METHICILLIN-RESISTANT *STAPHYLOCOCCUS AUREUS* (MRSA) IN CLINICAL SAMPLES AND NASAL SCREENING FOR MRSA CARRIAGE AMONG HEALTHY CARRIERS IN HOSPITAL SETTING

Α

Dissertation

Submitted to the Central Department of Microbiology

Tribhuvan University

In Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science in Microbiology

(Medical Microbiology)

By

Krishna Bahadur Thapa

Central Department of Microbiology

Tribhuvan University

Kirtipur, Kathmandu, Nepal

2011

ii

RECOMMENDATION

This is to certify that Mr. Krishna Bahadur Thapa has completed this dissertation work entitled "Methicillin-resistant *Staphylococcus aureus* (MRSA) in Clinical Samples and Nasal Screening for MRSA Carriage among Healthy Carriers in Hospital Setting" as a partial fulfillment of M. Sc. Degree in Microbiology under our supervision. To our knowledge, this work has not been submitted for any other degree.

Dr. Megha Raj Banjara, Ph.D.	Brid. Gen. Prof. Dr. Narbada Thapa, Ph.D.
Lecturer	Principal
Central Department of Microbiology	Nepalese Army Institute of Health Sciences
Tribhuvan University	College of Nursing
Kirtipur, Kathmandu	Mahankalsthan, Kathmandu
Nepal	Nepal

Lt. Col. Dr. Eva Piya

Pathologist

Department of Pathology

Shree Birendra Hospital

Chhauni, Kathmandu

Nepal

Date: _____

CERTIFICATE OF APPROVAL

On the recommendation of Dr. Megha Raj Banjara, Brid. Gen. Prof. Dr. Narbada Thapa, and Lt. Col. Dr. Eva Piya this dissertation work of Mr. Krishna Bahadur Thapa entitled "Methicillin-resistant *Staphylococcus aureus* (MRSA) in Clinical Samples and Nasal Screening for MRSA Carriage among Healthy Carriers in Hospital Setting" has been approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirements for M. Sc. Degree in Microbiology (Medical Microbiology).

Assoc. Prof. Dr. Dwij Raj Bhatta, M.Sc., Ph.D.

Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Date:_____

BOARD OF EXAMINERS

Recommended by:

Dr. Megha Raj Banjara, Ph. D.

Supervisor

Brid. Gen. Prof. Dr. Narbada Thapa

Supervisor

Lt. Col. Dr. Eva Piya

Supervisor

Approved by:

Assoc. Prof. Dr. Dwij Raj Bhatta, Ph.D.

Head of Department

Examined by:

Prof. Dr. Bharat Mani Pokhrel

External Examiner

Mr. Dev Raj Joshi

Internal Examiner

Date:

ACKNOWLEDGEMENTS

First, I express my deepest acknowledgement to my supervisors Dr. Megha Raj Banjara, Ph.D., Lecturer, Central Department of Microbiology, Tribhuvan University, Brid. Gen. Prof. Dr. Narbada Thapa, Principal, Nepalese Army Institute of Health Sciences, College of Nursing, Mahankalsthan, Kathmandu and Lt. Col. Dr. Eva Piya, Pathologist Department of Pathology, Shree Birendra Hospital, Chhauni, Kathmandu for providing an opportunity to work under their supervision and guidance, without which this work would not have come into shape.

I am extremely grateful to Assoc. Prof. Dr. Dwij Raj Bhatta, M. Sc., Ph.D., Head of Department, Central Department of Microbiology, Tribhuvan University for providing valuable suggestions and help during my entire work.

I am greatly indebted to Lt. Col. Dr. Sunil Singh, Head of Pathology Department, Maj. Khagendra Sijapati, Microbiologist for providing constructive and valuable suggestion and generously contributing his valuable time despite busy schedule and providing a workable laboratory environment at bacteriology laboratory, Shree Birendra Hospital, Chhauni, Kathmandu.

I would also like to express my gratitude to Mr. Kul Bahadur Gurung, Mr. Jaman Singh Basnet, Mr. Dev Bahadur Basnet, Mr. Baburam Rimal, Mr. Ramesh Thapa for their kind helping hands and support during my entire working hours. My sincere thanks also go to all others members of Bacteriology Laboratory, Shree Birendra Hospital, Chhauni. I am deeply thankful to in-charge of wards and other staffs for their cooperation assistance during sampling periods.

Last, but not the least, the constant support, blessing and encouragement by my family members during ups and downs are precious in every step of my life.

Krishna Bahadur Thapa

Date: _____

ABSTRACT

Staphylococcus aureus is a Gram positive bacterium responsible for several bacterial infections. Antimicrobial resistance of S. aureus especially methicillin-resistant S. aureus (MRSA), usually resistant to several antibiotics is a global public health problem, associated with considerable mortality and morbidity. This study investigated the susceptibility pattern of S. aureus isolates from various clinical samples and nasal swabs in the Shree Birendra hospital, Kathmandu. In addition, characterization of Methicillinsensitive S. aureus (MSSA) and MRSA were reported to determine the current prevalence of MRSA as well as nasal carrier rate among hospital staffs and patient visitors. Characterization and identification of S. aureus was confirmed by microbiological methods and antimicrobial susceptibility testing was performed by Kirby-Bauer disc diffusion method. A total of 138 S. aureus were isolated from various clinical samples. Among isolates, 18.1% were found to be MRSA. Similarly 25.0% and 18.0% S. aureus nasal carrier rate was found among health personnel and patient visitors respectively. No MRSA was found among positive isolates from healthy carriers. The higher MRSA was isolated from inpatient setting. Among MSSA isolates from clinical samples, 60.2% (68/113) were multidrug-resistant (MDR) while among MRSA isolates, more than 90.0% were MDR. In case of nasal isolates from health personnel, only 32.0% (8/25) were MDR strains. Gentamicin was found to be more effective against MSSA with 93.6% sensitivity. More than 50.0% of MRSA strains from clinical samples were resistant to all antibiotics used except Vancomycin. Isolates of both clinical samples and nasal swabs showed highest resistance towards penicillin. In view of the high resistance rates of MRSA to Gentamicin, Erythromycin, Ciprofloxacin and Cotrimoxazole, treatment of MRSA infections with these antibacterial agents would be unreliable. MRSA infections are still one of the most threatening infections in the hospitals. Therefore, regular surveillance of MRSA related infections including monitoring of antimicrobial susceptibility pattern of MRSA and formulation of a definite antimicrobial policy may be helpful for reducing MRSA prevalence in hospital setting. In addition, improvement of hygiene standards in hospitals among personnel and visitors will help to prevent S. aureus and MRSA transmission.

Key words: S. aureus, MSSA, MRSA, nasal healthy carriers, MDR, Shree Birendra hospital

TABLE OF CONTENTS

	Page
No.	
Title page	i
Recommendation	ii
Certificate of approval	iii
Board of examiners	iv
Acknowledgements	V
Abstract	vi
Table of contents	vii
List of tables	xi
List of figures	xii
List of photographs	xiii
List of appendices	xiv
List of abbreviations	xv-xvi
CHAPTER- I: INTRODUCTION	1
CHAPTER-II: OBJECTIVES	4
2.1 General objective	
2.2 Specific objectives	
CHAPTER-III: LITERATURE REVIEW	5
3.1 Staphylococcus	5
3.2 Characteristics of S. aureus	5
3.2.1 Cultural characteristics	5
3.2.2 Biochemical characteristics	6
3.3 Virulence factors and pathogenesis	7

3.3.1 Cell wall associated factors	7
3.3.2 Cell surface proteins	7
3.3.3 Microcapsule	8
3.3.4 Exoproteins	8
3.3.5 Super- antigen proteins	8
3.3.6 Extracellular enzymes	9
3.4 Human diseases caused by Staphylococcal infections	10
3.4.1 Localized skin infections	10
3.4.2 Disease due to organ invasion	11
3.4.3 Disease caused by exotoxin release	12
3.5 Methicillin-resistant S. aureus (MRSA)	13
3.5.1 Mechanism of resistance	14
3.6 Hospital-acquired MRSA (HA-MRSA)	15
3.6.1 Prevalence of MRSA in the hospitals	16
3.7 Community-acquired MRSA (CA-MRSA)	18
3.7.1 Prevalence of MRSA in the community	20
3.8 Glycopeptide intermediate resistant S. aureus (GISA)	21
3.9 Nasal Carriage of S. aureus and MRSA	22
3.9.1. Assessment of Nasal Colonization	25
3.10 Sources and transmission of MRSA	25
3.11 Infection control for MRSA	26
3.12 Resistance and treatment	26
CHAPTER-IV: MATERIALS AND METHODS	28
4.1 Materials	28
4.2 Sample size and types	28

4.3 Questionnaire sheet and sample collection protocol	28
4.4 Sample collection	29
4.4.1 Sample transportation	29
4.4.2 Sample processing	29
4.5 Bacteriological identification of S. aureus	30
4.5.1 Sub-culture on NA	30
4.6 Antibiotic Susceptibility Testing	30
4.7 Quality control for the tests	31
4.8 Data analysis	31
CHAPTER-V: RESULTS	33
5.1 Clinical samples	33
5.1.1 Distribution of <i>S. aureus</i> in the samples	33
5.1.2 Distribution of S. aureus among outpatients and inpatients	33
5.1.3 Antibiotic susceptibility pattern of S. aureus isolates	34
5.1.4 Comparison of S. aureus isolates and MRSA strains isolated	
from different clinical samples	35
5.1.5 Distribution of MRSA in outpatients and inpatients	35
5.1.6 Antibiotic susceptibility pattern shown by MSSA and MRSA	36
5.1.7 Multi- drug resistant (MDR) S. aureus isolates	37
5.2 Nasal swabs from health personnel	38
5.2.1 Sex wise nasal carriage of S. aureus among health personnel	38
5.2.2 Age wise nasal carrier of S. aureus	38
5.2.3 Occupation-wise nasal carrier of S. aureus	39
5.2.4 Ward wise distribution of S. aureus	40
5.2.5 Rank wise distribution of S. aureus among health personnel	40

nasal swab	41
5.2.7 MDR S. aureus isolated from hospital personnel	41
5.3 Nasal swabs from visitors	42
5.3.1 Sex wise nasal carriage of S. aureus	42
5.3.2 Age wise nasal carrier of S. aureus	42
5.3.3 Ward wise distribution of S. aureus	43
5.3.4 Antibiotic susceptibility pattern of S. aureus isolated from	
nasal swab	44
CHAPTER-VI: DISCUSSION AND CONCLUSION	45
CHAPTER-VI: DISCUSSION AND CONCLUSION 6.1 Discussion	45 45
CHAPTER-VI: DISCUSSION AND CONCLUSION6.1 Discussion6.2 Conclusion	45 45 54
CHAPTER-VI: DISCUSSION AND CONCLUSION 6.1 Discussion 6.2 Conclusion CHAPTER-VII: SUMMARY AND RECOMMENDATIONS	45 45 54 55
CHAPTER-VI: DISCUSSION AND CONCLUSION 6.1 Discussion 6.2 Conclusion CHAPTER-VII: SUMMARY AND RECOMMENDATIONS 7.1 Summary	45 45 54 55 55
CHAPTER-VI: DISCUSSION AND CONCLUSION 6.1 Discussion 6.2 Conclusion CHAPTER-VII: SUMMARY AND RECOMMENDATIONS 7.1 Summary 7.2 Recommendations	45 45 54 55 55 57

APPENDICES

LIST OF TABLES

No.	Tables
Table 1.	Distribution of S. aureus in clinical samples
Table 2.	Distribution of S. aureus among outpatients and inpatients
Table 3.	Antibiotic susceptibility pattern of S. aureus isolates
Table 4.	Distribution of <i>S. aureus</i> and MRSA in different clinical samples
Table 5.	MRSA in outpatient and inpatients
Table 6.	MRSA in outpatient and inpatients of different age groups
Table 7.	Antibiotic susceptibility pattern of MSSA and MRSA
Table 8.	Sex- wise nasal carrier rate of S. aureus among health personnel
Table 9.	Age group wise nasal carrier rate of <i>S. aureus</i> among health personnel
Table 10.	Occupation- wise nasal carrier of <i>S. aureus</i> among health personnel
Table 11.	Ward wise distribution of S. aureus among health personnel
Table 12.	Rank wise distribution of S. aureus among health personnel
Table 13.	Antibiotic susceptibility pattern of <i>S. aureus</i> isolated from health personnel
Table 14.	Sex- wise nasal carrier rate of S. aureus among patient visitors
Table 15.	Age group wise nasal carrier rate of S. aureus among visitors
Table 16.	Ward wise distribution of S. aureus among patient visitors
Table 17.	Antibiotic susceptibility pattern of S. aureus isolated from visitors

LIST OF FIGURES

- Figure 1. Flow chart for processing of clinical samples and nasal swabs
- Figure 3. MDR strains among MSSA and MRSA strains
- Figure 4. MDR strains among nasal isolates

LIST OF PHOTOGRAPHS

- Photograph 1. Culture plate of *S. aureus* on BA
- Photograph 2. Culture plate of *S. aureus* and CONS on MSA
- Photograph 3. Tube coagulase test of *S. aureus*
- Photograph 4. Antibiotic susceptibility testing of *S. aureus* on MHA
- Photograph 5. Oxacillin and Methicillin resistant Vancomycin sensitive strain of *S. aureus*

LIST OF APPENDICES

- **APPENDIX I** Materials and Equipments
- APPENDIX –II Bacteriological Media
- APPENDIX-III Reagents/Stains
- **APPENDIX-IV** Gram's staining Procedure
- **APPENDIX-V** Further Identification Tests
- APPENDIX-VI Antibiotic Susceptibility Test
- APPENDIX-VII Zone Size Interpretative Chart
- APPENDIX-VIII Questionnaire Sheet for Nasal Sample Collection

LIST OF ABBREVIATIONS

AMR	: Antimicrobial Resistance
ATCC	: American Type Culture Collection
CDC	: Centre for Disease Control
CLSI	: Clinical and Laboratory Standards Institute
CONS	: Coagulase Negative Staphylococci
CVP tip	: Centre Venous Pressure tip
DNA	: Deoxyribonucleic Acid
ELISA	: Enzyme Linked Immunosorbent Assay
FDA	: Food and Drug Administrator
HAI	: Hospital Acquired Infection
HA-MRSA	: Hospital Acquired MRSA
KDa	: Kilo Dalton
MA	: MacConkey Agar
MDR	: Multidrug Resistance
MIC	: Minimum Inhibitory Concentration
MRSA	: Methicillin Resistant Staphylococcus aureus
MSA	: Mannitol Salt Agar
MSSA	: Methicillin Sensitive Staphylococcus aureus
NA	: Nutrient Agar

NCCLS	: National Committee for Clinical Laboratory Standards
OPD	: Out Patient Department
ORSA	: Oxacillin Resistant Staphylococcus aureus
PBPs	: Penicillin Binding Proteins
PCR	: Polymerase Chain Reaction
PRSA	: Penicillin Resistant Staphylococcus aureus
PYR	: L-Pyrroidonylnapthylamide
RFLP	: Restriction Fragement Length Polymorphysim
SCC	: Staphylococcal Cassette Chromosome
SSTs	: Skin and Soft Tissue Infections
TMP-SMX	: Trimethoprim-Sulfamethoxazole
TSST	: Toxic Shock Syndrome Toxin
TUTH	: Tribhuvan University Teaching hospital
ICU	: Intensive Care Unit
ITCU	: Intensive Trauma Care Unit
VISA	: Vancomycin Intermediate Staphylococcus aureus
VRSA	: Vancomycin Resistant Staphylococcus aureus
WHO	: World Health Organization