Rounds

1,4,7,10,13,16

I=((Kmi + Ri-1) <<< Kri)

F = ((S1 [Ia] ⊕ S2 [Ib]) – (S3 [Ic])) + S4 [Id]

Rounds

2,5,8,11,14

I=((Kmi ⊕ Ri-1) <<< Kri)

F = ((S1 [Ia] – S2 [Ib]) + (S3 [Ic])) ⊕ S4 [Id]

Rounds

3,6,9,12,15

I=((Kmi – Ri-1) <<< Kri)

F = ((S1 [Ia] + S2 [Ib]) ⊕ (S3 [Ic])) – S4 [Id]

Masking Subkeys And Rotate Subkeys

Let Km1, ..., Km16 be 32-bit masking subkeys (one per round). Let Kr1, …, Kr16 be

32-bit rotate subkeys (one per round); only the least significant 5 bits are used in each

round. [26]

 for (i=1; i<=16; i++) { Kmi = Ki; Kri = K16+i; }

3.3. TWOFISH encryption algorithm

Twofish is a 128 bit blocker cipher that accepts variable key up to 256 bits. Generally

Twofish algorithm is used for encryption process that means hiding information within

one information. Following are some parameters which need to be taken care always

for a safe and secure data encryption process i.e.

Imperceptibility: Imperceptibility is the property in which a person should be unable

to distinguish the original and the embedded data.

Robustness: refers to the degree of difficulty required to destroy embedded information

without destroying the cover data.

Embedding Capacity: Refers to the amount of secret information that can be

embedded without degradation to the quality of the data. [27]

In Twofish algorithm, the F-function consists of five kinds of component operations:

fixed left rotation by 8 bits, key dependent S-boxes, Maximum Distance Separable

(MDS) matrices, Pseudo-Hadamard Transform (PHT), and two subkey additions

modulo 232. There are four kinds of key dependent S-boxes together with the MDS

matrix form and g-function. This g-function appears two times in the cipher structure,

23

which causes significant redundancy. There are total 16-rounds in twofish algorithm

[15].

Figure 9: Flowchart of Twofish Algorithm

The algorithm is described in following steps:

Step 1: Bit input as much as 128 bits would be divided into four sections, each for 32

bits. Two parts of the bit will be the right part, the two parts of the other bits will be

left.

Input Whitening

MDS Matrices

PHT

Addition Mode 2 power 23

YES

NO

Start

Input File

Is i > 16?

For i=1

S-Boxes

Output Whitening

Cipher value

End

i++

Key

Key Schedule

24

Step 2: Bit-XOR input in advance with the four key parts (whitening).

R0,i =P⊕ Ki; i=0,…,3 …………………………………. Eq (3.9)

Where K is the key, Ki means the sub key where i=0, ...,3.

Input and output data are XOR-ed with eight sub-keys K0…K7. These XOR operations

are called input and output whitening. [15]

TWOFISH FUNCTIONS AND MODULES:

Whitening: Whitening includes the Xoring of input and output data with eight sub-

keys (K0 – K7). Thus this operation is performed only at the output level, i.e., 1st round,

hence called input whitening and at the output level, i.e., after 16th round, hence called

output whitening. The whitening operation is actually used to increase the difficulty for

attackers, to search for key, by hiding the inputs to 1st and last round. The sub-keys (K0

– K7) used in this operation are also calculated in the same manner as the other round

sub-keys, and are not used in other operations. [28]

S-boxes: An S-box is a table-driven substitution operation used in most block ciphers.

S-boxes vary in both input size and output size, and can be created either randomly or

algorithmically. Twofish uses four diff erent, bijective, key-dependent, 8-by-8-bit S-

boxes. These S-boxes are built using two fixed 8-by-8-bit permutations and key

material. [27]

Function F: The Feistel function F is a key-dependent permutation on 64 bit values. It

takes three arguments, two input words R0 and R1, and the round number r used to select

the appropriate sub keys. R0 is passed through the g function, which yields T0. R1 is

rotated left by 8 bits and then passed through the g function to yield T1. The results T0

and T1 are then combined in a PHT and two words of the expanded key are added. The

following set of equations describes the details of F function: [29]

T0 = g (R0) …………………………………………………………………….Eq (3.10)

T1 = g (ROL (R1; 8)) …………………………………………………………..Eq (3.11)

F0 = (T0 + T1 + K2r+8) mod 232 ………………………………………………...Eq (3.12)

25

F1 = (T0 + 2T1 + K2r+9) mod 232 ……………………………………………….Eq (3.13)

Function g: The function g forms the heart of twofish. The input word X is split into

four bytes. Each byte is run through its own key dependent S-box. Each S-box is

bijective, takes 8 bits of input, and produces 8 bits of output. The four results are

interpreted as a vector of length 4 over GF (28), and multiplied by the 4x4 MDS matrix

(using the field GF (28) for the computations). The resulting vector is interpreted as a

32-bit word which is the result of g. [29]

𝑥𝑖 = ⌊
𝑋
28𝑖⁄ ⌋𝑚𝑜𝑑28 i = 0,…, 3 …………………………………….. Eq (3.14)

𝑦𝑖 = 𝑠𝑖[𝑥𝑖] i = 0,…, 3 ………………………………..…… Eq (3.15)

(
𝑧0
𝑧1
𝑧2
) = (

. ⋯ .
⋮ 𝑀𝐷𝑆 ⋮
. ⋯ .

) . (

𝑦0
𝑦1
𝑦2
) …………………………….…….….…………... Eq

(3.16)

𝑍 = ∑ 𝑧𝑖. 23
𝑖=0

8i …………………………………………………....….……… Eq (3.17)

where si are the key-dependent S-boxes and Z is the result of g.

MDS Matrices: MDS is maximum separable matrix. It is a matrix of bytes that

multiplies a vector of four bytes. Multiplications are carried out in the Galois Field GF

(28) with the primitive polynomial x8 + x6 + x5 + x3 + 1. Each byte is converted into a

polynomial in which each power p of x is present only if the pth bit is 1. A multiplication

in GF amounts to a multiplication of polynomials followed by a division by the

primitive polynomial. [29]

The MDS matrix is given by:

MDS = (

01 𝐸𝐹
5𝐵 𝐸𝐹

5𝐵 5𝐵
𝐸𝐹 01

𝐸𝐹 5𝐵
𝐸𝐹 01

01 𝐸𝐹
𝐸𝐹 5𝐵

) …………………………………………….. Eq (3.18)

 PHT: PHT is a reversible transformation of a bit string that provides cryptographic

diffusion. Pseudo-hadamard transform consists of two additions. Twofish uses a 32-bit

26

PHT to mix the outputs from its two parallel 32-bit g functions. Given two inputs, a and

b, the 32-bit PHT is:

A’= a + b mod 232 ………………………………………………………. Eq (3.19)

B’= a + 2b mod 232 ……………………………………………………… Eq (3.20)

Both additions are implemented in the same way as ordinary addition modulo 232.

Twofish uses a 32-bit PHT to mix the outputs from its two parallel 32-bit g functions.

PHT Using shift operation, in this method of PHT two 32-bit inputs are given, say in1

and in2. Here for the operations of equations shown below, are performed using the

shifting. The function can be easily explained with the help of the following equations

[29]:

For out1 out1 = in1 + in2 ………………………… Eq (3.21)

For out2 out2 = in1 + in2x (i) ……..……………… Eq (3.22)

Where: In2x (i) = in2 (i - 1)

For i = 1 to 31

in2x (0) = 0 …..…………………………………………….…………… Eq (3.23)

For i = 0

The Key Schedule: The key schedule has to provide 40 words of expanded key

K0,...,K39, and the 4 key-dependent S-boxes used in the g function. Twofish is defined

for keys of length N = 128, N = 192, and N = 256. Keys of any length shorter than 256

bits can be used by padding them with zeroes until the next larger defined key length.

We define k = N/64. The key M consists of 8k bytes m0,...,m8k−1. The bytes are first

converted into 2k words of 32 bits each [29]

𝑀𝑖=∑ 𝑚(4𝑖+𝑗). 2
8𝑗

3

j=0
 ……………………………………………. Eq (3.24)

i = 0, …, 2k-1

27

and then into two word vectors of length k.

𝑀𝑒 = (𝑀0, 𝑀2, … ,𝑀2𝑘−2) ………………………………………… Eq (3.25)

𝑀0 = (𝑀1,𝑀3, … ,𝑀2𝑘−1) …………………………………………. Eq (3.26)

A third word vector of length k is also derived from the key. This is done by taking the

key bytes in groups of 8, interpreting them as a vector over GF (28), and multiplying

them by a 4×8 matrix derived from an RS code. Each result of 4 bytes is then interpreted

as a 32-bit word. These words make up the third vector.

(

𝑆𝑖,0
𝑆𝑖,1
𝑆𝑖,2
𝑆𝑖,3

) = (

. ⋯ .
⋮ 𝑅𝑆 ⋮
. ⋯ .

) .

(

𝑚8𝑖
𝑚8𝑖+1
𝑚8𝑖+2
𝑚8𝑖+3
𝑚8𝑖+4
𝑚8𝑖+5
𝑚8𝑖+6
𝑚8𝑖+7)

 …………………………………… Eq (3.27)

𝑆𝑖 = ∑ 𝑆𝑖,𝑗. 2
8𝑗3

𝑗=0 ……………………………………………………. Eq (3.28)

for i = 0,...,k−1, and S = (Sk−1,Sk−2,...,S0)

Note that S lists the words in “reverse” order. For the RS matrix multiply, GF (28) is

represented by GF(2)[x]/w(x), where w(x) = x8+x6+x3+x2+1 is another primitive

polynomial of degree 8 over GF(2). The mapping between byte values and elements of

GF (28) uses the same definition as used for the MDS matrix multiply. Using this

mapping, the RS matrix is given by: [29]

RS = (

01 𝐴4 55 87
𝐴4 56 82 𝐹3

5𝐴 58 𝐷𝐵 9𝐸
1𝐸 𝐶6 68 𝐸5

02 𝐴1 𝐹𝐶 𝐶1
𝐴4 55 87 5𝐴

47 𝐴𝐸 3𝐷 19
58 𝐷𝐵 9𝐸 03

) ………………….. Eq (3.29)

The three vectors Me, Mo, and S form the basis of the key schedule.

Additional Key Lengths: Twofish can accept keys of any byte length up to 256 bits.

For key sizes that are not defined above, the key is padded at the end with zero bytes to

the next larger length that is defined. For example, an 80-bit key m0, ..., m9 would be

extended by setting mi = 0 for i = 10, ..., 15 and treating it as a 128-bit key. [29]

28

The Function h: This is a function that takes two inputs—a 32-bit word X and a list L

= (L0,..., Lk−1) of 32-bit words of length k—and produces one word of output. This

function works in k stages. In each stage, the four bytes are each passed through a fixed

S-box, and Xored with a byte derived from the list. Finally, the bytes are once again

passed through a fixed S-box, and the four bytes are multiplied by the MDS matrix just

as in g. More formally: we split the words into bytes. [29]

𝑙𝑖,𝑗 = ⌊
𝐿𝑖
28𝑗
⁄ ⌋ 𝑚𝑜𝑑 28 …….……….…….…….…….…….…….. Eq (3.30)

𝑥𝑗 = ⌊
𝑋
28𝑗⁄ ⌋ 𝑚𝑜𝑑 28…….…….…….…….…….…….…….…….Eq (3.31)

for i = 0,...,k −1 and j = 0,...,3. Then the sequence of substitutions and Xors is applied.

yk,j = xj j = 0,...,3

3.4. Performance Evaluation Parameters

The algorithms implemented during this study are analyzed from various dimensions

such as:

3.4.1. Computational analysis

Computational analysis in this thesis is based on encryption and decryption time,

memory utilization and throughput.

Encryption time- The encryption time is the time that an encryption algorithm takes

to produce a cipher text from a plaintext.

Decryption time- The decryption time is the time that a decryption algorithm takes to

produce a plaintext from a cipher text.

Throughput- The throughput of an encryption scheme define the speed of

encryption/decryption. The throughput is calculated as the sum of total plaintext

encrypted and total cipher text decrypted in Kilobytes / sum of encryption and

decryption time (KB/sec). As the throughput increases, power consumption decreases.

29

Memory Utilization-The Memory Utilization defines how much memory is being

consumed while doing the encryption or decryption. [20]

3.4.2. Differential analysis

Differential analysis is a technique which observes how difference in input affects

differences on the output. It is done by using Number of Pixels Change Rate (NPCR),

and Unified Average Changing Intensity (UACI) with the original image and decrypted

image. Differential analysis is done for security measures.

NPCR (Number of Pixels Change Rate)

NPCR concentrates on the absolute number of pixels which changes value in

differential attacks. The NPCR measures the percentage of different pixel numbers

between the plain image and encrypted image. [30]

NPCR is defined as:

𝑁𝑃𝐶𝑅 =
∑ 𝐷(𝑖,𝑗)𝑖,𝑗

𝑀×𝑁
× 100% …………….…….…….…………….. Eq (3.32)

Where D (i,j)= 1, if I (i,j)≠I’ (i,j)

0, else

UACI (Unified Average Changing Intensity)

UACI measured the average intensity of differences between two paired cipher images.

UACI is given by: [30]

𝑈𝐴𝐶𝐼 =
1

𝑀×𝑁
(∑

|𝐼(𝑖,𝑗)−𝐼′(𝑖,𝑗)|

255𝑖,𝑗) × 100% …….…….…….……. Eq (3.33)

For a better system, the value of UACI should be low, and NPCR should be high.

30

3.4.3. Visual assessment analysis

Visual assessment analysis is done to measure the performance of the decryption

procedure. Visual assessment analysis is done by using Peak Signal to Noise Ratio

(PSNR) of input images and result images to measure the security and quality of

encrypted images.

PSNR (Peak Signal to Noise Ratio)

The peak signal-to-noise ratio (PSNR) is the ratio between a signal's maximum power

and the power of the signal's noise. It is the ratio of mean square difference of the

component for the two images to the maximum mean square difference that can exist

between any two images. PSNR is commonly used to measure the quality of

reconstructed images that have been compressed. [31]

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑔 (
2552

𝑀𝑆𝐸
) …….…….…….…….…….……….…. Eq (3.34)

𝑀𝑆𝐸 =
1

𝑀×𝑁
∑ ∑ [𝐼(𝑖, 𝑗) − 𝐼′(𝑖, 𝑗)]2𝑀

𝑗=1
𝑁
𝑖=1 …….…….……..…….Eq (3.35)

The MSE can be described as the mean of the square of the differences in the pixel

values between the corresponding pixels of the two images. [31]

3.4.4. Statistical Analysis

Statistical analysis is done by using Histogram analysis. The histogram gives the

distribution of pixel in the images. This histogram is a graph showing the number of

pixels in an image at each different intensity value found in that image. [32]

31

CHAPTER 4

IMPLEMENTATION AND ANALYSIS

4.1. Implementation

The two encryption algorithm CAST-128 and Twofish are implemented in C# language

as programming language in .NET framework version 4.7.03056 in Microsoft Visual

Studio Enterprise 2017 version 15.7.3. Microsoft Visual Studio .NET is an application-

development tool for writing applications; the .NET Framework provides the

infrastructure required to run those applications. For differential, statistical and visual

assessment analysis of different images, MATLAB R2018a is used. The

implementation of the algorithm is done in Acer Reliability Travelmate 8572 with

Intel(R) coreTM i7 CPU @2.67 GHz core processor with Installed RAM of 8GB and

usable 7.68GB and system type of 64-bit Operating System, x64 based processor.

4.1.1. C# programming language

C# is a general-purpose, modern and object-oriented programming language. It is a

hybrid of C and C++, it is a Microsoft programming language developed to compete

with Sun's Java language. It was developed around 2000 by Microsoft as part of

its .NET initiative, and later approved as an international standard by Ecma (ECMA-

334) and ISO (ISO/IEC 23270:2018). It is an object-oriented programming language

used with XML-based Web services on the .NET platform and designed for improving

productivity in the development of Web applications. C# boasts type-safety, garbage

collection, simplified type declarations, versioning and scalability support, and other

features that make developing solutions faster and easier, especially for COM+ and

Web services. Microsoft critics have pointed to the similarities between C# and Java.

4.1.2. Microsoft .NET Framework

.NET is a software framework which is designed and developed by Microsoft. In easy

words, it is a virtual machine for compiling and executing programs written in different

languages like C#, VB.NET, etc. It is used to develop Form-based applications, Web-

based applications, and Web services. There is a variety of programming languages

https://en.wikipedia.org/wiki/Ecma_International

32

available on the .Net platform, VB.Net and C# are the most common ones. It is used to

build applications for Windows, phone, web etc. It provides a lot of functionalities and

also supports industry standards. .NET Framework supports more than 60 programming

languages in which 11 programming languages are designed and developed by

Microsoft. The remaining Non-Microsoft Languages which are supported by .NET

Framework but not designed and developed by Microsoft.

4.1.3. Matlab R2018a Overview

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment

and proprietary programming language developed by MathWorks. MATLAB allows

matrix manipulations, plotting of functions and data, implementation of algorithms,

creation of user interfaces, and interfacing with programs written in other languages,

including C, C++, C#, Java, Fortran and Python.

Although MATLAB is intended primarily for numerical computing, an optional

toolbox uses the MuPAD symbolic engine allowing access to symbolic computing

abilities. An additional package, Simulink, adds graphical multi-domain simulation and

model-based design for dynamic and embedded systems. MATLAB R2018a was

released on March 2018, with two new products, Predictive Maintenance Toolbox for

designing and testing condition monitoring and predictive maintenance algorithms, and

Vehicle Dynamics Blockset for modeling and simulating vehicle dynamics in a virtual

3D environment.

4.2. Test Data Description

Test data is taken for the experiment analysis are the different text and image files. The

input text file are collected with different size. The input images types are of .jpg, .png

and .tif types. Text data are randomly generated and image file are secondary data sets.

The secondary image sets are collected from secondary source (Sample Videos,

Satellite Images and NASA Visible Earth) [23] [24] [25]. The size of text files collected

varies from 50 kb to 500 mb and image files varies from 50 kb to 198 mb with maximum

dimension of 12000 × 12000.

33

4.3. Analysis

The algorithms implemented during this study are analyzed from various dimensions.

Computational analysis based on encryption and decryption time, throughput and

memory utilization, differential analysis based on Number of Pixels Change Rate

(NPCR), and Unified Average Changing Intensity (UACI), statistical analysis based on

histogram analysis and visual assessment analysis based on Peak Signal to Noise Ratio

(PSNR) and Mean Square Error (MSE) of input images and enciphered images has been

done.

4.3.1. COMPUTATIONAL ANALYSIS

Encryption time analysis for text file

One of the most important performance criteria of the algorithms is encryption time and

decryption time. In this analysis, we used CAST-128, Twofish-128, Tofish-192 and

Twofish-256 algorithms with different operation modes to encrypt and decrypt different

size of text files and image files. The execution time and decryption time is shown in

Figure below.

Figure 10: Encryption time analysis for ECB mode for text file

0

200

400

600

800

1000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Ti
m

e
(m

s)

Text file size

Encryption time analysis for ECB mode for text file

CAST-128

Twofish-128

Twofish-192

Twofish-256

34

Figure 11: Encryption time analysis for CBC mode for text file

Figure 12: Encryption time analysis for CFB mode for text file

Figure 13: Encryption time analysis for OFB mode for text file

0

200

400

600

800

1000

1200

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Ti
m

e
(m

s)

Text file size

Encryption time analysis for CBC mode for text file

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200

400

600

800

1000

1200

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Ti
m

e
(m

s)

Text file size

Encryption time analysis for CFB mode for text file

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200

400

600

800

1000

1200

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Ti
m

e
(m

s)

Text file size

Encryption time analysis for OFB mode for text file

CAST-128

Twofish-128

Twofish-192

Twofish-256

35

Figure 14: Encryption time analysis for CTR mode for text file

By analyzing all of the outcomes above for encryption time for text file for CAST-128,

Twofish-128, Twofish-192 and Twofish-256 with ECB, CBC, CFB, OFB and CTR

modes, on an average CAST-128 algorithm performed better (it took 231ms, which is

smaller as compare to others) for encrypting text file in CTR mode of operation but for

CBC mode, it performed worst (took 818ms, which is larger) compared with other

modes of operation.

Encryption time analysis for image file

Figure 15: Encryption time analysis for ECB mode for image file

0

100

200

300

400

500

600

700

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Ti
m

e
(m

s)

Text file size

Encryption time analysis for CTR mode for text file

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200

400

600

800

1000

1200

50 kb 100 kb 1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

Ti
m

e
(m

s)

Image file size

Encryption time analysis for ECB mode for image file

CAST-128

Twofish-128

Twofish-192

Twofish-256

36

Figure 16: Encryption time analysis for CBC mode for image file

Figure 17: Encryption time analysis for CFB mode for image file

Figure 18: Encryption time analysis for OFB mode for image file

0

200

400

600

800

1000

1200

50 kb 100 kb 1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

Ti
m

e
(m

s)

Image file size

Encryption time analysis for CBC mode for image file

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200

400

600

800

1000

1200

50 kb 100 kb 1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

Ti
m

e
(m

s)

Image file size

Encryption time analysis for CFB mode for image file

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200

400

600

800

1000

1200

50 kb 100 kb 1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

Ti
m

e
(m

s)

Image file size

Encryption time analysis for OFB mode for image file

CAST-128

Twofish-128

Twofish-192

Twofish-256

37

Figure 19: CAST-128 image encryption and decryption time for CTR mode

From the above, encryption time for image file was analyzed for CAST-128, Twofish-

128, Twofish-192 and Twofish-256 with ECB, CBC, CFB, OFB and CTR modes, on

an average, Twofish-128 algorithm performed better for encrypting image file in CTR

mode of operation. It took approximately 310ms in CTR mode, which is much smaller

as compare to other modes of operation. And Twofish-192 algorithm performed worst

in ECB mode i.e., it took 764ms in ECB mode, which is much larger than others.

Decryption time analysis for text file

Figure 20: Decryption time analysis for ECB mode for text file

0

100

200

300

400

500

600

700

800

50 kb 100 kb 1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

Ti
m

e
(m

s)

Image file size

Encryption time analysis for CTR mode for image file

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200

400

600

800

1000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Ti
m

e
(m

s)

Text file size

Decryption time analysis for ECB mode for text file

CAST-128

Twofish-128

Twofish-192

Twofish-256

38

Figure 21: Decryption time analysis for CBC mode for text file

Figure 22: Decryption time analysis for CFB mode for text file

Figure 23: Decryption time analysis for OFB mode for text file

0

200

400

600

800

1000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Ti
m

e
(m

s)

Text file size

Decryption time analysis for CBC mode for text file

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200

400

600

800

1000

1200

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Ti
m

e
(m

s)

Text file size

Decryption time analysis for CFB mode for text file

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200

400

600

800

1000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Ti
m

e
(m

s)

Text file size

Decryption time analysis for OFB mode for text file

CAST-128

Twofish-128

Twofish-192

Twofish-256

39

Figure 24: Decryption time analysis for CTR mode for text file

From the above, analyzing decryption time for text file in ECB, CBC, CFB, OFB and

CTR mode of operation with CAST-128, Twofish-128, Twofish-192 and Twofish-256

algorithms, on an average, Twofish-128 algorithm performed better for decrypting text

file in CTR mode of operation. It took approximately 170ms in CTR mode, which is

much smaller as compare to other modes of operation. And CAST-128 algorithm

performed worst in CBC mode i.e., it took 685ms in CBC mode, which is much larger

than others.

Decryption time analysis for image file

Figure 25: Decryption time analysis for ECB mode for image file

0

100

200

300

400

500

600

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Ti
m

e
(m

s)

Text file size

Decryption time analysis for CTR mode for text file

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200

400

600

800

1000

1200

50 kb 100 kb 1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

Ti
m

e
(m

s)

Image file size

Decryption time analysis for ECB mode for image file

CAST-128

Twofish-128

Twofish-192

Twofish-256

40

Figure 26: Decryption time analysis for CBC mode for image file

Figure 27: Decryption time analysis for CFB mode for image file

Figure 28: Decryption time analysis for OFB mode for image file

0

200

400

600

800

1000

1200

50 kb 100 kb 1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

Ti
m

e
(m

s)

Image file size

Decryption time analysis for CBC mode for image file

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200

400

600

800

1000

1200

50 kb 100 kb 1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

Ti
m

e
(m

s)

Image file size

Decryption time analysis for CFB mode for image file

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200

400

600

800

1000

50 kb 100 kb 1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

Ti
m

e
(m

s)

Image file size

Decryption time analysis for OFB mode for image file

CAST-128

Twofish-128

Twofish-192

Twofish-256

41

Figure 29: Decryption time analysis for CTR mode for image file

Analyzing decryption time for image file in ECB, CBC, CFB, OFB and CTR mode of

operation with CAST-128, Twofish-128, Twofish-192 and Twofish-256 algorithms, on

an average, Twofish-192 algorithm performed better for decrypting text file in CTR

mode of operation. It took approximately 271ms in CTR mode, which is much smaller

as compare to other modes of operation. And Twofish-128 algorithm performed worst

in CFB mode i.e., it took 553ms in CFB mode, which is much larger than others.

Performance Results with throughput for text data

Figure 30: Throughput for encryption and decryption for ECB mode (Text)

0

200

400

600

800

1000

50 kb 100 kb 1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

Ti
m

e
(m

s)

Image file size

Decryption time analysis for CTR mode for image file

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200000

400000

600000

800000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Th
ro

u
gh

p
u

t
(K

B
/s

ec
)

Text file

Throughput for encryption and decryption for ECB mode (Text)

CAST-128

Twofish-128

Twofish-192

Twofish-256

42

Figure 31: Throughput for encryption and decryption for CBC mode (Text)

Figure 32: Throughput for encryption and decryption for CFB mode (Text)

Figure 33: Throughput for encryption and decryption for OFB mode (Text)

0

200000

400000

600000

800000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Th
ro

u
gh

p
u

t
(K

B
/s

ec
)

Text file

Throughput for encryption and decryption for CBC mode (Text)

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200000

400000

600000

800000

1000000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Th
ro

u
gh

p
u

t
(K

B
/s

ec
)

Text file

Throughput for encryption and decryption for CFB mode (Text)

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

200000

400000

600000

800000

1000000

1200000

1400000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Th
ro

u
gh

p
u

t
(K

B
/s

ec
)

Text file

Throughput for encryption and decryption for OFB mode (Text)

CAST-128

Twofish-128

Twofish-192

Twofish-256

43

Figure 34: Throughput for encryption and decryption for CTR mode (Text)

Analyzing the above throughput graphs for encryption time and decryption time for text

file in ECB, CBC, CFB, OFB and CTR mode, it is found that for all of the modes, there

is no significant variation in throughput for text size below 10mb of size. But for greater

than 10mb text file size, it is found that with gradual increase in file size, Twofish

(Twofish-128, Twofish-192 and Twofish-256) algorithm is found to be 3 times better

than CAST-128 algorithm with an average throughput value of 418906 KB/sec for

Twofish and 199719 for CAST-128 algorithm.

Performance Results with throughput for image data

Figure 35: Throughput for encryption and decryption for ECB mode (Image)

0

500000

1000000

1500000

2000000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

Th
ro

u
gh

p
u

t
(K

B
/s

ec
)

Text file

Throughput for encryption and decryption for CTR mode (Text)

CAST-128

Twofish-128

Twofish-192

Twofish-256

0
50000

100000
150000
200000
250000
300000
350000
400000

50 kb 100
kb

1 mb 5 mb 10 mb20 mb30 mb46 mb95 mb 154
mb

198
mb

Th
ro

u
gh

p
u

t
(K

B
/s

ec
)

Image file

Throughput for encryption and decryption for ECB mode (Image)

CAST-128

Twofish-128

Twofish-192

Twofish-256

44

Figure 36: Throughput for encryption and decryption for CBC mode (Image)

Figure 37: Throughput for encryption and decryption for CFB mode (Image)

Figure 38: Throughput for encryption and decryption for OFB mode (Image)

0

100000

200000

300000

400000

50 kb 100
kb

1 mb 5 mb 10
mb

20
mb

30
mb

46
mb

95
mb

154
mb

198
mb

Th
ro

u
gh

p
u

t
(K

B
/s

ec
)

Image file

Throughput for encryption and decryption for CBC mode (Image)

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

100000

200000

300000

400000

50 kb 100
kb

1 mb 5 mb 10
mb

20
mb

30
mb

46
mb

95
mb

154
mb

198
mb

Th
ro

u
gh

p
u

t
(K

B
/s

ec
)

Image file

Throughput for encryption and decryption for CFB mode (Image)

CAST-128

Twofish-128

Twofish-192

Twofish-256

0

100000

200000

300000

400000

500000

50 kb 100
kb

1 mb 5 mb 10 mb20 mb30 mb46 mb95 mb 154
mb

198
mb

Th
ro

u
gh

p
u

t
(K

B
/s

ec
)

Image file

Throughput for encryption and decryption for OFB mode (Image)

CAST-128

Twofish-128

Twofish-192

Twofish-256

45

Figure 39: Throughput for encryption and decryption for CTR mode (Image)

Analyzing the above throughput graphs for encryption time and decryption time for

image file in ECB, CBC, CFB, OFB and CTR mode, it is found that for all of the modes,

there is no significant variation in throughput for image file size below 20mb of size.

But for greater than 20mb image file size, it is found that with gradual increase in file

size, Twofish algorithm is found to be 3 times better than CAST-128 algorithm with an

average throughput value of 194623 KB/sec for Twofish and 114813 for CAST-128

algorithm. But for some cases CAST-128 is found better than Twofish algorithm, but

this can be negligible because majority of case with high throughput yielded by Twofish

algorithm.

Performance Results with memory utilization for text file

Figure 40: Memory Utilization Graph for text data in ECB mode

0
100000
200000
300000
400000
500000
600000
700000

50 kb 100
kb

1 mb 5 mb 10 mb20 mb30 mb46 mb95 mb 154
mb

198
mb

Th
ro

u
gh

p
u

t
(K

B
/s

ec
)

Image file

Throughput for encryption and decryption for CTR mode (Image)

CAST-128

Twofish-128

Twofish-192

Twofish-256

30000

35000

40000

45000

50000

55000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

M
em

o
ry

 (
K

B
)

Text file size

Memory Utilization Graph for text data in ECB mode

CAST-128

Twofish-128

Twofish-192

Twofish-256

46

Figure 41: Memory Utilization Graph for text data in CBC mode

Figure 42: Memory Utilization Graph for text data in CFB mode

Figure 43: Memory Utilization Graph for text data in OFB mode

30000

35000

40000

45000

50000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

M
em

o
ry

 (
K

B
)

Text file size

Memory Utilization Graph for text data in CBC mode

CAST-128

Twofish-128

Twofish-192

Twofish-256

30000

32000

34000

36000

38000

40000

42000

44000

46000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

M
em

o
ry

 (
K

B
)

Text file size

Memory Utilization Graph for text data in CFB mode

CAST-128

Twofish-128

Twofish-192

Twofish-256

30000

32000

34000

36000

38000

40000

42000

44000

46000

48000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

M
em

o
ry

 (
K

B
)

Text file size

Memory Utilization Graph for text data in OFB mode

CAST-128

Twofish-128

Twofish-192

Twofish-256

47

Figure 44: Memory Utilization Graph for text data in CTR mode

From the above memory utilization graph, it is found that none of the algorithm has

constant memory utilization. But out of that randomness, CAST-128 and Twofish-192

took minimum memory utilization as compared to other in most of the cases. But for

some case, CAST-128 algorithm exhibited maximum memory than other algorithm

such as in OCB mode. But as compared to its numeric value (45402 KB), it is less than

other algorithms in other cases.

Performance Results with memory utilization for image file

Figure 45: Memory Utilization Graph for image data in ECB mode

30000

35000

40000

45000

50000

50 kb 100 kb 1 mb 5 mb 10 mb 50 mb 100 mb 500 mb

M
em

o
ry

 (
K

B
)

Text file size

Memory Utilization Graph for text data in CTR mode

CAST-128

Twofish-128

Twofish-192

Twofish-256

30000

35000

40000

45000

50000

55000

50 kb 100
kb

1 mb 5 mb 10 mb20 mb30 mb46 mb95 mb 154
mb

198
mb

M
em

o
ry

 (
K

B
)

Image file size

Memory Utilization Graph for image data in ECB mode

CAST-128

Twofish-128

Twofish-192

Twofish-256

48

Figure 46: Memory Utilization Graph for image data in CBC mode

Figure 47: Memory Utilization Graph for image data in CFB mode

30000

35000

40000

45000

50000

55000

60000

50 kb 100 kb 1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

M
em

o
ry

 (
K

B
)

Image file size

Memory Utilization Graph for image data in CBC mode

CAST-128

Twofish-128

Twofish-192

Twofish-256

30000

32000

34000

36000

38000

40000

42000

44000

46000

48000

50000

50 kb 100 kb 1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

M
em

o
ry

 (
K

B
)

Image file size

Memory Utilization Graph for image data in CFB mode

CAST-128

Twofish-128

Twofish-192

Twofish-256

49

Figure 48: Memory Utilization Graph for image data in OFB mode

Figure 49: Memory Utilization Graph for image data in CTR mode

From the above memory utilization graph, it is found that none of the algorithm has

constant memory utilization. But out of that randomness, Twofish-128 and Twofish-

256 took minimum memory utilization as compare to other in most of the cases. But it

also not guarantying for better memory consumption (minimum memory consumption)

as compare to other in every cases.

30000

32000

34000

36000

38000

40000

42000

44000

46000

48000

50 kb 100
kb

1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

M
em

o
ry

 (
K

B
)

Image file size

Memory Utilization Graph for image data in OFB mode

CAST-128

Twofish-128

Twofish-192

Twofish-256

30000

35000

40000

45000

50000

55000

50 kb 100
kb

1 mb 5 mb 10 mb 20 mb 30 mb 46 mb 95 mb 154
mb

198
mb

M
em

o
ry

 (
K

B
)

Image file size

Memory Utilization Graph for image data in CTR mode

CAST-128

Twofish-128

Twofish-192

Twofish-256

50

4.3.2. Differential analysis

Differential analysis is done for security measures. It is a technique which observes

how difference in input affects differences on the output. NPCR (Number of pixel

change) and UACI (Unified Average Change Intensity) are the two widely used

security analyses in image encryption community for differential analysis. NPCR

concentrates on the absolute number of pixels which changes value in differential

attacks while the UACI focuses on the averaged difference between two paired images

(original image and decrypted image).

The different types of images are taken for experiments to analyze the algorithm

performance. The images taken here are the same images which were used in

encryption and decryption process described in test data description. The difference in

NPCR and UACI of different algorithm is as follows:

51

Table 2: NPCR and UACI Measures

S.

N
Image Dimension Method

NPCR

(%)

UA

CI

(%)

1 butterfly.jpg
300*300

(50 KB)

CAST-128 / TWOFISH-128 /

TWOFISH-192 / TWOFISH-256
0 0

2 laptop.jpg
1050*700

(100 KB)

CAST-128 / TWOFISH-128 /

TWOFISH-192 / TWOFISH-256
0 0

3 wing.jpg
2192*2921

(1 MB)

CAST-128 / TWOFISH-128 /

TWOFISH-192 / TWOFISH-256
0 0

4 GeoEye.jpg
11846*9945

(46 MB)

CAST-128 / TWOFISH-128 /

 TWOFISH-192 / TWOFISH-256
0 0

5
Airbus-

Spot.tif

5181*4828

(95 MB)

CAST-128 / TWOFISH-128 /

TWOFISH-192 / TWOFISH-256
0 0

6 world.png
21600*21600

(154 MB)

CAST-128 / TWOFISH-128 /

TWOFISH-192 / TWOFISH-256
0 0

The above results shows the different technique in differential analysis for the image.

It is observed that all of the four techniques give no difference in between two paired

images (original image and decrypted image). That means the decrypted image has no

change in pixel and pixel intensity. So the decrypted images retrieved are of best

quality.

4.3.3. Statistical analysis

Statistical analysis has been carried out using histogram analysis. The histogram of an

image normally refers to a histogram of the pixel intensity values. This histogram is a

graph showing the number of pixels in an image at each different intensity value found

in that image. The images taken here are the same images which were used in

encryption and decryption process described in test data description. Histogram of input

image and decrypted image is analyzed graphically as follows:

52

Table 3: Histogram Analysis

S.

N

Image Original Image

Histogram

Method Decrypted Image

Histogram

1

butterfly.jpg

CAST-128

 TWOFISH

-128

 TWOFISH

-192

 TWOFISH

-256

2

laptop.jpg

CAST-128

53

 TWOFISH

-128

 TWOFISH

-192

 TWOFISH

-256

3

wing.jpg

CAST-128

 TWOFISH

-128

54

 TWOFISH

-192

 TWOFISH

-256

4

GeoEye.jpg

CAST-128

 TWOFISH

-128

 TWOFISH

-192

55

 TWOFISH

-256

5

Airbus-Spot.tif

CAST-128

 TWOFISH

-128

 TWOFISH

-192

 TWOFISH

-256

56

6

world.png

CAST-128

 TWOFISH

-128

 TWOFISH

-192

 TWOFISH

-256

From the above resultant histogram of original image and decrypted cipher image using

all four techniques, it is observed that histograms are hardly distinguishable. The curves

that are obtained from CAST-128, Twofish-128, Twofish-192 and Twofish-256 are

almost identical as the difference during encryption and decryption is extremely small.

4.3.4. Visual assessment analysis

Visual assessment analysis is done to measure the performance of the decryption

procedure. For that the PSNR value and MSE value will be calculated. It is the ratio of

mean square difference of the component for the two images to the maximum mean

square difference that can exist between any two images. Greater the value of PSNR

higher the image quality. The images taken here are the same images which were used

57

in encryption and decryption process described in test data description. PSNR and MSE

for the sample test data image are as show in the table below:

Table 4: PSNR Measures

S.

N
Image Dimension Method

MSE

(dB)

PSNR

(dB)

1 butterfly.jpg
300*300

(50 KB)

CAST-128 / TWOFISH-128 /

TWOFISH-192 / TWOFISH-256
0 Inf

2 laptop.jpg
1050*700

(100 KB)

CAST-128 / TWOFISH-128 /

TWOFISH-192 / TWOFISH-256
0 Inf

3 wing.jpg
2192*2921

(1 MB)

CAST-128 / TWOFISH-128 /

TWOFISH-192 / TWOFISH-256
0 Inf

4 GeoEye.jpg
11846*9945

(46 MB)

CAST-128 / TWOFISH-128 /

TWOFISH-192 / TWOFISH-256
0 Inf

5
Airbus-

Spot.tif

5181*4828

(95 MB)

CAST-128 / TWOFISH-128 /

 TWOFISH-192 / TWOFISH-

256

0 Inf

6 world.png
21600*21600

(154 MB)

CAST-128 / TWOFISH-128 /

TWOFISH-192 / TWOFISH-256
0 Inf

The PSNR value of the original image with decrypted image is calculated and it is

observed that the value of MSE is 0 in all the cases and therefore PSNR value as infinity.

This depicts that all of the algorithm has good visual assessment. Higher the PSNR

value, lesser destruction of image properties hence more improvement in the decrypted

image is obtained.

58

4.4. Result

The overall analysis of text and image data analysis shows that CAST-128 algorithm is

found to be effective while encrypting text file in CTR mode of operation but CBC

mode, this algorithm performed worst. In case of image file encryption, Twofish-128

algorithm performed best 3 times than Twofish-192 algorithm. Similarly for decrypting

text file, Twofish-128 algorithm performed4 times best than CAST-128 algorithm

whereas for image file, Twofish-192 algorithm performed better by 2 times than

Twofish-128 algorithm in CTR mode. So in overall, Twofish algorithm is found to be

more effective and, CTR mode is found to be more effective among all other modes of

operation.

In terms of throughput analysis, Twofish-128 algorithm is found to be more efficient in

text data analysis with respect to each text file throughput. For image data analysis,

Twofish-256 algorithm performed efficiently in most of the image file encryption

whereas CAST-128 algorithm is found to be incompetent. Average throughput for text

file analysis by Twofish algorithm is 418906 KB/sec and for image file analysis is

194623 KB/sec. Here, Twofish algorithm is found to be 3 times effective than CAST-

128 algorithm.

In terms of memory utilization analysis, in overall, Twofish algorithm has performed

well consuming less memory compared to other algorithms for text and image data

analysis. CAST-128 algorithm is found to be effective of some cases but as compared

with other algorithms in other cases, it is still ineffective. And it is found that all of the

algorithm has uniform memory utilization irrespective of data size. With the increase

of file size, no significant change in memory utilization is observed.

Differential analysis of image data shows that all of the four algorithmic methods give

good result in differential analysis. Results show that no any difference in between

original image and decrypted image. It proves that all of the algorithm performed best

in differential analysis so there is no change in recovered image.

Statistical analysis of images shows that histograms of original image and decrypted

cipher image are hardly distinguishable. The curves that are obtained from CAST-128,

59

Twofish-128, Twofish-192 and Twofish-256 are almost identical as the difference

during encryption and decryption is extremely negligible.

Visual analysis of images depicts that the value of MSE is 0 in all the cases and

therefore, PSNR value as infinity. This shows that all of the algorithm has good visual

assessment. Higher the PSNR value, lesser destruction of image properties hence more

improvement in the decrypted image is obtained.

60

CHAPTER 5

CONCLUSION LIMITATIONS AND FUTURE

RECOMMENDATION

5.1. Conclusion

Number of approach has been invented for the secure encryption mechanism. In this

study CAST-128, Twofish-128, Twofish-192 and Twofish-256 algorithms have been

implemented. ECB, CBC, CFB, OFB and CTR modes of operation have been

configured with all the algorithm techniques. The text data and image data sets of

different sizes and different types were taken into account. All of the data sets were

tested with the algorithm to measure the strength of algorithm. Overall analysis and

result from the above discussion conclude that the variants of Twofish algorithms has

performed best and among the five modes of operation, CTR mode of operation has

outperformed in terms of execution process. Twofish algorithm also outperforms in

throughput analysis. Similarly, this algorithm performed good in terms of memory

consumption as well. In terms of image quality analysis, all of the algorithms performed

outstanding work. This algorithm is found to be effective approximately three times

than CAST-128 algorithm. However for text data encryption time analysis, CAST-128

algorithm performed better than Twofish variants. From these analysis we can also

conclude that bigger block and keys can improve the security of encryption

technique. But this also decreases encryption and decryption speed. For image files with

high graphics and plain image, it is also found that these factors also affect the

processing speed such as gradual increase and gradual decrease in encryption and

decryption time. This also affect in memory consumption which has hampered in bar

graph, memory graph and as well as throughput analysis in the result.

61

5.2. Limitations

There are several notable limitations in this research:

 The overall image data analysis (bigger size of image data) could not be

accomplished as expected such as differential, statistical and visual assessment

analysis due to the limitation of computing resource. For this we required high

powerful laptop which could not be performed as expected.

 Comparison between original image and encrypted image could be performed

since encrypted image data could not be retrieved (read), so most of the image

data analysis has been done by comparing original and retrieved images.

5.3. Future Recommendation

First and foremost future recommendation of this research is to overcome with my

research limitation. And, after using text and image data, my future work will also

include experiments on audio and video data. Also, my future work will be including

XEX-based tweaked-codebook mode with cipher text stealing (XTS) mode of operation

which is a block cipher mode of operation used for full disk encryption. Also, the other

modules of algorithm can be added or modified to get variation in experiment result.

And the experiments to be carried out in better simulators to get better result. In

addition, this kind of research can be helpful in those areas such as network data

transmission where hardware level of encryption is needed. This research is more

focused on time and performance analysis, so in future, this can be upgraded with

comparing strength of algorithms or computing security levels of encryption

algorithms.

62

References

[

[1] ScienceDirect topics, "File encryption - An overview," ScienceDirect topics,

[Online]. Available: https://www.sciencedirect.com/topics/computer-

science/file-encryption.

[2] C. D. CANNIERE, "ANALYSIS AND DESIGN OF SYMMETRIC

ENCRYPTION ALGORITHMS," 2007.

[3] D. S. Abd Elminaam, H. M. Abdual Kader and M. M. Hadhoud, "Evaluating The

Performance of Symmetric Encryption Algorithms," International Journal of

Network Security, vol. 10, no. 3, p. 213–219, 2009.

[4] J. Thakur and N. Kumar, "DES, AES and Blowfish: Symmetric Key

Cryptography Algorithms Simulation Based Performance Analysis,"

International Journal of Emerging Technology and Advanced Engineering, 2011.

[5] C. RIMAN and P. E. ABI-CHAR, "Comparative Analysis of Block Cipher-Based

Encryption Algorithms: A Survey," Information Security and Computer Fraud,

vol. 3, no. 1, pp. 1-7, 2015.

[6] N. K. B and N. R. O, "ESTIMATION OF CRYPTOGRAPHIC APPROACH ON

IoT DEVICES," International Journal of Recent Scientific Research , vol. 10, no.

7, pp. 33664-33669, 2019.

[7] "What is File Encryption," [Online]. Available: http://www.file-

encryption.net/file_encryption.php.

[8] W. Stallings, Cryptography and Network Security Principles and Practices,

Prentice Hall, 2005.

63

[9] "Computer Network | Block cipher modes of operation," Computer Network,

[Online]. Available: https://www.geeksforgeeks.org/computer-network-block-

cipher-modes-of-operation/.

[10] S. A. Dass and J. Prabhu, "Comparative Analysis of a Systematic Coherent

Encryption Scheme for Large-Scale Data Management Using Cryptographic

Encryption Technique," Smart Intelligent Computing and Applications, 2019.

[11] M. Dworkin, "Recommendation for Block Cipher Methods for Format-

Preserving Encryption," Draft NIST Special Publication 800-38G, 2019.

[12] C. Tan, X. Deng and L. Zhang, "Identification of Block Ciphers under CBC

Mode,"

8thInternationalCongressofInformationandCommunicationTechnology(ICICT-

2018), 2018.

[13] W. Stallings, "The offset codebook (OCB) block cipher mode of operation for

authenticated encryption," Cryptologia, 2018.

[14] A. Khodjanov, F. Rustamov and J. Yun, "Efficient block cipher mode for NVM,"

Journal of Physics: Conference Series, 2018.

[15] M. A. MUSLIM, B. PRASETIYO and ALAMSYAH, "IMPLEMENTATION

TWOFISH ALGORITHM FOR DATA SECURITY IN A COMMUNICATION

NETWORK USING LIBRARY CHILKAT ENCRYPTION ACTIVEX,"

Journal of Theoretical and Applied Information Technology, vol. 84, no. 3, 2016.

[16] Y.-L. Huang, F.-Y. Leu, J.-C. Liu and J.-H. Yang, "A Block Cipher Mode of

Operation with Two Keys".

[17] C.-W. Huang, C.-L. Yen, C.-H. Chian, K.-H. Chang and C.-J. Chang, "The Five

Modes AES Applications in Sounds and Images," in Sixth International

Conference on Assurancec and Security, Taiwan, 2010.

64

[18] P. Gehlot, S. R. Biradar and B. P. Singh, "Implementation of Modified Twofish

Algorithm using 128 and 192-bit keys on VHDL," International Journal of

Computer Applications (0975 – 8887), vol. 70, no. 13, 2013.

[19] P. Singh and P. K. Singh, "IMAGE ENCRYPTION AND DECRYPTION

USING BLOWFISH ALGORITHM IN MATLAB," International Journal of

Scientific & Engineering Research, vol. 4, no. 7, 2013.

[20] N. Singhal and J. Raina, "Comparative Analysis of AES and RC4 Algorithms for

Better Utilization," International Journal of Computer Trends and Technology,

2011.

[21] P. N. Penchalaiah and D. R. Seshadri, "Effective Comparison and Evaluation of

DES and Rijndael Algorithm (AES)," International Journal on Computer Science

and Engineering, vol. Vol. 02, no. 05, 2010.

[22] M. Cakirolu, "Software implementation and performance comparison of popular

block ciphers on 8-bit low-cost microcontroller," International Journal of the

Physical Sciences, vol. 5, no. 9, pp. 1338-1343, 2010.

[23] "Free High-Resolution Satellite Images Samples," Effigis, [Online]. Available:

https://www.effigis.com/en/solutions/satellite-images/satellite-image-samples/.

[24] "NASA Visible Earth: June, Blue Marble Next Generation w/," Topography and

Bathymetry, [Online]. Available:

https://visibleearth.nasa.gov/view.php?id=73726.

[25] Sample Videos, "Download Sample Videos," Dummy Videos of demo use,

[Online]. Available: https://sample-videos.com.

[26] C. Adams, "RFC 2144 - The CAST-128 Encryption Algorithm," Network

Working Group, May 1997.

65

[27] A. K, J. Solomon, H. M and I. V, "A Study of Twofish Algorithm," International

Journal of Engineering Development and Research (www.ijedr.org), vol. 4, no.

2, 2016.

[28] A. Singh, "FPGA Implementation and Analysis of DES and TWOFISH

Encryption Algorithms," INDIA, 2010.

[29] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall and N. Ferguson,

"Twofish: A 128-Bit Block Cipher," 15 June 1998.

[30] X. Chen and C.-J. hu, "Adaptive medical image encryption algorithm based on

multiple chaotic mapping," Saudi Journal of Biological Sciences, vol. 24, no. 8,

Dec 2017.

[31] A. S and N. B S, "Quality Assessment of Resultant Images after Processing,"

Computer Engineering and Intelligent Systems, vol. 3, no. 7, 2012.

[32] "Intensity Histogram," [Online]. Available:

https://homepages.inf.ed.ac.uk/rbf/HIPR2/histgram.htm.

[33] D. Blazhevski, A. Bozhinovski, B. Stojchevska and V. Pachovski, "MODES OF

OPERATION OF THE AES ALGORITHM," in The 10th Conference for

Informatics and Information Technology, 2013.

[34] K. Aggarwal, J. K. Saini and H. K. Verma, "Performance Evaluation of RC6,

Blowfish, DES, IDEA, CAST-128 Block Ciphers," International Journal of

Computer Applications (0975 – 8887), vol. 68, no. 25, 2013.

