DISTRIBUTION AND ANTIBIOTIC SUSCEPTIBILITY TESTING OF MYCOBACTERIUM SPECIES PRESENT IN THE SPUTUM OF SUSPECTED PULMONARY TUBERCULOSIS PATIENTS

A

Dissertation

Submitted to the Central Department of Microbiology Tribhuvan University

In Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science in Microbiology (Environment and Public Health Microbiology)

> By Ujjal Wagley

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal 2011

RECOMMENDATION

This is to certify that Mr. Ujjal Wagley has worked under our supervision and guidance on the thesis entitled "Classification and antibiotic susceptibility testing of *Mycobacterium* species present in the sputum of suspected pulmonary tuberculosis patients" as a partial fulfillment for award of M. Sc Degree in Microbiology. To the best of our knowledge this is an original research work of him and has not been submitted for any other degree.

Assoc. Prof. Dr Dwij Raj Bhatta	Mr. Komal Raj Rijal	Mr. Gokarna Ghimire
Head of the Department	Lecturer	Senior Medical
Central Department of	Central Department of	Technologist
Microbiology	Microbiology	(Microbiologist)
Tribhuvan University	Tribhuvan University	National TB Centre
Kirtipur	Kirtipur	Thimi, Bhaktapur
Nepal	Nepal	Nepal
Date	Date	Date

CERTIFICATE OF APPROVAL

On the recommendation of Lecturer Mr. Komal Raj Rijal and Senior Technologist (Microbiologist) Mr. Gokarna Ghimire, this dissertation work of Mr. Ujjal Wagley, entitled "Classification and antibiotic susceptibility testing of *Mycobacterium* species present in the sputum of suspected pulmonary tuberculosis patients" has been approved for the examination and is submitted to Tribhuvan University in partial fulfillment of the requirement for M.Sc. Degree in Microbiology.

Assoc. Prof. Dr. Dwij Raj Bhatta Head of the Department Central Department of Microbiology Tribhuvan University Kirtipur Kathmandu Nepal Date:.....

BOARD OF EXAMINERS

Recommended by: Assoc. Prof. Dr. Dwij Raj Bhatta, M.Sc., Ph.D. (Supervisor) Mr. Komal Raj Rijal, M.Sc. (Supervisor) Mr. Gokarna Ghimire, M.Sc. (Supervisor) Approved by: Assoc. Prof. Dr. Dwij Raj Bhatta, M.Sc., Ph.D. Head of the Department **Examined by:** Prof. Dr. Bharat Mani Pokhrel, Ph.D. (External Examiner) Dr. Megha Raj Banjara, Ph.D. (Internal Examiner) Date.....

ACKNOWLEDGEMENTS

I express my sincere gratitude to my respectful supervisors, Associate Professor Dr. Dwij Raj Bhatta, Head of Department and Mr. Komal Raj Rijal, Lecturer, Central Department of Microbiology, Tribhuvan University; and Mr. Gokarna Ghimire, Senior Technologist and Microbiologist, National TB Centre for their continuous guidance, suggestions and encouragement for my research. I am very grateful to Dr. Dwij Raj Bhatta for my appropriate allocation at National TB Centre for mycobacterial research, understanding my keen passion and interest.

I am thankful to Dr. Kashi Kant Jha, Director, National Tuberculosis Centre for allowing me to research at National TB Centre. I am very much grateful to Mr. Dhruba Kumar Khadka, Senior Technologist at National Tuberculosis Centre for my step by step observation, instructions, guidance and encouragement during my laboratory work.

I am especially thankful to my friends Ms. Ranju Karki, Ms. Sushma Lama, Mr. Sachin Shrestha and Mr. Amarullah Siddhique who helped during my whole series of lab work. Besides I am quite indebted to Mr. Krishna Thapa and Ms. Sanjyoti Lama for their concepts and suggestions, which became the part of my thesis theme. I also express thanks to Mr. Niraj Shrestha for his continuous suggestions, observations of my lab work, help in my final thesis preparation and continuous encouragement. I am humbly thankful to Ms. Sandhya Lamichhane, Ms. Durga Bista, Ms. Susmita Chaulagain and Ms. Sabita Chaudhary, students doing their internship at National TB Centre, and Mr. Pradeep Aryal for their utmost help during my laboratory work. I am equally thankful to all staffs of National TB Centre, SAARC TB and HIV/AIDS centre, Global Fund, Administrative section, Radiology section, Cafeteria, Doctors and Health Assistants for their help, support and suggestions during my laboratory work.

I express my deep gratitude to all faculty members and staff of Central department of Microbiology, Tribhuvan University and Central Library and my family members for their help and support.

Date.....

Mr. Ujjal Wagley

ABSTRACT

The study was carried out at National TB Centre, Thimi, Bhaktapur from September 2010 to August 2011 in collaboration with Central Department of Microbiology, Tribhuvan University with the objective to distribute the mycobacteria isolated from sputum of suspected PTB patients and to obtain their drug susceptibility pattern.

A total of 200 suspected new PTB patients were selected for cross-sectional study, on the basis of Bartlett's Pulmonary Specimen Culture Criteria, by observing sputum samples from 1500 patients. After their consent, Questionnaire was administered and sputum was subjected to ZN, Fluorescent microscopy and Culture; and biochemical and antibiotic susceptibility tests were performed on culture positive isolates. A total of 69% (n=138) sputum samples were positive for Mycobacterium either singly or multiply by ZN microscopy, fluorescent microscopy or culture; of which 90.58% (n=125) were positive by ZN microscopy, 92.75% (n=128) were positive by fluorescent microscopy and 93.48% (n=129) were positive by culture. Among culture positive 87.60% (n=113) strains belong to M. tuberculosis complex, all M. tuberculosis strains; and 12.40% (n=16) belong to NTM of which 81.25% (n=13) were Non-photochromogens, 12.50% (n=2) were Scoto-chromogens, and 11.11% (n=1) rapid grower identified as *M. vaccae*. Among M. tuberculosis complex only 7.96% (n=9) M. tuberculosis isolates were resistant to antitubercular drugs, all MDR, of which 11.11% (n=1) was resistant to INH and RMP only, 22.22% (n=2) were resistant to INH, RMP and STR, and remaining 66.67% (n=6) were resistant to all four anti-tubercular drugs INH, RMP, STR and EMB. Among 16 NTM isolates, 6.25% (n=1) isolate was resistant to INH and STR only, but all other 93.75% (n=15) isolates were resistant to all four anti- tubercular drugs, INH, RMP, STR and EMB. Hence, mycobacterial isolates obtained from suspected pulmonary TB patients, were distributed and drug susceptibility pattern determined.

TABLE OF CONTENTS

	Page No:
Title page	i
Recommendation	ii
Certificate of approval	iii
Board of examiner	iv
Acknowledgement	V
Abstract	vi
List of tables	xi
List of figures	xii
List of photographs	xiii
List of appendices	xiv
List of abbreviations	xv-xvi
CHAPTER I. INTRODUCTION	1-4
CHAPTER II. OBJECTIVES OF THE STUDY	5
2.1. General Objectives	5
2.2. Specific Objectives	5
CHAPTER III. LITERATURE REVIEW	6-26
3.1. The genus Mycobacterium	6-7
3.2. Diseases	7-9
3.2.1. Tuberculosis	7-9
3.2.2. Mycobacterioses	9
3.3. Genomics and Proteomics of mycobacteria	10-11
3.4. Mode of transmission	12
3.5. Pathogenesis	12-13
3.6. Common anti mycobacterial drugs, mode of action and	14-16
resistance mechanism	
3.6.1. Isoniazid	14
3.6.2. Rifampicin	14-15
3.6.3. Streptomycin	15
3.6.4. Ethambutol	15-16

3.6.5. Pyrazinamide	16
3.7. Disease diagnosis	17-24
3.7.1. Acid fast staining	17-18
3.7.1.1. Ziehl Neelsen staining	17
3.7.1.2. Fluorochrome acid fast staining	18
3.7.2. Culture of organisms	18-19
3.7.2.1. Homogenization, decontamination	18
and concentration by N-Acetyl-L-Cysteine	
-Sodium hydroxide (NALC-NaOH) method	
3.7.2.2. Culture	19
3.7.3. Approach for identification of pathogen	20-22
3.7.3.1. Growth characteristics observation	20-21
3.7.3.2. Biochemical tests	21-22
3.7.3.2.1. Niacin test	21
3.7.3.2.2. Nitrate reduction test	22
3.7.3.2.3. Heat labile (68°C) Catalase test	22
3.7.3.2.4. Growth on PNB containing media	22-23
3.7.4. BACTEC TB-460 radiometric culture systems	23
3.7.5. Polymerase chain reaction based nucleic acid	23
amplification method	
3.7.6. Tuberculin skin test (TST)	23-24
3.8. Drug susceptibility testing of mycobacteria	24-25
3.9. Treatment of mycobacterial diseases	25-26
CHAPTER IV. MATERIALS AND METHODS	27-33
4.1. Materials	27
4.2. Methodology	27-33
4.2.1. Sample collection	27-28
4.2.1.1. Consent	27
4.2.1.2. Questionaire	27
4.2.1.3. Specimen	27-28
4.2.2. Macroscopic observation of specimen	28

4.2.3. Processing of specimen	28-33
4.2.3.1. Ziehl-Neelsen staining procedure	28
4.2.3.2. Fluorochrome staining procedure	28-29
4.2.3.3. Culture of specimen	29
4.2.3.4. Determination of pigment production and	30
growth rate	
4.2.3.5. Identification biochemical tests	30-31
4.2.3.6. Antibiotic susceptibility testing by	31-33
proportion method	
CHAPTER V. RESULTS	34-43
5.1. Distribution of total study cases (N=200) by age and sex	35
5.2. Distribution of Mycobacterium positive cases in sputum	35-37
with Ziehl Neelsen staining, Fluorescent staining and Culture	
5.3. Distribution of PTB and pulmonary mycobacteriosis among	37-39
Culture positive cases	
5.4. Distribution of pulmonary mycobacteriosis on basis of NTM	39
classification	
5.5. Distribution of drug resistance among culture positive isolates	39-40
5.6. Distribution of drug resistance in <i>M. tuberculosis</i> isolates	40
5.7. Distribution of drug resistance in NTM isolates	40-41
5.8. Distribution of mycobacterial infection among patients with	41
family history of TB	
5.9. Distribution of mycobacterial infection among smoking patients	41
5.10. Distribution of mycobacterial infection among alcoholic	42
patients	
5.11. Distribution of mycobacterial infection among patients	42
involved in animal husbandry	
5.12. Distribution of mycobacterial infection among BCG	43
vaccinated patients	
CHAPTER VI. DISCUSSION AND CONCLUSION	44-48
6.1. Discussion	44-48

6.2. Conclusion	48
CHAPTER VII. SUMMARY AND RECOMMENDATIONS	49-50
7.1. Summary	49-50
7.2. Recommendations	50
REFERENCES	51-59

LIST OF TABLES

Tables	Page No
1. Functional classification of proteins of <i>M. tuberculosis</i> H ₃₇ Rv genome	11
2. NTP TB treatment category, regimen and duration of treatment	26
3. Macroscopic observation of sputum	28
4. Critical concentrations of primary anti-tubercular drugs used in the study	32
5. Age and sex distribution of total cases	35
6. Comparison of Mycobacterium positive cases in sputum with Ziehl-	35
Neelsen staining, Fluorescent staining and Culture	
7. Comparison of ZN microscopy with Culture	37
8. Comparison of Fluorescent microscopy with Culture	37
9. Distribution of <i>M. tuberculosis</i> complex and NTM in Culture	39
Positive cases	
10. Distribution of pulmonary mycobacteriosis on basis of NTM classification	39
11. Distribution of drug resistance among Culture positive isolates with four	40
anti-tubercular drugs	
12. Distribution of drug resistance in <i>M</i> .tuberculosis isolates	40
13. Distribution of drug resistance in NTM isolates	41
14. Distribution of mycobacterial infection among patients with family	41
History of TB	
15. Distribution of mycobacterial infection among smoking patients	41
16. Distribution of mycobacterial infection among alcoholic patients	42
17. Distribution of mycobacterial infection among patients involved in	42
Animal husbandry	
18. Distribution of mycobacterial infection among BCG vaccinated patients	43

LIST OF FIGURES

1.	Flowchart of methodology	33
2.	Comparison of Ziehl-Neelson staining, Fluorescent staining and Culture of	36
	Mycobacterium positive cases	
3.	Distribution of Culture positive, negative and contamination among total	36
	specimens	
4.	Distribution of <i>M. tuberculosis</i> complex and Non- tuberculous mycobacteria	38
	in culture positive cases	
5.	Distribution of NTM in culture positive cases	38

LIST OF PHOTOGRAPHS

- Photograph 1: Ziehl-Neelsen staining of sputum smear
- Photograph 2: Fluorochrome staining of sputum smear
- Photograph 3: Light exposure to the non-chromogenic colonies in Aluminium foil wrapped tubes
- Photograph 4: Niacin test
- Photograph 5: Nitrate reduction test
- Photograph 6: Heat labile Catalase test

Photograph 7: Drug susceptibility and growth on PNB test

LIST OF APPENDICES

	Page No.
Appendix I: Materials required	i-iii
Appendix II: Bacteriological media	iv-viii
Appendix III: Chemicals and Reagents	ix-xii
Appendix IV: Questionaire	xiii
Appendix V: Consent letter (In Nepali)	xiv
Appendix VI: Recording and reporting of laboratory results	xv-xvi
Appendix VII: Sample data table (Questionaire and experimental)	xvii-xxiii

LIST OF ABBREVIATIONS

AFB	Acid Fast Bacilli
AFS	Acid Fast Staining
AIDS	Acquired Immune Deficiency Syndrome
AST	Antibiotic Susceptibility Testing
BACTEC	Becton Dickinson and Company
BCG	Bacilli Calmette Guerin
CDC	Center for Disease control and Prevention
CMI	Cell Mediated Immunity
DNA	Deoxyribo-Nucleic Acid
DOTS	Directly Observed Treatment, Short course
DST	Drug Susceptibility Testing
EMB/E	Ethambutol
EPI	Squamous epithelial cells
FS	Fluorescent/Fluorochrome Staining
HIV	Human Immunodeficiency Virus
IFN	Interferon
IL	Interleukin
INH/H	Isoniazid
IS	Insertion Sequence
IUATLD	International Union Against tuberculosis and Lung Diseases
LJ	Lowenstein Jensen
MDR	Multi-drug resistant
MDR-TB	Multi-drug resistant Tuberculosis
MHC	Major Histo-compatibility Complex
MHC-I	Major Histo-compatibility Complex class I
MHC-II	Major Histo-compatibility Complex class II
MIC	Minimum Inhibitory Concentration
MOTT	Mycobacteria Other than Tubercle bacilli
MTC	Mycobacterium tuberculosis Complex
NALC-NaOH	N-Acetyl-L-Cysteine Sodium Hydroxide

NTC	National Tuberculosis Centre
NTM	Non-tuberculous Mycobacteria
NTP	National Tuberculosis Programme
PCR	Polymerase Chain Reaction
PNB	Para- Nitrobenzoic Acid
PPD	Purified Protein Derivative
PTB	Pulmonary Tuberculosis
PZA/Z	Pyrazinamide
RMP/R	Rifampicin
RNI	Reactive Nitrogen Intermediates
RNTCP	Revised National Tuberculosis Control Programme
ROI	Reactive Oxygen Intermediates
SAARC	South Asian Association for Regional Cooperation
SEAR	South East Asia Region
STR/S	Streptomycin
SPSS	Statistical Package for Social Sciences
STC	SAARC Tuberculosis and HIV/AIDS Centre
ТВ	Tuberculosis
TCH	Thiophen- 2-Carboxylic acid Hydrazide
TNF	Tumour Necrosis Factor
TST	Tuberculin Skin Test
WBC	White Blood Cells
WHO	World Health Organization
XDR	Extensively Drug Resistant
ZN	Ziehl Neelsen