MEDICALLY IMPORTANT VIBRIOS IN THE SEWAGE OF KATHMANDU VALLY DURING WINTER SEASON

A

Dissertation Submitted to the Central Department of Microbiology Tribhuvan University

In Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science in Microbiology (Environment and Public Health)

> by Yub Raj Adhikari

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal 2012

RECOMMENDATION

This is to certify that **Mr. Yub Raj Adhikari** has completed this dissertation work entitled "**MEDICALLY IMPORTANT VIBRIOS IN THE SEWAGE OF KATHMANDU VALLY DURING WINTER SEASON''** as a partial fulfillment of M. Sc. Degree in Microbiology. To the best of my knowledge this thesis work has not been submitted for any other degree.

••••••••••••••••

Assoc. Prof. Dr. Dwij Raj Bhatta Central Department of Microbiology, Tribhuvan University,Kirtipur Kathmandu, Nepal.

Date:

CERTIFICATE OF APPROVAL

On the recommendation of **Asso. Prof. Dr. Dwij Raj Bhatta**, this dissertation work by **Mr. Yub Raj Adhikari** is approved for the examination and is submitted to Tribhuvan University in Partial fulfillment of the requirements for degree of Master of Science in Microbiology (Environment and Public Health).

Assoc. Prof. Dr. Dwij Raj Bhatta

Head of Department Central Department of Microbiology, Tribhuwan University, Kirtipur, Kathmandu, Nepal

Date:

BOARD OF EXAMINERS

Recommended by:

Assoc. Prof. Dr. Dwij Raj Bhatta

Approved by:

Assoc. Prof. Dr. Dwij Raj Bhatta (Head of Department)

Examined by:

External Examiner

Internal Examiner

Date:

ACKNOWLEDGEMENTS

I am very grateful to express my glance pleasure to my supervisor **Assoc. Prof. Dr. Dwij Raj Bhatta for** his interest, proper and tremendous guidance, valuable suggestions, continuous support and endless encouragement remain invaluable throughout the study period. I must express my gratitude to Head of central department of Microbiology, **Assoc. Prof. Dr. Bhatta** for granting me an opportunity to utilize the enriched facilities of Central Department of Microbiology (CDM) laboratory to conduct the laboratory work of my thesis.

I am extremely grateful to **Prof. Dr. Shiba Kumar Rai** providing me the facilities of Shi-Gan Health Foundation's Laboratory where I conducted some works. Also, I am grateful to **Mr. Kul Raj Rai**, my classmate, CDM, TU, for his kind suggestions, cooperation and encouraging attitude. I would like to share my internal respect to **all faculties and staffs** of CDM, TU.

I wish to acknowledge my colleague **Mr Dhiraj Thapa** for kind co-operation and support during sample collection and processing. I am obliged to his genuine support, invaluable companionship and suggestions throughout my thesis.

Finally, I am greatly indebted to **my parents** and **my family members** without whose inspiration, encouragement, support and blessings this work would have been remained incomplete.

Mr. Yub Raj Adhikari Date:

ABSTRACT

The natural lodgment of Vibrios in aquatic environment is the potential source for possible Vibrios infection. The study was aimed to isolate medically important Vibrios from the sewage of Kathmandu (KTM) Valley during winter season. A total of 60 random samples were taken from the different sewerages sites discharging sewage into the Bagmati River between 10th November 2008 to 6^{th} February 2009 employing principle based on Moore's Technique. The samples [Moore's technique based swabs were submersed in alkaline peptone water (broth) pH of 8.6] were transported to Research Laboratory of Central Department of Microbiology in cold condition. The samples were incubated at 37[°]C for 8 hours enrichment followed by culture on thiosulfate-citrate-bile saltssucrose (TCBS) agar and incubated at 37^oC for overnight. The TCBS plates showing Vibrios like colonies were subjected for biochemical identification. V. cholerae suspected isolates were subjected to sero-typing using polyvalent V. cholerae 01 anti-sera. In this study, from 60 samples, 57 medically important Vibrios were isolated of which V. parahemolyticus (45.6%) was dominating isolates followed by V. cholerae (21%) and others. On sero-typing, all V. cholerae isolates were V. cholerae Non-O1 (NAG). NAG (n=12) isolates were tested for antibiotic susceptibility test (AST) using disc diffusion technique. Of total AST isolates, two isolates were found to be multidrug resistant. Since, Sewage of KTM Valley harbor the medically important Vibrios which could be the potential source for outbreak and demands proper sanistation and awareness among Valley residents.

Key words: Vibrios, V. cholerae, sewage and Kathmandu Valley.

CONTENTS

	Page No
Title Page	i
Recommendation	ii
Certificate of Approval	iii
Board of Examiners	iv
Acknowledgment	V
Abstract	vi
Table of Contents	vii
List of Abbreviations	Х
List of Tables	xi
List of Figures	xii
List of Photographs	xiii
List of Appendices	xiv
CHAPTER-II: OBJECTIVES	3
2.1 General objectives	3
2.2 Specific objectives	3
CHAPTER-III: LITERATURE REVIEW	4
3.1 Genus Vibrio	4
3.2 Distribution of <i>Vibrios</i> in Environment	4
3.3 Medically important Vibrios	5
3.4 Sewer system in Kathmandu Valley	6
3.5 Status of sewer system in Kathmandu Valley	7
3.6 Cholera	7
3.6.1 Cholera pathogenesis overview	8

3.6.2 Susceptibility	8
3.6.3 Transmission	9
3.6.4 Diagnosis	12
3.6.5 Cholera toxin	12
3.6.6 Epidemiology	13
3.6.7 Emergence of the toxigenic cholera Vibrios from environment	17
3.6.8 Cholera in Nepal	18
3.7 Distinguishing features of <i>Vibrios</i> from other genera	19
3.8 Properties of medically important Vibrios	21
3.9 Antigenic characteristics of Vibrios	22
3.10 Molecular and epidemiological methods of typing Vibrios	23
3.10.1 Phage typing	23
3.10.2 Ribo typing and PCR based methods	24
3.11 Vibrios and the environment	24
3.12 Epidemiology of vibrio diseases	26
3.13 Ecology of vibrios and the environmental parameters influencing their	
presence in the aquatic environment	27
3.14 Clinical manifestations	29
CAPTER-IV: MATERIALS AND METHODS	30
4.1 Materials	30

4.1	Waterials	50
4.2	Methods	30
4.1	Study area 3	
4.2	2 Identification	
	4.2.1 Colonical characterization on TCBS Agar	33
	4.2.2 Biochemical Identification	33
4.3	Serotyping of the V. cholerae	35
4.4	Antibiotics susceptibility test	35
	4.4.1 Media	35
	4.4.2 Test plate	35
	4.4.3 Inocula preparation	36
	4.4.4 Selection of the antimicrobial agent	36

	4.4.5 Inoculation and incubation	36
	4.4.6 Measurement of the inhibition zone	37
	4.4.7 Quality control of Disc	37
4.5	Data analysis	37
CH	IAPTER-V: RESULTS	38
5.1	Distribution of Vibrios	38
5.2	Serotypes of Vibrio spp	38
5.3	Antibiogram of biochemically related V. cholerae	39
CH	IAPTER-VI: DISCUSSION AND CONCLUSION	42
6.1	Discussion	42
6.2	Conclusion	47
CE	IAPTER-VII: SUMMARY AND RECOMMENDATION	48
7.1	Summary	48
7.2	Recommendation	49
RE	FERENCES	50

APPENDICES (I – IV)

LIST OF TABLE

Table-3.1:	3.1: Distinguishing characteristics Vibrios from related genera (Janda.,	
	1998)	20
Table-3.2:	Some important biochemical tests of medically important Vibrios	21
Table-3.3:	Biochemical differences between classical and El Tor biotype	23
Table-5.1:	Frequency of isolates	38
Table 5.4.1:	Antibiogram V. cholerae isolates	39
Table 5.4.2:	Antibiogram V. cholerae isolates	40
Table 5.4.3:	Antibiogram V. cholerae isolates	41

LIST OF FIGURES

Fig. 3.1:	The global spread of cholera during the seventh pandemic,	
	1961-1971(CDC)	15
Fig. 4.1:	Drainage pattern of the Bagmati River (Source: Nepal Survey	
	Division)	32

LIST OF PHOTOGRAPHS

Picture 1: Sucrose fermerter and non fermeter (primary isolates)

Picutre 2: Sucrose fermenter isolate

LIST OF APPENDICES

- Appendix I Culture Media
- Appendix II Biochemical Tets Media
- Appendix III Staining and test reagents

Appendix IV Zone Size Interpretative Chart (Antibiotic Susceptibility Test Discs)

LIST OF ABBREVIATIONS

BOD	Biological Oxygen Demand
CDC	Centre for Disease Control
CLSI	Clinical Laboratory Standardization Institution
COD	Chemical Oxygen Demand
EWARS	Early Warning Reporting System
IUCN	International Union for Nature Conservation
JICA	Japan International Co-operative Agency
KTM	Kathmandu
LIM	l-Lysine indole motility
NCCLS	National Committee for Clinical Laboratory Standard
NESS	Nepal Environmental Engineering Services Society
NPC	National Planning Commission
NPHL	Nepal Public Health Laboratory
ONPG	O-nitrophenyl D-galactopyranosidegalactosidase
TCBS	Thiosulfate Citrate Bile Salts Sucrose
TSI	Triple sugar iron
WHO	World Health Organization
NAG	Non-Agglutinable