ISOLATION AND CHARACTERIZATION OF SALMONELLA SEROVARS FROM ENTERIC FEVER SUSPECTED PATIENTS ATTENDING BIR HOSPITAL

A DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY (Medical)

BY SUBHA DAHAL 2012

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KIRTIPUR, KATHMANDU, NEPAL

©Tribhuvan University

RECOMMENDATION

This is to certify that **Miss Subha Dahal** has completed this dissertation work entitled "ISOLATION AND CHARACTERIZATION OF SALMONELLA SEROVARS FROM ENTERIC FEVER SUSPECTED PATIENTS ATTENDING BIR HOSPITAL" as a partial fulfillment of the requirements of **M.Sc. degree in** Microbiology (Medical) under our supervision. To our knowledge, this work has not been submitted for any other degree.

Dr. Dwij Raj Bhatta

Associate Professor and Head Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal Mrs. Jyotsna Shrestha Senior Consultant Microbiologist Bir Hospital, Kathmandu, Nepal

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Dwij Raj Bhatta and Mrs. Jyotsna Shrestha**, this dissertation work of **Miss Subha Dahal**, entitled "**ISOLATION AND CHARACTERIZATION OF** *SALMONELLA* **SEROVARS FROM ENTERIC FEVER SUSPECTED PATIENTS ATTENDING BIR HOSPITAL**" IS approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirements for **M.Sc. degree in Microbiology (Medical)**.

Dr. Dwij Raj Bhatta

Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

BOARD OF EXAMINERS

Recommended by:

Dr. Dwij Raj Bhatta Supervisor

Mrs. Jyotsna Shrestha

Supervisor

Approved by

Examined by:

Dr. Dwij Raj Bhatta

Head of the Department

Mrs. Supriya Sharma Internal Examiner

Prof. Dr. Nhucche Ratna Tuladhar External Examiner

ACKNOWLEDGEMENT

It gives me an immense pleasure to express my profuse gratitude to my respected supervisor, **Dr. Dwij Raj Bhatta**, Associate Professor and Head, Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, for his valuable guidance, constant inspiration and constructive suggestion during the entire period of this research work. I am equally indebted to my respected supervisor, **Mrs. Jyotsna Shrestha**, Senior Consultant Microbiologist, Bir Hospital, Kathmandu, for her incisive observation, constant support, patient's guidance and suggestion, throughout the research period.

I am heartily obliged to **Prof Dr. Anjana Singh, Mr. Binod Lekhak, Mr. Dev Raj Joshi, Dr. Megha Raj Banjara, Ms. Shaila Basnyat, Mrs. Reshma Tuladhar, Mr. Komal Raj Rijal** and other lecturers and staffs of Central Department of Microbiology, Tribhuvan University for their constant inspiration, valuable guidance and support.

I take this opportunity to thank all the staffs of Bir Hospital for their kind help in various stages of my work.

I owe a special debt to my friends **Ramesh Adhikari** and **Rajeev Madhikarmi** for their generosity, constant support and excellent companionship during my research work.

I wish to express heartfelt admiration to my sisters **Bibha** and **Aagya** for their tremendous support and assistance in the completion of this work.

I would like to express my deepest gratitude to my father, **Mr. Khagendra Prasad Dahal** and my mother **Mrs. Binaya Dahal** for their implicit encouragement, unswerving support, and enlightening suggestions to achieve the present academic position.

Finally, I would like to express my heartfelt appreciation to all the people who helped me in one way or another to complete my research work.

Subha Dahal

ABSTRACT

Enteric fever is a multi-systemic illness caused primarily by *Salmonella* Typhi. A similar but less severe disease is caused by *S*. Paratyphi A, and less commonly by *S*. Paratyphi B and *S*. Paratyphi C. A study was conducted at Microbiology Unit, Bir Hospital, Kathmandu from June 2011 to September 2011 with the objective to isolate and characterize *Salmonella* serovars from enteric fever suspected patients. During the study period, 1542 blood samples were collected from patients suspected of enteric fever of which 126 (8.17%) showed positive culture result and among the culture positive, 87 (69.05%) were *Salmonella* isolates and remaining were other bacterial species. The other bacterial species isolated were *Acinetobacter* spp. (15.87%), *Enterobacter* spp. (3.97%), *Staphylococcus aureus* (3.97%), *Pseudomonas aeruginosa* (3.17%), *Escherichia coli* (2.38%) and *Klebsiella* spp. (1.59%).

Among *Salmonella* isolates, 48 (38.10%) isolates were *Salmonella* Typhi and 39 (30.95%) isolates were *Salmonella* Paratyphi A. Typhoid fever was more prevalent causative organism of enteric fever than paratyphoid fever. Prevalence of enteric fever was seen higher in male patients (58/87; 66.67%) than in female patients (29/87; 33.33%) and it was statistically insignificant (2 =0.2517, P>0.05).

Salmonella Typhi was found to be 100% sensitive to Ofloxacin and Ceftriaxone, followed by Ciprofloxacin (95.83%), Chloramphenicol (95.83%), Amoxycillin (93.75%) and Cotrimoxazole (91.67%). Similarly, *S.* Paratyphi A was found to be 100% sensitive to Ofloxacin, Ceftriaxone and Chloramphenciol, followed by Ciprofloxacin (94.87%), Cotrimoxazole (94.87%) and Amoxycillin (92.31%). Out of 48 *S.* Typhi isolates, two (4.17%) were found to be Multi Drug Resistant (MDR). No MDR strains of *S.* Paratyphi A were isolated. Out of 36 Nalidixic acid resistant *Salmonella* Typhi two isolates were intermediately sensitive to Ciprofloxacin and out of 29 Nalidixic acid resistant *Salmonella* Paratyphi A two isolates were intermediately sensitive to Ciprofloxacin.

Keywords: Enteric fever, *Salmonella* serovars, Multidrug resistant (MDR), Nalidixic acid resistant

TABLE OF CONTENTS

Title Page	i
Recommendation	ii
Certificate of Approval	iii
Board of Examiners	iv
Acknowledgement	V
Abstract	vi
Table of Contents	vii
List of Tables	X
List of Figures	xi
List of Photographs	xii
List of Appendices	xiii
List of Abbreviations	xiv
CHAPTER I INTRODUCTION	1-3
1.1 Background	1
1.2 Objectives	3
1.2.1 General Objective	3
1.2.2 Specific Objectives	3
CHAPTER II LITERATURE REVIEW	4-23
2.1 Epidemiology of enteric fever	4
2.2 History	5
2.3 Habit and habitat	6
2.4 Antigenic structure of Salmonella spp.	8
2.4.1 Other surface antigens	9
2.4.2 Antigenic variation	10
2.5 The Kaufmann-White scheme classification	11
2.6 Pathogenesis of enteric fever	11
2.7 Transmission of enteric fever	13

2.8 Clinical diagnosis of enteric fever	13
2.8.1 Acute non-complicated disease	14
2.8.2 Complicated disease	14
2.8.3 Carrier state	15
2.8.4 Case definition	15
2.9 Laboratory diagnosis of enteric fever	15
2.9.1 Specimens used for detection	15
2.9.2 Microbiological procedure	16
2.9.3 Instrument based systems	18
2.9.4 Emerging drug resistance problem	21
2.10 Magnitude of enteric fever	22
CHAPTER III	24-28
3.1 Materials	24
3.2 Methods	24
3.2.1 Collection of sample	24
3.2.2 Processing of the sample	25
3.2.3 Incubation of sample	25
3.2.4 Macroscopic examination of blood culture bottle	25
3.2.5 Subculture from broth culture	25
3.2.6 Incubation of subculture plates	25
3.2.7 Examination of subculture plates	25
3.2.8 Identification of isolates	26
3.2.9 Antibiotic susceptibility test	27
3.2.10 Quality Control	27
3.2.9 Data analysis	28
CHAPTER IV RESULTS	29-38
4.1 Age and gender wise distribution of the patients	29

4.2	Pattern of blood culture result	30

4.3 Growth pattern in relation to origin of the sample	30
4.4 Pattern of bacterial isolates	30
4.5 Gender wise distribution of Salmonella isolates	31
4.6 Age and gender wise distribution of Salmonella isolates	32
4.7 Outdoor and indoor distribution of Salmonella isolates	32
4.8 Antibiotic susceptibility pattern of Salmonella Typhi	33
4.9 Antibiotic susceptibility pattern of Salmonella Paratyphi A	35
4.10 Ciprofloxacin susceptibility pattern of Nalidixic acid resistant Salmonella	38
CHAPTER V DISCUSSION	39-46
CHAPTER VI CONCLUSION AND RECOMMENDATIONS	47
6.1 Conclusion	47
6.2 Recommendations	47
REFERENCES	48-57
APPENDICES	I-XXI

LIST OF TABLES

Table 1: Age and gender wise distribution of patients Table 2: Gender wise distribution of culture positive patients Table 3: Growth pattern in relation to origin of the sample Table 4: Gender wise distribution of Salmonella isolates Age and gender wise distribution of Salmonella isolates Table 5: Table 6: Outdoor and indoor distribution of Salmonella isolates Table 7: Antibiotic susceptibility pattern of Salmonella Typhi isolate Table 8: Antibiotic susceptibility pattern of each Salmonella Typhi isolate Table 9: Antibiotic susceptibility pattern of Salmonella Paratyphi A isolate **Table 10:** Antibiotic susceptibility pattern of each Salmonella Paratyphi A isolate Table 11: Ciprofloxacin susceptibility pattern of Nalidixic acid resistant Salmonella spp.

LIST OF FIGURES

- **Figure 1:** Flow chart of methodology
- Figure 2: Pattern of bacterial isolates

LIST OF PHOTOGRAPHS

Photograph 1:	Blood culture bottles with BHI broth	
Photograph 2:	Non lactose fermenting colonies of Salmonella Typhi on	
	MacConkey agar	
Photograph 3:	Biochemical tests for Salmonella Typhi	
Photograph 4:	Biochemical tests for Salmonella Paratyphi A	
Photograph 5:	Antimicrobial susceptibility test for Salmonella Typhi on MHA	
Photograph 6:	Sets of antisera used for typing Salmonella spp.	

LIST OF APPENDICES

Appendix A	Questionnaire	
Appendix B	List of the equipments and materials used during the study	
Appendix C	A.	Composition and preparation of different culture media
	B.	Composition and preparation of different biochemical
		media
	C.	Composition and preparation of different staining and test
		reagents
Appendix D	A.	Gram staining procedure
	B.	Slide agglutination test for identification of Salmonella
		spp.
Appendix E	Methodology of biochemical tests used for the identification of	
	bacter	ia
Appendix F	Zone size interpretative chart	
Appendix G	Data analysis (Chi square test)	

LIST OF ABBREVIATIONS

ATCC	:	American Type Culture Collection
BA	:	Blood Agar
BACTEC	:	Becton Dickinson Microbiology Systems, Md.
CDC	:	Centre for Disease Control
CFU	:	Colony Forming Unit
CLSI	:	Clinical and Laboratory Standards Institute
DNA	:	Deoxyribo Nucleic Acid
EC	:	European Commission
ESBL	:	Extended Spectrum Beta Lactamase
ICDDRB	:	International Centre for Diarrhoeal Disease Research Bangladesh
LPS	:	Lipopolysaccharide
MA	:	MacConkey Agar
MBC	:	Minimum Bactericidal Concentration
MDR	:	Multi Drug Resistant
MHA	:	Mueller Hinton Agar
MIC	:	Minimum Inhibitory Concentration
Мр	:	Macrophages
NARST	:	Nalidixic Acid Resistant Salmonella Typhi
NPHL	:	National Public Health Laboratory
PMNs	:	Polymorphoneuclear Leucocytes
SIM	:	Sulphide Indole Motility
SPS	:	Sodium Polyanethol Sulphonate
TMP-SMZ	:	Trimethoprim-sulphamethoxazole
TPD	:	Tetramethyl <i>p</i> -phenylene diamine dihydrochloride
TSI	:	Triple Sugar Iron Agar
TUTH	:	Tribhuvan University Teaching Hospital
WHO	:	World Health Organization