COMPARATIVE ANTIBIOGRAM TYPING OF GRAM NEGATIVE ISOLATES FROM HOSPITAL ENVIRONMENT AND CLINICAL SAMPLES SUBMITTED TO THE CENTRAL DEPARTMENT OF **TRIBHUVAN UNIVERSITY**

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY (MEDICAL)

Α DISSERTATION

MICROBIOLOGY

BY **KRITU PANTA**

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KIRTIPUR, KATHMANDU, NEPAL

2011

i

RECOMMENDATION

This is to certify that Ms. Kritu Panta has completed her dissertation work entitled "**Comparative antibiogram typing of gram negative isolates from hospital environment and clinical samples**" as a partial fulfillment of Master of Science Degree in Microbiology under our supervision. This dissertation work done by Ms. Panta, is an original research work and has not been submitted to any other Institutes/Universities to earn any other degree.

Dr. Prakash Ghimire, PhD Associate Professor Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Prof Dr. Shiba Kumar Rai, PGTIMM, PhD, DMSc Chairperson Shi-Gan Health Foundation Maharajgunj, Kathmandu

Date:

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Prakash Ghimire** and **Prof. Dr. Shiba Kumar Rai**, this dissertation work of **Ms. Kritu Panta** entitled "**Comparative antibiogram typing of gram negative isolates from hospital environment and clinical samples**" has been approved for the examination and is submitted to the Tribhuvan University in the partial fulfillment of the requirements for Master of Science Degree in Microbiology (Medical).

> Dr. Dwij Raj Bhatta, PhD Associate Professor Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Date:

BOARD OF EXAMINERS

Recommended by:

Dr. Prakash Ghimire PhD Supervisor

Prof. Dr. Shiba Kumar Rai, PGTIMM, PhD, DMSc Supervisor

Approved by:

Examined by:

Dr. Dwij Raj Bhatta, PhD Head of the Department

Internal Examiner Dev Raj Joshi Lecturer, CDM, Kirtipur

External Examiner Jyotsna Shrestha Consultant Microbiologist Bir Hospital

Date:

ACKNOWLEDGEMENT

I would like to extend my sincere and heartfelt gratitude to my supervisor Prof. Dr. Shiba Kumar Rai for exploring unreserved supervision, constructive advice and encouragement in the completion of this dissertation work. His immense knowledge and inspiration in the field of bacteriology and research has been essential throughout this work. A great appreciation of generosity goes to my supervisor Dr. Prakash Ghimire for his guidance, constant and untiring inspiration and remarkable cooperation rendered to me during this dissertation work.

I express my profound indebtedness to our head of department, Dr.. Dwij Raj Bhatta. His positive attitude and ideas have been of utmost important and inspirational in accomplishing this work. I would also like to share my eternal respect to all the teachers of Central Department of Microbiology for their innate inspiration, support and encouragement. I equally acknowledge and staffs of Central Department of Microbiology for helping me in all possible ways.

My whole hearted thanks to Dr. Ram Nath Singh and Mr. Ganesh Rai, staffs of microbiology laboratory, Health Care Workers (HCWs) and staffs in Nepal Police Hospital for helping me during the course of my study. Without their cooperation my work would have been impossible.

I would like to express my sincere and earnest compliment to the Mrs Chandrakala Rai, from of Shi-Gan Health foundation for her valuable guidance and constructive suggestion during the study period. I acknowledge my supportive colleague Ms. Reena Kiran Mukhiya, for her effortful cooperation during the course of my study. Special thanks to Mr. Shiva Thapa Magar from Shi-Gan Health Foundation for his friendly cooperation. Thanks to all those supportive colleagues who have always expressed good wishes and inspiration to perform this work at my best.

Last, but not the least, my deepest and dearest admiration goes to my family members for their tireless and unconditional support, continuous encouragement and blessings throughout my life.

Date:

Kritu Panta

Abstract

Cross infection through hospital environment has been major challenge to control nosocomial infection. This has been worse with the emergence of multidrug resistant strains. The present study was conducted to correlate gram negative bacteria in hospital environment and clinical samples, to understand possibility of nosocomial infection.

The study was conducted for a period of six months during which gram negative isolates from 269 samples of hospital environment (air sample, surface swab and hand swab from healthcare workers) and 1110 clinical samples (urine, blood, pus, catheter tips, sputum etc) were identified by conventional microbiological method and antibiogram was performed by Kirby-Bauer disc diffusion method and NCCLS guidelines. Bacterial isolates obtained from both samples were tested for their relatedness based on their resistivity pattern among the tested antibiotics.

Of the total environmental samples 212 samples were found to be positive and total of 183 gram negative isolates were obtained and of the total clinical samples (1110) 159 isolates were obtained. Of the total gram negative isolates 84.2% (154/183) *Acinetobacter* spp., 8.2% (15/183) *E. coli*, 7.7% (14/183) *Klebsiella* spp. was isolated from environmental sample. And 3.1% (5/160) *Acinetobacter* spp., 67.5% (108/160) *E. coli*, 8.8% (14/160) *Klebsiella* spp. was isolated from clinical samples.

Analysis of MDR isolates revealed 70.8% (109/154) *Acinetobacter* spp. and 80.0% (4/5) in clinical isolates were found to be MDR. Similarly 86.6% (13/15) *E. coli* isolates isolated from environment sample and 61.1% (66/108) clinical isolates were found to be MDR. In case of *Klebsiella* spp. 100% (14/14) environmental isolates and 42.9 % (6/14) clinical isolates were found to be MDR. Antibiotyping showed single antibiogram type was identical in both the sample type in case of *Acinetobacter* spp. and *Klebsiella* spp. while such correlation was not established among the isolates of *E. coli* in both sample types.

Keywords: - Environment, clinical, gram negative, MDR, antibiogram typing, antibiogram type

TABLE OF CONTENTS

PARTICULARS	Page No.	
TITLE PAGE	i	
RECOMMENDATION	ii	
APPROVAL	iii	
ACKNOWLEDGEMENT	iv	
ABSTRACT	V	
TABLE OF CONTENTS	vi vii viii ix	
LIST OF ABBREVIATIONS		
LIST OF TABLES		
LIST OF FIGURES		
LIST OF PHOTOGRAPHS	Х	
LIST OF APPENDICES	xii	
Chapter I:- INTRODUCTION	1	
CHAPTER II:- OBJECTIVES	4	
CHAPTER III:- LITERATURE REVIEW	5	
3.1 Hospital and Hospital acquired infection	5	
3.1.1 Contributing agents for NI	5	
3.1.2 Disease possible of nosocomial origin	8	
3.1.3. Some common etiological agents of NI	8	
3.1.4 Historical and Epidemiological aspects	9	
3.1.5 Prevention of NI	12	
3.2 Antibiotics and development of resistance	14	
3.2.1 Sources of antibiotics	14	
3.2.2 Classification of antibiotics	15	
3.2.3 Mechanism of action of antibiotics	16	
3.2.4 Antibiotic resistance	19	
3.2.5 Resistance to commonly used antibiotics	22	
3.3 Multidrug resistant organisms	25	
3.3.1 Gram negative MDRO	25	
3.3.2 Epidemiological aspects of gram negative MDRO	29	
3.3.3 Prevention of MDRO	32	

CHAPTER IV:- MATERIALS AND METHODS	36
4.1 Materials	36
4.2 Methodology	36
4.3 Laboratory methodology	37
4.3.1 Collection of samples	37
4.3.1.1 Air samples	37
4.3.1.2 Surface samples	37
4.3.1.3 Hand swab samples	38
4.3.1.4 Clinical isolates	38
4.3.2 Processing of samples	39
4.3.2.1 Processing of air samples	39
4.3.2.2 Processing of surface swab samples	40
4.3.2.3 Processing of hand swab samples	40
4.3.2.4 Processing of clinical samples	40
4.3.3 Identification of isolates	40
4.3.3.1 Identification with staining technique	40
4.3.3.2 Identification with biochemical test	40
4.3.4 Antibiotic susceptibility testing	41
4.3.5 Quality control	42
4.3.6 Data interpretation	43
CHAPTER V :- RESULT	45
5.1 Microbial quality of Hospital environment	45
5.1.1 Microbial load in different location (Plate Exposure Technique)	46
5.1.1.1 Pattern of organisms in air sample	47
5.1.2 Microbial isolates in surface swab	48
5.1.2.1 Pattern of organisms in surface swab sample	49
5.1.3 Microbial isolates from hand swab of hospital staffs	50
5.1.3.1 Pattern of organisms from hand swab	51
5.1.4 Antibiotic Resistivity pattern of the environmental isolates	52
5.1.5. MDRO in hospital environment	55
5.2 Distribution of clinical isolates and their susceptibility pattern	56
5.2.1 Gram negative isolates in clinical samples	57
5.2.2 Patient wise distribution of clinical isolates	58
5.2.2 Ward wise distribution of clinical isolates	59
5.2.3 Resistivity pattern of isolates from clinical sample	60
5.2.4 Occurrence of MDRO in clinical isolates common to	60
environmental isolates	
5.3 Comparative antibiotic susceptibility of the common isolates from	55
environment and clinical samples	

CHAPTER VI:- DISCUSSION AND CONCLUSION	63
CHAPTER VII:- SUMMARY AND RECOMMENDATIONS	67
CHAPTER VIII:- REFERENCES	79
CHAPTER IX:- APPENDICES	93

LIST OF ABBREVIATIONS

AST	-	Antibiotic Sensitivity Test
BA	-	Blood Agar
BHI	-	Brain Heart Infusion
BSI	-	Blood Stream Infections
CA	-	Chocolate Agar
CDC	-	Centres for Disease Control
CLSI	-	Clinical Laboratory Standard Institute
CoNS	-	Coagulase Negative Staphylococci
CRI	-	Catheter Related Infections
CSF	-	Cerebro Spinal Fluid
CSSD	-	Central Sterilize Supply Department
ESBL	-	Extended Spectrum –Lactamase
FW	-	Female Ward
HCW	-	Health Care Worker
HICPAC	-	Hospital Infection Control Practices Advisory Committee
ICU	-	Intensive Care Unit
IDW	-	Infectious Disease Ward
MA	-	MacConkey Agar
MDR	-	Multi Drug Resistant
MHA	-	Muller Hinton Agar
MR	-	Methyl Red
MRSA	-	Methicillin Resistant Staphylococcus aureus
MSA	-	Mannitol Salt Agar
MSSA	-	Methicillin Sensitive Staphylococcus aureus
MSW	-	Male Surgical Ward
MW	-	Medical Ward
NA	-	Nutrient Agar
NB	-	Nutrient Broth

NI	-	Nosocomial infection
NINAS	-	National Institute of Neurological and Allied Sciences
NNISS	-	National Nosocomial Infection Surveillance system
OT	-	Operation Theater
OW	-	Orthopedic Ward
PCR	-	Polymerase Chain Reaction
PFGE	-	Pulse Field Gel Electrophoresis
POT	-	Post Operative Ward
SIM	-	Sulphide Indole Motility
TB	-	Tuberculosis
TPD	-	Tetramethyl p-Phenylene Diamine dihydrochloride
TSI	-	Triple Sugar Iron
UTI	-	Urinary Tract Infection
VP	-	Voges Proskauer
WHO	-	World Health Organization

LIST OF TABLES

- Table 1:- Occurrence of microorganisms in environment of different sample location
- Table 2:- Occurrence of microorganisms in air sample
- Table 3:- Pattern of gram negative isolates in air sample
- Table 4:- Occurrence of bacterial isolates in swab sample
- Table 5:- Occurrence of gram negative isolates in different ward
- Table 6:- Occurrence of bacterial isolates in hand swab sample
- Table 7:- Occurrence of gram negatives in hand swab from different wards
- Table 8:- Gram negative isolates in different samples from different sampling sites
- Table 9:- Grouping of antibiotics
- Table 10:- Occurrence of MDRO in different wards
- Table 11:- Significant growth in total clinical samples and the organism pattern
- Table 12:- Distribution of bacterial isolates from different human specimens at Nepal

 Police Hospital
- Table 13:- Patient wise distribution of clinical isolates
- Table 14:- Ward wise distribution of clinical isolates
- Table 15:- Resistivity pattern of gram negative isolates from clinical sample
- Table 16:- Occurrence of MDRO in clinical isolates
- Table 17:-Antibiogram types isolated from environment sample for Acinetobacter spp.
- Table 18:- Antibiogram types isolated from clinical sample for Acinetobacter spp.
- Table 19:- Antibiogram types isolated from environment sample for E. coli

Table 20:- Antibiogram types isolated from clinical sample for E. coli

- Table 21:- Antibiogram types isolated from environment sample for Klebsiella spp.
- Table 22:-Antibiogram types isolated from clinical sample for Klebsiella spp.

LIST OF FIGURES

- Fig 1:- Cfu/plate from obtained by plate exposure
- Fig 2:- Resistance pattern of Acinetobacter spp. from environmental sample
- Fig 3:- Resistance pattern of E. coli from environmental sample
- Fig 4:- Resistance pattern of *Klebsiella* spp. from environmental sample

List of Photographs

- Photograph 1: Ice box used for sample collection
- Photograph 2: Processing of samples at Shi-Gan Health Foundation
- Photograph 3: Culture plate of *Klebsiella* spp. (subcultured) from environmental sample
- Photograph 4: Biochemical test for *E. coli* from clinical sample
- Photograph 5: Antibiotic sensitivity testing of *E. coli* on MHA
- Photograph 6: Antibiotic sensitivity testing on MHA

LIST OF APPENDICES

- Appendix-I: List of materials used in study
- Appendix II: Test procedures
- Appendix -III: Features used to assist in the identification of gram negative isolates
- Appendix- IV:-Preparation of Turbidity standard equivalent to McFarland 0.5
- Appendix -V: Zone interpretation chart for AST
- Appendix -VI: Collection sites in hospital
- Appendix VII: Details of antibiotic resistivity pattern of environmental isolates
- Appendix VIII: Details of antibiotic sensitivity pattern of clinical isolates