COMPARISON OF DIFFERENT CONCENTRATIONS OF CARBOL FUCHSIN FOR DETECTION OF ACID-FAST BACILLI FROM DIRECT SPUTUM SMEAR MICROSCOPY

A DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF MASTERS OF SCIENCE IN MICROBIOLOGY (MEDICAL MICROBIOLOGY)

BY RANJU KARKI

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KIRTIPUR, KATHMANDU, NEPAL 2011

RECOMMENDATION

This is to certify that **Miss. Ranju Karki** has completed this dissertation work entitled **"Comparison Of Different Concentrations Of Carbol Fuchsin For Detection Of Acid-fast Bacilli From Direct Sputum Smear Microscopy"** as a partial fulfillment of M.Sc. degree in Microbiology under our supervision. To our knowledge this work has not been submitted for any other degree.

(Supervisor) Ms.Shaila Basnyat Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal (Supervisor) Mr.Gokarna Raj Ghimire M.Sc. Microbiology National Tuberculosis Centre Thimi, Bhaktapur, Nepal

Date:

CERTIFICATE OF APPROVAL

On recommendation of **Miss Shaila Basnyat** and **Gokarna Raj Ghimire**, this dissertation work by **Miss Ranju Karki** has been approved for the examination and is submitted to the **Tribhuvan University** in partial fulfillment of the requirements for degree of Master of Science in Microbiology (Medical).

Assoc. Prof, Dr. Dwij Raj Bhatta, M.Sc. Microbiology, PhD

Head of Department

Central Department of Microbiology

Tribhuvan University

Kirtipur, Kathmandu.

Date:

BOARD OF EXAMINERS

Recommended by:

Ms.Shaila basnyat

Supervisor

Mr. Gokarna Raj Ghimire

Supervisor

Approved by:

Dr. Dwij Raj Bhatta

Head of the Department

Examined by:

Prof. Dr. Bharat Mani Pokhrel. PhD

External Examiner

Mr. Komal Raj Rijal

Internal Examiner

Date _____

ACKNOWLEDGEMENT

It is with great respect and deep sense of gratitude: I owe my sincere indebtedness to my supervisor **Miss. Shaila Basnyat**, lecturer, Central Department of Microbiology, Kirtipur, who generously contributed valuable time, and provided her constant support, and regular supervision, which enabled me to bring this thesis in the present form.

It is my great pleasure to express my profound gratitude to my respected supervisor **Mr**. **Gokarna Raj Ghimire**, National Tuberculosis Centre, Thimi, Bhaktapur, Nepal for his encouragement and constructive suggestion during my entire work. I express my heartiest gratefulness to **Dr. Kashi Kant Jha**, Director, NTC for giving me an opportunity to perform this dissertation and **Mr. Narayan Bahadur Karki**, Senior Medical Technologist, for providing his constant support and excellent working environment within the hospital premises.

I express my heartiest gratitude to **Dr. Dwij Raj Bhatta**, Head of Central Department of Microbiology for his inspiration and encouragement. I would also like to share my eternal respect to all the respected teachers and staffs of Central Department of Microbiology for their help in all possible ways. My special thanks to **Dr. Megh Raj Banjara**, lecturer, Central Department of Microbiology, Kirtipur who helped me for the statistical analysis.

I am especially thankful to Mr. Suraj Man Tuladhar, Birendra Yadav, Ram Babu Shrestha and all other staffs of National Tuberculosis Centre and SAARC TB Centre, for their kind help and supports. I would like to express my heartiest gratitude to my friends, Ms. Shusma Lama, Amurallah shidique, and Ujjwol Wagley for their support during sample collection and processing.

Finally, my special acknowledgement and deepest thankfulness to my family members who always stood by me and provided me continuous inspiration and encouragement.

Date:

Ranju Karki

ABSTRACT

This study was conducted with an objective to evaluate efficiency of different concentrations of carbol fuchsin in detecting acid- fast bacilli from direct sputum smear microscopy.

Direct sputum smears were prepared from the sputum for the ZN staining and processed for the culture on Lowenstein Jensen (LJ) media by modified Petroff's method. From each sputum sample three direct smears were prepared and stained with 3 different concentrations (1%, 0.5% and 0.3%) of carbol fuchsin. Culture was employed as a reference gold standard for the study.

A total 230 direct smears were evaluated by ZN staining using all 3 concentrations of carbol fuchsin. Out of 230 suspected TB patients, 151 (65.65%) patients were diagnosed as having pulmonary tuberculosis by culture. Compared to culture, the sensitivity, specificity, and positive and negative predictive values for ZN staining for 1% carbol fuchsin, 0.5% carbol fuchsin and 0.3% carbol fuchsin were 76.82%, 85.93%, 92.8% and 61.11%, 71.52%, 84.37%, 91.52% and 55.67% and 61.58%, 84.37%, 90.29% and 48.21% respectively. Among 130 (56.52%) positives by 1% carbol fuchsin staining techniques, 116 were positive by both (1% and 0.5%) methods, 104 (89.65%) had equal numbers of AFB on both smears, 11 (9.48%) had more AFB on the smear stained using 1% and 1 (0.86%) had greater number of AFB on the smear stained using 0.5% carbol fuchsin. Also, of the 103 (44.78%) positive smear by both (1% and 0.3%) method, 67 (65.04%) had equal number of AFB in both smears and 35 (33.98%) had more AFB on the smear positivity by 10.76% and 20.76% when compared with 0.5% and 0.3% carbol fuchsin respectively.

This study indicates that the ZN staining technique using 1% carbol fuchsin enables visualization of greater number of AFB in direct sputum smears and is highly correlated to culture than 0.5% and 0.3% ZN staining techniques.

Keywords: M. tuberculosis, Ziehl-Neelsen, Carbol fuchsin, sensitivity, Culture

LIST OF CONTENTS

Title Page	i
Recommendation	ii
Certificate of Approval	iii
Board of Examiners	iv
Acknowledgement	v
Abstract	vi
List of Contents	vii
List of Abbreviations	xi
List of Tables	xiii
List of Figures	xiv
List of Photographs	xv
List of Appendices	xvi
CHAPTER I: INTRODUCTION	1
CHAPTER II: OBJECTIVES	5
2.1 General objective	5
2.2 Specific objective	5

CHAPTER III: LITERATURE REVIEW	6 - 29	
3.1 Tuberculosis	6	
3.2 Global history	7	
3.3 Types of tuberculosis		
3.3.1 Pulmonary tuberculosis	8	
3.3.2 Extra pulmonary tuberculosis	9	
3.4 Classification	10	
3.5 Bacteriology	11	
3.5.1 Etiological agent	11	
3.5.2 Pathogenesis	12	
3.5.3 Transmission	13	
3.6 Diagnosis		
3.6.1 Clinical diagnosis	14	
3.6.2 Radiological diagnosis	15	
3.6.3 Tuberculin skin test	15	
3.6.4 Laboratory diagnosis	16	
a. Specimen collection and transport	16	
b. Sputum smear microscopy	16	
i. Fluorescence microscopy	19	
ii. ZN microscopy	20	

c. Limitation of sputum smear microscopy	23
d. Culture	24
i. Types of culture media	24
ii. Biochemical properties	25
3.6.5 Other laboratory diagnostic techniques	26
a. Immunological diagnostic methods	26
i. Antigen detection test	26
ii. Antibody detection test	27
iii. Elispot test	27
b. Molecular methods	27
i. Polymerase chain reaction (PCR)	27
ii. Transcription Mediated amplification (TMA)	28
iii. Strand displacement amplification (SDA)	28
c. Tuberculostearic acid (TBSA) test	29

CHAPTER IV: MATERIALS AND METHOD			30-39	
4.1 Materials				30
4.2 Methodology				30
4.2.1 Setting				30
4.2.2 Type of	study			30
4.2.3 Inclusio	n criteria	30		

4.2.4 Exclusion criteria	30
4.2.5 Sample size	30
4.2.6 Collection of sputum sample	31
4.2.7 Evaluation of sputum sample	31
4.2.8 Sample Processing	31
a. Sputum smear microscopy	31
i. Ziehl – Neelsen method	32
ii. Quality control	33
b. Culture	34
i. Pretreatment	34
ii. Inoculation and Incubation	34
iii. Culture examination and observation	34
iv. Recording and reporting of culture results	35
4.2.9 Biochemical identification of isolates	35
a. Niacin test	35
b. Nitrate reduction test	36
c. Catalase test	37
4.2.10 Statistical analysis	38
Flowchart of methodology and sample analysis	39

4.3.

5.1 Age and Sex wise distribution of PTB suspected patients	40
5.2 Age and Sex wise distribution of PTB confirmed patients	40
5.3 Evaluation of staining techniques using different concentrations	41
of carbol fuchsin and culture result	
5.4 False positive, False negative and True positive results obtained	44
in different ZN staining techniques	
5.5 Overall Correlation of different concentrations of carbol fuchsin	46
in ZN staining techniques	
5.6 Correlation of ZN staining techniques using 1%, 0.5% and 0.3%	46
carbol fuchsin	
5.7 Quantitative comparison of smears made using 0.5% and 1%	48
carbol fuchsin	
5.8 Quantitative comparison of smears made using 0.3% and 1%	49
carbol fuchsin	
5.9 Overall comparison of smear results using different concentrations	50
of carbol fuchsin with culture results	
CHAPTER VI: DISCUSSION AND CONCLUSION	51-57
6.1 Discusion	51
6.2 Conclusion	56

CHAPTER VII: SUMMARY AND RECOMMENDATION	58-60
7.1 Summary	58
7.2 Recommendation	60
REFERENCES	61-72

APPENDICES

LIST OF TABLES

Pa	ıge

no.	

Table 1: Age and Sex Wise Distribution of TB Patients	40
Table 2: Age and Sex Wise Distribution of Culture Positive Patients	41
Table 3: Evaluation of ZN staining using 1% carbol fuchsin with culture result	42
Table 4: Evaluation of ZN staining using 0.5% carbol fuchsin with culture result	43
Table 5: Evaluation of ZN staining using 0.3% carbol fuchsin with culture result	44
Table 6: Correlation between ZN staining techniques using 0.5% and 1% carbol	47
fuchsin in slide reading of AFB smear Positive and negative.	
Table 7: Correlation between ZN staining techniques using 0.3% and 1% carbol	47
fuchsin in slide reading of AFB smear Positive and negative.	
Table 8: Quantitative Comparison of sputum smears for AFB detection stained	48
using 1% carbol fuchsin and 0.5% carbol fuchsin.	
Table 9: Quantitative Comparison of sputum smears for AFB detection stained	49
using 1% carbol fuchsin and 0.3% carbol fuchsin.	
Table 10: Comparison of smear results of modified - ZN method, 0.5% method	50
and standard - ZN method.	

LIST OF FIGURES

Page no.

Figure 1:	False Positive Result obtained in different ZN staining techniques	44
Figure 2:	False negative Result obtained in different ZN staining techniques	45
Figure 3:	True positive result obtained in different ZN staining techniques with	45
	reference to culture	
Figure 4:	Overall correlation of the ZN staining techniques using 1%, 0.5%	46
	and 0.3% carbol fuchsin with the culture	

LIST OF PHOTOGRAPHS

- Photograph 1: Z-N stained sputum smear showing red AFB of MTB (100X)
- Photograph 2: *M. tuberculosis* growth in culture (LJ media)
- Photograph 3: Nitrate reduction test
- Photograph 4: Heat labile catalase test
- Photograph 5: Niacin test

LIST OF APPENDICES

Page no.

Appendix I:	Materials and Chemicals used	I-III
Appendix II:	Staining reagent and media preparation	IV-VI
Appendix III:	Biochemical tests	VII-XII
Appendix IV:	Statistical analysisx	XIII-XVII
Appendix V:	Screening test result by diagnosis	XVIII
Appendix VI:	Calculation of Sensitivity, Specificity and Predictive	XIX-XXI
	values	

LIST OF ABBREVIATIONS

AFB	Acid-fast bacilli
СМІ	Cell mediated Immunity
DOTS	Directly Observed Treatment Short Course
DRS	Drug Resistance Surveillance
ЕРТВ	Extra Pulmonary Tuberculosis
FM	Fluorescence Microscopy
FN	False negative
FP	False positive
HIV	Human Immuno Deficiency Virus
IUATLD	International Union Against Tuberculosis and Lung
Disease	
LJ	Lowenstein Jensen
MC	Modified Cold
MDR	Multi-drug Resistant
MOTT	Mycobacteria Other than tubercle bacilli
MTB	Mycobacterium tuberculosis
NaOCL	Sodium Hypochlorite
NaOH	Sodium Hydroxide
NPV	Negative predictive value

NTC	National Tuberculosis Centre
NTM	Non-tuberculosis Mycobacteria
NTP	National Tuberculosis Control Programme
OPD	Out Patient Department
PCR	Polymerase Chain Reaction
PPV	Positive predictive value
РТВ	Pulmonary Tuberculosis
SAARC	South Asian Association for Regional Cooperation
STC	SAARC Tuberculosis Centre
TB	Tuberculosis
WHO	World Health Organization
XDR	Extensively Drug Resistant
ZN	Ziehl Neelsen