STUDY ON OCCURANCE, DISTRIBUTION AND ANTIBIOTIC SENSITIVITY PATTERN OF GRAM POSITIVE AND GRAM NEGATIVE BACTERIA AMONG SUSPECTED LOWER RESPIRATORY TRACT INFECTION PATIENTS VISITING BIR HOSPITAL

A Dissertation Submitted to the Central Department of Microbiology Tribhuvan University

In Partial Fulfilment of the Requirements for the Award of the Degree

of

Master of Science in Microbiology (Medical Microbiology)

By

Shailendra Parajuli

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal 2011

RECOMMENDATION

This is to certify that **Mr. Shailendra Parajuli** has completed this dissertation work entitled "Study on Occurance, Distribution and Antibiotic Sensitivity Pattern of Gram Positive and Gram Negative Bacteria among Suspected Lower Respiratory Tract Infection Patients Visiting Bir Hospital" as a partial fulfillment of M.Sc. Degree in Microbiology under our supervision. To our knowledge, this is an original research work of his and has not been submitted for any other degree.

Dr. Dwij Raj Bhatta M.sc., PhD, Microbiology

Head of Department Associate Professor Central Department of Microbiololgy Tribhuvan University Kathmandu, Nepal Ms. Jyotsana Shrestha

Consultant Medical Microbiologist Bir Hospital Kathmandu, Nepal

Date:

CERTIFICATE OF APPROVAL

On the recommendation of Associate Professor **Dr. Dwij Raj Bhatta**, M.Sc., PhD, Microbiology, Head of Department, Central Department of Microbiology and **Ms. Jyotsana Shrestha**, Consultant Medical Microbiologist, Bir Hospital, this dissertation work by Mr. Shailendra Parajuli entitled *"Study on Occurance, Distribution and Antibiotic Sensitivity Pattern of Gram Positive and Gram Negative Bacteria among Suspected Lower Respiratory Tract Infection Patients Visiting Bir Hospital" has been approved for the examination and is submitted to the Tribhuvan University for the partial fulfillment of the requirement for M.Sc. Degree in Microbiology.*

Dr. Dwij Raj Bhatta

M.sc., PhD, Microbiology Associate Professor Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal

Date:

BOARD OF EXAMINERS

Recommended by:

Dr. Dwij Raj Bhatta (Supervisor)

.....

Ms. Jyotsana Shrestha (Supervisor)

Approved by:

Dr. Dwij Raj Bhatta (Supervisor)

Examined by:

(External examiner)

Dr. Bharat Mani Pokhrel Professor Department of Microbiology Institute of Medicine Maharajgunj, Kathmandu, Nepal

(Internal examiner)

Ms. Reshma Tuladhar Lecturer Central Department of Microbiology Kirtipur, Kathmandu

Date:

ACKNOWLEDGEMENT

The present study was carried out at the Department of Microbiology, Bir hospital, Kathmandu, Nepal during the year 2010.

I am indebted to my diligent supervisors **Dr. Dwij Raj Bhatta**, M.Sc., PhD, Microbiology and **Ms. Jyotsana Shrestha**, Consultant Medical Microbiologist, Department of Pathology, Bir hospital for their guidance and advice at all stages of my work. In spite of their engrossed office and teaching duties they could always attend to me whenever I consulted them. Their encouragement, discussions and fruitful suggestions have made the entire work possible.

My appreciation is also extended to the Dean, Executive Director of Bir Hospital for allowing me to work there. I am grateful to all the laboratory staffs of bacteroiology laboratory, BIR hospital. I am especially indebted to Mr. Purshottam Karmacharya, Mrs. Shyama Joshi and Mr. Purshottam Dhakal without whom I could not have done my observational studies in the hospital. I am grateful to Mohan Shrestha, Arjun K.C and Kapil Shrestha, staffs of Department of Bacteriology in Bir Hospital, for their guidance, good company and all their efforts in the laboratory work.

I wish to express my gratitude to my colleagues in the laboratory. I warmly thank my friends outside the work for their interest towards my thesis and for all the great moments we have shared. Finally I am grateful to all the patients visiting Bir Hospital during that period.

I am indebted to my entire family. My loving thanks go to my parents, for their care and encouragement throughout my life. Your invariable physical and emotional support provided a compelling solace and impetus towards the success of this work at all stages.

I am vehemently grateful to each and every one who I may not have mentioned here but contributed in one way or the other towards the completion of this work.

Date:

Shailendra Parajuli

ABSTRACT

Lower respiratory tract infections (LRTI) are common causes of morbidity and mortality worldwide. It was a prospective study carried out at Bir Hospital, Kathmandu from 15th April, 2010 - 14th July, 2010. This study comprised of 214 patients (93 in-patients and 121 out-patients). Sputum samples of 214 patients were collected and subjected to gram staining, bacterial culture and antibiotic sensitivity for bacterial isolates as per standard techniques.

Pathogenic organisms were isolated from 97 out of 214 cases (45.32%). Growth of pathogens were obtained from 45.16% of sputum samples in case of in-patients and 45.45% in out-patients. The maximum numbers of patients (52.34%) were above 50 years of age. Sex-wise distribution showed 61 (62.89% of the positive cases) males as compare to 36 (37.11%) females.

Gram negative bacteria (65.98%) outnumbered the growth of Gram positive bacteria. The commonest organisms isolated were *Klebsiella pneumoniae* (24.74%) followed by *Staphylococcus aureus* (18.56%). From hospitalized patients, *K. pneumoniae* (62.5%) was the most common pathogen isolated whereas *S. aureus* (61.11%) was the second predominant organism. Single organism was isolated in most of the samples 92.78% (90/97) but in 7.22% cases (7/42) confluent growth of two organisms were observed. Incidence of *Haemophilus influenzae* and *Streptococcus pneumoniae* was found low in our study.

Gram negative bacteria were found most susceptible to Chloramphenicol (100%), Levofloxacin (100%) followed by Ciprofloxacin (82.81%), Gentamicin (76.56%), Amikacin (74.58%) and Cefotaxime (64.06%). They were least susceptible to Cotrimoxazole (37.5%), Cephalexin (34.38%) and Ampicillin (18.75%). Gram positive bacteria were found most susceptible to Ciprofloxacin (84.85%) followed by Cloxacillin (75%), Erythromycin (69.70%), Cephalexin (66.67%) and Ampicillin (63.64%). They were least susceptible to Cotrimoxozole (37.5%).

Incidence of MDR was 72.22% in *S. aureus* and 22.22% in -haemolytic streptococci. Among GNB all the isolates of *C. freundii* and *E. coli* were MDR whereas 75% of *K. oxytoca*, 58.33% of *K. pneumoniae* followed by 55.56% of *P. aeruginosa* and 44.44 % of *Acinetobacter* spp. were MDR.

vi

TABLE OF CONTENTS

Title page	i
Recommendation	ii
Certificate of Approval	iii
Board of Examiners	iv
Acknowledgement	v
Abstract	vi
Table of Contents	vii-x
List of Abbreviations	xi
List of Tables and Figures	xii
List of Photographs	xiii
List of Appendices	xiv
Chapter I: INTRODUCTION	1-3
Chapter II: OBJECTIVES	4
Chapter III: LITERATURE REVIEW	5-38
3.1 Definition	5
3.2 Anatomy of lower respiratory tract	5-7
3.3 Blood supply to the lung	7
3.3.1 Bronchial system	7
3.3.2 Pulmonary system	7
3.4 Physiology of respiratory tract	7
3.4.1 Airways and Airflow	7
3.4.2 Physiology of Breathing and Gas Exchange	8
3.4.3 Gas Transport	9
3.4.4 Surface Tension	9
3.4.5 Ventilation/Perfusion Relationships	9
3.5 Host defence	9
3.5.1 First line of defense – physical & chemical barriers	9
3.5.2 Second line of defense	10
3.5.3 Adaptive immunity in the lungs	11
3.5.4 Predisposing factors on LRTI	12
3.6 Pathogenesis	14

	3.6.1 Transmission	14
	3.6.2 Bacterial interactions with mucus and cilia	15
	3.6.3 Adherence, invasion and cell damage	16
	3.6.4 The effect of chronic inflammation on bacterial interactions	16
	with the mucosa	
	3.6.5 Toxins and other virulence factors	17
	3.6.6 Avoiding destruction by alveolar macrophages	18
	3.6.7 Production of disease	18
3.7	Classification of lower respiratory infections	19
	3.7.1 Laryngotracheal bronchitis or croup	20
	3.7.2 Bronchiolitis	20
	3.7.3 Acute Bronchitis (Chest Cold)	20
	3.7.4 Acute Infectious Exacerbations of Chronic Bronchitis	21
	3.7.5 Pneumonia	21
3.8	Pathogen specific information	24
	3.8.1 Streptococcus pneumoniae	24
	3.8.2 β-haemolytic streptococci	25
	3.8.3 Staphylococcus aureus	25
	3.8.4 Klebsiella pneumonia	26
	3.8.5 Pseudomonas aeruginosa	27
	3.8.6 Acinetobacter spp.	27
	3.8.7 Enterobacter spp.	28
	3.8.8 Haemophilus influenzae	28
	3.8.9 Klebsiella oxytoca	29
	3.8.10 Citrobacter freundii	30
	3.8.11 Proteus mirabilis	30
	3.8.12 Moraxella catarrhalis	30
	3.8.13 Mycoplasma pneumonia	30
3.9	Complications of LRTI	31
	3.9.1 Lung abscess	31
	3.9.2 Bronchiectasis	31
	3.9.3 Empyema	32
	3.9.4 Persistent bacterial bronchitis	32

3.10 Symptoms seen in LRTI patients	33
3.10.1 Cough and fever	33
3.10.2 Sputum production	33
3.10.3 Haemoptysis	33
3.10.4 Dyspnoea	33
3.10.5 Local hyperemia	34
3.10.6 Chest pain	34
3.11 Diagnosis of LRTI	34
3.11.1 Clinical diagnosis	34
3.11.2 Microbiological diagnosis	35
3.11.3 Other laboratory tests	35
3.12 Antibiotic susceptibility in LRTI	36
3.13 Antibiotic resistance	37
3.13.1 Mechanisms of resistance	37
3.13.2 Multidrug resistance	38
CHAPTER IV: MATERIALS AND METHODS	39-44
4.1 Study subjects and specimens	39
4.2 Selection of sample	39
4.3 Sample collection, transport and processing	40
4.4 Laboratory methods	40
4.4.1 Macroscopic examination	40
4.4.2 Microscopic examinations	41
4.4.3 Cultural examinations	41
4.5 Antibiotic susceptibility testing	42
4.6 Identification of isolated organisms	43
4.7 Purity plate	44

4.8	Quality control	44
4.9	Data management and analysis	44

CHAPTER V: RESULTS	45-59
5.1 Relationship between appearance of sputum and bacterial growth	46
5.2 Bacteriological profile	46
5.3 Clinical history	48

AP	PENDICES	I-XXV
CHAPTER VIII: REFERENCES 72-8		
7.2	Recommendations	71
	Summary	70
CH	APTER VII: SUMMARY AND RECOMMENDATIONS	70-71
СН	APTER VI: DISCUSSION AND CONCLUSION	60-69
5.9	Prevalence of Multi Drug Resistance among the total isolates from LRTI	59
	5.8.14 Antibiotic sensitivity pattern of Gram positive bacteria	58
	5.8.13 Antibiotic sensitivity pattern of Gram negative bacteria	58
	5.8.12 Antibiotic sensitivity pattern of Proteus mirabilis	57
	5.8.11 Antibiotic sensitivity pattern of <i>Escherichia coli</i>	57
	5.8.10 Antibiotic sensitivity pattern of <i>Citrobacter freundii</i>	56
	5.8.9 Antibiotic sensitivity pattern of <i>Klebsiella oxytoca</i>	56
	5.8.8 Antibiotic sensitivity pattern of <i>Haemophilus influenzae</i>	55
	5.8.7 Antibiotic sensitivity pattern of <i>Streptococcus pneumoniae</i>	55
	5.8.6 Antibiotic sensitivity pattern of <i>Enterobacter</i> spp.	54
	5.8.5 Antibiotic sensitivity pattern of <i>Acinetobacter calcoaceticus</i>	54
	5.8.4 Antibiotic sensitivity pattern of <i>Pseudomonas aeruginosa</i>	53
	5.8.3 Antibiotic sensitivity pattern of -haemolytic streptococci	53
	5.8.2 Antibiotic sensitivity pattern of <i>Staphylococcus aureus</i>	52
5.0	Antibiotic sensitivity pattern5.8.1 Antibiotic sensitivity pattern of <i>Klebsiella pneumoniae</i>	52 52
50	5.7.3 Age group distribution of LRTI pathogens	51
	5.7.2 Age wise distribution of LRTI patients	50
	5.7.1 Gender wise distribution of bacterial isolates in LRTI patients	50
5.7	Age and gender wise distribution of positive cases	49 50
	Distribution of organisms in outdoor and indoor patients	49
	Distribution of bacterial isolates among the patients visiting to hospital	48
	Distribution of significant growth among cases examined	48
5 /	Distribution of significant growth among cases examined	Λ

List of Tables

- Table 1: Percentage of sputum samples those met ASM criteria.
- Table 2: Sputum color and microbiological proof of bacterial infection
- Table 3:
 Distribution of microbial isolates from LRTI
- Table 4: Distribution of significant growth among cases examined
- Table 5:
 Distribution of bacterial isolates among the patient visiting to hospital
- Table 6:
 Distribution of organisms in outdoor and indoor patients
- Table 7: Gender wise distribution of positive cases
- Table 8:
 Gender wise distribution of bacterial isolates in LRTI patients
- Table 9:
 Age group distribution of LRTI pathogens
- Table 10:
 Antibiotic sensitivity pattern of Klebsiella pneumoniae
- Table 11: Antibiotic sensitivity pattern of Staphylococcus aureus
- Table 12: Antibiotic sensitivity pattern of -haemolytic streptococci
- Table 13: Antibiotic sensitivity pattern of Pseudomonas aeruginosa
- Table 14: Antibiotic sensitivity pattern of Acinetobacter calcoaceticus
- Table 15: Antibiotic sensitivity pattern of *Enterobacter* spp.
- Table 16:
 Antibiotic sensitivity pattern of Streptococcus pneumoniae
- Table 17: Antibiotic sensitivity pattern of Haemophilus influenzae
- Table 18: Antibiotic sensitivity pattern of Klebsiella oxytoca
- Table 19: Antibiotic sensitivity pattern of Citrobacter freundii
- Table 20: Antibiotic sensitivity pattern of Escherichia coli
- Table 21: Antibiotic sensitivity pattern of Proteus mirabilis
- Table 22: Antibiotic sensitivity pattern of Gram negative bacteria
- Table 23: Antibiotic pattern of Gram positive bacteria
- Table 24: Percentage of MDR among the total isolates

List of Figures

- 1. Pattern of growth.
- 2. Age wise distribution of LRTI.

List of Photographs

- 1. Direct Gram stain of sputum.
- 2. Microphotograph of K. pneumoniae
- 3. Microphotograph of Beta-haemolytic streptococci
- 4. Culture plate showing the growth of *K. pneumoniae* in Blood agar
- 5. Culture plate showing the growth of *P. aeruginosa* in Nutrient agar.
- Culture plate showing the growth of Beta-haemolytic streptococci in Blood agar.
- 7. Culture plate showing the growth of *H. influenzae* in Chocolate agar.
- 8. Culture plate showing the satellitic growth of *H. influenzae* around X+V factor.
- 9. Optochin sensitivity test for *S. pneumoniae* in Chocolate agar.
- 10. Antibiotic sensitivity test for *K. pneumoniae* in Muller Hinton agar.
- 11. Biochemical test for identification of *K. pneumoniae*.

List of Appendices

Appendix I

1. Clinical and microbiological profile	I-II
Appendix II	
2.1 Materials required	III
2.2 Composition and method of preparation of different	
culture media, biochemical media and reagents used	III-X
A. Culture media	III-V
B. Biochemical media	V-VIII
C. Reagents	VIII-X
1. Gram's staining reagent	VIII
2. Test reagents	IX
Appendix III	
1. Procedure for Gram staining	XI
Appendix IV	
Methodology for biochemical tests	XII
Appendix V	
Disc diffusion susceptibility methods	XXIII
Appendix VI	
Zone size interpretative chart for antibiotic chart for antibiotic sensitivity test	XXV

List of Abbreviations

ARI	Acute respiratory infections
WHO	World Health Organization
LRTI	Lower respiratory tract infection
COPD	Chronic obstructive pulmonary disease
CAP	Community acquired pneumonia
РТВ	Pulmonary Tuberculosis
AECB	Acute exacerbation of chronic bronchitis
SOB	Shortness of Breath
S. aureus	Staphylococcus aureus
S. pneumoniae	Streptococcus pneumoniae
H. influenzae	Haemophilus influenzae
P. aeruginosa	Pseudomonas aeruginosa
C. pneumoniae	Chlamydia pneumoniae
M. pneumoniae	Mycoplasma pneumoniae
L. pneumophila	Legionella pneumophila
ALRI	Acute lower respiratory infection
Hib	Haemophilus influenzae, type b
MRSA	Methicillin-resistant-Staphylococcus aureus
CA-MRSA	Community-acquired MRSA
HAI	Healthcare-associated infections
NA	Nutrient Agar
MA	Mac conkey Agar
BA	Blood Agar
CA	Chocolate Agar
MHA	Mueller Hinton Agar
MDR	Multi Drug Resistant
CDC	Centers for Disease Control and Prevention
CLSI	Clinical and Laboratory Standard Institute
NK	Natural killer
TLRs	Toll-like receptors
LBW	Low birth weight
IL-8	Interleukin-8
V/Q	A ventilation-perfusion
BAL	Bronchoalveolar lavage
PCR	Polymerase Chain Reaction