VERIFICATION OF THE OBSERVED DISCHARGE DATA

BY USING TANK MODEL

AND

FLOOD FORECASTING BY GUMBEL'S METHOD

IN KATHMANDU VALLEY OF BAGMATI BASIN AT KHOKANA

BY

SURAJ SHRESTHA

T.U. Regd. No: 5-2-37-783-2006

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER'S DEGREE OF SCIENCE IN HYDROLOGY AND METEOROLOGY

> TRIBHUVAN UNIVERSITY KATHMANDU, NEPAL May,2013

Approval

The thesis attached herewith entitled "Verification of the observed discharge data by using Tank Model and Flood Forecasting by Gumbel's method in Kathmandu Valley of Bagmati basin at Khokana" prepared and submitted by Mr. Suraj Shrestha in partial fulfillment of the requirement for the Master's Degree of Science in Meteorology to the Central Department of Hydrology and Meteorology, Tribhuvan University, is hereby accepted.

Approved by:

Prof. Dr.Lochan Parsad Devkota (Internal Examiner and HOD) Central Department of Hydrology & Meteorology Tribhuvan University Kirtipur, Nepal Dr.Sunil Adhikari (Associate professor) (External Examiner) Department of Hydrology & Meteorology Trichandra Multiple Collage Ghantaghar. Nepal

Mr. Tirtha Raj Adhikari (Lecturer) (Dissertation Supervisor) Central Department of Hydrology & Meteorology Tribhuvan University Kirtipur, Nepal

Certificate

This is to certify that the thesis entitled "Verification of the observed discharge data by using Tank Model and flood forecasting by Gumbel's method in Kathmandu valley of Bagmati Basin at Khokana." submitted by Mr. Suraj Shrestha for the partial fulfillment of Master's Degree of Science in Meteorology to the Central Department of Hydrology and Meteorology, Tribhuvan University during the academic year 2013, is based on his original research and investigations carried out under my guidance and supervision.

Sincerely,

.....

Mr. Tirtha Raj Adhikari (lecturer)

Dissertation Supervisor

Central Department of Hydrology and Meteorology

Tribhuvan University

Certificate of Authorship

I certify that:

- I am responsible for the work submitted in this project report, and that the original work is my own except as specified below. (specify)
- ✤ I have not submitted this work to any other institution for the award of a degree.
- All information (including diagrams and tables) or other information which is copied from, or based on, the work of others has its source clearly acknowledged in the text at the place where it appears.

Signed:

Date:

Acknowledgments

My life has changed, my professional and personal growth made their irreversible impact on my personality and professional qualification. Many people have contributed to this directly or indirectly. It would be impossible to thank them all here because the listing would double the size of my thesis, so I just mention the closest friends and colleagues who have been with me during this unforgettable time of my life.

I would like to thank Associate Prof. Tirtha Adhikari, my supervisor at Tribhuvan University, where I have completed my master degree in 2013, for motivating me and take a challenge

I thank my supervisor Associate Prof. Tirtha Adhikari who was with me for all these years and became more than just a supervisor and a compatriot but a friend who supported me in difficult moments of my professional life by his good advice and an encouraging word. I would like to thank Prof. Dr.Lochan Parsad Devkota (Head of Department, CDHM), Associate professors Deepak Aryal, Dr.Binod Shakya, lecturers Madan Sigdel, Mr. Damodar Bagale for their encouragement all over the study period. I would also like to thank Mr.Ramchandra Karki, Mr.Binod Parajuli and all staff members of Department of Hydrology and Meteorology (DHM) for their support in making the availability of necessary data for my study. I would like to thank my dear friends, and, who spent their time with me having fun and sharing troubles.

I am grateful to express my thanks to Deputy administrator Mr. Subash Kandel and all other administrative staffs of CDHM, T.U., Kirtipur who contributed a lot to this thesis and helping to develop my feeble idea of the thesis into a sensible piece of work.

But the people who gave me the reason and the power to pursue towards my M.Sc. in Hydrology and Meteorology, through the B.Sc., are my parents. My parents had always been proud of me and helped me to keep up working by a good advice and his reassuring word. My parents' great love, which I always feel despite of the distance between us, is my source of vital energy. For this reason, I dedicate this thesis to them.

٧

ABSTRACT:

Flow estimation at a point in a river is vital for a number of hydrologic applications including flood forecasts. This paper presents the results of a basin scale rainfall-runoff and hydraulic modeling in Bagmati river basin in Nepal. A distributed lumped conceptual flood forecasting model, namely Tank Model was calibrated in this study for the Bagmati River Basin of Kathmandu valley at Khokana. Ten years rainfall, evaporation and discharge data were collected from DHM and compiled as an input to Tank Model. The simulation was done for a period of ten years data, eight years during calibration and two years during validation. Statistical method and objective functions were applied to evaluate the verification capability of the Tank Model. Eight years of flood data were used to calibrate the Tank Model and the performance of the model was verified by using 2007and 2008 data. A set of tank coefficients that suit tank configuration selected for Bagmati River Basin were determined by trial and error calibrations. The predicted peak discharge was close to the observed value and the smaller discharges followed the observed trend. A mean of 15m³/s, 11m³/s was calculated for the observed discharge while the mean of the simulated discharge was 16m³/s, 12m³/s, during the validation period of 2007 and 2008 respectively. The standard deviation was 25m³/s, 13m³/s for the observed discharge and 17m³/s, 10m³/s for the simulated discharge during the validation period of 2007 and 2008 respectively. The overall correlation coefficient between observed and simulated discharge was 0.84, 0.90, 0.85, 0.91, 0.91, 0.91, 0.83, and 0.79 during calibration period. The maximum instantaneous flow of 942m³/s was recorded while the lowest flood flow of 103 m³/s was recorded during observation. The 17-year mean instantaneous flood flow is 420.76m³/s with a skewness of 0.98 and Confidence Level (95%) of 126.31. The maximum instantaneous flow of 820.41 m³/s was recorded while the lowest flood flow of 59.25m³/s was recorded during simulation. The 10-year mean instantaneous flood flow is 221.26m³/s with a skewness of 2.64 and Confidence Level (95%) of 158.08. Measured and predicted flood flows show no significant differences hence, a goodness of fit of the Gumbel distribution.

Key Words: Flood forecast, Tank Model, Gumbel Distribution, Calibration, Validation and Bagmati Basin

Cont	ents		Pages
	ABST	RACT	iii
	Ackno	owledgement	iv
	Certif	ficate of Authorship	v
	List o	of Tables	vi
	List o	of Figures	vii
	Table	e of Contents	ix
1	Intro	duction	1
	1.2	Objectives of the study	
	1.3	Limitations of Study	3
	1.4	Station selection for the study	4
	1.5	Thesis layout	5
2	Liter	ature Review	6
	2.1	Precipitation	6
	2.2	Peak Discharge	7
	2.3	Evaporation and transpiration	8
	2.4	Infiltration	8
	2.5	Stream flow	9
	2.6	Flood estimation	10
	2.7	Rainfall-Runoff models	11
	2.8	Flood Frequency analysis	15
	2.9	Summary	15
3	Study	y area	16
		3.1 Topography	17
	3	3.2 Climate	18

Table of Contents

		3.3	River Sys	tem	. 23
		3.4	Source	of Data	. 25
	4	Methodol	ogy		. 26
		4.1	Tank Me 4.1.1 4.1.2	odel Data file (*.dat) The parameter file (*.par)	26 26 26
			4.1.3	Initial condition file (*.ini)	26
			4.1.4	Simulation file (*.sim)	. 26
			4.1.5	Model	27
			4.1.6	Input	29
		4.2	A sho	rt theoretical description of the application introduction.	30
		4.3	Introd	luction to genetic algorithm	31
		4.4	Tank I	Model with soil moisture storage	33
		4.5	Mode	l Calibration	39
		4.6	Mode	l validation	. 39
		4.7	Gumb	el's Method	. 41
5		RESULTS A	AND DISCU	SSION	44
		5.1	Result		. 44
			5.1.1	Model Calibration	44
			5.1.2	Model validation	47
			5.1.3	Flood Frequency analysis	68
		5.2	Discus	ssion	71
	6	Conclusion 6.1 Conc	ns and Reco clusions	ommendations	. 74 74
		6.2 Reco	mmendatic	ons	75
RE	FER	ENCES			76

List of Tables

Tables	Page
Table1.1: list of stations	4
Table5.1. Tank model parameters used for calibration	45
Table5.2. Initial condition for Tank model used for calibration	46
Table5.3. Calibrated Tank model parameters	46
Table5.4. Validated Tank model parameters	48
Table5.5. Efficiency of the Tank Model on the basis of daily data	67
Table5.6. Flood estimation using the Gumbel distribution	69

List	of	Fig	ures
------	----	-----	------

Figure	page
Fig.1: Satellite image of the Bagmati River Basin in the Kathmandu Valley	16
Fig.3.1: Study Area	17
Fig.3.2: Annual average temperature at Godavari from 1999-2008	. 19
Fig.3.3: Annual average temperature at Khokana from 1999-2008	19
Fig.3.4: Annual average temperature at Khumaltar from 1999-2008	20
Fig.3.5: Annual average temperature at Ktm Airport from 1999-2008	20
Fig.3.6: Annual average temperature at Nagarkot from 1999-2008	21
Fig.3.7: Annual average temperature at Panipokhari from 1999-2008	21
Fig.3.8.a: Discharge at Khokana from 1999-2008	22
Fig.3.8.b: Annual Rainfall Runoff Relationship Bagmati at Khokana	22
Fig.3.9: River System of Bagmati Basin	24
Fig.4.1: Structure of Tank Model	37
Fig.4.2: General Flow Chart of Tank	38
Fig.5.1: Daily observed flows and rainfall in the year 1999	49
Fig.5.2: Daily simulated flows and rainfall in the year 1999	50
Fig.5.3: Daily observed and simulated flows and rainfall in the year	
1999 using tank model	50
Fig.5.4: Daily observed flows and rainfall in the year 2000	51
Fig.5.5: Daily simulated flows and rainfall in the year 2000	51
Fig.5.6: Daily observed and simulated flows and rainfall in the year	
2000 using tank model	52
Fig.5.7: Daily observed flows and rainfall in the year 2001	52
Fig.5.8: Daily simulated flows and rainfall in the year 2001	53
Fig.5.9: Daily observed and simulated flows and rainfall in the year	
2001 using tank model	53
Fig.5.10: Daily observed flows and rainfall in the year 2002	54
Fig.5.11: Daily simulated flows and rainfall in the year 2002	54

Fig.5.12: Daily observed and simulated flows and rainfall in the year	
2002 using tank model	55
Fig.5.13: Daily observed flows and rainfall in the year 2003	55
Fig.5.14: Daily simulated flows and rainfall in the year 2003	56
Fig.5.15: Daily observed and simulated flows and rainfall in the year	
2003 using tank model	56
Fig.5.16: Daily observed flows and rainfall in the year 2004	57
Fig.5.17: Daily simulated flows and rainfall in the year 2004	57
Fig.5.18: Daily observed and simulated flows and rainfall in the year	
2004 using tank model	58
Fig.5.19: Daily observed flows and rainfall in the year 2005	58
Fig.5.20: Daily simulated flows and rainfall in the year 2005	59
Fig.5.21: Daily observed and simulated flows and rainfall in the year	
2005 using tank model	59
Fig.5.22: Daily observed flows and rainfall in the year 2006	60
Fig.5.23: Daily simulated flows and rainfall in the year 2006	60
Fig.5.24: Daily observed and simulated flows and rainfall in the year	
2006 using tank model	61
Fig.5.25: Daily observed flows and rainfall in the year 2007	61
Fig.5.26: Daily simulated flows and rainfall in the year 2007	62
Fig.5.27: Daily observed and simulated flows and rainfall in the year	
2007 using tank model	62
Fig.5.28: Daily observed flows and rainfall in the year 2008	63
Fig.5.29: Daily simulated flows and rainfall in the year 2008	63
Fig.5.30: Daily observed and simulated flows and rainfall in the year	
2008 using tank model	64
Fig.5.31: Comparison between Gumbel Distribution of annual daily	
maximum discharge of observed and simulated	70