Climate Change and Its Impact on Agriculture Productivity of Nuwakot District

Master of Science Dissertation

Submitted by:

Sangita Subedi

Exam Roll No: 596

T.U Regd. No: 5-2-33-677-2003

Submitted to:

Central Department of Environmental Science

Tribhuvan University

Kritipur, Nepal

A dissertation submitted to the Central Department of Environmental Science
Institute of Science and Technology

(For the Partial Fulfillment of Master's degree in Environmental Science)

September, 2012

Climate Change and Its Impact on Agriculture Productivity of Nuwakot District

Master of Science Dissertation

Submitted by:

Sangita Subedi

Exam Roll No.: 596

T.U. Regd. No.: 5-2-33-677-2003

Submitted to:

Central Department of Environmental Science

Tribhuvan University

Kirtipur, Nepal

A dissertation submitted to the Central Department of Environmental Science

Institute of Science and Technology

(For the Partial Fulfillment of Master's degree in Environmental Science)

September, 2012

TRIBHUVAN UNIVERSITY

Telephone: 4-332147

4-332711

CENTRAL DEPARTMENT OF ENVIRONMENTAL SCIENCE

Kirtipur, Kathmandu, Nepal

Date:

LETTER OF RECOMMENDATION

This is to certify that Ms. Sangita Subedi has prepared this dissertation entitled "Climate Change and its Impact on Agriculture Productivity of Nuwakot District" under our supervision and guidance. This dissertation work reflects her original work and fulfills the requirements for the completion of Master of Science Degree in Environmental Science.

We therefore, recommend this dissertation for approval and acceptance.

.....

Prof .Dr.Kedar Rijal

Thesis Supervisor

Central Department of Hydro and

Meteorology

Tribhuvan University

Institute of Science & Technology

Kirtipur, Kathmandu, Nepal

Asst. Prof. Gyan K.Chhipi Shrestha

Thesis Co-supervisor

Central Department of Environmental

Science

Tribhuvan University

Institute of Science & Technology,

Kirtipur, Kathmandu

TRIBHUVAN UNIVERSITY

Telephone: 4-332147

V 4-332711

CENTRAL DEPARTMENT OF ENVIRONMENTAL SCIENCE

Ref: Kirtipur, Kathmandu, Nepal Date:

LETTER OF APPROVAL

This dissertation presented by **Ms. Sangita Subedi** entitled "Climate Change and its Impact on Agriculture Productivity of Nuwakot District" has been accepted as a partial fulfillment of the requirements for the completion of Master of Science Degree in Environmental Science.

Evaluation committee

Assoc. Prof. Kedar Rijal (Ph.D.)

Head of Department

Central Department of Environmental Science, Tribhuvan University, Institute of Science & Technology, Kirtipur, Kathmandu

Asst. Prof. Gyan K. Chhipi Shrestha

Thesis Co-supervisor
Central Department of
Environmental Science,
Tribhuvan University
Institute of Science & Technology,
Kirtipur, Kathmandu

Prof. Dr. Lochan Devkota

Thesis Supervisor

Central Department of Hydro and Meteorology, Tribhuvan University, Institute of Science & Technology, Kirtipur, Kathmandu

Dr. Sunil Adhikari External Examiner

Assistant Campus Chief Tri-Chandra Multiple Campus Ghantaghar Kathmandu

Asst. Prof. Susmita Dhakal Internal Examiner

Central Department of Environmental Science, Tribhuvan University, Institute of Science & Technology, Kirtipur, Kathmandu **DECLARATION**

Date: 18/9/2012

I, Sangita Subedi hereby declare that the dissertation work entitled " Climate

Change and Its Impact on Agriculture Productivity of Nuwakot District"

presented here in is my own work, done originally by me and has not been submitted

or published elsewhere and all sources of information used are duly acknowledged.

Errors, if any, are the responsibility of my own.

.....

Sangita Subedi

6th Batch of CDES

Central Department of Environmental Science

Tribhuvan University

Kirtipur, Kathmandu, Nepal

Email: sangisubedi@hotmail.com

ACKNOWLEDGEMENTS

This dissertation is submitted to the Central Department of Environment Sciences,

Institute of Science and Technology, Tribhuvan University for the partial fulfillment

of Masters of Science in Environmental Science. This study would have been

incomplete and worthless without the continuous inspiration and guidance provided

by my dissertation supervisior Prof. Dr.Lochan Devkota, the head of the department

of hydrology and meteorology, Tribhuvan University. Whatever the expression

would be less against the support provided despite of his busy schedule

Similarly, I would like to express my most sincere gratitude to the head of department

Associate Prof .Dr. .Kedar Rijal. I would also like to extend my thanks to the core

supervisor of the dissertation, lecturer Mr. Gyankumar Chhipi Shrestha and all the

faculty members of Central Department of Environmental Science who supported me

to complete this research in various ways. Likewise, thanks are also due to Mr. Sunil

Adhikari (PhD), my external of the dissertation.

I am indebted to my husband Mr. Kamal Acharya and my dear friend Ms. Keerti

Singh Pandey for their continuous assistance with much patience to prepare this

research.

September, 2012

Sangita Subedi

VI

ABSTRACT

Agriculture is very much sensitive towards climatic variability. Changes in climatic factors like temperature, solar radiation and precipitation have potentials to influence crop production. Nepalese economy depends largely on agriculture which contributes 42% of the total GDP. In this regard an attempt has been made to investigate the effect of climatic variability on the paddy, wheat and maize yield in plantation maturity and harvest period in Nuwakot district. The climate variables analyzed in this study are temperature, and rainfall. These two variables are used to explore the relation of climate to the paddy, wheat and maize yield based on 20 years of data records from 1990 to 2009. The regression analysis was carried out to study the climatic trend also the correlation analysis is carried out between the backward difference filtered climatic parameters and the backward difference filtered crop yield.

Over the last 20 years the mean temperature increased by $0.051^{0}C$ per year. There has been $0.06^{0}C$ per annum increase in maximum temperature and $0.006^{0}C$ per annum increase in minimum temperature. The warmest year was 2009 with the mean maximum temperature of $29.19^{0}C$. Regarding the rainfall, total mean annual rainfall was of 1922.7 mm with mean annual rainfall of 155.72 mm in the district. The year 2002 remained the wettest year with total mean annual rainfall of 2285.6 mm and the year 2006 was the driest year over the study period with total annual rainfall of 1254.4mm.

The present study concludes that increase in temperature and increase in rainfall is favorable condition for paddy yield. In case of wheat increase in temperature and rainfall is favorable in plantation period only, the condition is reverse in maturity and harvest period. However in case of maize decrease in temperature and increase in rainfall is favorable for both plantation and harvest period.

The impact of irrigation in crop yield has not been considered in this study. Furthermore, the complex relationship between crop and climate should be studied in detail taking into account of the multiple relations between various meteorological variables.

Table of Contents

Contents	Page no.
TITLE PAGE	I
DECLARATION	II
RECOMMENDATION	III
APPROVAL	IV
ACKNOWLEDGEMENT	V
ABSTRACT	VI
TABLE OF CONTENTS	VII
LIST OF FIGURES	X
LIST OF TABLE	XI
LIST OF ABBREVIATIONS	XII
CHAPTER I: INTRODUCTION	1
1.1 Background of the study	1
1.2 Statement of the problems	2
1.3 Research Questions	3
1.4. Objectives of the Study	3
1.5 Scope of the study	3
1.6 Overview of contents	4
CHAPTER II: LITERATURE REVIEW	5
2.1. Impact of climate variation onagriculture	7
2.2 Climatic Parameters	8
2.2.1 Rainfall	8
2.2.2 Temperature	9
2.2.3 Evaporation, Transpiration and Evapotranspiration	10
2.2.4 Solar Radiation	11

CHAPTER III: RESEARCH METHDOLOGY	15
3.1 Research Design	15
3.2 Basic Data Collection	16
3.3 Statistical Methods	16
3.3.1 Arithmetic Average Method	16
3.3.2 Mean, Standard deviation and Coefficient of Variation	16
3.3.3 Correlation Coefficient	17
3.3.4 Regression Analysis	17
3.3.5 Background Difference Filter	18
CHAPTER IV: STUDY AREA	19
4.1 Background of the Nuwakot District	19
4.2 Topography	19
4.3 Climate	20
4.4 Socio-economic aspect	21
4.5 Population	20
CHAPTER V: RESULTS	22
5.1 Analysis of Temperature	22
5.1.1 Analysis of Temperature for Rice Yield	24
5.1.2. Analysis of Temperature for wheat Yield	24
5.1.3. Analysis of Temperature for maize Yield	24
5.2. Analysis of Precipitation	31
5.3 Climatic Variability on Agriculture	36
5.3.1 Variability in Temperature	36
5.3.2 Variability in Rainfall	36
5.3.3 Relation with Variability of Temperature	37
5.3.4 Relation with the Variability of Rainfall	37
CHAPTER VI: DISCUSSION	40
6.1 Climate change and present scenario	40

CHAPTER VII: CONCLUSION AND RECOMMENDATION	43
7.1 Conclusion	43
7.2 Recommendations	43
REFERENCES	44
Annex I	46
Annex II	47
Annex III	48
Annex IV	49
Annex V	50
Annex VI	51
Annex VII	52
Annex VIII	53

List of Tables

Table No.	Title	Page no.
Table 2.1:	Amount of water requirements of crop (after PCARRD/U	JSDA, 1986 9
Table 2.2:	Temperature Requirements of crop (after PCARRD/USD	OA, 1986)10
Table 2.3:	Radiation wavebands and their significant for plant life (1975)	
Table 2.4:	Light and day length requirements of crop according to (PCARRD/USDA, 1986)	
Table 5.1:	Correlation between temperature and rainfall and paddy	yield39
Table 5.2:	Correlation between temperature and rainfall and wheat	yield39
Table 5.3:	Correlation between temperature and rainfall and maize	yield39

List of Figures

Figure No	Title Page no.
Figure 3.1:	Flow Diagram of Research Design
Figure 5.1:	Mean annual maximum temperature of Nuwakot district23
Figure 5.2:	Mean annual minimum temperature of Nuwakot district23
Figure 5.3:	The variability of maximum temperature during the cropping period .
	of paddy25
Figure 5.4:	The variability of minimum temperature during the cropping period
	of paddy26
Figure 5.5:	The variability of maximum temperature during the cropping period
	of wheat
Figure 5.6:	The variability of minimum temperature during the cropping period
	of wheat
Figure 5.7:	The variability of maximum temperature during the cropping period
	of maize
Figure 5.8:	The variability of minimum temperature during the cropping period
	of maize
Figure 5.9:	Seasonal distribution of rainfall of Nuwakot District
Figure 5.10:	Mean annual rainfall of Nuwakot District
Figure 5.11:	The variability and the trends of rainfall during the cropping period
	of paddy
Figure 5.12:	The variability and the trends of rainfall during the cropping period
	of wheat
Figure 5.13:	The variability and the trends of rainfall during the cropping period
	of maize
Figure 5.14:	The correlation between paddy yield -temperature and paddy yield-
	rainfall
Figure 5.15:	The correlation between wheat yield -temperature and wheat yield-
	rainfall
Figure 5.16:	The correlation between maize yield -temperature and maize yield-
	rainfall38

List of Abbreviation

% Percentage

AFDB African Development Bank

APT Actual Evapotranspiration

CBS Central Bureau of Statistics

Co₂ Carbon Dioxide

Corr. Correlation

CV Coefficient of Variation

DHM Department of Hydrology and Meteorology

FAO Food and Agriculture Organization

ha Hectares

ICIMOD International Center for Integrated Mountain Development

IPCC Inter Governmental Panel on Climate Change

Km Kilometer

m Meter

mm Millimeter

⁰C Degree Celsius

PET Potential Evapotranspiration

ppm Parts per million

SD Standard Deviation

UNDP United Nation Development Project

UNEP United Nations Environment Program

WMO World Meteorological Organization