EXTENDED SPECTRUM -LACTAMASE AND METALLO -LACTAMASE PRODUCING MULTIDRUG RESISTANT GRAM NEGATIVE BACTERIA AMONG PATIENTS WITH RENAL FAILURE

A DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KATHMANDU, NEPAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY (Medical)

BY

ANIL PANT CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KATHMANDU 2013

RECOMMENDATION

This is to certify that **Mr. Anil Pant** has completed this dissertation work entitled **"Extended spectrum -lactamase and metallo -lactamase producing multidrug resistant gram negative bacteria among patients with renal failure"** as a partial fulfillment of M.Sc. degree in Microbiology. To the best of our knowledge, this is his original research work and has not been submitted for award of any other degree.

Prof. Dr. Anjana SinghDr. Anjana SinghHeadMBICentral Department of MicrobiologyNatiTribhuvan UniversityKathKirtipur, KathmanduNepal

Dr. Anil Dev Pant MBBS, MD National Kidney Centre Kathmandu, Nepal

Date:....

CERTIFICATE OF APPROVAL

On the recommendation of **Prof. Dr. Anjana Singh** and **Dr. Anil Dev Pant**, this dissertation work by **Mr. Anil Pant** entitled "**Extended spectrum lactamase and metallo** -**lactamase producing multidrug resistant gram negative bacteria among patients with renal failure**" has been approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirements for M.Sc. Degree in Microbiology.

> Prof. Dr. Anjana Singh Head Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Date:

BOARD OF EXAMINERS

Recommended by:

Prof. Dr. Anjana Singh Supervisor

Dr. Anil Dev Pant (MBBS, MD) Supervisor

Approved by:

Prof. Dr. Anjana Singh Head of Department

Examined by:

Assoc. Prof. Dr. Keshab Parajuli External Examiner

Ms. Supriya Sharma Internal Examiner

Date:

ACKNOWLEDGEMENT

It is with immense gratitude that I would like to thank first and foremost to my respected supervisors **Prof. Dr. Anjana Singh** and **Dr. Anil Dev Pant** for their supervision and mentorship. This thesis would not have been possible without their help, support, strict guidance and co-operation during the entire period of my research work.

It gives me great pleasure in acknowledging my respected teachers **Prof. Dr. Dwij Raj Bhatt**, **Ms. Reshma Tuladhar**, **Ms. Shaila Basnyat**, **Dr. Megh Raj Banjara**, **Mr. Komal Raj Rijal** and **Ms. Supriya Sharma** from Central Department of Microbiology, Tribhuvan University for their valuable idea, continuous encouragement and cooperation in the completion of this work.

Similarly, I owe my deepest gratitude to respected **Mr. Nabaraj Adhikari**, Department of Microbiology, Kantipur College of Medical Sciences for his immense support, advice and optimistic attitude towards this work.

I would like to acknowledge all the visiting faculties and staffs of the Central Department of Microbiology, Tribhuvan University as well as all the staff of National Kidney Centre for their kind cooperation and technical support. The good advice, support and friendship of **Mr. Het Bahadur Shrestha**, **Mr. Ishwariya Lamichanne**, **Mr. Kishor Basnyat** of National Kidney Centre has been invaluable on both academic and a personal level, for which I am very grateful.

I am deeply thankful to all my friends for their inspiration and encouragement. My special thanks to **Ms. Deepa Upreti**, **Mr. Kamal Bagale**, **Mr. Santosh Paudel**, **Mr. Sher Bahadur BK**, **Ms. Binita Dahal** and **Ms. Samina Thapa** for their help and supportive contribution in every stage of this research.

Finally, I express my profound gratitude to my parents and family for having their unambiguous support throughout, as always, for which my mere expression of thanks likewise does not suffice.

Date:

ABSTRACT

Patients with renal failure are at greater risk of infection because of the abnormality in their immune system and the direct exposure of circulatory system to the microorganisms. The infection in such vulnerable population by drug resistant bacteria may lead to life-threatening consequences. The purpose of this study was to isolate and identify the multiple drug resistant Gram negative bacteria (MDRGNB) from kidney patients and hemodialysis patients and to screen those producing Extended-Spectrum -Lactamases (ESBLs) and -Lactamases (MBLs). During the study period (March-August, Metallo 2013), 496 samples of urine and 21 samples of blood collected from patients visiting and undergoing hemodialysis at National Kidney Centre (NKC) were processed. The isolates were identified by standard microbiological procedures and subjected to antimicrobial susceptibility testing by modified Kirby Bauer disc diffusion methods. Production of ESBL and MBL was determined using MASTDISCSTM ID ESBL detection discs and imipenem EDTA combined disc assay respectively. The Minimum Inhibitory Concentration (MIC) of ciprofloxacin against the MDR isolates was also determined using agar dilution method.

Total 103 (19.92%) samples showed significant growth and 85.43% of them were multidrug resistant. The higher rate of growth among female patients was found statistically significant (p<0.05). Imipenem was found to be most effective drug against the isolates whereas ceftazidime, with sensitivity and positive predictive value of 94.2% and 76.7% respectively was found to be more effective in screening ESBL producers among MDR strains than cefotaxime. Of the 59 MDR isolates suspected 35 (66.66%) were confirmed to produce ESBL with at least one Combined Disc (CD) assay used. Ceftazidime-clavulanate combined disc correctly identified all of the ESBL isolates whereas cefotaxime failed to confirm two isolates. Only one of the 11 isolates tested for MBL production was confirmed to produce MBL. The majority of ESBL isolates were Escherichia coli 29 (82.85%), whereas 2/2 (100%) of suspected Pseudomonas aeruginosa isolates were ESBL. None of the Proteus vulgaris were found to produce ESBL. Of note was the coexistence of ESBL and MBL in Pseudomonas aeruginosa. However, the production of MBL and resistance to carbapenems was statistically insignificant (p>0.05). The statistical pattern of resistance of ciprofloxacin, norfloxacin, ceftazidime and cefotaxime and ESBL production was found significant (p<0.05). Most of the isolates showed MIC value of 8µg/ml towards ciprofloxacin.

Use of single screening agent for ESBL screening may result in false positive results, hence use of more than one of the screening agents and combined disk assay improves the sensitivity of detection of ESBL.

Key Words: Hemodialysis, Chronic Kidney Patients, Multidrug Resistance, ESBL, MBL, MIC

TABLE OF CONTENTS

Title Page	i
Recommendation	ii
Certificate of Approval	iii
Board of Examiners	iv
Acknowledgement	V
Abstract	vi
Table of Contents	vii-ix
List of Abbreviations	x-xi
List of Tables	xii-xiii
List of Figures	xiv
List of Photographs	XV
List of Appendices	xvi-xvii
CHAPTER I: Introduction and Objectives	1-3
1.1 Background	1-2
1.2 Objectives	3
1.2.1 General Objective	3
1.2.2 Specific Objectives	3
CHAPTER II: Literature Review	4-20
2.1 Hemodialysis	4
2.1.1 Bacterial Infections in Hemodialysis Patie	nts 5-6
2.2 Antibiotic Resistance	6-7
2.2.1 Multidrug Resistance	7-8
2.2.1.1 Multidrug Resistance: A Global Perspec	tive 8
2.2.1.2 Multidrug Resistance in Nepal	8-9
2.3 -Lactamases	9-10
2.3.1 Classification of -Lactamases	10-12
2.3.2 Extended Spectrum -Lactamases (ESBL	s) 13
2.3.2.1 Types of ESBLs	13-15
2.3.3 Methods of ESBL Detection	15-16
2.3.3.1 Screening of ESBL Producers	16-17

2.3.3.1 Screening of ESBL Producers

2.3.3.2 Phenotypic Confirmatory Tests for ESBL Confirmat	ion17-18
2.3.4 Metallo - Lactamases	18-19
2.3.4.1 Types of MBL	19
2.3.4.2 Methods of MBL Detection	19-20
CHAPTER III: Materials and Methods	21-26
3.1 Materials	21
3.2 Methodology	21
3.2.1 Sample population and sample size	21
3.2.2 Collection and Transportation of Specimen	22
3.2.2.1 Urine Samples	22
3.2.2.2 Blood Samples	22
3.2.3 Culture of Specimen	22-23
3.2.3.1 Urine Culture	22-23
3.2.3.2 Blood Culture	23
3.2.4 Identification of the Gram Negative Bacteria	23
3.2.5 Antimicrobial Susceptibility Testing	24
3.2.6 Preservation of the MDR Isolates	24
3.2.7 Screening and Confirmation of ESBL Producers	24
3.2.8 Detection of MBL Producers	24-25
3.2.9 Determination of MIC Value of Ciprofloxacin	25
3.4 Quality Control	25-26
3.4.1 Monitoring and Regular Evaluation	25
3.4.2 Purity Plate	25-26
3.4.3 Quality Control during AST	26
3.5 Data Analysis	26
CHAPTER IV: Results	27-39
CHAPTER V: Discussion	40-49
5.1 Discussion	40-49
CHAPTER VI: Conclusion and Recommendations	50-51
6.1 Conclusion	50

viii

Appendices	I-XXXVI
CHAPTER VII: References	52-64
6.2 Recommendations	51

LIST OF ABBREVIATIONS

3GCR	Third Generation Cephalosporin Resistance
AMR	Anti Microbial Resistance
ASM	American Society for Microbiology
AST	Antibiotic Susceptibility Testing
ATCC	American Type Culture Collection
BA	Blood Agar
BHI	Brain Heart Infusion Agar
CD	Combined Disc Assay
CDC	Centre for Disease Control and Prevention
CFU	Colony Forming Unit
CKD	Chronic Kidney Disease
CLSI	Clinical and Laboratory Standards Institute
DNA	Deoxyribonucleic Acid
EC	Enzyme Commission
EDST	EDTA Disc Synergy Test
EDTA	Ethylene Diamine Tetra Acetic acid
ESBL	Extended Spectrum -Lactamase
HAI	Healthcare Associated Infection
HD	Hemodialysis
KMC	Kathmandu Medical College
MBL	Metallo -Lactamase
MDR	Multidrug Resistant
MDRGNB	Multidrug Resistant Gram Negative Bacteria
MHA	Mueller Hinton Agar
MIC	Minimum Inhibitory Concentration
MRSA	Methicillin Resistant Staphylococcus aureus
NIH	National Institutes of Health
NKC	National Kidney Centre
NPHL	National Public Health Laboratory
OMP	Outer Membrane Proteins
OPD	Out Patient Department
PBP	Penicillin Binding Protein

PCR	Polymerase Chain Reaction
PDR	Pan Drug Resistant
SIM	Sulfide Indole Motility Medium
SPSS	Statistical Package for Social Sciences
TSI	Triple Sugar Iron Agar
TUTH	Tribhuvan University Teaching Hospital
VP	Voges-Proskauer Test
VRE	Vancomycin Resistant Enterococci
WHO	World Health Organization
XDR	Extreme Drug Resistant

LIST OF TABLES

Table 1:	Classification of -Lactamases
Table 2:	Microbiological profile of urinary isolates and their
	gender-wise distribution
Table 3:	Microbiological profile of MDR isolates and their
	distribution in different types of patients
Table 4:	Age-group wise distribution of different types of
patients	
Table 5:	Antibiotic sensitivity pattern of Gram negative isolates
	from different samples
Table 6:	Distribution of MDR isolates from different samples
	and their -lactamase production profile
Table 7:	Profile of ESBL producing bacterial strains from
	different samples
Table 8:	Screening of ESBL production using different screening
	agents
Table 9:	Pattern of ESBL production according to the use of
	various combination discs
Table 10:	Comparison of antimicrobial resistance pattern of ESBL
	producing and non-producing isolates
Table 11:	Statistical pattern of gender and morbidity wise
	association with bacterial infection
Table 12:	Statistical pattern of gender and morbidity and MDR
	wise association with ESBL production
Table 13:	Preparation of dilution of agents for using in agar
	dilution susceptibility tests
Table 14:	Distinguishing reactions of the commoner and
	pathogenic Enterobacteriaceae
Table 15:	Distribution of patients requesting for urine culture,
	growth pattern and MDR percentage in different age
Table 16:	Age-wise distribution of different pathogens and MDR
	strains from different samples

Table 17:	Antibiotic susceptibility pattern of E. coli isolates from
	different samples
Table 18:	MIC value of ciprofloxacin for different isolates
Table 19:	Statistical pattern of results

LIST OF FIGURES

Figure 1:	Number	and	types	of	different	bacterial
	pathogen	s isola	ted			
Figure 2:	Organism	ns isola	ated wit	h res	pect to mor	bidity
Figure 3:	MIC value of ciprofloxacin among the various					
	isolates					

LIST OF PHOTOGRAPHS

Photograph 1:	Significant growth of <i>E. coli</i> isolated from urine
	samples on Mac Conkey Agar
Photograph 2:	Biochemical tests of E. coli
Photograph 3:	Antibiotic susceptibility tests of MDR E. coli
	strain
Photograph 4:	Positive ESBL confirmation test on Mueller-
	Hinton Agar
Photograph 5:	Positive MBL producing Pseudomonas
	aeruginosa on MHA
Photograph 6:	MIC testing of isolates for ciprofloxacin

LIST OF APPENDICES

Appendix I: Clinical and microbiological profile of patient

Appendix II: List of materials

- 1. List of equipments
- 2. List of microbiological media
- 3. List of chemicals and reagents
- 4. List of antibiotic discs
- 5. List of discs for ESBL detection

Appendix III: Bacteriological media

- 1. Composition and preparation of different culture media
- 2. Biochemical testing media
- 3. Staining and test reagents

Appendix IV: Microbiological procedures

- 1. Gram staining procedure
- 2. Biochemical tests for the identification of bacteria

Appendix V: Antibiotic susceptibility testing

- 1. Disc diffusion methods for antibiotic susceptibility testing
- 2. Inhibitor potentiated disc diffusion (IPPD) test/ combined disc assay for ESBL confirmation
- 3. Confirmation of MBL production using EDTA disc synergy test

Appendix VI: Determination of MIC of ciprofloxacin

Appendix VII: Distinguishing reactions of a commoner and pathogenic *Enterobacteriaceae* Appendix VIII:

- Distribution of the patients requesting urine culture, growth pattern and MDR percentage in different age group and sex
- 2. Age-wise distribution of different pathogens and MDR strains from different sample
- 3. Antibiotic susceptibility pattern of *E. coli* from different samples
- 4. MIC Value of ciprofloxacin for different isolates

Appendix IX: Statistical Analysis

- 1. Association between culture positivity among genders
- 2. Association between MDR and non-MDR strains among gender
- 3. Association between culture positivity among sample types
- 4. Association between culture positivity among patients with different morbidity
- 5. Association between ESBL production and susceptibility to ciprofloxacin
- 6. Association between ESBL production and susceptibility to amikacin
- 7. Determination of sensitivity of screening methods for ESBL detection
- 8. Statistical association of results