# ANALYSIS OF DROUGHT EVENTS AND ITS COMPARISON WITH CEREAL CROPS YIELD AT KARNALI BASIN



A Dissertation Submitted to

### CENTRAL DEPARTMENT OF HYDROLOGY AND METEOROLOGY

Institute of Science and Technology Tribhuvan University Kirtipur, Kathmandu, Nepal

In Partial Fulfillment of the Requirements for the Award of Degree of M.Sc. in Meteorology

Submitted by

### **Bickky Karki**

T.U. Exam Roll No.: 6058

March, 2015



# **TRIBHUVAN UNIVERSITY**

**CENTRAL DEPARTMENT OF HYDROLOGY & METEOROLOGY** 

Kirtipur, Kathmandu, Nepal

Telephone: 4-331418 4-333887

Date:....

#### RECOMMENDATION

This dissertation entitled "Analysis And Comparison of Drought Events With Cereal Crops Yield At Karnali Basin" submitted by Mr. Bickky Karki has been approved as a partial fulfillment for the M.Sc. in Meteorology.

We (I), therefore, recommend the dissertation for acceptance and approval.

.....

Prof. Dr. Lochan Pd. Devkota Head of Department Central Department of Hydrology and Meteorology Tribhuvan University Kirtipur, Kathmandu, Nepal Supervisor Tirtha Raj Adhikari Associate Professor Central Department of Hydrology and Meteorology Institute of Science and Technology Tribhuvan University, Kirtipur, Kathmandu, Nepal

.....

.....

External Examiner Shiva Prasad Nepal

Senior Divisional Meteorologist Department Of Hydrology And Meteorology Babarmahal, Kathmandu

Ref:

### DECLARATION

I, Bickky Karki, hereby declare that the work presented in this dissertation is a genuine work done originally by me and has not been submitted elsewhere for the award of any degree. All sources of information have been specifically acknowledged by reference to the author(s) or institution(s).

.....

**Bickky Karki** 12/3/2015

### ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor Associate Professor **Mr**. **Tirtha Adhikari**, Department of Hydrology and Meteorology, for his guidance, continuous support in from beginning to the end of this research.

I am indebted to **Prof. Dr. Lochan Prasad Devkota**, Head of the Central Department of Hydrology and Meteorology, for his encouragement and support throughout the study. I am also thankful to all the teachers and staffs of the department.

I am very grateful to **Mr. Bikash Nepal**, Assistant Meteorologist, Forecasting Division, Airport for his support on mapping. I am also thankful to my friend **Mr. Subash Rimal**, Meteorologist, Forecasting Division, Airport for his support and help during the study period.

My sincere thanks goes to my lovely brother **Mr. Roshish thapa** for his continuous help and cooperation since beginning of the study.

I am also grateful to Department of Hydrology and Meteorology, Ministry of Agricultural Development for providing valuable data and information. I also acknowledge different authors, writers and researchers of whom the work is cited.

And finally my deepest gratitude goes to my lovable parents without whose blessings, work would not have been possible and also to all of my family members for their continuous support.

**Bickky Karki** 

March, 2015

### ABSTRACT

Nepal's fragile geology and steep topography makes it one of the most disaster prone countries in world. Floods, landslides, earthquakes, GLOFs (glacial lake outburst floods) and droughts are the most common natural hazards. In recent years, due to the climate related disasters like drought has resulted in higher food insecurity in the most vulnerable communities, particularly in Western Nepal. Karnali is one of the most affected drought region of Nepal and also the study of drought is limited in Nepal hence the study is made on this topic at Karnali basin.

For the study, simple and flexible tool was used named SPI on the basis of precipitation as the only input parameter around the basin. The study mainly focuses the meteorological and agricultural drought so the drought analysis was done with the time scale of 3 months (June, July and August) or SPI-3 for a period of 34 years (1980 to 2013). There were total thirteen stations made final after eliminating other stations due to data unavailability for the study at the basin.

Based on the study, all the stations were recorded by normal drought (extremely, very, moderately wet and near normal are merged as normal) event and then moderate type were found in most of the stations for same or different years. And lastly severe and extreme were recorded after the previous two types. Similarly the result also shows that the number of drought events is highest in the month of June during the 7 years of time interval i.e. from 1987-2013 with 22 droughts in total. And finally the drought events were compared with different cereal crops yield such as paddy, maize and millet from 1999 to 2011. The result shows that all the crops yield were not in decreasing phase, it was in increasing trend rather apart from two or three years throughout the period of eleven years used for comparison. It was quite unknowing that the yields were not affected more by drought in this part of area from 1999 to 2011, the reason may be the use of more chemical fertilizers for quick production by the farmers and also the development of canals for irrigation purpose that made the crops good enough for the increment of yield.

# **TABLE OF CONTENTS**

| TO  | PIC                              | Page No |
|-----|----------------------------------|---------|
| INN | VER COVER PAGE                   | i       |
| REC | COMMENDATION                     | ii      |
| DEC | CLARATION                        | iii     |
| AC  | KNOWLEDGEMENT                    | iv      |
| TAI | BLE OF CONTENTS                  | V       |
| LIS | T OF TABLES                      | vii     |
| LIS | T OF FIGURE                      | viii    |
|     | STRACT                           | ix      |
| AB  | BREVIATIONS                      | Х       |
| СН  | APTER I: INTRODUCTION            |         |
| 1.1 | Background                       | 1       |
| 1.2 | Rationale of the Study           | 2       |
| 1.3 | Limitations of the study         | 3       |
| 1.4 | Objectives of the Study          | 3       |
| СН  | APTER II: LITERATURE REVIEW      |         |
| 2.1 | General                          | 4       |
| 2.2 | Standardized precipitation index | 5       |
| 2.3 | Interpretation of SPI            | 5       |
| 2.4 | Advantages of SPI                | 6       |
| 2.5 | Limitations of SPI               | 7       |
| 2.6 | Drought definitions              | 9       |
| 2.7 | Classifications Of droughts      | 10      |
| 2.8 | Impact of droughts               | 11      |
| 2.9 | Drought in Nepal                 | 14      |

#### CHAPTER III: STUDY AREA

| 3.1 | Karnali Basin                      | 17 |
|-----|------------------------------------|----|
| 3.2 | Selections Stations for the study  | 18 |
| 3.3 | Topography                         | 19 |
| 3.4 | General Season and Climate feature | 20 |
| 3.5 | Precipitation                      | 21 |
|     |                                    |    |

### **CHAPTER IV: METHODOLOGY**

| 4.1 | Data Collection                       | 23 |
|-----|---------------------------------------|----|
| 4.2 | SPI Methodology                       | 23 |
| 4.3 | Program operation and input Structure | 31 |
| 4.4 | Running SPI Program                   | 32 |

#### **CHAPTER V: RESULTS**

| 5.1 | Station-wise temporal Analysis of Drought | 35 |
|-----|-------------------------------------------|----|
| 5.2 | Frequency Analysis                        | 48 |
| 5.3 | Analysis of Extreme Drought               | 49 |

### **CHAPTER VI: DISCUSSIONS**

| 6.1 | Comparison of drought events and cereal crops yield | 54 |
|-----|-----------------------------------------------------|----|
| СНА | PTER VI: CONCLUSION AND RECOMMENDATION              |    |
| 7.1 | Conclusion                                          | 57 |
| 7.2 | Recommendations                                     | 58 |

#### REFERENCES

#### APPENDICES

# LIST OF TABLES

| Table No 2-1:  | SPI time scale for different drought                                 |
|----------------|----------------------------------------------------------------------|
| Table No 3-1:  | Selected stations for the study                                      |
| Table No 4-3:  | SPI and Corresponding Cumulative Probability in Relation to the Base |
|                | Period                                                               |
| Table No 4-4:  | SPI value for chosen period                                          |
| Table No 5-1:  | Drought Episode for Pipalkot Station                                 |
| Table No 5-2:  | Drought Episode for Chainpur Station                                 |
| Table No 5-3:  | Drought Episode for Silgadhi Doti Station                            |
| Table No 5-4:  | Drought Episode for Asaraghat Station                                |
| Table No 5-5:  | Drought Episode of Thirpu Station                                    |
| Table No 5-6:  | Drought Episode for Jumla Station                                    |
| Table No 5-7:  | Drought Episode for Serighat Station                                 |
| Table No 5-8:  | Drought Episode for Nagma Station                                    |
| Table No 5-9:  | Drought Episode for Puspa Camp Station                               |
| Table No 5-10: | Drought Episode for Dailekh Station                                  |
| Table No 5-11: | Drought Episode for Jamu Station                                     |
| Table No 5-12: | Drought Episode for Chisapani Station                                |
| Table No 5-13: | Drought Episode for Surkhet Station                                  |
| Table No 5-14: | Drought occurrences at Karnali basin                                 |
|                |                                                                      |

# LIST OF FIGURES

| Figure No 3:    | Study area                                              |
|-----------------|---------------------------------------------------------|
| Figure.4-1:     | Example of equiprobability transformation from fitted   |
|                 | gamma distribution to the standard normal distribution. |
| Figure. 4-2:    | Standard normal distribution with the SPI               |
|                 | having a mean of zero and variance of one               |
| Figure 5-1-A:   | (a),(b),(c),(d),(e),f) &(g): extreme droughts for June  |
| Figure 5-2-B:   | (a), (b), (c), (d),(e) & (f): Extreme droughts for July |
| Figure 5-3-C:   | (a),(b),(c),(d) &(e):Extreme droughts for August        |
| Figure 5-4(a):  | yield of paddy and drought events                       |
| Figure 5-5 (b): | yield of maize and drought events                       |
| Figure 5-6(c):  | yield of millet and drought events                      |

# **ABBREVIATIONS**

| CBS    | Central Bureau Of Statistics                    |
|--------|-------------------------------------------------|
| CDHM   | Central Department Of Hydrology and Meteorology |
| DHM    | Department Of Hydrology and Meteorology         |
| DJAF   | December January February                       |
| FAO    | Food And Agriculture Organization               |
| GLOF   | Glacier Lake Outburst Flood                     |
| ha     | Hectare                                         |
| HPI    | Human Poverty Index                             |
| IPCC   | Inter Governmental Panel on Climate Change      |
| ITCZ   | Inter Tropical Convergance Zone                 |
| JJAS   | June July August September                      |
| MAM    | March April May                                 |
| masl   | metres above sea level                          |
| MT     | Metric Ton                                      |
| MoAD   | Ministry of Agricultural Development            |
| NekSAP | Nepal Khadhya Surakshya Anugaman Pranali        |
| ON     | October November                                |
| PDSI   | Palmer Drought Severity Index                   |
| SPI    | Standardized Precipitation Index                |
| sq. km | Square Kilometer                                |
| TU     | Tribhuvan University                            |
| UN     | United Nation                                   |
| USDA   | United States Department Of Agriculture         |
|        |                                                 |