CRITICAL SUCCESS FACTORS OF KNOWLEDGE APPLICATION IN SELECTED NEPALESE ORGANIZATIONS

A Thesis by Hari Prasad Pokharel TU Registration. No. 34-036668

> Submitted to Office of the Dean Faculty of Management Tribhuvan University

For the Degree of Doctor of Philosophy (Ph.D.) in Management

Kathmandu, NEPAL August 2013

DECLARATION

I hereby declare that the present study entitled "Critical Success Factors of Knowledge Application in Selected Nepalese Organizations" is based on my original research work. The results presented in the study have not been submitted elsewhere for the award of any degree.

Hari Prasad Pokharel Kathmandu, NEPAL. August, 2013

RECOMMENDATION OF THE SUPERVISOR

This is to certify that the thesis submitted by Hari Prasad Pokharel entitled "**Critical Success Factors of Knowledge Application in Selected Nepalese Organizations**" has been prepared as approved by the program in the prescribed format of the Faculty of Management, Tribhuvan University for the degree of Doctor of Philosophy in Management, which was completed under my supervision and guidance. I am satisfied with the language and substance of his thesis submitted to this Faculty.

To the best of my knowledge, this thesis is candidate's original research work and he has fulfilled all the other requirements of Doctor of Philosophy (Ph.D.). I am satisfied with the work done and recommend that this thesis be considered and approved for the award of the Ph.D. degree.

Date:

Professor Dr. Dev Raj Adhikari Dean Faculty of Management Tribhuvan University

VIVA-VOCE SHEET

We have conducted the viva-voce examination of the thesis

Submitted by

Hari Prasad Pokharel

Entitled

"Critical Success Factor of Knowledge Application in Selected Nepalese Organizations"

are found to be original work of the student and written according to the prescribed format. We recommend the thesis to be accepted as the fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) in management.

Viva-Voce Committee

Chairperson:
Supervisor:
External expert:

ACKNOWLEDGEMENTS

It would not have been possible to fulfill my primary obligation of preparing this thesis without the support of a number of persons. I cannot remain without giving credit for all the valuable assistance provided by various individuals and institutions, and for sharing my headaches and giving me immense pleasure in completing my work.

Foremost, my sincere gratitude goes to supervisor Professor Dr. Dev Raj Adhikari, Dean, Faculty of Management, Tribhuvan University, for his periodic reviews and critical guidance right from the initial phase to the end of this research study. Amidst his busy schedule as a dean, he provided valuable time to supervise me and has been a great source of inspiration and moral support, in particular, the addition of organization wise multiple regression analysis, and principal component analysis. I am also grateful to Professor Brian D. Janz, Fogelman College of Business and Economics, Tennessee, USA for his feedback on my queries related to his article and for encouraging me to proceed with my thesis after reviewing the proposal.

I am highly indebted to Professor Dr. Prem R. Pant, till recently attached with Central Department of Management, TU, for his immensely valuable suggestions. I express my gratitude to Professor Dr. Pusker Bajracharya and Professor Dr. Radheshyam Pradhan for their critical review of various components of my thesis.

I cannot fail to mention the special help provided by Mr. Ramesh Man Singh, BISCONS Development and Management Consultants, Kathmandu. My sincere acknowledgement goes to Mr. Sanjiv Khanal and Mr. Nishith Koirala for their immense support in survey administration. I would like to thank Pradeep Poudel, Dr. Madhusudhan Ghale, Nepal Agricultural Research Council (NARC), Professor Dr. Bimal K. Sinha, Dr. Jeevan K. Shrestha, Mr. Jeevan B. Karki and Ms. Sona Tamang, all from Institute of Medicine, Tribhuwan University Teaching Hospital (IOM/TUTH), and Associate-Professor Mukunda Neupane Institute of Engineering (IOE) for their kind cooperation during the surveys and interactions at the respective institutions. Similarly, my special appreciation goes to Mr. Rabi Manandhar Sayami and Mr. Sunil Kumar Deuja, Office of the Dean, for all possible administrative supports provided to me.

My fond acknowledgement to my life partner Rita for patiently coping with my nuances while I was hung up with my work, and for her constant supply of delicious coffee to inspire me in my work. Similarly, I have to mention my deep appreciation of the roles of my son Angesh and daughter Asia for maintaining the all important supportive environment required for me to concentrate on this thesis. I also acknowledge the contribution of Mr. Bhim Lal Paudel in providing necessary logistical support at different times.

Finally, my tremendous appreciation of all the fine scholars and researchers whose previous works have inspired me to breathe youthfully in and around the concepts of knowledge management and the structural equation modeling which are included in this thesis. As my obligation and gratitude, I have included their names in the bibliography section of this thesis. I wish to make special mention of the software 'Desktop Plagiarism Checker' by plagiarisma.net that functionally collaborates with Yahoo, Babylon and Google search engines, and which enabled me to check and control possibilities of plagiarism of my content with online materials that I have used in the process of preparing this thesis.

Hari Prasad Pokharel, Kathmandu, NEPAL. August, 2013

TABLE OF CONTENTS

DECLARATION	i
RECOMMENDATION OF THE SUPERVISOR	ii
VIVA-VOCE SHEET	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	vi
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF BOXES	xvi
ACRONYMS	xvii
CHAPTER 1	1
INTRODUCTION	1
1 1.1 Background	1
1.2 Classification of Knowledge	1
11.3 Difference between Data, Information, Knowledge and Wisdom	2
1.4 Knowledge Management Generations	3
1.3.1 The First Generation	3
1.3.2 The Second Generation	4
1.3.3 The Third Generation	4
1.5 Essential Skills of Knowledge Workers	5
1.6 Allocation of Knowledge Workers' Time	5
1.7 Levels of Knowledge	6
1.8 Contemporary Knowledge Management	7
1.9 Statement of the Problem	8
1.10 Scope of Research	9
1.11 Rationale of Study	10

1.12 Objectives of Study	11
1.13 Hypothesis	12
1.14 Limitations of Study	13
1.15 Methodology	14
1.15.1 Selection of Organization for Survey	14
1.15.2 Selection of Variables for Structural Model	15
1.15.3 Instrument Design to Measure the Variables	15
1.16 Methods of Data Analysis	16
1.16.1 Removal of Outlier	16
1.16.2 Reliability Analysis	16
1.16.3 Power Transformation of Data	17
1.16.4 Confirmatory Factor Analysis	17
1.16.5 Structural Equation Modeling	17
1.16.6 Monte Carlo Simulation	17
1.16.7 Simultaneous Equation System	18
1.16.8 Multiple Regression Analysis	18
1.16.9 Principal Component Analysis	18
1.17 Structural Equation Modeling Technique Adopted	21
1.18 Model Design	21
1.19 Simulated Experiment with Monte Carlo	22
1.20 Path Diagram of the Hypothesized Structural Equation Model	23
1. 21 Sample Size	26
1.22 Data Collection	26
1.23 Participants of the Sample	26
CHAPTER 2	28
LITERATURE REVIEW	28
2.1 Chapter Theme	28
2.2 Knowledge Types	28
2.3 Nature of Organizational Knowledge	29

2.4 Need of Knowledge Management	30
2.5 Modes of Knowledge Creation	32
2.6 Concept of Knowledge Transfer	34
2.7 Problems of Knowledge Application in SECI Model	34
2.8The Core Themes for Knowledge Management	35
2.9 Use of Scorecard in Knowledge Management	35
2.10 Knowledge Management Diversity	36
2.11 Critical Success Factors	37
2.11.1 Supportive Culture	39
2.11.2 Information Communication Technology	30
2.11.3 Organizational Memory	40
2.11.4 Work Process	40
2.11.5 Budget	40
2.11.6 Human Resource Development	40
2.12 Group Process	40
2.13 Knowledge Application	41
2.14 Technique of the Structural Equation Modeling	42
2.15 Model Specification	43
2.16 Model Identification	44
2.17 The Structural Equation Modeling Steps	45
2.18 Handling Singular Covariance Matrix	46
2.19 Checking the Misspecification Error	47
2.20 Model Studies in Knowledge Management	47
2.20.1 Nonaka's (1994) SECI Model	47
2.20.2 Sabherwal, and Fernandez's (2003) Level Effectiveness Model	48
2.20.3 Janz, and Parasamphanich's (2003) Organizational Climate Model	49
2.20.4 Ko, Kirsch, and King's (2005) Knowledge Transfer Model	49
2.20.5 Wang, Lan, and Xie's (2008) Trust and Openness Model	50
2.20.6 Hsiu-Fen's (2011) System Quality Model	51

CHAPTER 3

RELIABILITY ANALYSIS AND DATA TRANSFORMATION	52
3.1 Chapter Theme	52
3.2 Reliability Analysis of Scales	52
3.2.1 Work Process	53
3.2.2 Information Communication Technology	54
3.2.3 Supportive Culture	55
3.2.4 Human Resource Development	56
3.2.5 Organizational Memory	57
3.2.6 Budget	58
3.2.7 Group Process	59
3.2.8 Knowledge Application	60
3.3 Power Transformation of Data	62
CHAPTER 4	63
CONFIRMATORY FACTOR ANALYSIS	63
4.1 Chapter Theme	63
4.2 Concept of Confirmatory Factor Analysis	63
4.3 Basic Summary Statistics of Confirmatory Factor Analysis	64
4.4 Rejection of Null Model	65
4.5 Test of Assumptions Fit in Reflector Matrix	65
4.6 Input Matrix Produced by Confirmatory Factor Analysis	66
CHAPTER 5	68
PARAMETERS OF THE HYPOTHESIZED STRUCTURAL MODEL	68
5.1 Chapter Theme	68
5.2 Basic Statistics of the Hypothesized Model	68
5.3 Estimate of the Model Path Parameters	70
5.4 LaGrange Multiplier	71

5.5 Reproduced Matrix and Standardized Residuals Matrix	72
CHAPTER 6	74
SINGLE SAMPLE FIT EVALUATION OF THE ESTIMATED	
STRUCTURAL MODEL	74
6.1 Fit Indices Applied for Evaluation	74
6.1.1 Joreskog GFI	75
6.1.2 Bentler-Bonett Normed Fit Index	75
6.1.3 Bentler-Bonett Non-Normed Fit Index	75
6.1.4 Bentler Comparative Fit Index	76
6.1.5 Bollen's Delta	77
CHAPTER 7	78
TEST OF ASSUMPTIONS FIT STATUS OF THE ESTIMATED	
STRUCTURAL MODEL	78
7.1 Chapter Theme	78
7.2 Non-Centrality Based Assumptions	78
7.2.1 Steiger-Lind RMSEA Index	79
7.2.2 McDonald Non-Centrality Index	79
7.2.3 Population Gamma Index	80
7.2.4 Adjusted Population Gamma Index	80
7.3 Test of Univariate and Multivariate Kurtosis	80
7.3.1 Mardia-Based Kappa	80
7.3.2 Mean Scaled Univariate Kurtosis	81
7.3.3 Adjusted Mean Scaled Univariate Kurtosis	81
7.3.4 Relative Multivariate Kurtosis	81
7.4 Reflector Matrix	82

CHAPTER 8	84
MONTE CARLO EVALUATION OF THE STRUCTURAL MODEL	84
8.1 Chapter Theme	84
8.2 Prospects of Simulation in Research	84
8.3 Population Estimate of the Structural Model	84
8.4 Fit Indices Observed in Monte Carlo Simulation	85
8.4.1 The Steiger-Lind RMSEA Index	85
8.4.2 Chi-Square Probability	86
8.4.3 Other Fit Indices	87
CHAPTER 9	88
THE PERSISTENT, EARLY AND LATE ENABLERS OF	
KNOWLEDGE APPLICATION	88
9.1 Chapter Theme	88
9.2 Involvement Effect in the Linear Link of Variables	88
9.3 Organizational Effect in the Linear Link of variables	90
9.4 Principal Component Analysis	91
CHAPTER 10	93
MAJOR FINDINGS	93
10.1 Chapter Theme	93
10.2 Only Seven Variables Meet Minimum Reliability	93
10.3 Seven Variables of Model Converged Normally	93
10.4 Four Statistically Significance Model Paths Detected	93
10.5 Field Data Closely Fits to the Hypothesized Structural Model	95
10.6 Model Fulfills Centrality and Non-Centrality Assumptions	95
10.7 Model Stability Observed in Simulation Experiment and Simultaneous	
Equation System	95
10.8 Involvement Effect is Nil in Work Process to Knowledge Application Link	96

10.9 Critical Success Factors have both Board and Narrow Implications	
on Knowledge Management	96
CHAPTER 11	
CONCLUSIONS AND RECOMMENDATIONS	97
11.1 Chapter Theme	97
11.2 Conclusions	97
11.3 Recommendations for Future Research	102

BIBLIOGRAPHY

ANNEXURES

- Annex 1: Outlier Removed Data File
- Annex 2: Confirmatory Factor Analysis Results
- Annex 3: Structural Equation Modeling Results
- Annex 4: Monte Carlo Simulation Summery Results
- Annex 5: Multiple Regression Analysis Results
- Annex 6: Questionnaire
- Annex 7: Simultaneous Equation System Result

LIST OF TABLES

Table 1: Methods Deployed for Data Analysis	19
Table 2: Participants of the Sample	27
Table 3: Summary Statistics for Scale Work Process	53
Table 4: Item Statistics of Work Process	54
Table 5: Summary Statistics for Scale ICT	54
Table 6: Item Statistics of ICT	55
Table 7: Summary Statistics for Scale Supportive Culture	56
Table 8: Item Statistics of Supportive Culture	56
Table 9: Summary Statistics for Scale HRD	57
Table 10: Item Statistics of HRD	57
Table 11: Summary Statistics for Scale Organizational Memory	58
Table 12: Item Statistics for Organizational Memory	58
Table 13: Summary Statistics for Scale Budget	59
Table 14: Item Statistics for Budget	59
Table 15: Summary Statistics for Scale Group Process	60
Table 16: Item Statistics for Group Process	60
Table 17: Summary Statistics for Scale Knowledge Application	61
Table 18: Item Statistics for Knowledge Application	61
Table 19: Power Transformation of Data	62
Table 20: Basic Summary Statistics of CFA	64
Table 21: Chi-square / d.f. Ratio in CFA	64
Table 22: Reflector Matrix in CFA	66
Table 23: Input Matrix (Correlation Matrix)	66
Table 24: Basic Summary Statistics of the Hypothesized Model	69
Table 25: Estimate of Model Path Parameters	71
Table 26: LaGrange Multiplier	72

Table 27: Reproduced Matrix Generated by the Hypothesized Model	72
Table 28: Standardized Residuals Produced by the Hypothesized Model	73
Table 29: Single Sample Fit Indices	74
Table 30: Non-Centrality Based Assumption Fit Indices	78
Table 31: Test of Univariate and Multivariate Kurtosis	82
Table 32: Reflector Matrix of the Estimated Model	83
Table 33: Steiger-Lind RMSEA Observed in Monte Carlo Simulation	86
Table 34: Chi-Square p-level Observed in Monte Carlo Simulation	86
Table 35: Involvement Effect in the Linear Link of Model Variables	89
Table 36: Significant Independent Variables (Involvement <= 5 Years)	90
Table 37: Significant Independent Variables (Involvement <= 10 Years)	90
Table 38: Significant Independent Variables (Involvement >= 10 Years)	90
Table 39: Significant Independent Variables (Involvement >= 15 Years)	90
Table 40: Significant Independent Variables (Involvement >=20 Years)	90
Table 41: Significant Independent Variables in IOE	91
Table 42: Significant Independent Variables in IOM/TUTH	91
Table 43: Significant Independent Variables in NARC	91
Table 44: Power and Importance of Model Variables	92
Table 45: Power and Importance of Model Variables (All Sector)	92

LIST OF FIGURES

Figure 1: Path Diagram of the Hypothesized Structural Model

24

LIST OF BOXES

Box 1: SEPATH Syntax of the Hypothesized Structural Model

25

ACRONYMS

AGFI	Adjusted Goodness of Fit Index
APGI	Adjusted Population Gamma Index
APQC	American Productivity & Quality Center
CFA	Confirmatory Factor Analysis
CFI	Comparative Fit Index
GFI	Goodness of Fit Index
gpro	Group Process
hrd/HRD	Human Resource Development
ict/ ICT	Information Communication Technology
IPR	Intellectual Property Right
kapply	Knowledge Application
КМ	Knowledge Management
memory	Organizational Memory
NFI	Normed Fit Index
NNFI	Non-Normed Fit Index
PCA	Principal Component Analysis
PGI	Population Gamma Index
PNP	Population Non-Centrality Parameter
ROI	Return on Investment
SECI	Socialization, Externalization, Combination and Internalization
SEM	Structural Equation Model

wpro	Work process
IOM/TUTH	Institure of Medicine/Tribhuvan University Teaching Hospital
IOE	Institute of Engineering
NARC	Nepal Agricultural Research Council
S.D.	Standard deviation
NARC	Nepal Agricultural Research Council

For use with Monte Carlo Simulation Summary Result (Annex 4)

SEED1. The first of the two Monte Carlo seeds.

SEED2. The second seed, used only in Contaminated Normal distribution generation.

TERMCODE. The termination code for the analysis. If this is zero, the analysis apparently converged normally. If not, then the following codes apply.

1. The relative function change criterion was below the criterion value. This can occur when the function has stabilized, but the gradient and relative cosine criteria do not go to zero, because one of the parameters is on a boundary value.

2. The line search algorithm was unable to reduce the discrepancy function along the searched direction.

3. The number of iterations reached the maximum permissible value. If necessary, this value may be altered in the Analysis Parameters dialog.

4. Singular covariance matrix was encountered during iteration. On occasion, the parameters will be changed to values that yield a singular estimated covariance matrix. When this happens in maximum likelihood estimation, the discrepancy function cannot be evaluated, so iteration is stopped.

5. (Not currently use)

6. The iteration was terminated by user request, i.e., the user stopped iteration with the ESC key or the Cancel button.

DISCREP. The value of the discrepancy function after iteration.

RCOS. The maximum residual cosine criterion.

GRADIENT. The maximum absolute value of the gradient elements after iteration.

NUM_ITER. The number of iterations required before termination.

ICSC. The ICSF invariance criterion.

ICS. The ICS invariance criterion.

RED_PAR. The number of redundant parameters.

RED_CON. The number of redundant constraints.

BOUNDARY. The number of active inequality constraints (NAIC), or 'boundary cases,' after iteration.

CHI_SQR. The Chi-square goodness-of-fit statistic.

DF. The number of degrees of freedom for the Chi-square statistic.

PLEVEL. Probability level for the Chi-square statistic.

PAR_#. These are the parameter values, numbered as they are in the PATH1 analysis syntax. So, for example, PAR_23 is the value for the free parameter numbered 23 in the analysis syntax.

SE_#. These are the standard errors, numbered in the same way as the parameter numbers.

RMS_LO. The lower endpoint of the 90% confidence interval for the Steiger-Lind (1980) RMS index.

RMS_PT. The point estimate for the Steiger-Lind (1980) RMS index.

xxiii

RMS_HI. The upper endpoint of the 90% confidence interval for the Steiger-Lind (1980) RMS index.

NCP_LO. The lower endpoint of the 90% confidence interval for the population discrepancy function.

NCP_PT. The point estimate for the population discrepancy function.

NCP_HI. The upper endpoint of the 90% confidence interval for the population discrepancy function.

AIC. The rescaled Akaike information criterion.

BIC. The Schwarz Bayesian criterion.

BR_CUD. The Browne-Cudeck single sample cross-validation index.

GAMMA_LO. The upper endpoint of the 90% confidence interval for the population gamma index.

GAMMA_PT. The point estimate for the population gamma index.

GAMMA_HI. The upper endpoint of the 90% confidence interval for the population gamma index.

GAMAD_LO. The upper endpoint of the 90% confidence interval for the adjusted population gamma index.

GAMAD_PT. The point estimate for the adjusted population gamma index.

GAMAD_HI. The upper endpoint of the 90% confidence interval for the adjusted population gamma index.

IRGLS. The iteratively reweighted generalized least squares discrepancy function, if maximum likelihood estimates were obtained.