PREVALENCE AND ANTIMICROBIAL SUSCEPTIBILITY PROFILE OF ACINETOBACTER SPP IN KATHMANDU MEDICAL COLLEGE, SINAMANGAL, NEPAL

A DISSERTATION

SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY

TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

MASTER OF SCIENCE IN MICROBIOLOGY

(MEDICAL MICROBIOLOGY)

BY

PITAMBAR BHANDARI

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KIRTIPUR, KATHMANDU, NEPAL 2012

RECOMMENTDATION

This is to certify that **Mr. Pitambar Bhandari** has completed this dissertation work entitled "**Prevalence And Antimicrobial Susceptibility Profile Of** *Acinetobacter* **Spp In Kathmandu Medical College, Sinamangal, Nepal**" as a partial fulfillment of M.Sc. Degree in Medial Microbiology under our supervision. To the best of our knowledge, this is an original research work of him and has not been submitted for any other degree.

Dr.Dwij Raj Bhatta M.Sc., Ph.D. (Microbiology),Associate Professor, Head, Central of Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.

Dr.Chandra.Prakash Bhatta M.Sc., Ph.D. (Microbiology), Associate Professor, Kathmandu Medical College, Sinamangal, Kathmandu, Nelpal.

.....

Mr. Binod Lekhak M.Sc. (Microbiology), Assistant Professor, Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.

Date : 2012-03-27

CERTIFICATE OF APPROVAL

On the recommendation of Associate Professor Dr. Dwij Raj Bhatta, Dr.Chandra.Prakash Bhatta and Assistant Professor Mr. Binod Lekhak, this dissertation work by **Mr. Pitambar Bhandari** entitled "**Prevalence And Antimicrobial Susceptibility Profile Of** *Acinetobacter* **Spp In Kathmandu Medical College, Sinamangal, Nepal**" has been approved for the examination and is submitted to the Tribhuvan University for partial fulfillment of the requirement for M.Sc. Degree in Medical Microbiology.

Dr. Dwij Raj Bhatta, Ph.D, Head of Department, Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal

Date : 2012-7-2

BOARD OF EXAMINERS

Recommended by :

.....

Assoc. Prof. Dr. Dwij Raj Bhatta, Ph.D. (Supervisor)

Assoc. Prof. Dr. Chandra Prakash Bhatta, Ph.D. (Supervisor)

Mr. Binod Lekhak

(Supervisor)

Approved by :

.....

Assoc. Prof.Dr. Dwij Raj Bhatta, Ph.D, Head of the Department

Examined by :

Prof. Dr. Bharat Mani Pokhrel, Ph.D.

(External Examiner)

Dr. Megha Raj Banjara, Ph.D, (Internal Examiner)

Date: 2012-07-02

ACKNOLEDGEMENTS

I would like to express my profound gratitude and earnest compliment to respected supervisors: Associate Professor Dr. Dwij Raj Bhatta, Head, Central Department of Microbiology, Tribhuvan University; Associate Professor Dr. Chandra Prakash Bhatta, Kathmandu Medical college, Sinamangal, and Mr. Binod Lekhak, Assistant Professor, Central Department of Microbiology, Kirtipur, for their proficient guidance, critical supervision, kind encouragement, and support for the completion of this research work.

I express my earnest appreciation to respected teachers, **Dr. Anjana Singh**, **Dr. Prakash Ghimire, Dr. Shreekanta Adhikari, Dr. Megha Raj Banjara**, **Mr. Shaila Basnyat, Mr. Dev Raj Joshi and Mr. Komal Raj Rijal** from Central Department of Microbiology, Tribhuvan University for their constant encouragement and support.

I also would like to express my gratitude to **Prof. Dr. Govinda Sharma** (CEO), **Prof. Dr. Hemang Dixit** (Principal), **Prof. Dr. M.R Baral** (Medical Director), **Prof. Dr. Hari Govinda Shrestha**, (Head, Pathology), **Dr. Silviya Hada** (Lecturer, Microbiology), **Dr. Badri Thapa** (Lecturer, Microbiology), and other doctors and sisters who provided me clinical details about patients, from Kathmandu Medical College, Sinamangal, for their co-operation and constant support during my research period. I am also thankful to all the staffs of Pathology Department from Kathmandu Medical College, Sinamangal for their kind support and familiar environment they provided throughout my research period. I am incredibly thankful to friends of Central Department of Microbiology for their moral support and positive criticism.

Finally, I would like to express my emotional feeling towards my parents, my wife **Ms. Sabitra Bhandari (Gaire)** who showed their blessing, love, affection constant encouragement and moral support in every step in my life without whom I feel incomplete.

Date : 2012-03-27

Mr. Pitambar Bhandari

ABSTRACT

Acinetobacter spp. is emerging as a greater threat and challenge worldwide due to its high prevalence and ability to acquire antimicrobial drug resistance by all known modes of mechanisms that is variable in different countries, regions, hospitals and even different wards. Hence, local surveillance based on local scenario of *Acinetobacter* is mandatory for the selection of proper therapeutic options by the clinicians. This study has the objective to determine the overall prevalence and antimicrobial susceptibility profile of *Acinetobacter* spp. and was out carried at Kathmandu Medical College, Sinamangal, Nepal from October 2009 to March 2010. In this study, Conventional bacteriological methods were used for the identification of *Acinetobacter* spp. and susceptibility testing was performed by disk-diffusion method recommended by Clinical Laboratory Standard Institute (CLSI).

The overall prevalence of *Acinetobacter* spp. was 9.1% out of 810 total bacterial isolates and 10.4% out of total 713 gram-negative isolates that was higher in males (52.7%) than in females (47.3%) of age-group 20-40 years and highest in intensive care units (72.2%) among different wards. Among isolates from different types of specimens, the prevalence of *Acinetobacter* spp. was found to highest in miscellaneous specimens followed by catheter tips and respiratory tract specimens. Out of 24 antimicrobial drugs used against all *Acinetobacter* spp., Carbapenems, Ceftriaxone, Co-trimoxazole, Cefoperazone/sulbactam and Chloramphenicol were the most effective antimicrobials in this hospital.

In conclusion, the prevalence of *Acinetobacter* spp in Kathmandu Medical College was higher in male patients of age groups (20-40) year and in intensive care units (ICUs) in miscellaneous specimens followed by catheter tips and respiratory tract specimens. Carbapenems, Ceftriaxone, and Co-trimazole were the most effective antimicrobials against *Acinetobacter* spp. in this hospital.

Key words: *Acinetobacter*, prevalence, susceptibility profile, Carbapenems, Ceftriaxone, Co-trimoxaxole

TABLE OF CONTENTS

Title page	i
Recommendation	ii
Certificate of approval	iii
Board of examiners	iv
Acknowledge	V
Abstract	vi
Table of contents	vii
List of tables	Х
List of figures	xi
List of Photographs	xii
Appendices	xiii
List of abbreviations	xiv
CHAPTER I: INTRODUCTION	1-3
CHAPTER II: OBJECTIVES	4
CHAPTER III: LITERATURE REVIEW	5-25
3.1 Acinetobacter spp.	5
3.1.1 Taxonomy and classification of Acinetobacter	8
3.1.2 Identification of Acinetobacter in the laboratory	9
3.1.3 Molecular Typing of Acinetobacter	12
3.1.4 Medically important Acinetobacter Species	12
3.2. Antibiotic Susceptibility Pattern of Acinetobacter spp	13
3.2.1. Emergence of antibiotic resistance in Acinetobacter spp	13
A. Resistance to beta- lactam agents	15
B. Resistance to aminoglycoside	16
C. Resistance to quinolones	17
D.Resistance to Chloramphenicol	17
E Resistance to tetracyclines	17
F. Resistance to Co-trimoxazole	18
3.3Global Epedemiology of Acinetobacter infection	18
3.4 Scenario of Acinetobacter spp. in Nepal.	25

CHAPTER IV: MATERIALS AND METHODS	26-38
4.1 Materials	26
4.2. Methodology	26
4.2.1 Study site and study period	26
4.2.2 Study population	26
4.2.3 Sample size and Sample types	26
4.2.4 Study design	27
4.2.5 Data collection	27
4.2.6 Collection and transportation of Specimens	27
4.2.6.1 Urine Samples	27
4.2.6.2 Sputum, throat swabs and other respiratory Specimens	27
4.2.6.3 Exudates	28
4.2.6.4 Body fluid Specimens (Pleural, Peritoneal and	28
Synovial)	
4.2.6.5 Cerebrospinal Fluid (CSF)	29
4.2.6.6 Eye and Ear specimens	29
4.2.6.8 Blood and Bone-marrow collection	30
4.2.6.9 Other miscellaneous specimens	30
4.3 Macroscopic examination of specimens	30
4.4 Culture of Specimens	30
4.4.1 Urine Culture	30
4.4.2 Sputum, throat swab and other respiratory specimens	31
4.4.3 Pus, Body Fluids, CSF and Semen	31
4.4.4 Blood Samples	32
4.4.5 Other miscellaneous specimens	32
4.5 Identification of Acinetobacter spp.	32
4.6 Antimicrobial susceptibility tests of Acinetobacter isolates	33
4.7 Preservation of the <i>Acinetobacter</i> isolates.	33
4.8 Clinical features of cases of Acinetobacter infection	33
4.9 Data analysis	34
4.10 Quality control	34
4.10.1 Monitoring and regular evaluation of laboratory	34
equipments, reagents, and media.	

4.10.2 Purity plate	34
4.10.3 Quality control during antibiotic susceptibility testing	34
4.11 Limitations of the study	35
4.12 Flow-chart of Methodology	36-38
CHAPTER V: RESULTS	39-45
5.1. Gender wise distribution of various specimen	39
5.2. Bacteriological profiles of various specimens	40
5.3. Prevalence of Acinetobacter spp. in different specimens	41
5.4. Gender- wise distribution of Acinetobacter spp in various specimens	41
(n=74)	
5.5. Distribution of <i>Acinetobacter</i> spp in different age-groups from different	42
specimens	
5.6 Distribution of <i>Acinetobacter</i> isolates in various wards	42
5.7 Clinical characterization of patients infected with <i>Acinetobacter</i> spp.	43
5.8. Antibiotic susceptibility pattern in 74 totals Acinetobacter isolates from	44
different specimens	
CHAPTER VI: DISCUSSION AND CONCLUSION	46-59
6.1 Discussion	46
6.2 Conclusion	59
CHAPTER VII: SUMMARY AND RECOMMENDATIONS	60-61
7.1 Summary	60
7.2 Recommendations	61
CHAPTER VII: REFERENCES	62-98
APPENDICES: 1-VII	I-XIX

LIST OF TABLES

Table5.1.	Gender wise distribution of various specimens 3		
Table5.2.	Bacteriological profiles of various clinical specimens		
Table5.3.	Prevalence of Acinetobacter spp. in different specimens		
Table5.4.	Gender- wise distribution of <i>Acinetobacter</i> spp in various specimens		
Table5.5	Distribution of <i>Acinetobacter</i> spp in different age-groups from different specimens (n=74)		
Table.5.6	Distribution of <i>Acinetobacter</i> isolates in various wards (n=74)		
Table.5.7	Clinical characterization of patients infected with <i>Acinetobacter</i> spp. $(n=74)$	43	
Table5.8.1.	Susceptibility pattern of <i>Acinetobacter</i> isolates against different antimicrobials from different specimens in percentage (n=74)	44	
Table.5.8.2.	Antimicrobials not susceptible at all to all isolates of <i>Acinetobacter</i> spp from different clinical specimens.	45	

LIST OF FIGURES

Figure1.	Organism Isolation	36
Figure2.	Identification of Acinetobacter	37
Figure3.	Antimicrobial susceptibility testing	38

LIST OF PHOTOGRAPHS

- Photo.1: Growth of *Acinetobacter* spp. on Nutrient Agar (NA)
- Photo.2: Growth of *Acinetobacter* spp. on Sheep Blood Agar (Non-haemolytic)
- Photo.3: Growth of *Acinetobacter* spp. on MacConkey Agar (Yellowish-brown)
- Photo 4.a: Triple Sugar Iron, Simmon's Citrate, Christensen Urease, Sulphide Indole Motility and Hugh-Leifson Oxidation-Fermentation tests for *Acinetobacter* spp.
- Photo 4.b: Simmon's Citrate, Sulphide Indole Motility and Triple Sugar Iron tests for *Acinetobacter* spp. wiyh positive and negative controls
- Photo 5: Antimicrobial susceptibility pattern of *Acinetobacter* spp. on Mueller Hinton Agar (MHA)
- Photo 6: *Acinetobacter* spp. sensitive to Meropenem(MR), Imipenem (I), Ceftriaxone (Ci) and Co–trimoxazole(Co)
- Photo 7: Acinetobacter spp. sensitive to Imipenem (I), Cefoperazone/Sulbactam (CPS) and Chloramphenicol (C) & resistant to Pipracillin (Pc), Carbenicillin (Cb) and Gentamicin (G)

LIST OF APPENDICES

APPENDIX-I:	Microbiological Procedure		
APPENDIX-II:	Composition and preparation of different culture media and		
	reagents		
APPENDIX-III:	List of Equipment, Materials and Supplies	Х	
APPENDIX-IV:	Gram-Staining and biochemical Tests for Bacterial	XI	
	Identification		
APPENDIX-V :	Antimicrobial Susceptibility Testing by Disk- Diffusion	XV	
	Method		
APPENDIX-VI:	Clinical and demographic details of different clinical	XVII	
	specimens		
APPENDIX-IV: APPENDIX-V :	Gram-Staining and biochemical Tests for Bacterial Identification Antimicrobial Susceptibility Testing by Disk- Diffusion Method Clinical and demographic details of different clinical	XI XV	

LIST OF ABBREVIATIONS

AAC	:	Aminoglycoside Acetyltransferase
ADC	:	Acinetobacter- Derived Cephalosporinase
AFLP	:	Amplified Fragment Length Polymorphism
ANT	:	Aminoglycoside Nucleotidyl Transferase
APH	:	Aminoglycoside Phosphatases
BAL	:	Bronchioalveolar Lavage
CAT	:	Chloramphenicol Acetyl Transferees
CVP	:	Central Venous Pressure
DHFR	:	Dihydrofolate reductase
Gyr B	:	Gyrase B
HCP	:	Health Care Professional
IS	:	Insertion Sequence
ITS	:	Intergenic Spacer
KMC	:	Kathmandu Medical College
LAM	:	Leeds Acinetobacter Medium
MYSTIC	:	Meropenem Yearly Susceptibility Test
		Information Collection
NNIS	:	National Nosocomial Infection Surveillance
OMP	:	Outer Membrane Proteins
PBP	:	Penicillin Binding Protein
PCR-ESI-MS	:	PCR-Electro-Spray Ionization Mass
		Spectroscopy
RecA gene	:	Recombinant A gene
RND	:	Resistance Nodulation Division
SIM	:	Seoul Integron- encoded MBL
SMART	:	Study for Monitoring Antimicrobial
		Resistance Ttrends
SPSS	:	Statistics Package for Social Science
VAP	:	Ventilator Associated Pneumonia
VIM	:	Verona Integron- encoded MBL