ANTIBIOGRAM AND -LACTAMASE PRODUCTION TEST OF MULTIDRUG RESISTANT STAPHYLOCOCCUS SPECIES FROM DIFFERENT CLINICAL SPECIMENS

A Dissertation Submitted to Central Department of Microbiology Tribhuvan University Kathmandu Nepal

In Partial Fulfillment of the Requirements for the Award of Degree of Master of Science in Microbiology (Medical)

Ву

Chandeswori Shrestha Central Department of Microbiology Tribhuvan University Kathmandu Nepal 2012

RECOMMENDATION

This is to certify that Ms. Chandeswori Shrestha has completed this dissertation work entitled "ANTIBIOGRAM AND -LACTAMASE PRODUCTION TEST OF MULTIDRUG RESISTANT STAPHYLOCOCCUS SPP. ISOLATED FROM DIFFERENT CLINICAL SPECIMENS" as a partial fulfillment of the requirements of M.Sc. Degree in Microbiology (Medical) under our supervision. To our knowledge this work has not been submitted to any other degree.

Prof. Dr. Anjana Singh Head of Department Central Department of Microbiology Tribhuvan University Kathmandu Nepal

Mrs. Jyotsna Shrestha

Consultant Medical Microbiologist Microbiology Section Pathology Department Bir Hospital Kathmandu

Date: _____

CERTIFICATE OFAPPROVAL

On the recommendation of **Prof. Dr. Anjana Singh** and **Mrs. Jyotsna Shrestha** this dissertation work of **Ms. Chandeswori Shrestha** is approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirements for M.Sc. Degree in Microbiology (Medical).

> Prof. Dr. Anjana Singh Head of Department Central Department of Microbiology Tribhuvan University Kirtipur Nepal

Date: _____

BOARD OF EXAMINERS

Recommended by:

Prof. Dr. Anjana Singh (Supervisor)

Mrs. Jyotsna Shrestha (Supervisor)

Approved by:

Prof. Dr. Anjana Singh (Head of Department)

Examined by:

Prof. Dr. Nhuchhe Ratna Tuladhar (External Examiner)

Mrs. Manita Aryal (Internal Examiner)

Date: _____

ACKNOWLEDGMENTS

Respectfully I would like to express my sincere gratitude and heartfelt reverence to my supervisor **Prof. Dr. Anjana Singh**, Head of Central Department of Microbiology, Tribhuvan University, Kirtipur, for her scholastic inspiration and continuous guidance throughout my dissertation.

My serious indebtedness and sincere gratitude for my external supervisor **Mrs. Jyotsna Shrestha,** Consultant, Pathology laboratory, Bir hospital, Mahabauddha, Kathmandu, for providing me such an splendid chance to work in such a bonhomic environment and providing emmence help, valuable criticism and thorough instruction.

I would like to express my heartfelt gratitude to **Dr. Megh Raj Banjara**, faculty member, CDM, Kirtipur, for sharing his seasoned knowledge and constant help. I express my gratitude and special thanks to the staffs in Bir hospital. I am honoured to have worked with and learned from such a fantastic personnels.

I am really very delighted and want to express my deep thankfulness to my friend **Mr. Santosh Rajbahak** for his continuous support and help during my entire lab work, without him it would not have finished smoothly.

I am seriously thankful to the entire **patients** who provided me the samples without which this dissertation was impossible.

Last but not the least, I wish to reaffirm my admiration and special thanks to dad Late Mr. Ganesh Psd. Shrestha, mom Mrs. Shanti Shrestha sisters Jaya, Manisha, Monica, Binica, brother Saroj and my friend Shrizala for their valuable support and encouragement.

Ms. Chandeswori Shrestha

Date:

ABSTRACT

The aim of this study is to isolate the multidrug resistant (MDR) staphylococci from various clinical specimens and test the -lactamase enzyme in multidrug resistant staphylococci by chromogenic cephalosporin sticks. Total of 205 were isolated and identified as Staphylococcus spp. using standard microbiological technique. The isolates were classified as S. aureus and CONS based on slide and tube coagulase test. The percentage of S. aureus and CONS isolates were 67% and 33% respectively. Thus identified 98 (47.8%) staphylococci were screened as multidrug resistant by employing Kirby-Bauer disc diffusion method as recommended by Clinical Laboratory Standard Institute (CLSI 2006). On sensitivity assay of S. aureus, vancomycin and nitrofurantoin were 95.6% and 100% sensitive respectively. S. aureus were highly resistant to ampicillin (74.5%), nalidixic acid (74.2%) and oxacillin (61.7%). CONS were also highly sensitive to vancomycin and nitrofurantoin with 97.1% and 100% respectively. CONS were highly resistant to oxacillin (66.7%), cloxacillin (62.5%) and nalidixic acid (56.8%). Of the total S. aureus and CONS isolates 48.9% and 45.5% were multidrug resistant. Prevalence of MDR was found higher in male (51.1%) and age group 70-79 (66.7%). About 46.4% of OPD isolates were MDR. The multidrug resistant staphylococci on nitrocefin stick test revealed that 47% were -lactamase producers. Among them 46.3% and 51.6% were S. aureus and CONS respectively. -lactamase producers were highly resistant to ampicillin, cephalexin and nalidixic acid each with 93.8% resistance. On a comparative study of cloxacillin disc of various manufacturing companies, cloxacillin disc from HI-MEDIA, S. aureus and CONS showed 96% and 97.13% resistance respectively. However, for OXOID and MAST showed equal resistance of 56.25% and 61.7% respectively. Staphylococci isolated were highly sensitive to Nitrofurantoin and Vancomycin. -lactamase positive staphylococci were highly resistant toward multiple of antibiotics. This suggests the need for the -lactamase test prior to the antibiotic prescription.

Key words: *Staphylococcus* spp., Antibiotic resistance, Multidrug resistance, -lactamase, Chromogenic cephalosporin stick test.

TABLE OF CONTENTS

	Page no.
Title Page	i
Recommendation	ii
Certificate of Approval	iii
Signature of Boards of Examiners	iv
Acknowledgements	v
Abstract	vi
Table of Contents	vii-ix
List of Tables	Х
List of Figures	xi
List of Photographs	xii
Appendices	xiii
List of Abbreviations	xiv-xv
CHAPTER I: INTRODUCTION	1-5
1.1 Background	1-4
1.2 Objectives	5
1.2.1 General objective	5
1.2.2 Specific objectives	5
CHAPTER II: LITERATURE REVIEW	6-21
2.1 History	6
2.2 Staphylococcus aureus	7
2.3 Coagulase negative staphylococci (CONS)	8-9
2.4 Antibiotic resistance	9-11
2.4.1 Definition	9
2.4.2 Risk factors	9-10
2.4.3 Trends of resistance development	10-11
2.5 Multidrug resistance	11-12
2.5.1 Definition	11
2.5.2 Multidrug resistance in global context	11-12

2.5.3 Multidrg resistance in context of Nepal	12
2.6 -lactamase	12
2.6.1 Definition	12-13
2.6.2 Classification	13
2.6.3 Action of -lactamase	13-14
2.6.4 Test for detection of -lactamase	14
2.6.4.1 Direct tests for -lactamase detection	14-15
2.6.4.2 Microbiological tests for -lactamase activ	vity 15
2.7 Epidemiology	15-20
2.7.1 Antibiotic resistance and -lactamase produ	ction 15-18
2.7.2 S. aureus and drug resistance and -lactama	se production 18-19
2.7.3 CONS and drug resistance and -lactamase	production 19-21
CHAPTER III: MATERIALS AND METHOI	DS 22-27
3.1 Materials	22
3.2 Methods	22
3.2.1 Study design	22
3.2.2 Study population	23
3.2.3 Inclusion and exclusion criteria	23
3.2.4 Data collection	23
3.2.5 Collection of clinical samples	23
3.2.6 Sample evaluation	23
3.2.7 Sample processing	24
3.2.7.1 Macroscopic examination	24
3.2.7.2 Microscopic examination	24
3.2.7.3 Culture of specimen	24
3.2.8 Isolation and identification of bacteria	24
3.2.8.1 Colony characteristics	25
3.2.8.2 Biochemical tests used for staphylococci	25
3.2.9 Antibiotic susceptibility test	25
3.2.10 Screening of multidrug resistant Staphyloc	eoccus 25
3.2.11 Detection of -lactamase enzyme producti	on 25-26
3.3 Quality control for tests	26
3.4 Statistical analysis	27

CHAPTER IV: RESULT	28-41
4.1 Clinical pattern of isolates	28-31
4.2 Antibiotic sensitivity pattern of the isolates	31-36
4.3 Multidrug resistance pattern	36-39
4.4 Beta-lactamase production pattern	39-41
4.5 Evaluation of cloxacillin of three different companies	41
CHAPTER V: DISCUSSION	42-51
CHAPTER VI: CONCLUSION AND RECOMMENDATION	52-53
REFERENCES	54-68
APPENDICES	I-XI

LIST OF TABLES

Table	Page no.
Table 1: Staphylococcal growth in clinical specimen	27
Table 2: Gender wise distribution of <i>Staphylococcus</i> spp.	28
Table 3: Origin (Ward) based distribution of staphylococci	29
Table 4: Age wise Staphylococcus spp. distribution	30
Table 5: Susceptibility pattern of S. aureus	31
Table 6: Antibiotics resistant pattern of S. aureus in	
different clinical specimens	32
Table 7: Antibiotic susceptibility pattern of CONS	33
Table 8: Antibiotic resistant pattern of CONS in different	
clinical specimen	34
Table 9: Antibiotic resistance pattern of -lactamase producing	2
Staphylococcus spp.	35
Table 10: Multidrug resistance pattern among Staphylococcus	
spp.	35
Table 11: Multidrug resistance pattern on gender	36
Table 12: Age wise multidrug resistance pattern culture	36
Table 13: Multidrug resistance pattern on origin	37
Table 14: Multidrug resistance pattern of S. aureus isolated	
from different clinical specimens	37
Table 15: Multi-drug resistance pattern of CONS isolated	
from different clinical specimens	38
Table 16: -lactamase stick test in MDR	
Staphylococccus spp.	38
Table 17: Gender wise distribution pattern of -lactamase	39
Table 18: Age wise distribution pattern of -lactamase	39
Table 19: Clinical specimen wise distribution pattern of	
-lactamase	40
Table 20: Resistant pattern of Staphylococcus to cloxacillin	
of three different manufacturing companies	40

LIST OF FIGURES

Page No.

Figure 1: Flow chart for isolation and identification of	
Staphylococcus spp. from clinical specimens	
Figure 2: Distribution of Staphylococcus spp.	28
Figure 3: Antibiotic resistance pattern of <i>Staphylococcus</i> spp.	30

LIST OF PHOTOGRAPHS

Photograph 1: Culture of S. aureus in blood agar

Photograph 2: Antibiotic susceptibility test of S. aereus

Photograph 3: Antibiotic susceptibility test of S. aereus

Photograph 4: -lactamase stick test in MDR *Staphylococccus* spp.

LIST OF APPENDICES

Page no.

Appendix I	
A. Clinical profile	Ι
B. Collection of clinical specimens	Ι
C. List of equipments and materiales used during the study	II

Appendix II

A. Composition and preparation of different types of culture media	IV
B. Composition and preparation of different types of biochemical media	V
C. Composition and preparation of different reagents	VI

Appendix III

A. Procedure of different biochemical tests	VIII
B. Antibiotic disc used and procedure of susceptibility test	Х

LIST OF ABBREVIATION

AST	Antibiotic Sensitivity Test
BA	Blood Agar
BW	Burn Ward
CDC	Center for Disease Control and Prevention
CDM	Central Department of Microbiology
CLSI	Clinical and Laboratory Standard Institute
CONS	Coagulase Negative Staphylococci
DNA	Deoxyribonucleic Acid
ENT	Ear Nose Throat Ward
ESBL	Extended Spectrum -lactamase
FMW	Female Medical Ward
FSW	Female Surgical Ward
ICU	Intensive Care Unit
MA	MacConkey Agar
MDR	Multidrug Resistant
MHA	Muller Hinton Agar
MIC	Minimum Inhibitory Concentration
MMW	Male Medical Ward
MRSA	Methicillin Resistant S. aureus
MSA	Mannitol Salt Agar
MSSA	Methicillin Sensitive S. aureus
MSW	Male Surgical Ward
MW	Molecular Weight
NA	Nutrient Agar
NB	Nutrient Broth
NS	Non Significant
NSICU	Neurosurgical Intensive Care Unit
NSTA	National Science and Technology Academy
NSW	Neuro Surgical Ward
OF	Oxidative Fermentative
OPD	Out Patient Department

ORSA	Oxacillin Resistant S. aureus
PBP	Penicillin Binding Protein
PCR	Polymerase Chain Reaction
POST-OP	Post Operation Ward
PRP	Penicillinase Resistant Penicillins
S. aureus	Staphylococcus aureus
S. epidermidis	Staphylococcus epidermidis
S. saprophyticus	Staphylococcus saprophyticus
SPSS	Statistical Package for the Social Sciences
TU	Tribhuvan University
TUTH	Tribhuvan University Teaching Hospital
UK	United Kingdom
UTI	Urinary Tract Tnfection
VRSA	Vancomycin Resistant S. aureus
WHO	World Health Organization