Effect of Cerium Ions on the Corrosion of Galvanised Steel in 0.5M Na₂SO₃ Solution

Submitted to the Central Department of Chemistry

Tribhuvan University, Kirtipur

Kathmandu, Nepal

In Partial Fulfilment of Requirements for the

Master's Degree in Chemistry

By

Dharmendra Neupane

Central Department of Chemistry, Institute of Science and Technology Tribhuvan University Kirtipur, Kathmandu Nepal June, 2012

TRIBHUVAN UNIVERSITY INSTITUTE OF SCIENCE & TECHNOLOGY CENTRAL DEPARTMENT OF CHEMISTRY KIRTIPUR, KATHMANDU

LETTER OF APPROVAL

The dissertation entitled

Effect of Cerium Ions on the Corrosion of Galvanised Steel in 0.5M Na₂SO₃ Solution

Submitted by

Dharmendra Neupane

has been accepted as a partial fulfilment of the requirements for the Master's Degree in Chemistry

Assoc. Prof. Dr. Kedar Nath Ghimire

Head Central Department of Chemistry

Tribhuvan University

••••••

External Examiner

Supervisor

Dr. Amar Prasad Yadav

Central Department of Chemistry

Tribhuvan University

FOREWORD

The dissertation entitled "Effect of Cerium Ions on the Corrosion of Galvanised Steel in 0.5M Na2SO3 Solution" submitted by Dharmendra Neupane for the M. Sc. Degree in Chemistry has been carried out under our supervision in the academic year 2010-2012. During the research period, he had performed his work sincerely & satisfactorily. No part of this thesis has been submitted for any other degree.

.....

Supervisor

Dr. Amar P. Yadav Central Department of Chemistry T.U., Kirtipur, Kathmandu Nepal

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my research supervisors Dr. Amar Prasad Yadav, Central Department of Chemistry, Tribhuvan University for their valuable guidance and support, constant encouragement and providing a great knowledge throughout this entire research work. Their encouragement, assistance at all times has been of immense value.

I would like to thank Dr.Kedar Nath Ghimire, Head of Department for providing this opportunity and kind co- operation during the entire work.

I would like to express my sincere thanks to all the supporting staffs of the Central Department of Chemistry & Central Library. I express my sincere thanks to all of my colleagues who helped me in preparing this Dissertation. At last but not the least, I would like to express my gratitude to my family for their co-operation and support throughout the entire period of the study.

Dharmendra Neupane

2012

ABSTRACT

Chromate conversion coatings have been widely used in industry for a long time to improve the corrosion resistance galvanized steels. Hexavalent chromium, however, has high toxicity and carcinogenesis. Therefore, alternative and more environmentally friendly surface treatments need to be developed. Rare earth metal ions, such as cerium, is recognized as an effective corrosion inhibitor and environmentally friendly. In present study effects of Ce (III) and Ce (IV) ions on the corrosion behaviour of galvanised steel have been studied in 0.5 M Na₂SO₃ solution. A composite coating of cerium and zinc has been prepared by pulse deposition technique and its effect on the inhibition of corrosion of galvanized steel has been evaluated in terms of E_{corr} , Icorr and Tafel constants. It was found that the composite coating decreased the corrosion rate by more than 50 times. On the other hand, Ce (IV) ion was found to increase the corrosion rate due to taking part in cathodic reaction.

ABBREVIATION

EIC	environmentally induced cracking.
SCC	stress corrosion cracking
HIC	hydrogen-induced cracking
CFC	corrosion fatigue cracking
EIS	electrochemical impedance spectroscopy
DHBA	3, 4-dihydroxybenzaldehye
SEM	scanning electron microscopy
XPS	x-ray photoelectron spectroscopy
VIC	volatile corrosion inhibitors
FWHM	full width at half maximum

TABLE OF CONTENT

CHAPTER	PAGE NO
Foreword	ii
Acknowledgement	iii
Abstract	iv
Abbreviations	V
Table of content	vi
CHAPTER-I	
1. Introduction	1
1.1 Concept of Corrosion	1
1.2 Forms of corrosion	2
1.3 Corrosion Control	5
1.4 Cerium as corrosion inhibitor	11
1.5 Review of pertinent literature	12
1.6 Objectives of the work	15
CHAPTER-II	
2. Experimental	16
2.1 Preparation of sample	16
2.2 Test solutions	16
2.3 Electrochemical measurements	16
2.4 Pulse deposition of Ce (III) from Ce (IV)	17
2.5 X-ray photoelectron spectroscopy	17
CHAPTER-III	
3. Result and discussion	18
3.1 Variation of open circuit potential	18
3.2 Potentiodynamic polarisation	19
3.3 Pulse deposition of Ce (III) and its polarization behaviour	22
3.4 Characterization of the surface	26
Conclusions	33
References	34