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CHAPTER I
INTRODUCTION

1. Cryptography

Cryptography is the science of securing data. Cryptography enables us to store

sensitive information or transmit it across insecure network so that it cannot be read

by anyone except the intended recipient. Some experts argue that cryptography

appeared spontaneously sometime after writing was invented. It is no surprise, then,

that new forms of cryptography came soon after the widespread development of

computer communications. In data and telecommunications, cryptography is

necessary when communicating over any un-trusted medium, which includes just

about any network, particularly the Internet [1].

Within the context of any application-to-application communication, there are some

specific security requirements, including:

 Authentication: The process of proving one's identity.

 Privacy/confidentiality: Ensuring that no one can read the message except the

intended receiver.

 Integrity: Assuring the receiver that the received message has not been altered

in any way from the original.

 Non-repudiation: A mechanism to prove that the sender really sent this

message.

Cryptography not only protects data from theft or alteration, but can also be used for

user authentication. There are, in general, three types of cryptographic schemes

typically used to accomplish these goals: secret key (or symmetric) cryptography,

public-key (or asymmetric) cryptography, and hash functions. In all cases, the initial

unencrypted data is referred to as plaintext. It is encrypted into ciphertext, which will

in turn be decrypted into usable plaintext.
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1.1 Secret Key Cryptography

With secret key cryptography, a single key is used for both encryption and

decryption. Sender uses the key (or some set of rules) to encrypt the plaintext

and sends the ciphertext to the receiver. The receiver applies the same key (or

ruleset) to decrypt the message and recover the plaintext. Because a single key

is used for both functions, secret key cryptography is also called symmetric

encryption.

With this form of cryptography, it is obvious that the key must be known to

both the sender and the receiver; that, in fact, is the secret. The biggest

difficulty with this approach, of course, is the distribution of the key.

Secret key cryptography algorithms that are mostly used today include:

 Data Encryption Standard (DES): The most common SKC scheme

used today, DES was designed by IBM in the 1970s and adopted by

the National Institute for Standards and Technology (NIST) in 1977 for

commercial and unclassified government applications. DES is a block-

cipher employing a 56-bit key that operates on 64-bit blocks. An

algorithm takes a fixed-length string of plaintext and transforms it

through a series of complicated operations into another ciphertext

bitstring of the same length [2].

 Advanced Encryption Standard (AES): AES uses an SKC scheme

called Rijndael, a block cipher designed by Belgian cryptographers

Joan Daemen and Vincent Rijmen. The algorithm can use a variable

block length and key length; the latest specification allowed any

combination of keys lengths of 128, 192, or 256 bits and blocks of

length 128, 192, or 256 bits [2].
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1.2 Public-Key Cryptography

Public-key cryptography has been said to be the most significant new

development in cryptography in the last 300-400 years. Modern PKC was first

described publicly by Stanford University professor Martin Hellman and

graduate student Whitfield Diffie in 1976. Their paper described a two-key

crypto system in which two parties could engage in a secure communication

over a non-secure communications channel without having to share a secret

key [6].

Public Key Cryptography depends upon the existence one-way functions, or

mathematical functions that are easy to computer whereas their inverse

function is relatively difficult to compute. Generic PKC employs two keys

that are mathematically related although knowledge of one key does not allow

someone to easily determine the other key. One key is used to encrypt the

plaintext and the other key is used to decrypt the ciphertext. The important

point here is that it does not matter which key is applied first, but that both

keys are required for the process to work. Because a pair of keys is required,

this approach is also called asymmetric cryptography. In PKC, one of the keys

is designated the public key and may be advertised as widely as the owner

wants. The other key is designated the private key and is never revealed to

another party.

Public-key cryptography algorithms that are in use today for key exchange or

digital signatures include:

 RSA: The first, and still most common, PKC implementation, named

for the three MIT mathematicians who developed it — Ronald Rivest,

Adi Shamir, and Leonard Adleman. RSA today is used in hundreds of

software products and can be used for key exchange, digital signatures,

or encryption of small blocks of data. RSA uses a variable size

encryption block and a variable size key. The key-pair is derived from

a very large number, n, that is the product of two prime numbers

chosen according to special rules; these primes may be 100 or more

digits in length each, yielding an n with roughly twice as many digits
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as the prime factors. The public key information includes n and a

derivative of one of the factors of n; an attacker cannot determine the

prime factors of n (and, therefore, the private key) from this

information alone and that is what makes the RSA algorithm so secure.

 Diffie-Hellman: After the RSA algorithm was published, Diffie and

Hellman came up with their own algorithm. Diffie-Hellman is used for

secret-key key exchange only, and not for authentication or digital

signatures.

 Digital Signature Algorithm (DSA): The algorithm specified in NIST's

Digital Signature Standard (DSS), provides digital signature capability

for the authentication of messages.

 Elliptic Curve Cryptography (ECC): A PKC algorithm based upon

elliptic curves. ECC can offer levels of security with small keys

comparable to RSA and other PKC methods. It was designed for

devices with limited compute power and/or memory, such as

smartcards and PDAs.

2. Hash Function

A cryptographic hash function is an algorithm which processes message of an

arbitrary length into a fixed length digest or hash code. Hash functions are one of the

most important tools in cryptography. It can be used in achieving many security goals

including authenticity, digital signatures, digital time stamping etc.

Depending on whether or not a key is used in designing a hash function, hash function

can be divided in to two types:

 Keyed hash function and

 Unkeyed hash function

2.1 Keyed hash functions

As the name indicates, keyed hash functions use a key in generating a hash

value. The function will accept two inputs: one a message of arbitrary finite-
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length, and the other is a fixed-length key. The main idea is that, an adversary

without the knowledge of this key should be unable to forge the message.

Message Authentication Code (MAC) is a keyed hash function because it uses

two different inputs specifically an arbitrary length message and a fixed length

key. Besides that, the output is of fixed length.

The map H :{0,1}* ×{0,1}k →{0,1}n is said to be a keyed hash function with

n -bit output and k -bit key if H is a deterministic function that takes two

inputs, the first of an arbitrary length, the second of k -bit length and outputs a

binary string of length n -bits. Where k, n are positive integers. {0,1}n &

{0,1}k are the set of all binary strings of length n and k respectively and

{0,1}* is a set of all finite binary strings [3].

2.2 Unkeyed hash functions

Almost all the hash functions that have been used since the early 1990’s for

various types of applications in cryptography are unkeyed. The generation of

hash function under this mechanism do not need a key. These hash functions

can be used for error detection, by appending the digest to the message during

the transmission. The error can be detected, if the digest of the received

message, at the receiving end is not equal to the received message digest. This

is also known as modification detection and hence these functions are also

called modification detection codes or manipulation detection codes (MDC).

Infact, keyed hash functions can also be used for error detection but the

unkeyed hash functions are easier to use for this application because there will

not be any problem of secrecy of key used.

The map H : {0,1}* → {0,1}n is said to be an unkeyed hash function with n -

bit output if H is a deterministic function that takes an arbitrary length

message as input and outputs a binary string of length n -bit. The notations n,

{0,1}n and {0,1}* are similar to that of in section 2.1.
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Figure 1: A taxonomy for cryptographic hash functions [9].

2.3 One-way hash function (OWHF)

A one-way hash function is a function h satisfying the following conditions:

 The description of h must be publicly known and should not require

any secret information for its operation.

 The argument X can be of arbitrary length and the result h(X) has a

fixed length of n bits.

 Given h and X, the computation of h(X) must be “easy”.

 The hash function must be one-way in the sense that given a Y in the

image of h, it is “hard” to find a message X such that h(X) = Y and

given X and h(X) it is “hard” to find a message X′ ̸= X such that h(X′)

= h(X).

The first part of the last condition corresponds to the intuitive concept of one-

wayness, namely that it is “hard” to find a preimage of a given value in the range.

The second part of this condition, namely that finding a second preimage should

be hard, is a stronger condition, that is relevant for most applications [9].
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2.4 Collision resistant hash function (CRHF)

A collision resistant hash function is a function h satisfying the following

conditions:

 The description of h must be publicly known and should not require

any secret information for its operation.

 The argument X can be of arbitrary length and the result h(X) has a

fixed length of n bits.

 Given h and X, the computation of h(X) must be “easy”.

 The hash function must be one-way in the sense that given a Y in the

image of h, it is “hard” to find a message X such that h(X) = Y and

given X and h(X) it is “hard” to find a message X′ ̸= X such that h(X′)

= h(X).

 The hash function must be collision resistant: this means that it is

“hard” to find two distinct messages that hash to the same result.

2.5 Message Authentication Code (MAC)

Message Authentication Codes have been used for a long time in the banking

community and are thus older than the open research in cryptology that started

in the mid seventies. However, MAC’s with good cryptographic properties

were only introduced after the start of open cryptologic research.

A MAC is a function satisfying the following conditions:

 The description of h must be publicly known and the only secret

information lies in the key.

 The argument X can be of arbitrary length and the result h(K,X) has a

fixed length of n bits.

 Given h, X and K, the computation of h(K,X) must be “easy”.

 Given h and X, it is “hard” to determine h(K,X) with a probability of

success “significantly higher” than 1/2n. Even when a large set of pairs

{Xi, h(K, Xi)} is known, where the Xi have been selected by the



8

opponent, it is “hard” to determine the key K or to compute h(K, X′)

for any X′ ̸= Xi. This last attack is called an adaptive chosen text

attack.

3. Hash functions based on block ciphers

Hash functions based on block ciphers, are usually slower when compared to

that of the dedicated hash functions. But, in few cases they are useful and easier

because single implementation of block cipher can be used for a block cipher as

well as a hash function. Davies-Meyer, Miyaguchi-Preneel, Matyas-Meyer-

Oseas, MDC-2 and MDC-4 are some methods to generate a compression

function of a hash function from a block cipher[3].

4. Dedicated hash functions:

Hash functions that are specially designed for the purpose of hashing a

plaintext are known as dedicated hash functions. These hash functions are not

based on hard problems such as factorization and discrete logarithms.

Different types of Dedicated hash functions are:

 MD2 : Designed for systems with limited memory, such as smart cards.

 MD4 : Developed by Rivest, similar to MD2 but designed specifically for

fast processing in software.

 MD5 : Also developed by Rivest after potential weaknesses were reported

in MD4; this scheme is similar to MD4 but is slower because more

manipulation is made to the original data.

 Secure Hash Algorithm (SHA)-0

 SHA-1

 SHA-2

 HALAVL (HAsh of VAriable Length)

 RIPEMD
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The basic requirement for a cryptographic hash function is that the hash value does

not reveal any information about the message itself, and moreover that it is hard to

find other messages that produce the same hash value. If only a single bit of the

message is changed, it is expected that the new hash value is dramatically different

from the original one. A hash function is required to have the following features:

 Preimage resistant: A hash function hash is said to be preimage resistant if

it is hard to invert, where “hard to invert” means that given a hash value h, it

is computationally infeasible to find some input x  such that hash(x) = h.

 Second preimage resistant. If, given a message x, it is computationally

infeasible to find a message y different from x such that hash(x) = hash(y),

then hash is said to be second preimage resistant.

 Collision-resistant. A hash function hash is said to be collision-resistant if it

is computationally infeasible to find two distinct messages x and y such that

hash(x) = hash(y).

Hash functions have wide and important role in cryptography. They produce hash

values, which concisely represent longer messages or documents from which they

were computed. The main role of cryptographic hash functions is in the provision of

message integrity checks and digital signatures [15].

4.1 MD5

In the past few years, there have been significant research advances in the

analysis of hash functions. The MD4 message-digest algorithm, designed by

Ronald Rivest is the first hash function in the MD4 family and was designed

to work fast on 32-bit machines [3]. Just a year after its publication in 1990, an

attack on the last two out of three rounds (i.e. last 32 out of 48 steps) has been

presented [8]. In consequence of these attacks, R. Rivest proposed in 1991 a

strengthened version of MD4, namely MD5.

Most of the dedicated hash functions are based on the basis construction of

Merkel-Damgard. The compression function of MD5 operates on 512-bit

blocks further subdivided into sixteen 32-bit sub blocks. The size of the

internal state (i. e. the chaining variable) and its output are both 128 bits. One
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important parameter of the compression function is the number of rounds—the

number of sequential updates of the internal state. The compression function

of MD5 has 64 rounds each using a 32-bit message subblock to update the

internal state via a non-linear mix of boolean and arithmetic operations. Every

32-bit sub block is used four times by the compression function. MD5

allocates 64 bits in the last block to encode the message’s length and it pads

the message so that its length is congruent to 448 modulo 512. The padding

procedure expands the message by at least one bit, so the largest message

fitting into one block is 447 bits.

4.2 SHA-1

The Secure Hash Algorithm (SHA) was developed by the National Security

Agency (NSA) and published in 1993 by the National Institute of Standard

and Technology (NIST) as a U.S. Federal Information Processing Standard

(FIPS PUB 180) [23]. SHA is based on and shares the same building blocks as

the MD4 algorithm. In 1994, NIST announced that a technical flaw in SHA

was found. And that this flaw makes the algorithm less secure than originally

believed. No further details were given to the public, only that a small

modification was made to the algorithm which was now known as SHA-1. It

uses the same padding algorithm, as in MD5, breaking the message into 512-

bit blocks and encoding the length as a 64-bit number. The size of its internal

state and its output length are 160 bits, which is substantially longer than

MD5’s 128 bits. Although its round functions are simpler and less varied than

those of MD5, there are more of them—80 instead of 64. SHA-1 uses a more

complex procedure for deriving 32-bit sub blocks from the 512-bit message. If

one bit of the message is flipped, more than a half of the sub blocks get

changed (as opposed to just four in the case of MD5) [10].
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5. Motivation

Historically the first constructions of hash functions were based on strong block

ciphers and many efforts have since been done for their design and proof of

security. However since this design approach does not necessarily result in fast

hash functions in practice and often their hashing speed is much slower than

underlying block ciphers, many “dedicated hash functions” suitable for

software implementation on modern processors have been proposed and are

now widely used in real world applications.

Therefore, performance analysis of hash functions in real environments is

recognized as an important research topic.

6. Problem Statement

The most important characteristic of a cryptographic hash function are its

security properties. For many applications, however, the speed of a hash

function is of almost the same importance.
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CHAPTER II
BACKGROUND AND LITERATURE REVIEW

1. Cryptography

The origin of the word cryptology lies in ancient Greek. The word cryptology is made

up of two components: "kryptos", which means hidden and "logos" which means

word. Cryptology is as old as writing itself, and has been used for thousands of years

to safeguard military and diplomatic communications. For example, the famous

Roman emperor Julius Caesar used a cipher to protect the messages to his troops.

Within the field of cryptology one can see two separate divisions: cryptography and

cryptanalysis. The cryptographer seeks methods to ensure the safety and security of

conversations while the cryptanalyst tries to undo the former's work by breaking his

systems [7].

It is well known that the concealment of information or protection of privacy is as old

as writing itself. Human mind found many ways to conceal information:

steganography, i.e., the hiding of the mere existence of a message, codes, where

words or combinations of words are replaced by fixed symbols, and cryptology or

ciphers, where information is transformed to render it useless for the opponent [1].

In the past few years, there have been significant research advances in the analysis of

hash functions. The advent of electronic computers and telecommunication networks

created the need for a widespread commercial encryption algorithm. In this respect,

the publication in 1977 of the Data Encryption Standard (DES) by the U.S. National

Bureau of Standards was without any doubt an important milestone. The DES was

designed by IBM in cooperation with the National Security Agency (NSA). It later

became an ANSI banking standard [6]. Soon the need for specific measures to protect

the authenticity of the information became obvious, since authenticity does not come

for free together with secrecy protection. The first idea to solve this problem was to

add a simple form of redundancy to the plaintext before encryption, namely the sum

modulo 2 of all plaintext blocks [13]. This showed to be insufficient, and techniques
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to construct redundancy which is a complex function of the complete message were

proposed. It is not surprising that the first constructions were based on the DES [9].

1.1 Privacy protection with symmetric cryptology

Cryptology has been used for thousands of years to protect communications of

kings, soldiers, and diplomats. Until recently, the protection of

communications was almost a synonym for the protection of the secrecy of the

information, which is achieved by encryption. In the encryption operation, the

sender transforms the message to be sent, which is called the plaintext, into the

ciphertext. The encryption algorithm uses as parameter a secret key; the

algorithm itself is public. The receiver can use the decryption algorithm and

the same secret key to transform the ciphertext back into the plaintext. The

main concept of encryption is to replace the secrecy of a large amount of data

by the secrecy of a short secret key which can be communicated via a secure

channel (see Figure 2). Because the key for encryption and decryption are

equal, this approach is called symmetric cryptography.

Figure 2: Model of symmetric encryption system [7]

1.2 Authentication with symmetric cryptology

In the military world it was known for some time that modern

telecommunication channels like radio require additional protection of the
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authenticity. One of the techniques applied was to append a secret key to the

plaintext before encryption [10]. The protection then relies on the error

propagating properties of the encryption algorithm and on the fact that the

secret key for authentication is used only once.

In the banking environment, there is a strong requirement for protecting the

authenticity of transactions. Before the advent of modern cryptology, this was

achieved as follows: the sender computes a function of the transaction totals

and a secret key; the result, which was called the test key, is appended to the

transaction. This allows the receiver of the message, who is also privy to the

secret key, to verify the authenticity of the transaction.

New techniques were proposed to produce redundancy under the form of a

short string which is a complex function of the complete message. A function

that compresses its input was already in use in computer science to allocate as

uniformly as possible storage for the records of a file. It was called a hash

function, and its result was called a hashcode. If a hash function has to be

useful for cryptographic applications, it has to satisfy some additional

conditions. Informally, one has to impose that the hash function is one-way

(hard to invert) and that it is hard to find two colliding inputs, i.e., two inputs

with the same output. If the information is to be linked with an originator, a

secret key has to be involved in the hashing process (this assumes a coupling

between the person and his key), or a separate integrity channel has to be

provided. Hence two basic methods can be identified.

 The first approach is analogous to the approach of a symmetric cipher,

where the secrecy of large data quantities is based on the secrecy and

authenticity of a short key. In this case the authentication of the

information will also rely on the secrecy and authenticity of a key. To

achieve this goal, the information is compressed with a hash function, and

the hashcode is appended to the information. The basic idea of the

protection of the integrity is to add redundancy to the information. The

presence of this redundancy allows the receiver to make the distinction

between authentic information and bogus information.  In order to

guarantee the origin of the data, a secret key that can be associated to the
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origin has to intervene in the process. The secret key can be involved in

the compression

Figure 3: A hash function[9]

process; the hash function is then called a Message Authentication Code or

MAC. A MAC is recommended if authentication without secrecy is

required. If the hash function uses no secret key, it is called a Manipulation

Detection Code or MDC; in this case it is necessary to encrypt the

hashcode and/or the information with a secret key. In addition, the

encryption algorithm must have a strong error propagation: the ciphertext

must depend on all previous plaintext bits in a complex way. Additive

stream ciphers can definitely not be used for this purpose.

 The second approach consists of basing the authenticity (both integrity and

origin authentication) of the information on the authenticity of a

Manipulation Detection Code or MDC. A typical example for this

approach is an accountant who will send the payment instructions of his

company over an insecure computer network to the bank. He computes an

MDC on the file, and communicates the MDC over the telephone to the

bank manager. The bank manager computes the MDC on the received

message and verifies whether it has been modified. The authenticity of the

telephone channel is offered here by voice identification.
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2. Applications of hash function in cryptography

Hash functions are used in many situations to support various cryptographic

protocols. Their most common applications are creation and verification of digital

signature (a means to verify the authenticity of an electronic document), MAC,

File integrity verification, Password table etc.

2.1. Digital Signature

One of the widespread applications of cryptographic hash functions is digital

signatures. We all know what a hand-written signature is and we certainly

understand its purpose. It is a way to prove that a paper document is signed by

us and not by someone else. The digital signature is the electronic equivalent

to the hand-written signature with regard to its purpose. More precisely, a

digital signature is a sort electronic “stamp” or digital “fingerprint” placed on

a document that is unique to the signer of the document and to the signed

document. One major difference between a digital and a hand-written

signature is that for every different document, the digital signature is different

even if the signer and the private/public key pair are the same. We also note

that a digital signature scheme provides both data integrity protection and data

origin authentication. Instead of using the signature algorithm to sign the

original data directly, a cryptographic hash function is used to compute the

digest of the message first and then, rather than the data, the digest is signed.

During verification phase, the digest of data to be verified is computed and is

used in the signature verification algorithm. The big advantage of this

approach is its increased efficiency of signing long messages. Signature

algorithms are much slower than hash functions and signing long messages

directly would take a very long time. By computing cryptographic digest of

the data first it is possible to avoid this costly computation [14].
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2.2. Data Integrity

Data authentication and data integrity are two issues which cannot be

separated. There should be a source for any data which has been altered and if

a source cannot be determined, then the question of alteration cannot be

settled. Integrity mechanisms thus provide data authentication and vice versa.

Hence data authentication should also be considered along with data integrity.

Data integrity is the property whereby data has not been altered in an

unauthorized manner since the time it was created, transmitted, or stored by an

authorized source.

Hash functions are widely used to verify file integrity. Indeed, it certifies that

the document has not been modified somewhere between the moment it was

sent and the moment it was received. Files can become corrupted for a variety

of reasons including faulty storage media, errors in transmission, write errors

during copying or moving, and software bugs. File integrity verification

ensures that a file has not been corrupted by comparing the file's hash value to

a previously calculated value. Before sending the data its digest is computed

by the means of a cryptographic hash function. The digest is then sent over a

secure channel to the recipient who after receiving the original digest

computes the hash of the received data and compares both hash values. If they

are different, the information has been modified somehow on its way over the

insecure channel. On the other hand, if the digests are identical, with

overwhelming probability the message has not been altered, provided that the

cryptographic hash function is secure.

2.2. Password tables

A common method of client authentication is to require the client to present a

password previously registered with the server. Storing passwords of all users

on the server poses an obvious security risk. Fortunately, the server need not

know the passwords—it may store their hashes and use the information to

match it with the hashes of alleged passwords. With this scheme in place, the

adversary succeeds in breaking into the system if he is able to construct any
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string that has the same hash as any of the original passwords. This should be

difficult even if the adversary has access to the password file.

3. Merkle-Damgard Construction

Most of the Dedicated hash functions are based on the basis construction of

Merkle-Damagard. Named after its two inventors, the American Ralph C. Merkle

and the Danish Ivan Damgard, the Merkle-Damgard structure defines a generic

step by step procedure for deriving a fixed-length output value from a variable-

length input value.

Figure 4: Merkle-Damgard structure [10]

The main building blocks of the Merkle-Damgard structure are:

 IV: Initialization Vector or Initial Value is a fixed value used as the

chaining variable for the very first iteration.

 f: the compression function or one-way hash function which is either

specially designed for hashing or based on a block cipher. The

compression function generally takes an input of fixed length and produces

an output of fixed length.

 Finalisation: an output transformation function which usually reduces

further the length of the output value of the last iteration.
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 Hash: the message digest or the hash result.

As we can see from the figure 4, the entire message to be hashed is first divided

into n blocks of equal length. The actual length of the message blocks depends on

the requirements set by the compression function f. The message is then padded,

always, such that its length is a multiple of some specific number. The padding is

done by adding after the last bit of the last message block a single 1-bit followed

by the necessary number of 0-bits. The length padding which consists of

appending a k-bit representation the length in bits of the original message (that is,

the message before any padding has been applied) takes place in such a way that

the padding length bits are added as the last bits of the padded message block

prior to being processed by the compression function. Every block is processed by

the compression function in the same iterative manner. The compression function

always takes two inputs in each step or iteration, a message block and a chaining

variable. In the first iteration, the chaining variable is the IV or Initialization

Vector. It is given, together with the first block of message, as inputs to the

compression function. The output of the compression function f in the first

iteration is the chaining variable in the second iteration. The output of the

compression function f in the ith iteration is the chaining variable in the (i + 1)th

iteration and so on until we reach the last iteration.

In the last iteration, the output of the compression function is used as an input to a

finalization function which reduces further the length of the final output value

from the compression function (however, in some cases the finalization function is

not present and the output value of the compression function f in the last iteration

is used as the final hash result).

In general, for a message M consisting of t blocks M0, M1, ...,Mt−1, the

computation of the message digest can be defined as follows:

H0 =IV,

For 0≤ i < t

Hi+1 =f(Hi,Mi)

H(M) = Finalisation(Ht)

In a pseudo code, the same computation can be defined as follows:
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computeDigest(M ) {

M0· · · t−1 = divBlock(M)

H0 =IV

for(i = 0; i < t; i + +) {

Hi+1 =f(Hi,Mi)

}

H(M) = Finalisation(Ht)

returnH(M)

}

Here the function computeDigest() takes the message M as input and returns as output

the hash result H (M). The inner function divBlock() breaks up the message M into t

blocks of equal length and returns an array consisting of the t message blocks.

4. Types of attacks on hash functions

A hash function is said to be broken if an attacker is able to show that the design

of the hash function violates at least one of the claimed security property. For

example, if a hash function is claimed to be collision resistant, a successful attack

is to find at least one collision such that two different messages have the same

message digest [5].

6.1. Birthday attack

The idea behind this attack originates from Birthday paradox. The birthday

paradox states that given a group of 23 randomly chosen people the

probability, of at least two people having the same birthday is more than

1⁄2 [17]. The mathematics behind this is being used to generate a well-

known cryptographic attack called birthday attack.

To describe this, let us assume that the message digest of length n bits

which provides 2n possibilities for the message digest. If two pools from

the digest space, one containing x1 samples and the other containing x2

samples are generated by a cryptanalyst, the probability of finding a match

between the two pools is approximated by,
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p≈1−1/ex1x2/2n

where the approximation is more accurate for larger values of x2 compared

with that of x1 [17].

6.2.Differential attack

This attack is applicable to block ciphers and hash functions and is based

on the study of the relation between input and output differences. The

attack is statistical as one search for input differences that are likely to

cause a certain output difference. If the difference is equal to zero then a

collision can be achieved [18][19].

In general, the differential attack especially in block ciphers is a kind of

XOR differential attack which uses exclusive-or as the difference. The

differential attack was introduced by E. Biham and A. Shamir to analyze

the security of DES-like cryptosystems. E. Biham and A. Shamir [18],

described that differential cryptanalysis is a method which analyzes the

effect of particular differences in plain text pairs on the differences of the

resultant cipher text pairs.

7. The MD5 hash Algorithm

The algorithm accepts an input message of arbitrary length and produces a

128-bit message digest, fingerprint or hash result.

The actual processing of the MD5 algorithm consists of the following 5 steps:

Step 1: Append padding bits

During this step, the message is extended or padded in such a way that its total

length in bits is congruent to 448 modulo 512. This operation is always

performed even if the message’s length in bit is originally congruent to 448

modulo 512. We notice that 448 + 64 = 512, so the message is padded such

that its length is now 64 bits less than an integer multiple of 512.
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Step 2: Append length

A 64 − bit representation of the length in bits of the original message M

(before the padding bits were added) is appended to the result of step 1. Here,

there is a little trick in representing the length of message M in the case where

it is greater than 264. If the length of the original message is indeed greater

than, then only the low order 64 − bits of the length of message M are used.

Hence, the field contains the length of the original message M modulo 264.

These bits are appended as two 32 − bit words and appended low-order (least

significant) word first.

Step 3: Initialize MD buffer

A 128 − bit (4 × 32 − bit) buffer (A, B, C, D) is used to hold intermediate and

final result of the MD5 hash algorithm. These registers are initialized to the

following 32−bit values in hexadecimal:

A = 67452301

B = efcdab89

C = 98badcfe

D = 10325476

These values are stored in little-endian format, meaning that the low -order

bytes of a word is placed in the low-address byte position. The initialization

values appear then as follows:

Word A = 01234567Word B = 89abcdefWord C = fedcba98Word D = 76543210
Step 4: Processing message in 512-bit blocks

The main part of the algorithm is the compression function that consists of

four rounds of processing. Each round takes as input the current 512-bit block

being processed represented as mi where i = 1,2,....,r and the 128-bit buffer
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value ‘ABCD’  which is updated each round. The four rounds are almost

identical, with the main difference being that each round uses a different

primitive logical function, denoted by F, G, H, and I in the specification.

Round Primitive function Steps(64)

1

2

3

4

F (X, Y, Z) = (X ^ Y ) V (¬X ^ Z)

G(X,Y,Z)=(X^Z) V (Y ^¬Z)

H(X,Y,Z)=X⊕Y ⊕Z

I(X,Y,Z)=Y ⊕ (X V ¬Z)

0 ≤ j ≤ 15

16≤j ≤31

32≤j ≤47

48≤j ≤63

Table 1: The primitive functions of the MD5 compression algorithm.

where

^ = AND, V = OR, ⊕ = XOR, ¬X = NOT(X)

Each round takes as input the current 512-bit message block Mk and the 128-

bit buffer value ABCD and produces as output an updated value of the buffer

earlier referred to as the chaining variable CVk. In addition, each round also

uses one-fourth of a 64-element table denoted T[1···64] which is constructed

from the sine function. It is constructed such that the i − th element of the table

T , denoted T [i], is equal to the integer part of 232 × abs(sin(i)), where i is in

radian. Since abs × (sin(i)) is a number between 0 and 1, the elements of the

table T are numbers less than or equal to 232, Hence, they can be represented

in 32 bits.

Step 5: Output

The output from the very last round is the 128-bit hash result or message

digest we obtain after we have incrementally processed all t 512-bit blocks of

the message. The entire process can be summarized as follows:

CV0 = IV

CVk+1 = SUM32(CVk,RFI[Mk,RFH[Mk,RFG[Mk,RFF[Mk,CVk]]]])
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MD5SUM = CVt

Where

IV = the initial value of the ABCD buffer, defined by step 3

Mk = the k − th 512-bit block of the message

CVk = the chaining variable processed with the k − th block of message

RFx = the round function using primitive logical function x

MD5SUM = the final hash result or message digest

SUM32 = addition modulo 232

The final message digest is stored in the ABCD buffer (see figure 5). It is

output by beginning with the low order byte of A and ending with the high

order byte of D.

Figure 5: The MD5 compression of a single 512-bit message block

The four words A, B, C, D of the buffer are used in such a way that produces a

word-level circular right shift of one word after every step. After each step, we

update one of the 4 bytes of the ABCD buffer. Knowing that we have 16 steps,



25

it results that each 32-bit word of the buffer is updated four times at the end of

the fourth round and an additional fifth time to produce the final output

(chaining variable) for the current block.

In round 1, the primitive function F is used. The 16 32-bits words of the 512-

bit message block are use in their original order M[0] through M[15]. Each of

the 16 words is used only once in each step.

8. Security of MD5

The MD5 algorithm has one interesting property that every bit of the output is a

function of every bit of the input. The complexity in the repeated use of the

primitive functions and the additive constant T [i] together with the circular left

shifts unique to every round produce a well mixed hash result. This procedure

makes it very unlikely that two messages that show a similar regularity will

have the same hash result.

However, In August 2004 Xiaoyun Wang and Hongbo Yu of Shandong

University in China published an article [19] in which they describe an

algorithm that can find two different sequences of 128 bytes with the same

MD5 hash. Their research was motivated by the possibility of finding a

colliding pair of messages, each consisting of two blocks.

Further advances were made in breaking MD5 in 2005, 2006, and 2007 [20]. In

an attack on MD5 published in December 2008, a group of researchers used

this technique to fake SSL certificate validity.

9. The SHA-1 Algorithm

The SHA-1 algorithm accepts as input a message with a maximum length of

264 -1 and produces a 160-bit message digest as output. The message is

processed by the compression function in 512-bit block. Each block is divided

further into sixteen 32-bit words denoted by Mt for t = 0, 1, · ·  · ,15. The

compression function consists of four rounds, each round is made up of a
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sequence of twenty steps. A complete SHA-1 round consists of eighty steps

where a block length of 512 bits is used together with a 160-bit chaining

variable to finally produce a 160-bit hash value. The processing works as

described in the following steps:

Step 1: Append padding bits

The original message is padded so that its length is congruent to 448 modulo

512. Again, padding is always added although the message already has the

desired length. Padding consists of a single 1 followed by the necessary

number of 0 bits.

Step 2: Append length

A 64-bit block treated as an unsigned 64-bit integer (most significant byte

first), and representing the length of the original message (before padding in

step 1), is appended to the message. The entire message’s length is now a

multiple of 512.

Step 3: Initialize the buffer

A 160-bit buffer is used to hold intermediate and final results of the hash

function. The buffer can be represented as five 32-bit registers (A, B, C, D and

E). These registers are initialized with the following 32-bit hexadecimal

values:

A: 67452301

B: EFCDAB89

C: 98BADCFE

D: 10325476

E: C3D2E1F0

Step 4: Processing message in 512-bit blocks

The heart of the algorithm is the module that has four similar rounds of

processing each of 20 steps. The inputs of each round are the 512-bit message
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block currently being processed and the 160-bit buffer value ABCDE. The

contents of the buffer are updated as the process continues. Each round have a

similar structure, but each uses a different primitive logical function which are

refereed as P, Q, R and S. These are defined as in table 2.

The output of the fourth round is added to the input to the first round in a way

such that bits of the input are added to the corresponding bits of the output.

This addition is similar to that of in the MD5 process.

Step Primitive logic function ~ ~(t,B,C,D)

(0 ≤ t ≤ 19) P(t,B,C,D) ( B C ) V ( B D )

(20 ≤ t ≤ 39)Q(t,B,C,D) B⊕C⊕D

(40 ≤ t ≤ 59)R(t,B,C,D) ( B C ) V ( B D ) V (C D )

(60 ≤ t ≤ 79)S(t,B,C,D) B⊕C⊕D

Table 2: Primitive logic functions used in SHA-1.

The compression function is divided into twenty sequential steps composed of

four rounds of processing where each round is made up of twenty steps. The

four rounds are structurally similar to one another with the only difference that

each round uses a different Boolean function, which we refer to as P,Q,R,S

above and one of four different additive constants Kt (0 ≤ t ≤ 79) which

depends on the step under consideration. The values of the four dictinct

additives constant are given in table 3 below.

Table 3: The four additive constants used in SHA-1 algorithm
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Every step updates two of the five registers. The step operation which updates

the value of the E register and rotates the value of the B register by 30 bit

position to the left is of the following form:

A, B, C, D, E ← (E + fr(t, B, C, D) + [A <<< 5] + Mt + Kt), A, [B <<< 30],

C,D

Where

A,B,C,D,E = the five registers of the SHA-1 buffer

t = thestepnumber,0 ≤ t ≤ 79

fr = the primitive logical function used in step t and round r

<<< s = the circular left shift of the 32-bit word by s bits

Mt = a 32-bit word derived from the current 512-bit input block

Kt = one of four additive constants

+ = addition modulo 232

Each 512-bit message block comprises 16 32-bit words (16 × 32 = 512).

During the step which processes the message in 512-bit blocks, the first 16

words of every message block is taken and used directly as it appears. The

additional 64 blocks are derived by following the algorithm given by:

Mt = (Mt−16⊕Mt−14⊕Mt−8⊕Mt−3)<<< 1

This means that if we assume that word M0 through M15 represent the first 16

words (used in the first 16 steps), then for the step 17 the word M16 is given

by:

M16 =(M0 ⊕M2 ⊕M8⊕M13)<<<1

Step 5: Output

After all the blocks of the message are processed in this way, the output of the

last stage is of a 160-bit message digest.

10. Security of SHA-1

We know that SHA-1 produces a 160-bit message digest. If one cannot find

collision in less than 280 operations, then SHA-1 is considered secure and can
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still be used. But recently, a group of Chinese cryptographers [21] were able to

find collisions in SHA-1 in 269 calculations. This is about 2000 times faster

than a brute-force search attack.



30

Chapter III
Implementation

Provably secure constructions of cryptographic hash functions consist of two

ingredients, which may be studied independently of each other. The first component is

a compression function that maps a fixed-length input to a fixed-length output. The

second component of a construction is a domain extender that, given a compression

function, produces a function with arbitrary-length input.

Compression function. From the theorist’s point of view, a one-way function is the

most basic primitive, from which many other cryptographic tools can be derived. The

main idea is to use a compression function, i.e. a function that maps longer, but fixed

size intputs to shorter outputs.

The compression function takes the intermediate result or chaining value and a block

of input data and calculates the next intermediate result.

Domain extender. The domain extender is a generic construction that transforms a

compression function with fixed-length input into a hash function with arbitrary input.

The simplest and most commonly used domain extender is called the Merkle-

Damgard construction and it works as follows:

Input: message M

1. Break M into m-bit blocks M1,. . . ,Mk, padding if necessary;

2. Let Mk+1 be encoding of |M|;

3. Let h0 = IV;

4. For i=1 to k+1 let hi =C(hi−1, Mi);

5. Output hk+1.

The construction iterates the compression function C: the output of C, together with

the next block of the message, becomes the input to the next application of C. The

hash of the last block, which contains an encoding of the length of the message, is the

hash of the entire message.
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1.1. General Model

(a) High level view

Figure 6: The Architecture of Cryptographic hash model [3]
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Figure 7: Detailed view of Cryptographic hash model [3]

Each block of the message M represented as mi where i = 1,2,.....,r serves as input to

an internal fixed size hash function f , known as the compression function of H . The

iterative processing starts with a predefined initial value, the initialization vector IV0 .

That is, the first round of the iterative process takes IV0 and m1 as inputs and

computes an n -bit intermediate value for some fixed n, this in turn serves as an input

to the second round along with the second block of the message m2. This process is

continued r times and the final output IVr is of n -bit length, which is generally known

as the message digest.
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1.2. MD5 Algorithm

As we can see from the figure below, the entire message to be hashed is first

divided into n blocks of equal length. The message is then padded, always,

such that its length is a multiple of some specific number. The padding is done

by adding after the last bit of the last message block a single 1-bit followed by

the necessary number of 0-bits. The length padding which consists of

appending a k-bit representation the length in bits of the original message (that

is, the message before any padding has been applied) takes place in such a

way that the padding length bits are added as the last bits of the padded

message block prior to being processed by the compression function. Every

block is processed by the compression function in the same iterative manner.

Figure 8: The MD5 Algorithm [10]
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1.3. SHA-1 Algorithm

1.3.1. High Level Design

Figure 9: Flow chart of SHA-1 Algorithm

The heart of the algorithm is the module that has four similar rounds of processing

each of 20 steps. The compression functions consist of two basic components,

message expansion and round operations. The compression function of SHA-1
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operates on 512-bit message blocks, and utilizes a 160 bit state variable, represented

by five 32-bit words, denoted A, B, C, D, E. The block of 512 bits is expanded to

2560 bits, represented by 80 words of 32 bits. Each of these words is used to update

the internal state in a round update function. MD5 follows a similar structure, but uses

a 128 bit state variable, and has 64 rounds instead of 80.
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CHAPTER V
TESTING AND ANALYSIS

Since the execution speed of a hash function depends on many circumstances, it can

not be determined by a single test. Like any other statistics, all test results have to be

interpreted thoroughly. The tests presented here focus on comparing the actual speed

of the two hash functions in normal environments.

1.1. Influencing factors

Needless to say, the speed of a cryptographic hash function depends on

many factors. Additionally, measurements are always based on particular

circumstances, therefore generalizations about a slow or fast hash function

are vague and unspecific.

In software, hashing speed is heavily determined by several factors:

 The hash function and the desired security. In general, short hash

functions are faster than longer and more secure hashes. Increasing the

number of rounds or choosing longer or more secure variants increases

the running time.

 The software implementation along with the compiler. The capabilities

of the compiler and the optimizability of the source code also have an

enormous effect on the achievable speed. Most hash functions are

implemented in standard C to easily incorporate different hardware

platforms and compilers, exchanging speed for easy portability.

Therefore, code tailored towards a specific platform can give an

advantage, as can a suitable and potent compiler.

 The hardware platform and the CPU. Obviously, the choice of the

processor has a huge significance, as it dictates the instruction set and

the word size. Furthermore, the clock frequency has a linear influence

on the speed of a hash function when comparing CPUs of the same

type. However, the processor accounts for several other important

aspects:
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The internal registers of the processor are very limited, but they can be

accessed very quickly. If not all variables of a hash function can be

stored in registers, the execution is slowed down considerably. An Intel

x86 CPU has, for example, only four general-purpose registers, which

is not enough to hold all variables and temporary results of the internal

functions of MD5 or SHA-1. The RISC processors from MIPS, on the

other hand, have 32 64-bit-wide general-purpose registers. Whenever

data does not reside in registers, it has to be fetched from the caches.

This does not only apply to the rather small set of internal and

temporary values, but also to the message words.
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In order to compare the performance of software implementations of hash functions,

an average speed has been compiled in Table 5. Instead of testing in many processors,

testing has been done only on two processors repeatedly. All timings were performed

on a 2.2 GHz Intel and Dual 1.0 GHz PowerPC G4 Processor.

On multitasking systems, an exact measurement of the efficiency of a program is not

easy. We can measure execution time in java.

The lower speed of SHA-1 is a result of the message expansion, and the noticeably

more complicated routine of each step than in MD5. Its higher security is paid by

slower hashing rates, the difference is not unexpected.

Algorithm Average Speed ( Mbits/s)

Intel processor PowerPC G4

MD5 753.4 675.2

SHA-1 570.2 510

Table 5: Average running speed of MD5 and SHA-1
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The following comparison shows the average hashing speed (given in Mbits/second)

for addressed hash function.

Figure 10: Chart showing speed in Mbits/s for MD5 and SHA-1
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1.2. Algorithm comparison

From performance evaluation MD5 algorithm runs faster than SHA-1 in both

platforms. SHA-1 uses the same padding algorithm, breaking the message into

512-bit blocks and encoding the length as a 64-bit number. The size of its

internal state and its output length are 160 bits, which is substantially longer

than MD5’s 128 bits. Although its round functions are simpler and less varied

than those of MD5, there are more of them—80 instead of 64. The lower

speed of SHA-1 is a result of the message expansion, and the noticeably more

complicated routine of each step than in MD5. Its higher security is paid by

slower hashing rates, the difference is not unexpected.

SHA-1 uses a more complex procedure for deriving 32-bit sub blocks from the

512-bit message. If one bit of the message is flipped, more than a half of the

sub blocks get changed.
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CHAPTER V
SUMMARY AND FURTHER WORK

A hash function is a mechanism that maps strings of arbitrary length to strings of

fixed length. This means that whether the input data is just a few words or the whole

video file a few gigabytes long, the output of the function is always of the same

length. There are many applications in which different kinds of hash functions are

used, ranging from data structures such as hash tables through pattern-matching

algorithms to checksum algorithms that help detecting accidental errors in data. They

all rely on the fundamental property that most of the times different input values yield

different output values, so the output of the hash function can be treated as a kind of a

“fingerprint” of the input data that somehow identifies it. The dissertation shows

cryptographic hash functions and their construction. The focus has been on explaining

in great detail what hash functions are, where they can be used and how they are

constructed. A test of the speeds of two cryptographic hash functions has shown that

MD5 runs faster than SHA-1 on system with similar processors and architectures.

Hash functions are important because of their wide variety of applications. Digital

signatures and MAC are the major and historical application of hash functions. Apart

from digital signature some of the major applications of hash functions are data

integrity, group signature, password table, digital watermarking, etc. Hash Algorithm

is a subject of continued research as hash algorithm considered secure before10 years

could be very weak in current time because of increasing computing speed.
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