MULTIDRUG RESISTANT BACTERIAL ISOLATES AT NOBEL MEDICAL COLLEGE TEACHING HOSPITAL

A DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY (MEDICAL)

BY

PRASHANT THAKUR

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KIRTIPUR, KATHMANDU, NEPAL 2012

i

RECOMMENDATION

This is to certify that **Mr. Prashant Thakur** has completed this dissertation work entitled **"Multidrug Resistant Bacterial Isolates at Nobel Medical College Teaching Hospital"** as a partial fulfillment of M.Sc. Degree in Microbiology under our supervision. To our knowledge, this thesis work has not been submitted for any other degree.

_____ _____ _____ Dr. Prakash Ghimire Mr. Komal Raj Rijal Mr. Ganesh Kumar Singh Lecturer Lecturer Associate professor Department of Microbiology Central Department of Microbiology Central Department of Microbiology College Tribhuvan University Tribhuvan University Nobel Medical Kathmandu, Nepal Kathmandu, Nepal Biratnagar, Nepal

Date:

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Prakash Ghimire**, **Mr. Komal Raj Rijal** and **Mr. Ganesh Kumar Singh** this dissertation work by **Mr. Prashant Thakur** has been approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirements for M.Sc. Degree in Microbiology.

Prof. Dr. Anjana Singh Head of the Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal **Date:**

BOARD OF EXAMINERS

Recommended by:

Dr. Prakash Ghimire Supervisor

Mr. Komal Raj Rijal

Supervisor

Mr. Ganesh Kumar Singh Supervisor

Approved by:

Prof. Dr. Anjana Singh Head of the Department

Examined by:

Prof. Dr. Bal Man Singh Karki External Examiner

Dr. Megha Raj Banjara Internal Examiner

Date:

ACKNOWLEDGEMENTS

I owe my deepest gratitude and heartfelt appreciation to respected supervisor **Dr. Prakash Ghimire,** Associate Professor, Central Department of Microbiology for his kind inspiration, expert guidence and valuable suggestions throughout my study period. I am equally thankful to my supervisors **Mr. Komal Raj Rijal**, Lecturer, Central Department of Microbiology, Tribhuvan University and **Mr. Ganesh Kumar Singh,** Lecturer, Nobel Medical College for their continuous support, patience and expert guidance throughout my research work.

I would like to express my gratitude to Prof. Dr. Anjana Singh, Head of the Department, Central Department of Microbiology for her kind support.

I am much obliged to **Mr. Binod Kumar Yadav**, Medical Lab. Technologist, Nobel Medical College for his immense support, meticulous guidance, and cooperation during the entire research period.

It gives me an immense pleasure to thank respected teachers from Central Department of Microbiology, Tribhuvan University and **Mr. Kamal Parajuli, Mrs. Santwana Pandey** and **Ms. Medhavi Shrestha** from Nobel Medical College for their continuous encouragement and cooperation during the research period.

Additionally, I would like to express my gratitude to all the staffs of the Central Department of Microbiology, Tribhuvan University as well as all the staffs of Nobel Medical College for their kind cooperation and support.

Finally, I would like to express my profound gratitude to my family members for all the motivations and inspirations. I am equally indebted towards my dear friends and colleagues for their help throughout my research work.

Prashant Thakur Date:

ABSTRACT

Antimicrobial resistance is one of the big issues especially among members of family enterobacteriaceae. This study was conducted for a period of 6 months from January to June 2011 at Nobel Medical College Teaching Hospital and Research Centre with the objective to know the multi-drug resistant bacterial isolates of family enterobacteriaceae from different clinical samples. A total of 2454 non-repeated clinical samples were processed during the study by using standard microbiological techniques and the antibiotic susceptibility pattern in vitro was evaluated by modified Kirby-Bauer disc diffusion method. The total growth was 25.35% (n=622). Among them gram positive and gram negative bacteria accounted for 48.0% (n=298) and 52.0% (n=324) respectively. Of total gram negative isolates, 92.60% (n=300) belonged to family enterobacteriaceae and 7.40% (n=24) were gram negative other than enterobacteriaceae (Pseudomonas aeruginosa; Acinetobacter species). The bacterial isolates were of 6 different species isolated from 7 different clinical specimens. Among them, E. coli 237/300 (79.0%) were the most predominant followed by Citrobacter species 36/300 (12.0%), Klebsiella pneumoniae 16/300 (5.33%) and Enterobacter species, Proteus mirabilis and Morganella morganii with 0.33% each. Among the antibiotics used, imipenem (98.11%) followed by amikacin (89.55%), meropenem (89.47%) and choramphenicol (78.37%) were found to be most effective. About half of the isolates were susceptible to cefotaxime (52.90%), ceftazidime (42.34%) and ciprofloxacin (53.50%). Overall 59.00% (n=178) of the isolates were multiple-drug resistant with higher among in-patients than out-patients (p<0.05). Of total multiple-drug resistant, E. coli accounted for highest 81.35% (n=144) followed by Citrobacter species 14.40% (n=25). Of total E. coli isolated 52.74% (144/273) were multiple-drug resistant while 69.44% (25/36) and 40.00% (6/15) *Citrobacter* species and *K. pneumoniae* respectively were multiple-drug resistant. The study found the higher magnitude of the problems of multiple-drug resistance among enterobacteriaceae that necessitates a reevaluation of first and second line therapies for the treatment of infections due to these organisms and regular monitoring of the usage in order to make reliable information available for optimal empirical therapy.

Key Words: Antimicrobial resistance, Enterobacteriaceae, Multi-drug resistant

TABLE OF CONTENTS

Title Page	Page No. i
Recommendation	ii
Certificate of Approval	iii
Board of Examiners	iv
Acknowledgement	v
Abstract	vi
List of Tables	х
List of Figure	xi
List of Photographs	xii
List of Abbreviations	xiii
List of Appendices	xiv
CHAPTER I INTRODUCTION AND OBJECTIVES	1-5
1.1 Background	1
1.2.1 General Objective	5
1.2.2 Specific Objectives	5
CHAPTER II LITERATURE REVIEW	6-29
2.1 Infections related to bacteria of family enterobacteriaceae	6-10
2.1.1 Urinary tract infection	6
2.1.2 Skin and Wound infection	7
2.1.3 Upper Respiratory tract infection	8
2.1.4 Lower Respiratory tract infection	9
2.1.5 Bloodstream infection	9
2.1.6 Other bacterial infection	9
2.2 Antimicrobial Resistance	10-12
2.2.1 Risk Factors for the development of antibiotic resistance	10
2.2.2 Emergence and spread of Antimicrobial Resistance	11
2.3 Mechanism of Antimicrobial Resistance	12-15
2.3.1 Microorganisms-mediated antimicrobial resistance	12

2.4 Multidrug Resistance	16-17
2.4.1 Definition	16
2.4.2 Genetics of Multidrug Resistance	16
2.4.3 Multidrug Resistance and Multidrug efflux pumps	17
2.4.4 Multidrug Resistance caused by altered physiological states	17
2.5 –lactams and -lactamases	17-21
2.5.1 –lactams	17
2.5.2 -lactamases	18
2.5.3 Classification of -lactamases	19
2.5.4 Action of -lactamases	19
2.6 Multidrug Resistance among enterobacteriaceae: A Global Scenario	21-26
2.7 Multidrug resistance among enterobacteriaceae in Nepal	26-29

CHAPTER III MATERIALS AND METHODS	30-35
3.1 Materials	30
3.2 Methodology	30
3.2.1 Sample size and sample type	30
3.3 Collection and transport of specimen	30-32
3.3.1 Urine samples	30
3.3.2 Sputum samples	30
3.3.3 Pus samples	31
3.3.4 Body fluid specimens	31
3.3.5 Cerebrospinal fluid	31
3.3.6 Stool samples	31
3.3.7 Semen	32
3.4 Macroscopic examination of specimens	32
3.5 Culture of specimens	32
3.6.1 Identification of the isolates	33
3.6.2 Antimicrobial susceptibility testing	34
3.6.3 Quality control	34

3.6.4 Data analysis	35
CHAPTER IV RESULTS	36-44
4.1 Growth pattern	36
4.2 Distribution of samples and patient types	36
4.3 Pattern of bacterial isolates from different samples	38-40
4.4 Antibiotic susceptibility pattern of the isolates	40-43
4.5 Antibiotic resistance pattern of the isolates	43-44
CHAPTER V DISCUSSION	45-50
CHAPTER VI CONCLUSION AND RECOMMENDATIONS	51-52
6.1 Conclusions	51
6.2 Recommendations	51
REFERENCES	53-65
APPENDICES	I-XXII

LIST OF TABLES

Table 1 : -lactamase classification	20
Table 2: Distribution of different clinical samples and growth pattern	36
Table 3 : Distribution of samples on patient types	37
Table 4 : Age and genderwise distribution of patients for culture and their growth pattern	37
Table 5 : Microbiological profile of Urinary isolates and their genderwise distribution	38
Table 6 : Microbiological profile of Blood isolates and their genderwise distribution	39
Table 7 : Microbiological profile of Pus isolates and their genderwise distribution	39
Table 8 : Microbiological profile of Sputum isolates and their genderwise distribution	40
Table 9 : Antibiotic sensitivity pattern of the isolates from different samples	41
Table 10:Antibiotic sensitivity pattern of the <i>E. coli</i> isolated from different samples	41
Table 11: Antibiotic sensitivity pattern of the Citrobacter sps. isolated from different samples	42
Table 12 : Multipledrug resistant profile of isolates from different samples	43
Table 13 : Distribution of MDR among gender and type of patients	43

LIST OF FIGURE

Figure 1: Action of a serine -lactamase

LIST OF PHOTOGRAPHS

Photograph 1: Antibiotic susceptibility test of *E.coli* from urine sample

Photograph 2: Antibiotic susceptibility test of *E. coli* pus sample

Photograph 3: Antibiotic susceptibility test of *Proteus mirabilis*

LIST OF ABBREVIATIONS

ABL	AmpC Beta Lactamase
BA	Blood Agar
СА	Chocolate Agar
CFU	Colony Forming Unit
CLSI	Clinical and Laboratory Standard Institute
EDTA	Ethylene Diamine Tetra Acetate
ESBL	Extended Spectrum Beta Lactamase
LRTI	Lower Respiratory Tract Infection
МА	MacConkey Agar
MBL	Metallo Beta Lactamase
MDR	Multi-Drug Resistant
МНА	Mueller Hinton Agar
MIC	Minimum Inhibitory Concentration
MRVP	Methyl Red/Voges Proskauer
NCCLS	National Committee for Clinical Laboratory Standards
NCTC	National Culture Type Collection
NMCTHRC	Nobel Medical College Teaching Hospital and Research Centre
PBP	Penicillin Binding Protein
TSI	Triple Sugar Iron
UTI	Urinary Tract Infection

LIST OF APPENDICES

Appendix-I	Composition and Preparation of Different Culture Media
Appendix-II	List of equipments, materials and supplies
Appendix-III	Gram-staining Procedure
Appendix-IV	Biochemical tests for identification of bacteria
Appendix-V	Disc diffusion method for antimicrobial susceptibility testing
Appendix-VI	Distinguishing reactions of commoner pathogenic Enterobacteriaceae
Appendix-VII	List of tables

Appendix-VIII Data analysis (chi- square test)