201

EVALUATION OF IMMUNOGLOBULIN M ANTIBODY CAPTURE ELISA KITS FOR DIAGNOSIS OF JAPANESE ENCEPHALITIS

Α

Dissertation

Submitted to the Central Department of Microbiology

Tribhuvan University

In Partial Fulfillment of the Requirements for the Award of the Degree of

Master of Science in Medical Microbiology

Ву

Manoj Bhandari

Central Department of Microbiology

Tribhuvan University

Kirtipur, Kathmadu, Nepal

2011

RECOMMENDATION

This is to certify that **Mr. Manoj Bhandari** has completed this dissertation work entitled "Evaluation of immunoglobulin M antibody capture ELISA kits for diagnosis of Japanese encephalitis" as a partial fulfillment of Master of Science degree in Microbiology under our supervision. This dissertation work done by Mr.Manoj Bhandari is an original research and has not been submitted to any other institute/Universities to earn any other degree.

.....

Dwij Raj Bhatta,(M.Sc, PhD) Assoc. Professor and Head Central Department of Microbiology T.U. Kirtipur Geeta Shakya, MD
Director
National Public Health aboratory
Ministry of Health, Teku, Kathmandu

Date:....

CERTIFICATE OF APPROVAL

On the recommendation of Dr. Dwij Raj Bhatta, Dr. Geeta Shakya this dissertation work of Mr. Manoj Bhandari entitled as "Evaluation of immunoglobulin M antibody capture ELISA kits for diagnosis of Japanese encephalitis" has been approved for the examination and submitted to the Tribhuvan University in the partial fulfillment for Master of Science degree in Microbiology (Medical).

••••••
Dwij Raj Bhatta, M.Sc., Ph.D.
Head of Department
Central Department of Microbiology
Tribhuvan University
Kirtipur Kathmandu
Nepal

Date:

BOARD OF EXAMINERS

Recommended by	
	Assoc. Prof. Dr. Dwij Raj Bhatta, M.Sc., Ph.D
	Supervisor
	Dr. Geeta Shakya, MD
	Supervisor
Approved by	
	•••••
	Assoc. Prof. Dr. Dwij Raj Bhatta M.Sc.,Ph.D.
	Head of Department
Examined by	
	Prof. Dr. Jeevan Bahadur Sherchand, Ph.D.
	External Examiner
	Dr. Megha Raj Banjara, Ph.D.
	Internal Examiner
Date:	

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere and earnest compliments to my

respected teacher, supervisor and head of the department Dr.Dwij Raj Bhatta for his

scholarly guidance, indispensable suggestion, inspiration, and worthy complements. I

am also equally indebted to my respected supervisor Dr.Geeta Shakya, director NPHL

for her expert guidance, suggestion and instructions. I also highly appreciate her for

kindly providing the place and resources to conduct the study.

I am highly obliged to all my respected teaches at the Central Department of

Microbiology for their valuable suggestions, encouragement and support.

My whole hearted thanks goes to Supriya Sharma, Microbiologist, NPHL, without

whose expert guidance, encouragement, motivation and kind co-operation this work

would have been incomplete.

I am really grateful to all the staffs at the Central Department of Microbiology and the

staffs at NPHL for their support and help.

I would like to express many thanks to my friends for their valueable, suggestions, co-

operation and help.

Finally I would like to take this opportunity to express my gratitude and respect to my

family members for their deep love, inspiration, support and encouragement in each and

every step of my life.

Date:....

Manoj Bhandari

٧

ABSTRACT

Japanese encephalitis (JE) is the most common cause of viral encephalitis. It is caused by the JE virus (JEV), belonging to the family flaviviridae. It is endemic in many parts of Asia, including Nepal. This study conducted at the National Public Health Laboratory, in 2010 is concerned with the evaluation of two commercially available MAC ELISA assays; the Panbio JE-Dengue IgM Combo ELISA and the XCyton ELISA developed and available for the diagnosis of the JE against the well established in house AFRIMS (Armed Forces Research Institute of Medical Sciences) ELISA. The sensivity, specificity, predictive value positive, predictive value negative and efficiency of the kits were evaluated along with percentage cross reactivity of the kits to dengue positive serum samples.

Two hundred fifty one serums and three hundred twenty nine CSF samples were tested using the Panbio IgM Combo ELISA and XCyton ELISA respectively. Besides a panel of samples containing 30 positive and 30 negative CSF sample was tested using the Panbio ELISA and a panel of samples containing 30 positive and 33 negative samples was tested using the XCyton ELISAThe Panbio kit had sensitivity ranging from 59-76% and the specificity ranging from 84-90 %. The XCyton kit had sensitivity ranging from 83-85% and specificity ranging from 95-100%. The efficiency of the XCyton kit was greater than the Panbio kit for any type of sample tested. The percentages cross reactivity against the dengue positive serum samples using both the kits was 4% and 32% respectively. The p values obtained were statistically significant at 5% level of significance for chi-square test. The overall sensitivity and specificity of the XCyton kit was higher than that of the Panbio kit. The Panbio kit includes antigen for both JE and Dengue and has additional advantage where both JE and dengue co-circulate.

Key words: JE, MAC ELISA, sensitivity, specificity, PVP, PVN

TABLE OF CONTENTS

Title page	i
Recommendation	ii
Certificate of approval	iii
Board of examiners	iv
Acknowledgements	V
Abstract	vi
List of tables	viii
List of figures	ix
List of photographs	X
List of appendices	xi
List of abbreviations	xii
CHAPTER I: INTRODUCTION	1
CHAPTER II: OBJECTIVES	5
2.1 General Objectives	5
2.2 specific objectives	5
CHAPTER III: REVIEW OF LITERARTURE	6
3.1Japanese Encephalitis	6
3.2 JE virus	6
3.2.1 Morphology and Structure of virus	6
3.2.2 Replication	8
3.3 Classification of the virus	8
3.3.1 Phylogenetic Variation of JEV	8
3.4 Epidemiology of JE	9
3.4.1 Epidemiology of JE in Nepal	9
3.4.2 Epidemiology of JE in world	10
3.5 Epidemic Cycle	12
3.5. 1 Vertical Transmission of JEV	13
3.5.2 Bird Mosquito Cycle	14

3.6 Pathogenesis and Pathology	16
3.6.1 Pathogenesis	16
3.6.2 Pathophysiology	17
3.7Clinical features	18
3.7.1Stages of JE	18
3.7.2Acute Flacid Paralysis	20
3.7.3 Disability and Sequelae	20
3.8 Immunology	20
3.8.1Humoral Immunity	20
3.8.2 Cell Mediated immunity	22
3.8.3 Cytokines and chemokines	23
3.9 Cross reactivity among Flavivirus	24
3.10 Diagnosis of JE	25
3.10.1 Clinical diagnosis	25
3.10.2 Virus cultivation	26
3.10.3Serological diagnosis	27
3.10.4 Western blot	29
3.10.5 Antigen detection	30
3.10.6 RT-PCR	30
3.11 IgM antibody capture ELISA (MAC ELISA)	30
3.12 Prevention, control and treatment	33
3.12.1 Control of vector	33
3.12.2 Prevention of mosquito bite	33
3.12.3 JE awareness programmes	34
3.12.4 Vaccines	34
3.12.5 Prospects for antiviral treatment	36
CHAPTER IV: MATERIALS AND METHODS	37
4.1 Materials	37
4.2 Methods	37
4.2.1 Study design	37
4.2.2 Study site	37
4.2.3 Samples	37
4.2.4 Sample size	37
4.3 Samples selection	38

4.4 Test protocol	38	
4.5 Evaluation of test kits		
4.6 Sample processing		
4.7 Recording of test result		
4.8 Statistical analysis	41	
CHAPTER V: RESULTS	42	
5.1Evaluation of Panbio kit using both serum and CSF samples	42	
5.2Evaluation of Panbio kit using serum only	43	
5.3Evaluation of Panbio kit using CSF only	43	
5.4Evaluation of XCyton kit using both serum and CSF samples	44	
5.5 Evaluation of XCyton kit using serum only	45	
5.6 Evaluation of XCyton kit using CSF only	45	
5.7 Comparison of performance characteristic for both kits	46	
5.8 Cross reactivity of kits with dengue positive samples	47	
5.9 Qualitative comparison of test kits	47	
CHAPTER VI: DISCUSSION AND CONCLUSION	49	
6.1 Discussion	49	
6.2 Conclusion	54	
CHAPTER VII: SUMMARY AND RECOMMENDATION	56	
7.1 Summary	56	
7.2 Recommendation	57	
CHAPTER VII: REFERENCES	58	

APPENDICES

LIST OF TABLES

Table 1:	Classification of test result
Table 2:	Comparison of Panbio kit with AFRIMS using serum and CSF samples
Table 3:	Comparison of Panbio kit with AFRIMS using serum only
Table 4:	Comparison of Panbio kit with AFRIMS CSF only
Table 5:	Comparison of XCyton kit with AFRIMS using both samples
Table 6:	Comparison of XCyton kit with AFRIMS using CSF only
Table 7:	Comparison of XCyton kit with AFRIMS using serum only
Table 8:	Overall result for both kits
Table 9:	Cross reactivity of both kits against Dengue positive serum samples
Table 10:	Qualitative characteristics for both kits

LIST OF FIGURES

Figure 1:	Transmission cycle of JEV
Figure 2:	Neuropathogenesis of JEV
Figure 3:	Schematic antibody responses in JE infection
Figure 4:	Final classification schemes of AES cases
Figure 5:	Generalised principle of MAC ELISA
Figure6:	Performance characteristics of Panbio for both samples
Figure 7:	Performance characteristics of Panbio for serum
Figure 8:	Performance characteristics of Panbio for CSF
Figure 9:	Performance characteristics of XCyton for both samples
Figure 10:	Performance characteristics of XCyton for serum
Figure 11:	Performance characteristics of XCyton for CSF
Figure 12:	Comparision of performance of both kits
Figure 13:	Cross Reactivity of kits with Dengue positive serum samples

LIST OF PHOTOGRAPHS

Photograph 1: Positive result for the Panbio JE-Dengue Combo ELISA

Photograph 2: Positive result for the XCyton JEV CheX ELISA

LIST of APPENDICES

Appendix I: Materials and equipments

Appendix II: Standard operating procedure (SOP) for AFRIMS ELISA

Appendix III: Standard operating procedure (SOP) for Panbio

JE-Dengue IgM Combo ELISA

Appendix IV: Standard operating procedure (SOP) for XCyton JEV CheX

ELISA

Appendix V: Panbiu JE-Dengue Combo ELISA Kit Insert

Appendix VI: XCyton JEV CheX ELISA Kit Insert

LIST OF ABBREVIATIONS

ABC- Avidin Biotin System

ACRIA- Antibody Capture Radio Immunoassay

AES- Acute Encephalitc Syndrome

AFRIMS- Armed Force Research Institure Of Medical Sciences

API- Alpha -1 Protease Inhibitor

BHK-21- Baby Hamster Kidney

C- Core Protein

CDC- Centre for Disease Control and prevention

CMF- Cardiac Myofibroblast

CNS- Central Nervous System

COX- Cyclooxygenases

CSF- Cerebrospinal Fluid

Cx- Culex

E- Envelope Protein

HI- Haemagglutination Inhibition

HLA- Human leukocyte antigen

HRP- Horse Radish Pero-Oxidase

IgG- Imunoglobulin G

IgM- Immunoglobulin M

IL- Interleukin

iNOS - Immunologic Nitric Oxide Synthetase

JE- Japanese Encephalitis

JEV- Japanese Encephalitis Virus

LLCMK2- Rhesus monkey kidney epithelial cells (Macaca mulatta)

Mab- Monoclonal Antibody

MAC-ELISA- IgM Antibody Capture Enzyme Linked Immunosorbent Assay

MCP-1- Monocyte chemotactic protein 1

MIF- Macrophage Inhibiting Factor

MoHP- Ministry Of Health and Population

MRI- Magnetic Resonance Imaging

NADPH- Nicotinamide Dinucleotide Phosphate Hydrogen

NO - Nitric Oxide

NPHL- National Public Health Laboratory

NS- Non Structural

ORF- Open Reading Frame

PrM- Pre-Membrane Protein

PRNT- Plaque Reduction Neutralization Test

RANTES- Regulation upon Normal T-Cell Expressed and Presumably

Secreted

RBCS- Red Blood Cells

RNA- Ribonucleic Acid

ROS- Reactive oxygen species

RT-PCR- Reverse Transcriptase-Polymerase Chain Reaction

SEA- South East Asia

TNF- - Tumor Necrosis Factor

UTR- Untranslated Region

WHO- World Health Organisation