ANTIBIOTIC SUSCEPTIBILTY PATTERN OF URINARY ISOLATES WITH REFERENCE TO EXTENDED SPECTRUM -LACTAMASE PRODUCING BACTERIA FROM ALKA HOSPITAL

A DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY, NEPAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY (Medical)

BY VIJAY TIWARI

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KATHMANDU 2014

RECOMMENDATION

This is to certify that **Mr. VIJAY TIWARI** has completed this dissertation work entitled "**Antibiotic susceptibility pattern of urinary isolates with reference to extended spectrum -lactamase producing bacteria from Alka Hospital**" as a partial fulfillment for the requirements of M. Sc. Degree in Microbiology (medical) under our supervision. To our knowledge this is his original research work and has not been submitted for any other degree.

Prof. Dr. Dwij Raj Bhatta, (MSc, PhD) Professor Central Department of Microbiology Tribhuvan University Kathmandu, Nepal

Dr. Vijay K. Sharma MD, M.Phil (Clinical Biochemistry) T. Clinical pathologist Alka Hospital Ltd. Lalitpur, Nepal Associate Professor IOM, Maharajgung Kathmandu, Nepal

CERTIFICATE OF APPROVAL

On the recommendation of **Prof. Dr. Dwij Raj Bhatta** and **Dr. Vijay K Sharma** the dissertation work of **Mr. Vijay Tiwari** is approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirements for M. Sc. Degree in Microbiology (Medical).

> Prof. Dr. Anjana Singh Head of Department Central Department of Microbiology Tribhuvan University Kathmandu, Nepal

BOARD OF EXAMINERS

Recommended by:

Prof. Dr. Dwij Raj Bhatta

Supervisor

Dr. Vijay K. Sharma Supervisor

Approved by:

Prof. Dr. Anjana Singh Head of Department

Examined by:

External Examiner

Internal Examiner

ACKNOWLEDGEMENT

Respectfully, I would like to express my sincere gratitude and heartfelt appreciation to the internal supervisor **Prof. Dr. Dwij Raj Bhatta**, Central Department of Microbiology, Tribhuvan University for his continuous guidance, valuable suggestion and great support in the completion of this dissertation work. I am equally obliged to my external supervisor **Dr. Vijay K. Sharma**, Alka Hospital for his tremendous support, inspiration and meticulous supervision throughout my research work.

I am much obliged to honorable **Prof. Dr. Anjana Singh, Head, Central Department of Microbiology**, Tribhuvan University for his continuous support and guidance throughout my research work.

Additionally, I would like to express my gratitude to all the Professors, Asst. Professor, Lecturers, visiting faculties and staffs of the Central Department of Microbiology, Tribhuvan University as well as all the staffs of Alka Hospital for their kind cooperation and support. I wish to express my admiration and special thanks to all my friends.

Finally, I would like to thank my parents for their silent inspiration, encouragement and moral support without whom this work would have been impossible and I would not have achieved this academic position.

Vijay Tiwari

ABSTRACT

The emergence and spread of .Antibiotic resistance is now a global concern lactamases represent a - antimicrobial resistance due to the production of clinical threat because of theirbroadspectrum of activity . The present study was conducted at Alka Hospital from Ocotober 2011 to December 2012 with the objectives to study the emergence of extended spectrum -lactamase production in common bacterial isolates from urine sample. During this period, 1699 mid-stream urine samples collected were investigated to determine UTI by conventional culture technique and microscopy. Only 16% (n=271) out of 1699 samples showed significant bacterial growth. The maximum number of growth was observed in The .(%20.30) 40-30 ed by age groupfollow ,(%27.3) yrs 30-20 age group than in males (193=n) %17.9 high culture positivity was seen among female .(78=n) %12.4 Altogether nine different species of bacteria were isolated among which Escherichia coli 67.50% (n=183) were found the most predominant organisms followed by Staphylococcus aureus 10.70% (n=29), Klebsiella pneumoniae 7% (n=19). Multidrug resistance (MDR) was observed in 70.11% (n=190) of total bacterial isolates. Seventy seven (28.4%) isolates were confirmed for ESBL production. ESBL production was found highest in E.coli 31.6% (n=183) followed by K. pneumoniae 31.50% (n=19), Pseudomonas aeruginosa 27.30% (n=11), Acinetobacter spp. 26.70% (n=15).

Key words: bacteriuria, urinary tract infection, mid-stream urine, pyuria, multidrug-resistance

TABLE OF CONTENTS

Title Page	i			
Recommendation	ii			
Certificate of Approval				
Signature of Board of Examiners				
Acknowledgements	v			
Abstract				
Table of Contents	vii			
List of Abbreviations				
List of Tables	xii			
List of Figures	xiii			
List of Photographs	xiv			
List of Appendices				
CHAPTER I : Introduction and Objectives	1-4			
1.1 Background	1-3			
1.2 Objectives	4			
1.2.1 General objectives	4			
1.2.2 Specific objectives	4			
CHAPTER II : Literature review	7-17			
2.1 Antimicrobial resistance	5			

2.1.1 Mechanism of development of antimicrobial resistance			
2.2 Emergence of multidrug resistance among bacterial pathogen			
2.2.1 Mechanism of multidrug resistance			
2.2.2 Multidrug resistance in global scenario	11		
2.2.3 Emergence of multidrug resistant bacteria in Nepal	12		
2.3 -lactam antibiotics, -lactamase and ESBL	13		
2.3.1 Screening method for ESBL production	16		
2.3.2 Phenotypic confirmatory test for ESBL production	16		
CHAPTER III: Materials and methods	17-21		
3.1 Materials	17		
3.2 Methods	17		
3.2.1 Urine specimen collection, transport and analysis	17		
3.2.2 Macroscopic examination	17		
3.2.3 Microscopic examinations	17		
3.2.4 Culture	18		
3.2.5 Identification of isolates	18		
3.2.6 Antimicrobial susceptibility testing	19		
3.2.7 Preservation of MDR strains	19		
3.2.8 Screening and confirmation of ESBL producer	19		

3.3.1 Monitoring and regular evaluation of laboratory equ	ipment
reagent and media	20
3.3.2 Purity plate	20
	0.1
3.3.3 Quality control during Antimicrobial susceptibility testing	21
3.4 Data analysis	21
CHAPTER IV: Results	22-46
4.1 Clinical profile of sample and culture positivity	22
4.1.1 Number of samples and growth pattern	22
4.1.1 Number of samples and growth pattern	
4.1.2 Age and gender wise distribution of culture positive urine sam	ples 22
4.2 Microbiological profile of urinary isolates	24
	4.5
4.3 Multidrug resistance among different isolates	45
4.4 ESBL production profile among isolated strains	46
CHAPTER V: Discussion	48-54
5.1 Discussion	48
CHAPTER VI: Conclusion and recommendations	55-56
CHAFTER VI: Conclusion and recommendations	55-50
6.1Conclusion	55
6.2 Recommendation	56
REFERENCES	57-71

APPENDICES

LIST OF TABLES

Table 1: Growth pattern in urine culture.	23
Table 2: Gender wise distribution of significant bacteriuria	24
Table 3: Age wise distribution of significant bacteriuria	24
Table 4: Correlation of pyuria with culture result	25
Table 5: Correlation of hematuria with culture result	25
Table 6: Microbiological profile of Urinary isolates	26
Table 7: Antibiotic susceptibility profile of bacterial isolates	26
Table 8: Antibiotic sensitivity profile of Escherichia coli	39
Table 9: Antibiotic sensitivity profile of Klebsiella pneumoniae	40
Table 10: Antibiotic sensitivity profile of Proteus vulgaris	41
Table 11: Antibiotic sensitivity profile of Proteus mirabilis	42
Table 12: Antibiotic sensitivity profile of Citrobacter freundii	43
Table 13: Antibiotic sensitivity profile of <i>Pseudomonas aeuroginosa</i>	44
Table 14: Antibiotic sensitivity profile of Acinetobacter spp.	45
Table 15: Antibiotic sensitivity profile of <i>Staphylococcus aureus</i>	45
Table 16: Antibiotic sensitivity profile of <i>Enterococcus</i> spp.	46
Table 17: Distribution of MDR isolates	47
Table 18: Profile of ESBL producing bacteria strains	48

LIST OF PHOTOGRAPHS

Photograph 1: Significant Growth of *E. coli* isolated from urine samples on MacConkey Agar

Photograph 2: Biochemical tests of E. coli

Photograph 3: Antibiotic sensitivity test of E. coli on Mueller Hinton Agar

Photograph 4: ESBL test of E. coli

LIST OF APPENDICES

- Appendix A: Clinical and microbiological profile of patient
- Appendix B: I. Composition and preparation of different Culture media
 - II. Biochemical test media
 - III. Staining and Test reagents
- Appendix C: List of equipment, materials and supplies
- Appendix D: Gram-staining procedure
- Appendix E: Biochemical tests for identification of bacteria
- Appendix F: Disk diffusion method for the antimicrobial susceptibility testing
- Appendix G: Combined Disk Assay for ESBL confirmation using HiMedia Extended Spectrum beta-lactamase (ESBL) Detection Discs
- Appendix H: Association of ESBL production and multidrug resistance

LIST OF ABBREVIATIONS

μg	:	Microgram
A/A	:	Acid/ Acid
Alk/A	:	Alkali/ Acid
AUC	:	Acute Uncomplicated Cystitis
BA	:	Blood Agar
CA-UTI	:	Community Acquired Urinary Tract Infection
CFU	:	Colony Forming Units
CoNS	:	Coagulase Negative Staphylococci
DNA	:	Deoxyribonucleic Acid
DoHS	:	Department of Health Services
EC	:	European Commission
ESBL	:	Extended spectrum beta-lactamases
GISA	:	Glycopeptide-intermediate Staphylococcus aureus
Gm	:	Gram
H_2S	:	Hydrogen Sulphide
HPF	:	High power field
Hrs	:	Hours
LF	:	Lactose fermenting
MA	:	MacConkey agar
MBL	:	MetalloLactamase
MDR	:	Multidrug Resistance
MHA	:	Mueller Hinton Agar
MIC	:	Minimum Inhibitory Concentration
Min	:	Minutes
ml	:	Milliliter
MoPH	:	Ministry of Public Health
MR	:	Methyl Red
MRSA	:	Methicillin-resistant Staphylococcus aureus
MSU	:	Mid-stream urine
NA	:	Nutrient agar
NCCLS	:	National Committee for Clinical Laboratory Standards
NLF	:	Non-lactose fermenting

No. :	Number
NPHL :	National Public Health Laboratory
NPV :	Negative Predictive Value
PABA :	Para-amino benzoic acid
PBP :	Penicillin binding protein
PNSSP :	Penicillin Non-Susceptible Streptococcus pneumoniae
PPV :	Positive Predictive Value
RBC :	Red Blood Cells
RNA :	Ribonucleic Acid
rpm :	revolution per minute
RS :	Renal Stone
SHV :	sulfhydryl reagent variable
SIM :	Sulphide Indole Motility
TMP/SMX :	Trimethoprim-Sulphamethoxazole
TSI :	Triple Sugar Iron
TUTH :	Tribhuvan University Teaching Hospital
UK :	United Kingdom
UPEC :	Uropathogenic Escherichia coli
US :	United States
UTI :	Urinary Tract Infection
VP :	Voges Proskauer
VRE :	Vancomycin-resistant Enterococcus
VUR :	Vesicoureteral Reflux
WBC :	White Blood Cells
WHO :	World Health Organization