TIME RELATED CHANGES IN BACTERIOLOGICAL PROFILE OF BURN WOUND AND THEIR ANTIBIOGRAM

Dissertation Submitted to Central Department of Microbiology Tribhuvan University Kathmandu Nepal

Α

In Partial Fulfillment of the Requirements for the Award of Degree of Master of Science in Microbiology (Medical)

Ву

Santosh Rajbahak Central Department of Microbiology Tribhuvan University Kathmandu Nepal 2012

2012

RECOMMENDATION

This is to certify that **Mr. Santosh Rajbahak** has completed this dissertation work entitled "**TIME RELATED CHANGES IN BACTERIOLOGICAL PROFILE OF BURN WOUND INFECTIONS AND THEIR ANTIBIOGRAM**" as a partial fulfillment of the requirements of M.Sc. Degree in Microbiology (Medical) under our supervision. To our knowledge, this work has not been submitted to any other degree.

Prof. Dr. Anjana Singh Head of the Department Central Department of Microbiology Tribhuvan University Kathmandu Mrs. Jyotsna Shrestha Consultant Medical Microbiologist Microbiology Section Pathology Department Bir Hospital Kathmandu

Date:

CERTIFICATE OF APPROVAL

On the recommendation of **Prof. Dr. Anjana Singh** and **Mrs. Jyotsna Shrestha** this dissertation work of **Mr. Santosh Rajbahak** is approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirements for M.Sc. Degree in Microbiology (Medical).

Prof. Dr. Anjana Singh

Head of Department Central Department of Microbiology Tribhuvan University Kathmandu Nepal

Date:

BOARD OF EXAMINERS

Recommended by:

Prof. Dr. Anjana Singh (Supervisor)

Mrs. Jyotsna Shrestha (Supervisor)

Approved by:

Prof. Dr. Anjana Singh (Head of Department)

Examined by:

Prof. Dr. Nhuchhe Ratna Tuladhar

(External Examiner)

Mrs. Reshma Tuladhar (Internal Examiner)

Date: _____

ACKNOWLEDGMENTS

I would like to thank my supervisor, **Prof. Dr. Anjana Singh**, Head of the Central Department of Microbiology, for her inspiration, valuable suggestions and continuous guidance during my research.

In the same vein, I would like to thank my external supervisor **Mrs. Jyotsna Shrestha**, Consultant Microbiologists, Bir Hospital, for her constant encouragement, expert guidance and giving me the opportunity to use the laboratory facility in Bir Hospital.

I would like to show my heartfelt gratitude to **Dr. Megh Raj Banjara**, for his wholehearted valuable scientific and personal support in advising and commenting me on this thesis development. My special thank goes to **Mrs. Naradevi Bariya**, Burn Ward Incharge, and other staffs of the burn unit for their kind cooperation during sample collection. I want to give my sincere thanks to **all patients** who agreed to participate in this study and made this work possible.

My love and gratitude for the continued support of Ms. Chandeswori Shrestha, my batchmate, cannot be adequately expressed in this space. I am also tremendously grateful for the supports of all of my friends: Mr. Pradip Dawadi, Mr. Ghanashyam Pokhrel, Mr. Deepak Pokharel, Ms. Sristy Dangol. Mr. Bibas Basnet and Ms. Sushila Pathak.

Finally, I am deeply indebted to my family for allowing me to achieve my goals and always supporting me no matter what: my sister, **Sarmila**; my brothers, **Saroj and Suman**, for always making me laugh; and my parents, **Sanu and Hira**, whose unconditional love and constant faith convinced me that I can do anything.

..... Santosh Rajbahak

Date:

ABSTRACT

A prospective study of the burn cases were carried out in 42 burn patients admitted in burn unit of Bir Hospital from September 2011 to Feburary 2012 to evaluate time-related changes in aerobic bacterial colonization and their sensitivity pattern. Periodic swabs were taken from the burn wound on 1st, 2nd, 3^{rd} , and 4^{th} weeks to see the changing pattern of organisms during hospital stay of patients. The antibiotic susceptibility tests of identified bacteria were done by Kirby-Bauer disk diffusion techniques. In the present study burn injury was found to be highest in the age group 25-34 years (28.6%). Male to female ratio was 1:1.5. Fire was the major cause of burn (78.6%) followed by scald burn (7.1%). Among the 168 samples, single organism was isolated in 47.6% samples and mixed organisms in 39.9% and no growth in 12.5%. A total of 215 bacterial isolates were isolated from 168 samples in which Pseudomonas aeruginosa accounts for the highest percentage 45.6% followed by Staphylococcus aureus (19.1%), Acinetobacter spp. (17.7%) and CONS (5.6%). On 1^{st} week of culture 38.6% of the isolates were *P. aeruginosa* followed by Acinetobacter spp. (21%) and S. aureus (19.2%). No growth was found in 14.3% samples. These findings were gradually changing with time and on 4th week P. aeruginosa were 57.8% whereas S. aureus and Acinetobacter spp. were only 13.3% each respectively. Antimicrobial sensitivity test showed that *P. aeruginosa* was highly resistant to antimicrobial agents. It was most sensitive to polymyxine B (99%) followed by amikacin (64.3%). Acinetobacter spp. was found least resistant to amikacin (28.9%) followed by chloramphenicol (36.8%). S. aureus was least resistant to vancomycin (2.4%) followed by levofloxacin (19.5%) and chloramphenicol (19.5%) whereas they were moderately resistant to oxacillin (53.7%). Continuous survey and analysis of changing microbial flora and their antibiogram in burn patients help in timely detection and control of spread of infection and also help to review effective antibiotic policies.

Key words: Burn, Burn wounds infection, *P. aeruginosa*, Antibiotics resistance pattern.

TABLE OF CONTENTS

	Page no.
Title Page	i
Recommendation	ii
Certificate of Approval	iii
Signature of Boards of Examiners	iv
Acknowledgements	V
Abstract	vi
Table of Contents	vii-viii
List of Tables	ix
List of Figures	Х
List of Photographs	xi
List of Appendices	xii
List of Abbreviation	xiii
CHAPTER I: INTRODUCTION	1-5
1.1 Background	1-4
1.2 Objectives	5
1.2.1 General objective	5
1.2.2 Specific objectives	5
CHAPTER II: LITERATURE REVIEW	6-21
2.1 Human skin	6
2.2 Burn injury	6
2.3 Pathophysiology	7-8
2.4 Clinical manifestations	8-9
2.5 Microbial etiology	9-10
2.6 Antibiotics resistance in burn centers	10-11
2.7 Prevention and control of burn wound infections	11-12
2.7.1 Topical antimicrobial therapy	12
2.7.2 Prophylactic systemic antibiotics	12
2.8 Epidemiology	13-21
2.8.1 Common bacterial isolates and their antibiogram	13-18

2.8.2 Time related changes in bacterial isolates	18-20
CHAPTER III: MATERIALS AND METHODS	21-26
3.1 Study design	21
3.2 Study setting	21
3.3 Study population and sampling	21
3.4 Inclusion and exclusion criteria	21
3.5 Questionnaire	21-22
3.6 Materials and equipments	22
3.7 Specimen collection	22
3.8 Sample processing	22
3.8.1 Macroscopic examination	23
3.8.2 Microscopic examination	23
3.8.3 Culture of specimen	23
3.8.4 Isolation and identification of bacteria	23
3.9 Antibiotic susceptibility testing for isolated organisms	23-24
3.10 Quality control for tests	24
3.11 Statistical analysis	24-25
3.12 Ethical considerations	25
CHAPTER IV: RESULT	26-39
4.1 Description of study sample	26-28
4.2 Risk factors and culture results	29-31
4.3 Microbiological investigation	31-33
4.4 Antibiotic resistant pattern of bacterial isolates	33-39
CHAPTER V: DISCUSION	40-47
CHAPTER VI: CONCLUSION AND RECOMMENDATIONS	48-49
REFERENCES	50-59
APPENDIX	I-XVII

LIST OF TABLES

Table	P	age no.
Table 1	Age and gender wise distribution of total patients	26
Table 2	Patients distribution according to sites of burn	27
Table 3	Patients distribution according to burn extent	27
Table 4	Patients distribution according to cause of burn	28
Table 5	Distribution of pus culture with growth	29
Table 6	Relationship between culture results and burn sites	29
Table 7	Relationship between cultures results and TBSA	30
Table 8	Relationship between cultures results and burn degree	30
Table 9	Relationship between cultures result and cause of burn	31
Table 10	Pattern of growth of pus culture in different period time	31
Table 11	Distribution of organism with types of infections	32
Table 12	Isolation pattern of bacteria in different period of time	33
Table 13	Antibiotics resistance pattern of Gram negative bacteria	. 34
Table 14	Antibiotic resistance pattern of Gram positive bacteria	35
Table 15	Antibiotic resistance pattern of total bacterial isolates	36
Table 16	Antibiotic resistance pattern of P. aeruginosa	37
Table 17	Antibiotic resistance pattern of S. aureus	38
Table 18	Antibiotic resistance pattern of CONS	39
Table 19	Antibiotic resistance pattern of Acinetobacter spp.	39

LIST OF FIGURES

- Figure 1 Protocol for laboratory examination of pus sample
- Figure 2 Patients distribution according to the degree of burn

LIST OF PHOTOGRAPHS

Photograph 1	Patient with third degree burn
Photograph 2	Culture of P. aeruginosa in Blood agar
Photograph 3	Culture of P. aeruginosa in MacConkey agar
Photograph 4	Culture of S. aureus in Blood agar
Photograph 5	Antibiotic susceptibility test of P. aeruginosa
Photograph 6	Antibiotic susceptibility test of Acinetobacter spp.

LIST OF APPENDICES

Page no.

Appendix I

A. Clinical profile	Ι
B. Microbiological profile	II
C. List of materials	III-IV

Appendix II

A. Composition and preparation of different types of culture media	V
B. Composition and preparation of different types of biochemical media	VI-VIII
C. Composition and preparation of different reagents	VIII-XI
D. Procedure of different biochemical tests	XI-XII

Appendix III

A. Antibiotics disk used and procedures of susceptibility test	XIV
B. Procedures of antibiotic susceptibility test	XIV

Appendix IV

A. Antibiotic resistant pattern of isolated bacteria from burn wound	s XV-XVII
--	-----------

LIST OF ABBREVIATION

BA	Blood Agar
BCU	Burn Care Unit
BU	Burn Unit
CONS	Coagulase Negative Staphylococci
E. coli	Escherichia coli
GNB	Gram Negative Bacilli
GPB	Gram Positive Bacilli
GPC	Gram Positive Cocci
HCW	Health Care Worker
ICU	Intensive Care Unit
MA	MacConkey Agar
MHA	Muller Hinton Agar
NA	Nutrient Agar
NB	Nutrient Broth
P. aeruginosa	Pseudomonas aeruginosa
S. aureus	Staphylococcus aureus
S. epidermidis	Staphylococcus epidermidis
S. pneumoniae	Streptococcus pneumoniae
S. saprophyticus	Staphylococcus saprophyticus
SIM	Sulphur Indole Motility
SSI	Surgical Site Infection
TBSA	Total Body Surface Area
TSI	Triple Sugar Iron Agar
TSST	Toxic Shock Syndrome Toxin
WHO	World Health Organization