CHARACTERIZATION OF *PSEUDOMONAS* AERUGINOSA ISOLATED FROM INTENSIVE CARE UNITS IN SHAHID GANGALAL NATIONAL HEART CENTER

A

Dissertation Submitted to the Central Department of Microbiology Tribhuvan University

In Partial Fulfilment of the Requirements for the Award of the Degree of Master of Science in Microbiology (Medical Microbiology)

By

Shiva Bhandari

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal 2011

RECOMMENDATION

This is to certify that Mr. Shiva Bhandari has completed this dissertation work entitled "Characterization of *Pseudomonas aeruginosa* Isolated from Intensive Care Units in Shahid Gangalal National Heart Center" as a partial fulfilment of M.Sc. degree in Microbiology under our supervision. To our knowledge, this work has not been submitted for any other degree.

Mr. Binod Lekhak Lecturer Central Department of Microbiology Tribhuvan University Kathmandu, Nepal Dr. Dwij Raj Bhatta, (MSc, Ph.D) Associate professor and Head Central Department of Microbiology Tribhuvan University Kathmandu, Nepal

Dr. Shyam Raj Regmi Consultant Cardiologist Department of Cardiology SGNHC Bansbari, Kathmandu Nepal

Date: _____

CERTIFICATE OF APPROVAL

On the recommendation of Mr. Binod Lekhak, Dr. Dwij Raj Bhatta and Dr. Shyam Raj Regmi this dissertation work of Mr. Shiva Bhandari entitled "Characterization of *Pseudomonas aeruginosa* Isolated from Intensive Care Units in Shahid Gangalal National Heart Center" has been approved for the examination and is submitted to the Tribhuvan University in the partial fulfilment of the requirements for M.Sc. degree in Microbiology (Medical Microbiology).

Dr. Dwij Raj Bhatta, MSc, Ph.D.

Associate professor and Head Central Department of Microbiology Tribhuvan University Kathmandu, Nepal

Date:

BOARD OF EXAMINERS

Recommended by:

Mr. Binod Lekhak

Superviosr

Dr. Dwij Raj Bhatta, MSc,Ph.D.

Superviosr

Dr. Shyam Raj Regmi Supervisor

Approved by:

Dr. Dwij Raj Bhatta, MSc, Ph.D.

Head of Department

Examined by:

Ms. Shaila Basnyat

(Internal Examiner)

Prof. Dr. Bharat Mani Pokhrel

(External Examiner)

Date:

ACKNOWLEDGEMENTS

First, I express my deepest acknowledgement to my supervisors Mr. Binod Lekhak and Dr. Dwij Raj Bhatta of Central Department of Microbiology, TU and Dr. Shyam Raj Regmi, Consultant Cardiologist, of SGNHC for providing an opportunity to work under their supervision and guidance, without which this work would not have come into shape.

I ineffably thank Dr. Megha Raj Banjara whose help during my work will be retrieved throughout my life.

I am greatly indebted to Dr. Arun Maskey, the then Executive Director and Consultant Cardiologist, SGNHC, Mr. Mahendra Lamsal and the whole hospital family for providing me a workable laboratory environment to conduct my work without any obstacles.

I would like to express my gratitude to Ms. Sharada Bajracharya, Mr. Bindeshwor Yadav, Mr. Prashant Koirala, Mr. Binod Yadav, Mr. Santosh Acharya, and Mr. Raj Naryan Mishra for their kind helping hands and support during my entire working hours. My Sincere thanks also go to all other members of the Pathology Laboratory, SGNHC. I am deeply thankful to in-charge of ASICU, PSICU and MICU and all the other staffs for their co-operation and assistance during my sampling periods. Likewise, I also thank to the members of the central department.

My profound appreciation goes to all my friends, especially Ananta Bhandari, Sudeep Khanal, Bishnu Dhakal and Ishwori Bhandari for the help during statistical analysis. I deeply value the help provided by Mr. Dhurba Adhikari, Mrs. Pratik Bhattarai, Mr. Ananda Ghimire, Mr. Rameshwor Mahato and Jeevan Ter.

I dedicate this piece of work to my family members and my beloved Ambi Aryal to whom words alone cannot express what I owe them for their constant support, encouragement and unconditional love in every way possible throughout the process of this course and still beyond.

And especially to God, who made all things possible.

Date:

Shiva Bhandari

ABSTRACT

Pseudomonas aeruginosa is a gram negative bacterium responsible for several nosocomial infections in highly immunocompromised and catheterized patients in Intensive Care Unit (ICU). In order to characterize and determine the prevalence of P. aeruginosa in the ICUs of Shahid Gangalal National Heart Center, a six month cross sectional microbial study was undertaken. A total of 700 clinical specimens and 360 surface swab samples from ICU were collected and analyzed for bacteriological profile. The bacterial isolates were identified by biochemical testing. Antibiotic susceptibility testing of isolated bacteria was performed by Kirby Bauer disc diffusion technique. In all clinical samples analyzed, P. aeruginosa was detected in 66 (9.43%) samples while in all surface swab samples analyzed, P. aeruginosa was detected in 60 (16.67%) samples. 48 (72.7%) of clinical samples yielded mucoid strains while it was only 24 (40%) for surface swab samples. Among clinical samples, 61 (92.4%) were pigment producing strains while 5 (7.6%) were non-pigmented strains. Likewise, among the surface swab samples, 45 (75.0%) were pigment producing strains of P. aeruginosa while 15 (25.0%) were non-pigmented strains. Antibiotic Susceptibility Test demonstrated that among clinical isolates 56 (84.8%) were sensitive to cefoparazone-sulbactam followed by 42 (63.6%) to polymixin-B and 36 (54.5%) to piperacillin-tazobactam, while among surface swab sample isolates more than 90% isolates were sensitive to most of the common antibiotics used. 59 (89.4%) Multi-drug Resistant P. aeruginosa (MDRPA) were isolated from clinical samples while it was only 7 (11.7%) from surface swab samples. This study signified that *P. aeruginosa* was an important cause of infection in patients admitted in the ICUs and it could be present in the inanimate surfaces of ICUs posing threat to the ICU patients. Regular monitoring of antimicrobial susceptibility and rational use of antibiotics would be the essential steps to eliminate possible outbreaks of MDRPA in the ICUs.

Key words: P. aeruginosa, MDRPA, Clinical Samples, Surface Swab Samples

TABLE OF CONTENTS

TITLE PAGE	i
RECOMMENDATION	ii
CERTIFICATE OF APPROVAL	iii
BOARD OF EXAMINERS	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vi
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF PHOTOGRAPHS	xii
LIST OF APPENDICES	xiii
LIST OF ABBREVIATIONS	xiv
CHAPTER I: INTRODUCTION	1
CHAPTER II: OBJECTIVES	4
2.1 General Objective	
2.2 Specific Objectives	
CHAPTER III: LITERATURE REVIEW	5
3.1 Medical importance of Pseudomonas aeruginosa	5
3.2 Epidemiology of Pseudomonas aeruginosa in ICUs	6
3.3 Virulence Factors	8
3.3.1 Bacterial cell surface	8
3.3.2 Secreted virulence factors	8
3.4 Pathogenesis	9
3.5 Pseudomonas aeruginosa related nosocomial infections	11
3.5.1 Respiratory infections	12

3.5.2 Urinary tract infections	12
3.5.3 Wound infections	13
3.5.4 Heart and blood stream infections	13
3.5.5 Endocarditis	14
3.5.6 Central nervous system infections	14
3.5.7 Gastro-intestinal infections	14
3.6 Laboratory Identification of Pseudomonas aeruginosa	14
3.6.1 Morphological, Cultural, and Metabolic Characteristics	15
3.6.2 Biochemical Properties	15
3.7 Antibiotic resistance in Pseudomonas aeruginosa	16
3.7.1 Intrinsic resistance	16
3.7.2 Acquired resistance	16
3.7.3 Emergence of resistance	17
3.7.4 Multidrug resistant Pseudomonas aeruginosa	17
3.8 Treatment and control	19
3.8.1 Antibiotic options	19
3.8.2 Combination therapy	20
3.8.3 Restriction of use	20
3.8.4 Prevention of infection	21
CHAPTER IV: MATERIALS AND METHODS	22
4.1 Sample collection and processing	22
4.2 Culture	22
4.3 Examination of plates	23
4.4 Characterization of isolates	23

APPENDICES I-V	i-xv
CHAPTER VIII: REFERENCES	47
7.2 Recommendations	46
7.1 Summary	45
CHAPTER VII: SUMMARY AND RECOMMENDATION	45
6.2 Conclusion	44
6.1 Discussion	37
CHAPTER VI: DISCUSSION AND CONCLUSION	37
5.3 Antibiotic susceptibility test of Pseudomonas aeruginosa	30
5.2 Pigmentation of Pseudomonas aeruginosa	29
5.2 Consistency of Pseudomonas aeruginosa	27
5.1 Distribution of <i>Pseudomonas aeruginosa</i>	25
CHAPTER V: RESULTS	25
4.7 Quality control	24
4.6 Antibiotic susceptibility testing of isolates	24
4.5 Purity Plate	23

LIST OF TABLES

No.	Table	Page No.
Table 1: War	rd wise Distribution of P. aeruginosa	26
Table 2: Sam	nple wise Distribution of <i>P. aeruginosa</i> (Surface sample)	27
Table 3: Sam	nple wise Distribution of <i>P. aeruginosa</i> (Clinical sample)	27
Table 4: Con	nsistency of P. aeruginosa from Surface Sample	28
Table 5: Con	nsistency of P. aeruginosa from Clinical Sample	28
Table 6: Col	ony's consistency of P. aeruginosa	29
Table 7: Pigi	ment wise Distribution of <i>P. aeruginosa</i> from Surface Sample	29
Table 8: Pigi	ment wise distribution of <i>P. aeruginosa</i> from Clinical Sample	30
Table 9: Ant	ibiogram for Isolated P. aeruginosa (Clinical Samples)	30
Table 10: Ar	ntibiotic Susceptibility Test of <i>P. aeruginosa</i> from Clinical Sam	ple 32
Table 11: Ar	ntibiogram for Isolated P. aeruginosa (Surface Swab Samples)	32
Table 12: Ar	ntibiotic Susceptibility Test of <i>P. aeruginosa</i> from Surface Samp	ple 34
Table 13: Co	blony wise verification of AST of P. aeruginosa	34

LIST OF FIGURES

No.	FigureP	age No.
Figure 2:	Resistivity pattern of P. aeruginosa against various antibiotics	36
Figure 3:	MDRPA isolates	36

LIST OF PHOTOGRAPHS

- Photograph 1. Pigment production by *P. aeruginosa* in BHI broth
- Photograph 2. Biochemical Tests for isolated *P. aeruginosa*
- Photograph 3. AST of *P. aeruginosa* isolated from clinical samples
- Photograph 4. AST of *P. aeruginosa* isolated from surface swab samples

LIST OF APPENDICES

Page No.

APPENDIX-I	Record keeping	i
APPENDIX-II	Equipments and materials used during the study	ii
APPENDIX-III	A. Composition and preparation of different culture media	iv
	B. Composition and preparation of different biochemical tests	vi
	C. Staining and test reagents	ix
APPENDIX-IV	A. Gram staining procedure	xii
	B. Capsule staining procedure	xiii
	C. Procedure for Antibiotic Sensitivity Testing	xiii
APPENDIX-V	Zone size of interpretation chart of antibiotics	xiv

LIST OF ABBREVIATIONS

AK	Amikacin
ASICU	Adult Surgical Intensive Care Unit
AST	Antibiotic Susceptibility Testing
BA	Blood Agar
BHI	Brain Heart Infusion
BSI	Blood Stream Infection
CAZ	Ceftazidime
CFM	Cefixime
CIP	Ciprofloxacin
COPD	Cardiac Obstructive Pulmonary Disease
CR-BSI	Catheter Related Blood Stream Infection
CSL	Cefoparazone+Sulbactam
CTR	Ceftriaxone
CVC	Central Venous Catheter
CVP	Central Venous Pressure
GEN	Gentamicin
GI	Gastro Intestinal
GNB	Gram Negative Bacteria
GPC	Gram Positive Cocci
GPR	Gram Positive Rods
HCW	Health Care Worker
HEPA	High Efficiency Particulate Air
ICU	Intensive Care Unit
LF	Lactose Fermenter
MA	Mac Conkey Agar

MDR	Multiple Drug Resistance
MDRPA	Multi-drug Resistance P. aeruginosa
MHA	Mueller Hinton Agar
MICU	Medical Intensive Care Unit
MEM	Meropenem
NA	Nutrient Agar
NI	Nosocomial Infection
NLF	Non Lactose Fermenter
NNIS	National Nosocomial Infection Surveillance
PABSI	P. aeruginosa bloodstream infection
POL	Polymixin B
PSICU	Pediatric Surgical Intensive Care Unit
PT	Piperacillin+Tazobactam
SGNHC	Sahid Gangalal National Heart Center
UTI	Urinary Tract Infection
VAP	Ventillator Associated Pneumonia
WHO	World Health Organisation