ISOLATION AND IDENTIFICATION OF EXTENTED SPECTRUM BETA LACTAMASE PRODUCING MULTI DRUG RESISTANCE BACTERIA FROM SPUTUM SAMPLES OF SUSPECTED LRTI PATIENTS VISITING NEPAL PUBLIC HEALTH LABORATORY, NEPAL.

A

DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY (MEDICAL)

BY

KEDAR KRISHNA BHAILA

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

KIRTIPUR, KATHMANDU

NEPAL

2011

RECOMMENDATION

This is to certify that Mr. Kedar Krishna Bhaila has completed this dissertation work entitled **"Isolation and Identification of ESBL Producing MDR Bacteria From Sputum Samples of LRTI Patients Visiting NPHL", Nepal** as a partial fulfillment of Master of Science degree in Microbiology under our supervision. This dissertation work done by Mr. Bhaila is an original research and has not been submitted to any other institute/Universities to earn any other degree.

•••••

Dr; Dwij Raj Bhatta, MSc, PhD

Assoc. Professor and Head of Department Central Department of Microbiology T.U. Kirtipur Mr. Bishnu Prasad Upadhyaya, MSc Senior Medical Technologist NPHL, Teku.

...

Date:

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Dwij Raj Bhatta, Dr. Geeta Shakya and Mr. Bishnu Prasad Upadhyaya**, this dissertation work of **Mr. Kedar Krishna Bhaila** entitled "**Isolation and Identification of ESBL Producing MDR bacteria from Sputum Samples of Suspected LRTI Patients Visiting NPHL**", Nepal has been approved for the examination and submitted to the Tribhuvan university in the partial fulfillment for master of science degree in Microbiology (Medical).

.....

Dr, Dwij Raj Bhatta, MSc, PhD Assoc. Professor and Head of Department Central Department of Microbiology Tribhuvan University Kirtipur Kathmandu Nepal

Date:

.

BOARD OF EXAMINERS

Recommended by

.....

Assoc. Professor Dr. Dwij Raj Bhatta, MSc, PhD

Supervisor

.....

Mr. Bishnu Prasad Upadhyaya, MSc

Supervisor

Approved by

Assoc. Professor Dr. Dwij Raj Bhatta, MSc, PhD

Head of department

CDM, T.U.

Examined by

.....

External examiner

.....

Internal examiner

Date:

ACKNOWLEDGEMENT

I would like to extend my great appreciation of generosity to my supervisor Assoc. Professor Dr. Dwij Raj Bhatta for his guidance, encouragement, inspiration and remarkable cooperation with an academic support rendered to me during this research work. I would like to express my earnest and heartfelt gratitude to my supervisor Dr. Geeta Shakya, Acting Director, National Public Health Laboratory, Ministry Of Health and Mr. Bishnu Prasad Upadhyaya, Senior Medical Technologist, National Public Health Laboratory, Ministry Of Health for their constant constructive advice, supervision and support throughout the dissertation work. I extend my immense gratefulness to them for kindly providing the platform for my research work and for providing me with required materials and expert guidance without which this work was not possible. I would like to share my eternal respect to all teachers of Central Department of Microbiology for their inspiration and support and encouragement. I equally acknowledge the staff of CDM.

My sincere thanks go to staffs of NPHL Mrs. Srijana Devi Shrestha, Ms. Sailaja Adhikari, Mrs. Supriya Sharma, Mrs. Nisha Rijal and Mr. Sanjaya Thakur for their support during the study period.

I am greatly thankful to my colleagues Mr. Eak Dev Khanal, Mr. Roshan Dahal, Mrs. Rujita Upadhyyaya, Mr.Manoj Bhandari and Mr. Atmaj Kumar Shrestha for their effortful cooperation during the course of my study. Special thank to Mr. Ramesh Kuikel who helped me providing valuable guidance and suggestion and those volunteers who helped in the sample transport and processing during the study period. Thanks to all those staffs and management committees of National Public Health Laboratory who provided me the samples for study.

Last but not least, I would like to pay my deepest and dearest admiration to all my family members and Ms. Carla Muntinga for their tireless and unconditional support, continuous encouragement and blessings throughout my life.

ABSTRACT

An eight month study was undertaken with an objective to study the isolation and identification of ESBL producing MDR bacteria from sputum samples of suspected LRTI patients visiting NPHL, Nepal. The laboratory work was conducted in National Public Health Laboratory Teku, Kathmandu.

Out of 250 sputum samples collected, 211 samples meeting the ASM criteria were accepted and further processed, of those 211 processed sample, only 82 (38.86%) were culture positive . Of 144 male suspected cases of LRTI, 49 (34.02%) were found to be culture positive and among 67 female suspected cases, 33 (49.2%) of them were found culture positive. Among different age groups LRTI was found most prevalent in 51-60 (11, 13.41%). Of 82 culture positive LRTI cases, 62.19% were Gram negative bacteria and 37.81% were Gram Positive Bacteria. Among the total isolates, *Klebsiella pneumoniae* (25.6%) was the commonest isolate followed by *Staphylococcus aureus* (24.39%), *Haemophilus influenzae* (15.85%), *Streptococcus pyogenes* (7.31%) and *Streptococcus pneumoniae* (6.09%). Other were *Pseudomonas aeruginosa* (6.09%), *Escherichia coli* (4.87%), *Citrobacter freundii* (2.43%), *Klebsiella oxytoca* (2.43%), *Proteus mirabilis* (2.43%), *Acinetobacter calcoaceticus* (1.21%) and *Moraxella catarrhalis* (1.21%). Of the total sputum samples screened for AFB, 18 different samples showed the positive cases. Male patients (11, 61.66%) were more affected than the female (7, 38.88%).

Gram negative bacteria showed high sensitivity towards Nitrofurantoin (57%), followed by Cotrimoxazole (55%), Ciprofloxacin (53%), Cefriaxone (51%) and Amoxicillin (33%). Among the Gram positive bacteria, Azithromycin showed the highest sensitivity (62%) and least towards Cotrimoxazole (48%). The prevalence of MDR was 47.61% in *S aureus* and 20% in *S pneumoniea*. Among the GNB, all isolates of *P aeruginosa* (5), *Klebsiella oxytoca* (2), *M catarrhalis* (1) and *Acinetobacter calcoaceticus* (1) showed MDR in in-vitro experiment.

Three isolates of *Klebsiella pneumoniae* (14.28%) and one isolate of *Escherichia coli* (25%) were detected as Extended Spectrum of Beta Lactamase (ESBL) strain.

TABLE OF CONTENTS

TIT	TLE PA	AGE	i	
RECOMMENDATION				
CERTIFICATE OF APPROVAL				
BOARD OF EXAMINERS			iv	
ACKNOWLEDGEMENT				
AB	STRA	СТ	vi	
TABLE OF CONTENTS				
LIST OF ABBREVIATIONS				
LIST OF TABLES				
LIST OF PHOTOGRAPHS				
LIST OF APPENDICES				
СН	APTE	R I: INTRODUCTION	1-4	
СН	APTE	R II: OBJECTIVES	5	
2.1	Genera	al Objectives		
2.2	specifi	c objectives		
СН	APTE	R III: REVIEW OF LITERARTURE	6-57	
3.1	Def	inition	6	
3.2	Ana	Traches	7	
	3.2.1	Bronchi and Bronchioles	7	
	3.2.2		, 0	
	3.2.5	Lungo Alveolar Cells and Surfactant	9	
	32.4	The Respiratory Muscle) Q	
	3.2.6	Pleura	10	
	5.2.0	1 10010	10	

	3.2.7	Respiratory Epithelium	10
3.3	3 Physiology of respiratory tract		11
	3.3.1	Breathing and Lung Mechanics	11
	3.3.2	The Pathway of Air	12
	3.3.3	Homeostasis and Gas Exchange	13
	3.3.4	Gas Exchange	13
	3.3.5	External Respiration	13
	3.3.6	Internal Respiration	14
	3.3.7	Cellular Respiration	14
3.4	Path	ophysiology	15
	3.4.1	Respiratory tract host defense	15
	3.4.2	Systemic host defenses	17
3.5	Majo	or Diseases of Lower Respiratory Tract	17
	3.5.1	Bronchitis	17
	3.5.2	Acute bronchitis	18
	3.5.3	Chronic Bronchitis	18
	3.5.4	Pneumonia	18
	3.5.4	1.1 Classification of Pneumonia	20
	3.5.4	.2 Hospital-acquired (nosocomial) pneumonia	21
	3.5.4	.3 Community Acquired Pneumonia	21
	3.5.4	.4 Recurrent pneumonia	22
	3.5.4	.5 Aspiration pneumonia	22
	3.5.5	Chronic Obstructive Pulmonary Disease (COPD)	23
3.6	Patho	gens of the lower respiratory tract infection	24
	3.6.1	Streptococcus pneumoniae	24
	3.6.2	Haemophilus influenza	25
	3.6.3	Staphylococcus aureus	27
	3.6.4	Klebsiella pneumonia	29
	3.6.5	Pseudomonas aruginosa	31
	3.6.6	Mycoplasma Pneumoniae	32
	3.6.7	Chlamydia Pneumoniae	32

	3.6.8	Leg	ionellla Pneumophila	33	
	3.6.9	Mус	cobacterium tuberculosis	34	
3.7	Con	nplec	cation of LRTI	35	
	3.7.1	Co	mplication at acute phase of the infection	35	
	3.7.	1.1	Pleural effusion		35
	3.7.	1.2	Bronchiectasis		36
	3.7.	1.3	Lungs abscess		37
	3.7.1.4		Empyema thoracis		38
	3.7.1.5		Pneumothorax		38
	3.7.2	Ch	ronic complication		39
	3.7.3	Cli	nical Symptoms of LRTI		39
	3.7.	3.1	Dysponea		39
	3.7.	3.2	Coughing		39
	3.7.	3.3	Haemoptysis		40
	3.7.	3.4	Chest pain		40
3.8	Dia	gnosi	is of LRTI		40
3.8.1		Ra	diological Diagnosis		41
	3.8.2	Mi	crobiological Diagnosis		41
	3.8.3 Ch		oice of Samples		41
	3.8.	3.1	Bronchoscopy specimens		41
	3.8.	3.2	Ezpectorated sputum		41
	3.8.	3.3	Transtracheal aspiration		41
	3.8.	3.4	Lung fluid		42
	3.8.	3.5	Open-Lung biopsy		42
	3.8.	3.6	Pleural fluid or pleural biopsy		42
	3.8.	3.7	Pleural fluid		42
	3.8.	3.8	Blood		42
	3.8.4	Sp	utum Microscopy		42
	3.8.5	Но	mogenization		42
	3.8.6	Diı	rect Macroscopic examination of stained samples		43

3.9	Culture	44
3.10	Antibiotic Sensitivity test	44
3.11	Identification of isolated organism	45
3.12	Serological test	45
3.13	Molecular Technique	45
3.14	MDR and ESBL Production	46
3.15	Extended Spectrum of Beta Lactamase (ESBL)	46
3.16	Detection of ESBL	47

CHAPTER IV: MATERIALS AND METHODS 49-5			
4. Materials and Method	49		
.1 Specimen collection and transport			
4.2 Inclusion Criteria			
4.3 Processing of Specimen			
.4 Homogenization of the specimen			
4.5 Microscopic Examination of sputum			
4.5.1 Gram Staining	52		
4.5.2 Ziehl-Neelsen Smear	52		
4.6 Culture of the Specimen	53		
4.7 Isolation of the pathogens	53		
4.8 Identification of the respiratory isolates	53		
4.9Biochemical tests used for the identification of pathogens53			
4.10 Bile Solubility test	54		
4.11 Optochin Sensitivity test	54		
4.12 Bacitracin Sensitivity test	54		
4.13 Satellitism Test	54		
4.14 Antibiotic Sensitivity testing	55		
4.15 Purity Plate	55		
4.16 ESBL (Extended Spectrum of Beta Lactamase) Confirmation	55		
4.17 Quality Control for test	56		

CHA	APTER V: RESULTS	57-66
5.1	Sputum Culture Positivity	57
5.2	Occurrence and Distribution of Bacteria in Sputum Specimen	58
5.3	Age and gender wise distribution of LRTI Cases	59
5.4	Prevalence of LRTI by age and gender	59
5.5	Age Group distribution of LRTI pathogen	60
5.6	Distribution of Acid Fast Bacilli in studied LRTI cases	61
5.6	Antibiotic susceptibility pattern of bacterial isolates	61
5.7	Multiple drug resistant patterns of the isolates	65
5.8	Detection of ESBL in Bacterial isolates	66
CHA	APTER VI: DISCUSSION AND CONCLUSION	67-78
CHA	APTER VII: SUMMARY AND RECOMMENDATION	79-80
7.1	SUMMARY	79
7.2	RECOMMENDATON	79
CHA	APTER VIII: REFERENCES	81-88

Appendices

LIST OF ABBREVIATIONS

AFB	Acid Fast Bacillus
ARP	Aerobic Respiratory Pathogens
ARI	Acute Respiratory Infection
BA	Blood Agar
CA	Chocolate Agar
CAP	Community Acquired Pneumonia
CDC	Centre of Disease Control
COPD	Chronic Obstructive Pulmonary Syndrome
DALYs	Disability Adjusted Life Years
DOTS	Directly Observed Treatment Short-course
ESBL	Extended Spectrum of Beta Lactamase
GPB	Gram Positive Bacteria
GNB	Gram Negative Bacteria
HAP	Hospital Acquired Pneumonia
HIV/AIDS	Human Immunodeficiency Virus/Acquired
	mmune Deficiency Syndrome
LRT	Lower Respiratory Tract
LRTI	Lower Respiratory Tract Infection
MA	MacConkey Agar
MHA	Mueller Hinton Agar
MDR	Multi Drug Resistance
MRSA	Methicillin Resistant Staphylococcus aureus
CLSI	Clinical Laboratory Standard Institute
NPHL	National Public Health Laboratory
NTC	National Tuberculosis Centre
NTP	National Tuberculosis Programme
PP	Pulmonary Pathogen
РТВ	Pulmonary Tubercle Bacillus
RTI	Respiratory Tract Infection
WHO	World Health Organization
	\

LIST OF TABLES

- 1. Sputum Culture Positivity that met ASM Criteria
- 2. Distribution of bacteria pathogens of Positive LRTI cases:
- 3. Age and gender wise distribution of total cases
- 4. Age Group distribution of LRTI pathogens
- 5. Distribution of AFB in studied LRTI Cases
- 6. Results of AST by Disc diffusion method for isolates of LRTI
- 7. Antibiotic susceptibility pattern of Gram negative bacterial isolates
- 8. Antibiotic susceptibility pattern of Gram Positive bacterial isolates
- 9. Multiple drug resistant pattern of the isolates
- 10. Detection of ESBL in bacterial isolates

LIST OF PHOTOGRAPHS

- 1. Photomicrograph of Direct Gram Stain of Sputum.
- 2. Photomicrograph of Acid Fast bacilli in the sputum LRTI patient
- 3. Photomicrograph of Gram Stain of Streptococcus pneumoniae
- 4. Photograpth of culture of *Streptococcus pneumoniae* with Optochin.
- 5. Photograph of culture plate showing the growth of *H influenzae* in chocolate agar.
- Photograph of culture plate showing Satellitic growth of *H influenza* around X+V factor.
- 7. Photograph of Culture plate showing the growth of *S aureus* in Blood agar.
- 8. Photograph of Culture plate showing the growth of *K pneumoniae* in MacConkey agar.
- 9. Photograph showing Antibiotic Sensitivity test for *S aureus* (MDR strain) in Mueller Hinton agar.
- 10. Photograph showing double disc diffusion test for the phenotypic conformation of ESBL strain.
- 11. Photograph showing the Biochemical test for the identification of *K* pneumoniae.

LIST OF APPENDICES

APPENDIX I

1. Clinical and microbiological profile of LRTI cases

APPENDIX II

1. Equipments and Materials used during the study

APPENDIX III

- A. Composition and preparation of different culture media
- B. Composition and preparation of different biochemical test media
- C. Composition and preparation of different staining reagent

APPENDIX IV

- A. Procedure for gram staining (Forbes et al., 2007)
- B. Procedure for Antibiotic Sensitivity Testing (AST) by Disc Diffusion Method.
- C. Procedure for Ziehl-Neelsen staining (Forbes et al., 2007)

APPENDIX V

Interpretation charts for antibiotics

APPENDIX VI

Biochemical tests for the identification of pathogens