ANTIBIOTIC RESISTANT COLIFORMS IN DRINKING WATER OF KATHMANDU VALLEY

A

Dissertation Submitted to the Central Department of Microbiology Tribhuvan University

In Partial Fulfilment of the Requirements for the award of degree of Master of Science in Microbiology (Environment and Public Health Microbiology)

> By Sunil Chaudhary

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal 2012

RECOMMENDATION

This is to certify that **Mr. Sunil Chaudhary** has completed this dissertation work entitled "ANTIBIOTIC RESISTANT COLIFORMS IN DRINKING WATER **OF KATHMANDU VALLEY**" as a partial fulfilment of Master of Science Degree in Microbiology under our supervision. To our knowledge this thesis work has not been submitted for any other degree.

Dr. Dwij Raj Bhatta, M. Sc., Ph. D.

Associate Professor Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Mr. Komal Raj Rijal Lecturer Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu

Date:-....

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Dwij Raj Bhatta**, Associate Professor, **Mr.Komal Raj Rijal**, Lecturer, this dissertation work of **Mr. Sunil Chaudhary** has been approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirements for M. Sc. Degree in Microbiology.

> Dr. Dwij Raj Bhatta, M. Sc., Ph. D. Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Date: -

BOARD OF EXAMINERS

Recommended by:

Dr. Dwij Raj Bhatta, M. Sc., Ph. D.

Supervisor

Mr. Komal Raj Rijal Supervisor

Approved by:

Dr. Dwij Raj Bhatta, M. Sc., Ph. D.

Head of Department

Examined by:

Mr. Gyanendra Bahadur Karki Chief, Water Quality Section, Kathmandu Upatyaka Khanepani Limited (KUKL), Sundharighat, Kirtipur, Kathmandu

External Examiner

Mr. Dev Raj Joshi Lecturer Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal

Internal Examiner

Date: -....

ACKNOWLEDGEMENTS

I express my heartiest gratitude to my supervisor **Dr. Dwij Raj Bhatta, M. Sc., PhD.** Head, Central Department of Microbiology (CDM), T. U. for his valuable guidance, comments, encouragement and support for my research work.

I am greatly indebted to my supervisor **Mr. Komal Raj Rijal**, Lecturer, Central Department of Microbiology, Tribhuvan University, for his guidance and supervision during the entire period of the research.

Likewise, I am thankful to **Mr. Dev Raj Joshi,** Lecturer, Central Department of Microbiology, Tribhuvan University, for his valuable suggestions during this work. I express my gratitude to all the faculties and staffs of Central Department of Microbiology, Tribhuvan University, **Mr. Madhukar Thapa, Mr. Ramesh Khadka, and Mr. Rayman Shakya** for their cooperation and help during my research.

I am grateful to all my friends, especially **Mr. Sanjay Majhi.** I sincerely appreciate to my friend **Mr. Prince Subba** for his continuous and invaluable help during my dissertation.

Lastly, my gratitude goes to my family, whose continuous love, support and encouragement lead me to this stage.

Sunil Chaudhary

Date: -....

ABSTRACT

Coliform in drinking water is of great importance due to its indicative value to faecal contamination. Antibiotic resistance and its dissemination in coliforms is a serious public health issue. The study was undertaken to describe drug resistant coliforms in the drinking water from different sources in Kathmandu valley.

This study was conducted at Environmental Microbiology Laboratory of Central Department of Microbiology, from January to August 2011. A total of 66 water samples consisting 28 tap water, 24 well water and 14 stone spouts water were randomly collected from different location of Kathmandu valley, and subjected to microbiological analysis. Modified Kirby-Bauer Disc diffusion method was followed for antibiotic susceptibility test of coliform isolates.

Temperature of all analysed water samples ranged from 10° C to 16° C and p^{H} ranged from 6.5 to 8.5.

Higher number of stone spouts water samples 85% (n=12) were contaminated with coliforms followed by well water 79.2% (n=19) than tap water 60.7% (n=17). Similarly, the thermotolerant coliform growth was found in higher number of well water samples. 87.5% (n=21), followed by stone spouts water 71.4% (n=10) and tap water 67.9% (n=19). But no significant correlation was found between source and coliform (P>0.05), Thermotolerant coliform (P> 0.05). In this study 97 different isolates of organisms were identified as *Escherichia coli* 32% (n=31), *Citrobacter* spp 24.7% (n=24), *Enterobacter* spp 21.6% (n=21) and *Klebsiella* spp 18.6% (n=18) and *Salmonella* Typhi 3.1% (n=3).

Higher MDR isolates were *E. coli* 92.3% (n=28), *Citrobacter* 62.5% (n=15), *Klebsella* 72.2% (n=13), *Enterobacter* spp 47.6% (10) and *Salmonella* spp 100% (n=3). The most of MDR were attributed to resistance towards Tetracycline and Amoxicillin.

The water of different water sources were found polluted with total coliform and presence of MDR Gram negative bacteria were reported.

Key words: Coliform, Multiple drug resistance (MDR), drinking water.

CONTENTS

Title Page	i				
Recommendation	ii				
Certificate of Approval	iii				
Board of Examiners	iv				
Acknowledgement	v				
Abstract	vi				
Contents	vii				
Abbreviations	Х				
List of Tables	xi				
List of Figures	xii				
List of Photographs	xii				
List of Appendices	xiii				
CHAPTER I: INTRODUCTION					
1.1 Introduction					
CHAPTER II: OBJECTIVES					
2.1 General objective	4				
2.1 Specific objectives					
CHAPTER III: LITERATUREREVIEW					
3.1 Water pollution	5				
3.2 Physicochemical parameters of water	6				
3.2.1 Temperature	6				
3.2.2 pH	7				
3.3 Microbial indicator of water quality	7				
3.3.1 Total coliform	8				
3.3.2 Thermotolerant coliform	10				
3.3.3 Escherichia coli	10				
3.3.4 Intestinal Enterococi	11				

3.3.5 Clostridium perfringens	11
3.4 Other common intestinal pathogens contaminating drinking water	12
3.4.1 Salmonella spp	12
3.4.2 Shigella spp.	13
3.4.3 Vibrio cholerae	13
3.4.4 Proteus vulgaris	14
3.5 Sources and access of drinking water in Kathmandu	14
3.6 Drinking water as a vehicle of diseases	14
3.7 Outbreaks of waterborne disease in Nepal	15
3.8 Study on the quality of drinking water	17
3.9 Antibiotic Resistance	24
3.10 Studies on bacterial resistance to antibiotics	24

CHAPTER IV: MATERIALS AND METHODS

4.1 Materials						
4.2 Methods	28					
4.2.1 Study duration						
4.2.2 Sample Collection for water analysis	28					
4.2.3 Transportation and preservation of sample	28					
4.3 Study of Physico-Chemical Parameter of water samples	29					
4.4 Microbial Examination of Water						
4.4.1 Total coliform count29						
4.4.2 Thermotolerent coliform count						
4.4.3 Isolation of <i>E. coli</i>						
4.4.4 Isolation of coliforms other than E. coli						
4.4.5 Detection of Salmonella spp. and Shigella spp.	31					
4.5 Antibiotic susceptibility test	31					
4.6 Quality control						
4.7 Data Analysis and Statistical Tools32						

CHAPTER V: RESULTS

5. Results	34
5.1 Physico-Chemical quality of drinking water	34

5.2 Microbiological quality	34
5.2.1. Total coliform count in drinking water	34
5.2.2 Presence of thermotolerent coliform in drinking water	35
5.2.3 Relation of coliform with source	36
5.2.4 Occurrence and distribution of bacteria in drinking water	36
5.2.5 Source wise distribution of bacteria	36
5.2.6 Distribution of bacterial isolates from different source	37
5.3 Antibiotic Susceptibility Pattern of bacterial isolates	38
5.3.1 Antibiotic Susceptibility Pattern of Escherichia coli	38
5.3.2 Antibiotic Susceptibility Pattern of Citrobacter spp	40
5.3.3 Antibiotic Susceptiblity Pattern of Enterobacter spp	41
5.3.4 Antibiotic Susceptibility Pattern of Klebsiella spp	42
5.3.5 Antibiotic Susceptibility pattern of Salmonella Typhi	44
5.4 Distribution of MDR isolates	45
CHAPTER VI: DISCUSSION AND CONCLUSION	
6.1 Discussion	46
6.2 Conclusion	54
CHAPTER VII: SUMMARY AND RECOMMENDATIONS	
7.1 Summary	55
7.2 Recommendation	57
REFERENCES	58
APPENDICES	I-XV

LIST OF TABLES

Table – 1 : Bacterial disease transmitted through water Table - 2 : Physical quality of drinking water

 Table - 3
 : Total coliform count of drinking water

: Thermotolerent coliform count of drinking water Table - 4 Table - 5 : Occurrence and distribution of bacteria in drinking water : Source wise distribution of bacteria Table -6 Table -7 : Distribution of bacterial isolates from different source Table -8 : Antibiogram of *E. coli* Table -9 : Antibiotic susceptibility pattern of E. coli Table -10 : Antibiogram of *Citrobacter* spp Table -11 : Antibiotic susceptibility pattern of *Citrobacter* spp Table -12 : Antibiogram of *Enterobacter* spp
 Table -13
 : Antibiotic susceptibility pattern of Enterobacter spp
 Table -14 : Antibiogram of *Klebsiella* spp
 Table -15
 : Antibiotic susceptibility pattern of Klebsiella spp
 Table -16 : Antibiogram of Salmonella Typhi Table -17 : Antibiotic susceptibility pattern of Salmonella Typhi Table -18 : Distribution of MDR isolates

LIST OF FIGURES

Figure-1	:	Flow	Chart	Diagra	matic 1	Repres	entation	of C	Dverall	Process

- Figure-2 : Total coliform present in water sample
- Figure-3 : Thermotolerant coliform present in water sample

LIST OF PHOTOGRAPHS

Photograph-1	:	Biochemical test of <i>E. coli</i>
Photograph-2	:	Biochemical test of Salmonella Typhi
Photograph-3	:	Antibiotic susceptibility test of E. coli (I)
Photograph-4	:	Antibiotic susceptibility test of E. coli (II)

LIST OF APPENDICES

Appendix-I : List of Materials

Appendix-II : Sample site distribution

- Appendix-III : Temperature and pH of water samples
- Appendix-IV : Different types of organisms isolated from drinking water
- Appendix-V : Chart for identification of bacterial isolates
- Appendix-VI : WHO guideline value for bacteriological quality of drinking water
- Appendix-VII : Zone Size Interpretative Chart of Antibiotic susceptibility testing
- Appendix-VIII: Statistical Analysis

ABBREVATIONS

APHA	:	American Public Health Association
AR	:	Antibiotics Resistance
ATCC	:	American Type Culture Collection
BOD	:	Biological Oxygen Demand
CEDA	:	Centre for Economic Development and Administration
CFU	:	Colony Forming Unit
CLSI	:	Clinical Laboratory Standards Institute
DISVI	:	Disarmo e Sviluppo (Italian International Co-operation)
DoHS	:	Department of Health Services
EMB	:	Eosin Methylene Blue Agar
ENPHO	:	Environment and Public Health Organization
EPEC	:	Enteropathogenic Esherichia coli
ЛСА	:	Japan International Cooperation Agency
MAR	:	Multiple Antibiotic Resistance
MDR	:	Multi Drug Resistance
MF	:	Membrane Filter
MHA	:	Mullar Hinton Agar
МоН	:	Ministry of Health
NA	:	Nutrient Agar
NCCLS	:	National Committee for Clinical Laboratory Standards
NWSC	:	Nepal Water Supply Corporation
SIM	:	Sulphide Indole Motility medium
TC	:	Total Coliform
UNDP	:	United Nation Development Fund
UNEP	:	United Nations Environment Programmes
UNICEF	:	United Nations Children Emergency Fund
XLD	:	Xylose Lysine Deoxycholate Agar
WHO	:	World Health Organization
TCBS	:	Tetrathionate Citrate Bile Salt Agar