IMPACT OF CLIMATE CHANGE ON AGRICULTURAL PRODUCTION: CASE OF KAVRE AND JUMLA DISTRICT

Submitted to

Central Department of Environment Science Tribhuvan University, Kritipur, Nepal For the partial fulfillment of the requirement for the Master of Science (M.Sc.) Degree of Environmental Science of Tribhuvan University

Submitted by

Keerti Singh Pandey

Exam Roll No.: 460 [Sixth Batch]

T.U. Registration No.: 5-1-33-313-2000

Central Department of Environment Science

Tribhuvan University, Kirtipur, Nepal

September, 2012

Ref:

TRIBHUVAN UNIVERSITY

Central Department of Environmental Science

Telephone: 4-332147 4-332711 Kirtipur, Kathmandu, Nepal

Date:

Letter of Recommendation

This is certify that Ms. Keerti Singh Pandey has prepared this thesis entitled "**Impact of climate change on agricultural production: Case of Kavre and Jumla district**" For required partial fulfillment of the completion of Master's Degree in Environmental Science under supervision and guidance. This thesis bears the candidate's own effort and is not submitted for any other degree before. Therefore, I strongly recommended this thesis for approval.

.....

Prof. Dr. Lochan Prasad Devkota Supervisor Central Department of Hydrology and Meteorology, Tribhuvan University

Asst. Prof. Gyan K.Chhipi Shrestha Thesis Co-supervisor Central Department of Environment Science, Tribhuvan University

.

DECLARATION

Date: 25/9/2012

I, Keerti Singh Pandey hereby declare that the dissertation work entitled "Impact of climate change on agricultural production: Case of Kavre and Jumla district" presented herein is my own work, done originally by me and has not been submitted or published elsewhere and all sources of information used are duly acknowledged. Errors, if any, are the responsibility of my own.

Keerti Singh Pandey 6th Batch of CDES Central Department of Environmental Science Tribhuvan University Kirtipur, Kathmandu, Nepal Email: Ksp_bhandari@hotmail.com

TRIBHUVAN UNIVERSITY

Central Department of Environmental Science

Telephone: 4-332147 4-332711 Kirtipur, Kathmandu, Nepal

Date

Ref:

Letter of Approval

This dissertation presented by Ms. Keerti Singh Pandey entitled "**Impact of climate change on** agricultural production: Case of Kavre and Jumla district" has been accepted as a partial fulfillment of requirement for the completion of Master's Degree in Environmental Science of Tribhuvan University.

Dissertation Evaluation Committee:

.....

Assoc. Prof. Dr. Kedar Rijal Central Department of Environmental Science, Tribhuvan University Head of Department

Prof. Dr. Lochan Prasad Devkota Central Department of Hydrology and Meteorology, Tribhuvan University **Thesis Supervisor**

Asst. Prof. Gyan K.Chhipi Shrestha Central Department of Environmental Science Tribhuvan University **Thesis Co-supervisor** Assoc. Prof. Dipak Aryal Central Department of Hydrology and Meteorology, Tribhuvan University External Examiner

Dr. Rejina Maske Central Department of Environmental Science, Tribhuvan University Internal Examiner

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Prof. Dr. Lochan Prasad Devkota, Head of Central Department of Hydrology and Meteorology, Tribhuwan University, Kritipur, Nepal for supervising this dissertation as well as providing all kinds of support needed during this study. Without his guidance, support and encouragement, this study could not been realized.

I am also thankful to Mr. Gyan Kumar chhipi Shrestha, Central Department of Environment science (CDES), Kritipur, Nepal for co-supervising me in this dissertation.

Likewise my special gratitude goes to all my teachers in the Department of Environment Science for their encouragement and moral support.

My heartfelt thank goes to my parents and family for their encouragement and moral support. I would like to thank my friends at CDES and my relatives.

I am also extremely thankful to the District Agriculture Development office at Kavre District and Ministry or Agriculture for providing published and unpublished materials and information related to this study.

ABSTRACT

Nepalese economy depends heavily on agriculture. Agricultural sector alone contributes about 42% of the total GDP. Climate change is a global phenomenon which has affected crop and livestock production practices and their yields. Negative effects are projected to be more prominent than the positive effects. In a humid climate like that of Nepal, there will be changes in spatial and temporal distribution of temperature and precipitation due to climate change, which in turn will increase both the intensity and frequency of extern events like droughts and floods. In this regard, an attempt has been made to investigate the effect of climate variability on the rice, wheat and maize yield in transplant/planting, maturity and harvest periods along Kavre and Jumla district of Nepal. The climate variables such as temperature, rainfall are utilized to explore the relation of climate to the crops yield based on 20 years of data records. The study focuses on the variability of rainfall and temperature in Kavre and Jumla districtin various cropping periods of rice, wheat and maize yield. The (linear) regression analysis is carried out to study the climatic trend. The correlation analysis is carried out between the backward difference filtered climatic parameters and the backward difference filtered crops yield.

There has been 0.02°C per annum increase in temperature of Kavre district and 0.064°C per annum of Jumla district. The average annual rainfall of the Kavre has been 1144.9mm and 797.8mm of Jumla district. The impact is assessed for each cropping periods of respective crop. Yield of rice, wheat and maize is in growing trend, but fluctuates over the years. The correlation between rice yield and temperature and rice yield and rainfall in harvest period is negative at Kavre district but positive at Jumla district which shows positive response of climate change. Similarly, the correlation wheat yield and rainfall and minimum temperature in harvest period is positive whereas wheat yield and maximum temperature is negative at Kavre district. The correlation between wheat yield and rainfall and maximum temperature is positive but yield and minimum is negative at Jumla district. Likewise, the correlation between maize yield and temperature is positive but yield and rainfall is negative at Kavre district. While that of correlation between maize yield and rainfall and temperature is negative at Jumla district which shows climatic condition is favorable for maize production. The result has shown that extreme fluctuation in weather has caused negative impact on production in Jumla than that of Kavre district.

TABLE OF CONTENTS

RECOMMENDATION	i
LETTER OF APPROVAL	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
TABLE OF CONTENTS	vi
LIST OF TABLE	vii
LIST OF FIGURES	ix
LIST OF MAP	Х
LIST OF ABBREVIATIONS	xi
CHAPTER I	
INTRODUCTION	1
1.1 Background Information	1
1.2 Weather Condition And Climate Change In Nepal	2 3
1.3 Agriculture In Nepal	3
1.4 Impact Of Climate Variation On Agriculture	3
1.5 Problem Statement	4
1.6 Research Questions	5
1.7 Objectives Of The Study	5
1.8 Overview Of Contents	5
CHAPTER II	
LITERATURE REVIEW	6
2.1 Climate and agriculture in Nepal	6
2.2 Climatic parameters	9
2.2.1 Rain fall	9
2.2.2 Temperature	10
2.2.3 Evaporation, Transpiration and Evapotranspiration	11
2.2.4 Solar Radiation	11
CHAPTER III	
RESEARCH METHODOLOGY	13
3.1 Research design	13
3.2 Basic data source	14
3.3 Statistical Methods	14
3.3.1 Arithmetic average method	14
3.3.2 Mean, Standard deviation and Coefficient of variation	14
3.3.3 Correlation Coefficient	15
3.3.4 Regression Analysis	15
3.3.5 Backward difference filter	16
CHAPTER IV	
CHAFIERIV Study adea	17

STUDI AREA	1/
4.1 Kavreplanchowk district	17

4.1.1 Background information	17
4.1.2 Occupation	18
4.1.3 Population	18
4.1.4 Socio-economic status	18
4.1.5 climate	19
4.1.6 Soil	19
4.2 Jumla District	21
4.2.1 Background information	21
4.2.2 Occupation	21
4.2.3 Population	22
4.2.4 climate	22
4.2.4 Soil	22
CHAPTER V	
RESULTS	23
5.1 Analysis of temperature	23
5.2Analysis of precipitation	26
5.3Impact of climate variability on agriculture	28
5.3.1Variability in temperature	29
5.3.2 Variability in rainfall	34
5.3.3Relation with variability of temperature	36
5.3.4Relation with the variability of rainfall	37
CHAPTER VI	
DISCUSSION	41
6 1 Climate change and present situation	41

6.1 Climate change and present situation	
6.2 Climate change impact on agriculture	
6.2.1 Agricultural productivity and food security	

CHAPTER VII

CONCLUSION AND RECOMMENDATION	45
7.1 conclusion	45
7.2 recommendation	46
REFERENCES	47
ANNEX	51

42 42

LIST OF TABLES

Table No.	Title	Page no.
Table 2.1: Amount of	of water requirements of rice (after PCARRD/USDA, 1986)	. 9
Table 2.2: Temperat	ture Requirements of rice (after PCARRD/USDA, 1986)	. 10
Table 2.3: Radiation	n wavebands and their significant for plant life (from Ross, 1975)	12
Table 2.4: Light and	d daylight requirements of rice according to (after PCARRD/USDA,1986).	12
Table 4.1: General	Information of the District	17
Table4.2: General in	nformation of the District	21
Table 5.1: Correlation	on between temperature and rainfall and rice yield	38
Table 5.2: Correlatio	on between temperature and rainfall and wheat yield	38
Table 5.3: Correlation	on between temperature and rainfall and maize yield	39
Table 6.1: Optimum	a range of air temperature for successful growth of crops	44

Figure No	Title	Page no.
Figure 3.1: F	Flow Diagram of Research Design	13
Figure 5.1: N	Maximum mean temperature at Kavre District	23
Figure 5.2: 1	Minimum mean temperature at Kavre	24
Figure 5.3: S	Seasonal distributions of temperature at Kavre district	24
Figure 5.4: 1	Maximum mean temperature at Jumla District	25
Figure5.5: M	finimum mean temperature at Jumla district	25
Figure 5.6: S	Seasonal distributions of temperature at Jumla district	26
Figure 5.7: T	Fotal annual rainfall at Kavre district	27
Figure 5.8: S	Seasonal Contribution of rainfall at Kavre District	27
Figure 5.9: T	Fotal annual rainfall at Jumla district	28
Figure 5.10:	Seasonal Contribution of rainfall at Jumla District	. 28
Figure 5.11:	Relation between maximum temperature and rice yield at Kavre	. 29
Figure 5.12:	Relation between minimum temperature and rice yield at Kavre	. 30
Figure 5.13:	Relation between maximum and minimum temperature and rice yield at Jumla	. 30
Figure 5.14:	Relation between maximum and minimum temperature and wheat yield at Kavre	. 31
Figure 5.15:	Relation between maximum and minimum temperature and wheat yield at Jumla	. 32
Figure 5.16:	Relation between maximum and minimum temperature and maize yield at Kavre	. 33
Figure 5.17:	Relation between maximum temperature and maize yield at Jumla	33
Figure 5.18:	Relation between minimum temperature and maize yield at Jumla	. 34
Figure 5.19:	Relation between total rainfall and rice yield at Kavre	34
Figure 5.20:	Relation between total rainfall and wheat and maize yield at Kavre	35
Figure 5.21:	Relation between total rainfall and rice yield at Jumla	35
Figure 5.22:	Relation between total rainfall and wheat yield at Jumla	36
Figure 5.23:	Relation between total rainfall and maize yield at Jumla	36

LIST OF FIGURES

LIST OF MAP

Map No	Title	Page no.
Map 4.1:	Location map of Kavreplanchowk and Jumla District	

LIST OF ABBREVIATION

%	Percentage
AFDB	African Development Bank
APT	Actual Evapotranspiration
CBS	Central Bureau of Statistics
Co ₂	Carbon Dioxide
Corr.	Correlation
CV	Coefficient of Variation
DHM	Department of Hydrology and Meteorology
FAO	Food and Agriculture Organization
ha	Hectares
ICIMOD	International Center for Integrated Mountain Development
IPCC	Inter Governmental Panel on Climate Change
IPCC Km	Inter Governmental Panel on Climate Change Kilometer
	-
Km	Kilometer
Km m	Kilometer Meter
Km m mm	Kilometer Meter Millimeter
Km m mm ⁰ C	Kilometer Meter Millimeter Degree Celsius
Km m mm ⁰ C PET	Kilometer Meter Millimeter Degree Celsius Potential Evapotranspiration
Km m ⁰ C PET ppm	Kilometer Meter Millimeter Degree Celsius Potential Evapotranspiration Parts per million
Km m mm ⁰ C PET ppm SD	Kilometer Meter Millimeter Degree Celsius Potential Evapotranspiration Parts per million Standard Deviation