BACTERIAL ISOLATES FROM EAR DISCHARGE OF PATIENTS SUFFERING FROM OTITIS MEDIA AND THEIR ANTIBIOTIC SUSCEPTIBILITY PATTERN

A DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KATHMANDU, NEPAL, IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF DEGREE OF MASTERS OF SCIENCE IN MICROBIOLOGY (MEDICAL)

 \mathbf{BY}

RAMITA SUWAL
2012
CENTRAL DEPARTMENT OF MICROBIOLOGY
TRIBHUVAN UNIVERSITY
KIRTIPUR, KATHMANDU, NEPAL

© TRIBHUVAN UNIVERSITY

RECOMMENDATION

This is to certify that Ms. Ramita Suwal has completed this dissertation work entitled "BACTERIAL ISOLATES FROM EAR DISCHARGE OF PATIENTS SUFFERING FROM OTITIS MEDIA AND THEIR ANTIBIOTIC SUSCEPTIBILITY PATTERN" as a partial fulfillment of Master of Science Degree in Microbiology under our supervision. To our knowledge, this work has not been submitted to any other degree.

Dr. Raina Chaudhary MBBS, MD, Microbiology Department of Microbiology

Shree Birendra Hospital, Chhauni, Kathmandu Dr. Reeba Karki MBBS, MS ENT H and N Surgery Department of ENT Shree Birendra Hospital, Chhauni, Kathmandu

Ms. Shaila Basnyat Lecturer, Microbiology Central Department of Microbiology, Tribhuwan University, Kirtipur.

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Raina Chaudhary, Dr. Reeba Karki** and **Ms. Shaila Basnyat** this dissertation work of **Ms. Ramita Suwal** is approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirements for Master of Science Degree in Microbiology (Medical).

Assoc. Prof. Dr. Dwij Raj Bhatta, PhD

Head of the Department
Central Department of Microbiology
Tribhuwan University
Kathmandu, Nepal.

Date:-

BOARD OF EXAMINERS

Recommended by:	
	Dr. Raina Chaudhary, MBBS, MD Microbiologist (Assit. Prof., NAIHS) Supervisor
	Dr. Reeba Karki, MBBS, MS ENT H and N Surgeon Supervisor
	Ms. Shaila Basnyat Lecturer Supervisor
Approved by:	Dr. Dwij Raj Bhatta, Ph.D. Head of Department
Examined by:	Mr. Gyanendra Bahadur Karki External Examiner
	Dr. Megha Raj Banjara Internal Examiner
Date:	

ACKNOWLEDGEMENTS

It is with immense gratitude that I acknowledge the guidance and support of my supervisors, Dr. Raina Chaudhary, Dr. Reeba Karki and Ms Shaila Basnyat. Without their invaluable assistance and encouragement, this dissertation would not have been possible.

I owe my deepest gratitude to Dr. Dwij Raj Bhatta, HoD, Central Department of Microbiology for his constant guidance and motivation to complete my research. I wish to thank all the teachers and staff of Central Department of Microbiology who have provided me with all the support I needed. My sincere thanks to Dr. Megha Raj Banjara for his immense help with SPSS software.

This study would not have been complete without the co-operation of several other individuals who in one way or another extended their help in the conduction and completion of this study.

I am indebted to Dr. Kiran Rai, HoD, Department of ENT; Dr. Suman Raj Dongol and Dr. Sarita K. C. of ENT Department, Shree Birendra Hospital, Chhauni for providing me with the necessary samples for the study. The good advice and encouragement of Mr. Khagendra Simkhada Magar gave an added impetus to my thesis completion, for which I am extremely grateful to him. Many thanks to all the staff of Microbiology Laboratory of Shree Birendra Hospital.

I would like to thank Dipti and Yuddha for their company and help during the laboratory work. Without them, I wouldn't have enjoyed working on this thesis as I much as did. I also owe my gratitude to Shanta, Manisha, Jyotshana, Raju and all my friends for their moral support throughout my work.

Last, but by no means least, I thank my parents, sisters and brother for being the	CIC
for me all the time.	

Date:		Ramita Suwal
Date	_	Rummu Duwum

ABSTRACT

This study was conducted to identify the aerobic bacterial pathogen causing otitis media and determine their antibiotic susceptibility pattern. Aural discharge samples were collected from the patients visiting the Ear Nose Throat Out Patient Department of Shree Birendra Hospital, Chhauni, who were diagnosed with chronic suppurative otitis media and acute otitis media. Standard microbiological procedures were employed to isolate and identify the causative agents of the infection and determine the antibiotic susceptibility pattern of isolated pathogen.

Among total 153 samples, 128 (84.31%) samples were positive. 119 (77.7%) samples produced single organism and 9 (5.8%) samples gave mixed growth. The total of 136 isolates was obtained. Gram positive organisms (64%) were predominant. The most common isolates were *Staphylococcus aureus* from 70(51.5%) cases followed by *Pseudomonas aeruginosa* from 27 (19.9%) cases. Other organisms isolated were Coagulase negative staphylococci (11.8%), *Klebsiella* species (6.6%), *Escherichia coli* (5.1%), *Citrobacter fruendii* (2.9%), *Proteus mirabilis* (0.7%), *Streptococcus pyogenes* (0.7%) and *Haemophilus influenzae* (0.7%). *S. aureus* showed greater sensitivity (67.1%) to cefoxitin than other antibiotics tested. Antibiotic susceptibility test of *P. aeruginosa* showed 100% sensitivity to imipenem, 92.6% to piperacillin, 88.9% each to ceftazidime and amikacin and 74.1% to ciprofloxacin. Similarly, most *E. coli* isolates (71.4%) were sensitive to gentamicin, *C. fruendii* (100%) to gentamicin, *Klebsiella* sps (77.8%) to ciprofloxacin and gentamicin each. *S. aureus* was found to be the most common etiological agent of otitis media followed by *P. aeruginosa*.

Keywords: Otitis media, Chronic suppurative otitis media, *S. aureus*, *P. aeruginosa*

TABLE OF CONTENTS

	PAGE NO.
Title Page	i
Recommendation	ii
Certificate of Approval	iii
Board of Examiners	iv
Acknowledgements	v
Abstract	vi
List of Tables	x
List of Figures	xi
List of Photographs	xii
Appendices	xiii
Abbreviations	xiv
CHAPTER 1: INTRODUCTION AND OBJECTIVES	1-5
1.1 Background	1
1.2 Study Objectives	5
CHAPTER 2: LITERATURE REVIEW	6-14
2.1 Otitis media	6
2.2 Causative organisms of otitis media	6
2.3 Pathogenesis	7
2.4 Risk factors	10
2.5 Epidemiology	11
2.6 Clinical Features	13
2.7 Management of Infection	13
2.8 Antibiotic Susceptibility Test	14
CHAPTER 3: MATERIALS AND METHODS	17-25
3.1 Materials	17
3.2 Methods	17
3.3 Collection of Sample	17

3.3.1 Preparation of swab sticks	17
3.3.2 Sample collection	18
3.4 Sample transportation	18
3.5 Sample processing	18
3.6 Identification of Isolates	18
3.6.1 Biochemical Tests for Gram Positive	
Organisms	19
3.6.1.1 Gram positive cocci in cluster	19
3.6.1.2 Gram positive cocci in chains	19
3.6.2 Biochemical Tests for Gram Negative	
Organisms	19
3.6.3 Identification of <i>Haemophilus</i> species	20
3.7 Antibiotic susceptibility test	20
3.8 Purity plate	21
3.9 Quality control	21
3.10 Data management and analysis	21
CHAPTER 4: RESULTS	
4.1 Pattern of Growth	26
4.2 Gender-Wise Distribution of Sample	27
4.3 Pattern of Pure Culture and Mixed	
Growth	27
4.4 Age-Wise Distribution of the Sample	29
4.5 Bacteriological Analysis	30-40
4.5.1 Distribution of Gram Positive and	
Negative Isolates	30
4.5.2 Pattern of Bacterial Isolates	31
4.5.3 Pattern of Bacteria in Mixed Growth	32
4.5.4 Pattern of Bacteria Isolated in	
Different Age-Group	33
4.6 Antiobiotic Susceptibility Pattern of the Isolates	34

CHAPTER 5: DISCUSSION	41-49
CHAPTER 6: CONCLUSION AND RECOMMENDATIONS	50-51
6.1 Conclusion	50
6.2 Recommendations	50
REFERENCES	52-58
APPENDICES	I-XIX

LIST OF TABLES

TABLE		PAGE NO.
Table 1	Distribution of Cases According to Sex	27
Table 2	Frequency of Pure Culture and Polymicrobial	
	Growth	27
Table 3	Distribution of Cases According to Age	29
Table 4	Distribution of Gram Positive and Gram Negative	
	Organisms	30
Table 5	Distribution of Gram Positive and Gram Negative	
	Organisms According to Sex	30
Table 6	Distribution of Organisms According to Sex	31
Table 7	Organisms Isolated in Mixed Growth	32
Table 8	Age-Wise Distribution of the Isolates	33
Table 9	Antibiotic Susceptibility Pattern of S. aureus	34
Table 10	Antibiotic Susceptibility Pattern of P. aeruginosa	35
Table 11	Antibiotic Susceptibility Pattern of E. coli	36
Table 12	Antibiotic Susceptibility Pattern of C. fruendii	37
Table 13	Antibiotic Susceptibility Pattern of Klebsiella Spp	38
Table 14	Antibiotic Susceptibility Pattern of CoNS	39
Table 15	Antibiotic Susceptibility Pattern of Single Isolates	40

LIST OF FIGURES

FIGURE	PAGE NO.
Figure 1 Anatomy of Human Ear	8
Figure 2 Flow Chart of Laboratory Work	21
Figure 3 Identification of Gram Positive Cocci	22
Figure 4 Identification of Gram Negative Bacteria	23
Figure 5 Pie-Chart Showing Growth Pattern	24
Figure 6 Distribution of Pure Culture and Polymicrobial Culture	
Between the Sexes	26

LIST OF PHOTOGRAPHS

Photograph 1	Culture of Staph. aureus Showing -Haemolysis on BA.
Photograph 2	Culture of Ps. aeruginosa on NA.
Photograph 3	Biochemical test results of Ps. aeruginosa.
Photograph 4	Culture of Klebsiella spp on MA.
Photograph 5	Biochemical test results of Klebsiella spp.

APPENDICES

Pa	age no.
APPENDIX A QUESTIONNAIRE AND RECORD KEEPING	I
APPENDIX B LIST OF MATERIALS	IV
APPENDIX C COMPOSITION AND PREPARATION OF DIFFERENT	
TYPES OF MEDIA	VI-XI
I. Composition and Preparation of Culture Media	VI
II. Composition and Preparation of Biochemical Test Media	IX
III. Staining and Test Reagents	XI
APPENDIX D GRAM-STAINING PROCEDURE	XIV
APPENDIX E BIOCHEMICAL TESTS FOR IDENTIFICATION OF	
BACTERIA	XV
APPENDIX F ZONE SIZE INTERPRETATION CHART	XIX

ABBREVIATIONS

AOM Acute Otitis Media

BA Blood Agar

BRINOS Britain Nepal Otology Service

CA Chocolate Agar

CLSI Clinical and Laboratory Standards Institute

CoNS Coagulase Negative Staphylococci

CSOM Chronic Suppurative Otitis Media

DALY Disability-Adjusted Life-Years

ENT Ear Nose and Throat

MA MacConkey Agar

MDR Multi-Drug Resistant

MHA Muller Hinton Agar

MRSA Methicillin Resistant Staphylococcus aureus

NA Nutrient Agar

OME Otitis Media with Effusion

OPD Out Patient Department

SIM Sulphide Indole Motility

TSI Triple Sugar Iron

WHO World Health Organization