
THE IMPACT OF CLIMATE CHANGE ON RUNOFF GENERATION IN LANGTANG BASIN NEPAL

Dissertation submitted to the Central Department of Hydrology and Meteorology in partial fulfillment of the Master's Degree of Science in Meteorology

Central Department of Hydrology and Meteorology Institute of Science and Technology Tribhuvan University, Kirtipur Kathmandu, Nepal April, 2014

CENTRAL DEPARTMENT OF HYDROLOGY & METEOROLOGY

Phone No.: 4-331418, 4-333887 Office of the Head of Department Kirtipur, Kathmandu, Nepal Fax No.: 977-1-4331964

Date:

Letter of Recommendation

This is to certify that Mr. Gopi Adhikari has prepared the dissertation entitled "**THE IMPACT OF CLIMATE CHANGE ON RUNOFF GENERATION IN LANGTANG BASIN**" to fulfill the partial requirement for the award of the degree of Master of Science in Meteorology of the Tribhuvan University. It is the record of the candidate's own work carried by him under my supervision and guidance.

Dissertation Supervisor

Mr. Tirtha Adhikari Associate professor Central Department of Hydrology and Meteorology Tribhuvan University, Kirtipur Kathmandu, Nepal

TRIBHUVAN UNIVERSITY CENTRAL DEPARTMENT OF HYDROLOGY & METEOROLOGY

Phone No.: 4-331418, 4-333887 Office of the Head of Department Kirtipur, Kathmandu, Nepal Fax No.: 977-1-4331964

Date:

Letter of Approval

The dissertation entitled "THE IMPACT OF CLIMATE CHANGE ON RUNOFF GENERATION IN LANGTANG BASIN" submitted by Mr.Gopi Adhikari has been approved as a partial fulfillment for the Masters of Science in Meteorology.

Prof. Dr. Lochan Prasad Devkota (Internal Examiner) Head Central Department of Hydrology and Meteorology Tribhuvan University Kathmandu, Nepal

Mr. Tirtha Adhikari (Dissertation Supervisor) Associate professor Central Department of Hydrology and Meteorology Tribhuvan University Kathmandu, Nepal

Dr. Dibas Shrestha (External Examiner) Scientific Officer, NAST

ACKNOWLEDGEMENT

I would like to express my profound gratitude to **Mr.Tirtha Adhikari**, Associate professor, Department of Hydrology and Meteorology, Tribhuvan University for his constant supervision and guidance to accomplish this research.

I am thankful to **Prof. Dr. Lochan Prasad Devkota**, Head of the Central Department of Hydrology and Meteorology for his encouragement and support during the study period.

My sincere thanks goes to Associate Professors Mr. Dipak Aryal, Dr. Binod Shakya, Mr. Tek Bahadur Chettri Lecturers Dr.Madan sigdel, Mr. Binod Dawadi and Assistant Lecturer Mr. Damodar Bagale, CDHM, TU for their cooperation during the study period. I would also like to thank all the staff members of Central Department of Hydrology and Meteorology for their help and cooperation during the study period.

My sincere thanks go to my colleagues **Mr. Rameshwar, Mr. Niraj Shankar, Mrs Bibhuti, Mrs Indira and Mr. Binod** for their help and cooperation during the study period. And special thanks to **Mr. Harish Lekhak** for kindly support to complete this research.

I am grateful to DHM, for providing valuable data. Similarly, I acknowledge all the authors and writers, of whom the work is cited.

Finally, my sincere gratitude goes to my beloved parents and all my family members for their continuous support, due to which I could complete my work on time.

Gopi Adhikari

April, 2014

ABSTRACT

Climate change has potential impacts on economy, ecology, and environment of Himalayas. Climate change studies in Himalayan regions have focused mainly on glacier melting and retreating, Glacial Lake Outburst Flood (GLOF) etc. Changing temperature has direct impacts on glaciers and snow that affects the snowmelt and river discharge. Hence, this research has been carried out to understand the impact of climate change on runoff generation of Langtang basin. This runoff is important for planners and designers in the aspect of irrigation, hydropower, and drinking water supply and so on. So, the runoff estimation study is essential. This study is carried out using monthly Thornthwaite water balance model. Thornthwaite monthly water balance model is one of the popular model developed by USGS for the runoff estimation and can be applied to estimate the runoff of snow and glacier bound catchment. This study also focuses on the runoff estimation of past, present and future scenario at Langtang region of Nepal by using the Thornthwaite model. The outputs of the analysis on temperature trend revealed a faster warming trend in Langtang area (i.e. 0.084 °C/year). The mean annual soil moisture storage is increasing pattern (i.e.0.71mm/year). The precipitation and runoff are also observed increasing (i.e.10.59mm/year and 0.8mm/year). The coefficient of determination of calibration and validation are 0.926and 0.996 that implies that the model is well validated and calibrated as well. The increase/decrease in temperature and runoff has proportional relationship and increase/decrease in rainfall and runoff has also proportional relationship. The projected runoff by the model is slightly decreasing from 2001 to 2060 this result shows that the chances of flood in summer and possible drought in winter may further enhanced in the future. The main outputs of this study help to implement appropriate strategy for water resources management and hydropower development and provide a strong message on the scenario of the Global impact of warming in the Himalayan region.

Keywords: Climate change, Thornthwaite, temperature, precipitation, runoff, Soilmoisture.

TABLE OF CONTENTS

Acknowledgements	IV
Abstract	V
List of Tables	IX
List of Figures	X
Acronyms and abbreviations	XII
CHAPTER 1: INTRODUCTION	1
1.1 Background	1
1.2 Climate change in Nepal Himalayas	3
1.3 Impact of climate change on runoff generation	4
1.4 About the model and basin	7
CHAPTER 2: OBJECTIVES AND LIMITATIONS	8
CHAPTER 2: OBJECTIVES AND LIMITATIONS	8 8
	-
2.1 Objectives of the Study	8
2.1 Objectives of the Study2.2 Limitations	8
2.1 Objectives of the Study2.2 Limitations2.3 Scope of the study	8 8 8
 2.1 Objectives of the Study 2.2 Limitations 2.3 Scope of the study CHAPTER 3: LITERATURE REVIEW 	8 8 8 9
 2.1 Objectives of the Study 2.2 Limitations 2.3 Scope of the study CHAPTER 3: LITERATURE REVIEW 3.1 Climate change and Runoff generation; Global studies 	8 8 9 9
 2.1 Objectives of the Study	8 8 9 9 15

4.3 Climate		
4.4 Soil	20	
CHAPTER-5: METHODOLOGY		
5.1 Data Collection	21	
5.2 Research design	21	
5.3 Background of the model	22	
5.4 Method of Analysis		
5.5 Running the Water-Balance Program		
5.6 SDSM	28	
CHAPTER-6: DATA ANALYSIS	30	
6.1 Analysis of data	30	
6.2 Monthly and Annual rainfall graph	32	
6.3 Annual runoff since 1988 to 2008	32	
6.4 Calibration and validation	34	
6.5 Comparison of runoff with temperature		
6.6 Comparison of runoff with rainfall	37	
6.7 Soil moisture storage from 1988 to 2008		
6.8 WD&WS method deficit, surplus		
6.9 Monthly relation between runoff, rainfall& temperature	40	
6.10 Projected runoff from A1B scenario (2001-2060)	41	
6.10.1 Analysis of A1B projected runoff from T-Max	41	
6.10.2 Analysis of A1B projected runoff T-Mean	43	
6.10.3 Analysis of A1B projected runoff T-Min	45	

CHAPTER-7: Discussion	
CHAPTER-8: CONCLUSION AND RECOMMENDATION	49
8.1 Conclusion	49
8.2 Recommendation	50
REFERENCES	51
APPENDIX	59

LIST OF TABLES

Table 6.1 Calibration of runoff	34
Table 6.1 Validation of runoff	34
Table 6.3 Analysis of WD and WS	39
Table A1- Average Monthly Temperature, Runoff and Rainfall	59
Table A_{2} . Used parameters to run the model by heat and trial method	59
Table A3 -Original data from model (T-max)	60
Table A4 -Original data from model (T-mean)	66
Table A5 -Original data from model (T-min)	72

LIST OF FIGURES

Figure 1.1 Global average temperatures, BBC 2010	2
Fig 4.1 Location of study area, Map Source: Walter W.Immerzeel et al (2011)	19
Figure 5.1 Schematic sketch of research design	22
Figure 5.2 Diagram of the water-balance model	24
Figure 5.3 Thornthwaite monthly water balance model (running tool)	27
Figure 5.4 Schematic illustrating the general approach to downscaling	29.
Figure 6.1 Langtant Kyanjing Monthly Average Temperatures	30
Figure 6.2 Yearly temperature trends from T-max	30
Figure 6.3 Yearly temperature trend from T-min	30
Figure 6.4 Yearly temperature trends from T-mean	31
Figure 6.5 Average monthly rainfall	32
Figure 6.6 Annual rainfall of study area	32
Figure 6.7 Annual runoff from T-mean	33
Figure 6.8 Annual runoff from T-max	33
Figure 6.9 Annual runoff from T-min	33
Figure 6.10 Calibration of runoff	34
Figure 6.11 Validation of runoff	34
Figure 6.12 Runoff and temperature relation from T-max	35
Figure 6.13 Runoff and temperature relation from T-mean	35
Figure 6.14 Runoff and temperature relation from T-min	36
Figure 6.15 Runoff and rainfall relationship from T- max	37
Figure 6.16 Runoff and rainfall relationship from T- mean	37
Figure 6.17 Runoff and rainfall relationship from T- min	38
Figure 6.18Annual soil Moisture storage from T-mean	38
Figure 6.19Annual soil Moisture storage from T-min	38
Figure 6.20 Relations between precipitation, runoff and temperature	40
Figure 6.21 Runoff analyses from 2001 to 2010	41
Figure 6.22 Runoff analyses from 2011 to 2020	41

Figure 6.23 Runoff analyses from 2021 to 2030	41
Figure 6.24 Runoff analyses from 2031 to 2040	41
Figure 6.25 Runoff analyses from 2041 to 2050	41
Figure 6.26 Runoff analyses from 2051 to 2060	41
Figure 6.27 Runoff analyses from 2001 to 2060	42
Figure 6.28 Runoff analyses from 2001 to 2010	43
Figure 6.29 Runoff analyses from 2011 to 2020	43
Figure 6.30 Runoff analyses from 2021 to 2030	43
Figure 6.31 Runoff analyses from 2031 to 2040	43
Figure 6.32 Runoff analyses from 2041 to 2050	43
Figure 6.33 Runoff analyses from 2051 to 2060	43
Figure 6.34 Runoff analyses from 2001 to 2060	44
Figure 6.35 Runoff analyses from 2001 to 2010	45
Figure 6.36 Runoff analyses from 2011 to 2020	45
Figure 6.37 Runoff analyses from 2021 to 2030	45
Figure 6.38 Runoff analysis from 2031 to 2040	45
Figure 6.39 Runoff analysis from 2041 to 2050	45
Figure 6.40 Runoff analysis from 2051 to 2060	45
Figure 6.41 Runoff analysis from 2001 to 2060	46

ACRONYMS AND ABBREVIATIONS

AET	Actual Evapotranspiration
ASL	Above Sea Level
BBC	British Broadcasting Council
CCCM	Climate Change Circulation Model
CDHM	Central Department of Hydrology and Meteorology
CIG	Climate Impact Group
СО	Carbon Monoxide
CO2	Carbon Dioxide
DCC	Double Cumulative Curve
DEM	Digital Elevation Model
DHM	Department of Hydrology and Meteorology
DRO	Direct Runoff
GCMs	Global Climate Models
GIS	Geographical Information System
GLOFs	Glacier Lake Outburst Floods
GSM	General Circulation Model
HAD	High Aswan Dam
HadCM3	Hadley Centers Third- Generation General Circulation Model
НКН	Hindu Kush Himalaya
HVB	Hydrologiska Byrans Vattenbalansaveling
ICIMOD	International Center for Integrated Mountain Development

IPCC	Intergovernmental Panel on Climate Change
MODIS	Moderate Resolution Imaging Spectrodiometer
MOS	Model Output Statistics
NCEP	National Center for Environmental Program
NRB	Nanjing River Basin
PDD	Positive Degree Day
PET	Potential Evapotranspiration
RCMs	Regional Climate Models
RO	Runoff
SCA	supervisory Control Acquisition
SDSM	Statistical Downscaling Model
SRM	Snow Melt Runoff Model
STW	Soil-Moisture Storage Withdrawal
T-max	Maximum Temperature
T-mean	Mean Temperature
T-min	Minimum Temperature
TU	Tribhuvan University
USGS	United States Geological Survey
WMO	World Meteorological Organization