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Abstract 

 
The performance of page replacement algorithms used by cache management of OS is very 

much important. This situation further more complicates due to limitations of faster memory 

and I/O system. Among various page replacement algorithms LRU is simple and flexible. But 

the low overhead LRU misbehaves with weak locality of reference. Mainly weak locality 

workloads can be categorized into sequential pattern, loop with larger than cache size and 

probabilistic pattern. This weakness of LRU is only due to the bold assumption on recency 

factor. Recency factor is only not sufficient because frequency factor also plays important 

role according as the program behavior. Many modifications on LRU have done such as 

LRU-K, EELRU, LRFU etc. But unlike others LIRS improved the weaknesses of LRU by 

considering IRR factor, which is logically a combination of recency and frequency factor. 

IRR factor is also known as reuse distance and can be achieved by using recency value which 

is equal to number of distinct references between recent correlated access of a particular 

block. LIRS can be implemented by different approaches based on its principle. One by 

focusing on its principle called basic LIRS and another LIRS simulated through data structure 

which focuses on computational complexity. Both of them are evaluated by using variety of 

weak locality workloads which represents the memory reference pattern during the execution 

of program. 
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Chapter 1 

BACKGROUND & INTRODUCTION 

1.1 Background 

1.1.1 Memory Hierarchy 

Even though varieties of memory devices which vary on response time, cost, reliability, 

memory capacity etc. are available in today's market, the computer system has limited 

memory. Memory Hierarchy is the ranking of memory devices so as to achieve higher 

performance with in the limited storage capacity. Memory Hierarchy consists of different 

levels of memory that are faster one over other but faster memory is costlier and has low 

storage capacity compared to slower memory. 

 

 

 

 

 

 

 

Figure1.1Computer Memory Hierarchy shows the hierarchy of memories used in a computer 

system with their speed and memory capacity. The arrangement of memory devices in a 

computer system is such that faster memory is at top level and slower memory is at the 

bottom. Overall performance of computer system depends upon management and 

organization of such memories. All the memory management policies are automatically 

handled by OS and devices are arranged according as the principles followed by it. Different 

types of memories available up to now can be categorized into two major groups. They are 

primary memory and secondary memory which can be taken as real memory. Besides real 

memory OS uses virtual memory to speed up the overall performance of the computer 

system.  

Fig 1.1 Computer Memory Hierarchy 
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1.1.1.1 Primary Memory 

Primary memory is only the memory which can be referenced directly. It is also known as 

internal or main memory. It is made up of semiconductor material and can be accessed 

randomly. For example register, RAM, ROM, cache etc. It is faster and expensive memory 

that lies at the top most level of memory hierarchy. Since primary memory is volatile in 

nature computer system backups the data into secondary storage. 

1.1.1.1.1 Cache 

The cache is a smaller, faster memory which stores copies of the data from the most 

frequently used main memory locations. Cache acts as bridge between processor and RAM 

since speed of processor is still faster compared to speed of RAM. Generally computer 

system consists of different levels of cache that are L1 cache and L2 cache. L1 cache is 

internal cache nearby register and L2 cache is external cache nearby RAM. L1 cache is faster 

than L2 cache. If L3 cache is available then it acts as earlier L2 cache. Hence L2 works as 

intermediate cache between L1 cache and L3 cache. Increasing the level of cache doesn't 

always increase the overall performance. Up to limited cache level the performance gain can 

be achieved. If there are more levels of cache, access time will increase due to swapping the 

blocks back and forth. Hence after crossing certain limitation of cache level overall 

performance slows down instead of increasing. 

1.1.1.1.2 Register 

Register is the fastest memory in which processing is actually performed. It is inbuilt inside 

CPU. In general, registers are temporary storage in the CPU that holds the data the processor 

is currently working on, while cache holds the program instructions and the data the program 

requires. Finally, there are generally only a few numbers of registers available on a processer. 

For example Intel chips have 6 general purpose registers and several specialized registers 

including a base register, stack register, flags register, program counter, and some addressing 

registers. 

1.1.1.2 Secondary Memory 

Secondary memory is taken as the backup memory. It consists of massive volume of data. 

Comparatively it is cheaper, slower and less reliable. Secondary memory is external memory 

such as hard disk, optical disk, pen drive, flash cards etc.  
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1.1.1.3 Virtual Memory 

Fotheringham 1961[2], devised a concept of virtual memory which is associated with ability 

to address a memory space much larger that the available real memory. Virtual memory is a 

service provided by an OS that allows execution of programs larger than available physical 

memory. Virtual memory plays vital role to overcome limited primary memory.  Handling 

virtual memory is one of the important issues of today's computer system. 

1.1.2 Memory Management 

Memory management and organization has been one of the most important factors that 

influence performance of OS. It has been studied for many years. Memory management 

systems are of two classes one which move processes back and forth between main memory 

and disk during execution and other which does not.  

Actually memory management is done by memory manager or memory management unit, 

which is handled by OS to manage memory hierarchy. The main job of memory management 

unit is to keep track of processes currently being executed. It keeps track which part of 

memory is currently in use and which does not. It also allocates memory for a process when 

required and dellocate memory when work is temporarily finished. It manages memory for a 

process to load and also manages extra memory that is virtual memory if it is too small to 

hold for the required process. 

1.1.2.1 Overlays 

Early age, too big programs that couldn't fit into available memory are usually split into 

pieces called overlays, which should be done manually. These overlays are swapped in for 

execution of programs and swapped out after execution. This makes the programmer to 

perform tedious job which was time consuming and boring. Similar concept is used now also 

but besides partitioning manually, OS keeps track of part of program currently in use in main 

memory and rest on backing storage. 

1.1.2.2 Swapping  

A process must be in memory to be executed however it can be swapped out temporarily to a 

backing store and then brought back into memory for continued execution. Swapping is a 

technique in which memory blocks are partitioned into variable size. Here blocks are 

swapped back and forth which is done by OS. The memory block should fit in available free 
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space or hole for execution. There are several strategies to fit the hole like first fit, best fit, 

worst fit etc.  

Using variable partition method or swapping leads to fragmentation. Fragments are the small 

holes which is not suitable for any process to fit. Even though there is free memory space 

available, it is wasted. Internal fragmentation occurs due to creation of hole while allocating 

memory to a process slightly larger than required memory. Swapping leads to number of 

small holes after a long duration of execution of programs and available spaces are non- 

contiguous due to which external fragmentation occurs. Even the sum of free spaces are 

sufficient than required memory to fit OS could not execute the process. Temporary solution 

to external fragmentation is compaction which is a process of moving occupied used memory 

toward one end so as to sum up holes into contiguous memory. But compaction is costlier 

hence due to many pitfalls variable partition technique is not so used. 

1.1.2.3 Paging 

Paging is a better solution than swapping because it eradicates the problem of fragmentation 

which is only due to partition of fixed size memory blocks. Paging is one of the techniques 

that organize virtual storage. The address referenced by running process is called virtual or 

logical address whereas the range of address it can reference is called virtual or logical 

address space. The address available in primary storage is called real or physical address 

whereas the available range of address is called real or physical address space. Even though a 

process references only virtual address, the process must run on available real storage. So for 

every reference Main Memory Unit (MMU) maps logical address into corresponding 

available physical address for that page table is maintained. A page is fixed sized unit of 

virtual address space whereas a frame is fixed sized unit of real address space. Generally, size 

of frame is equals to size of page. If a requested page is unavailable in primary storage page 

fault occurs [2]. A page table contains record of each page with page frame number. Also 

each page entry consists of bits like reference bit, caching disabled bit, protection bit, 

modified bit and additional information like protection bits. Protection bit is a 3 bits 

information containing rwx where r is for read, w is for write and x is for execute. During 

page fault MMU notices that the page is unmapped and causes the CPU to trap. Trap is 

generated by OS to stop CPU until required page is not available. Then OS picks little used 

page frame as chosen by page replacement policy. If it has dirty bit then the contents are 

written otherwise if it has clean bit then nothing is written back to secondary storage. Thus 
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the required page is placed into freed frame. Then after successful mapping, trap was 

restarted and the process is continued. Still there are several issues while implementing 

paging technique. Page table can be extremely large and page mapping must be any how fast 

for faster performance. Execution speed depends upon rate at which CPU can fetch data and 

instruction out of memory. Additional memory reference is required to access the page table 

and for mapping. Translation Look-aside Buffer (TLB) is a solution for this problem which 

can be part of MMU. Similar to page table entry each TLB entry contains valid bit, modified 

bit, protection bit, virtual page number, page frame number and additional information. TLB 

fault may occur if the requested page is unavailable this can be detected by checking TLB 

entry. Then trap is generated if it is unavailable in page table entry as earlier it is brought 

back to primary storage replacing one of the pages [3]. 

1.1.2.4 Segmentation 

Segmentation is a technique in which virtual address space is divided into several chunks of 

segments. Paging doesn't cover the programmer's point of view during execution of a 

program. Each segment of a program can individually grow and shrink unpredictably. 

Similarly each segment of a virtual address space segmented using segmentation can grow 

and shrink individually without affecting other. Hence having two or more virtual address 

spaces may be much better than having one for managing such segments of code during 

execution. Segmentation involves the relocation of variable sized segments into the physical 

address space. Generally these segments are contiguous units and are referred to in programs 

by their segment number and an offset to the requested data. Although a segmentation 

approach can be more powerful to a programmer in terms of control over the memory, it can 

also become a burden, as suggested by [4]. Efficient segmentation relies on programs that are 

very thoughtfully written for their target system. Even assuming best case scenarios, 

segmentation can lead to many problems. External fragmentation is the term that is use to 

denote pieces of memory between segments which may collectively provide a useful amount 

of memory. But they are useless because of their non-contiguous nature. Since segmentation 

relies on memory that is located in single large blocks, it is possible that enough free space is 

available to load a new module, but cannot be utilized. Segmentation may also suffer from 

internal fragmentation if segments are not variable-sized. Contrarily, paging provides 

somewhat easier interface for programs rather than segmentation. Because paging operations 

are more easier and transparent than segmentation.  
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1.1.3 Paging Algorithm 

1.1.3.1 Fetch Algorithm 

Fetch algorithm initially identifies the requested page block. Paging algorithm can be 

categorized into two major groups. They are demand paging and anticipatory paging. 

Demand paging algorithm waits for a page requested by a running process. But anticipatory 

or pre-paging algorithm guesses which pages are needed before they are requested. Generally 

paging mechanism will not have prior knowledge of the page reference stream or the known 

order of pages requested in. This causes many systems to employ a demand fetch approach, 

where a page fault notification is the first indication that a page must be moved into the 

physical memory. Hence demand paging algorithm is much more effective in real systems 

than pre-paging algorithm [2]. Demand fetching algorithm always fetches a page that has 

been requested during a page fault. But pre-fetching is done by using some heuristic before 

the occurrence of page fault. 

1.1.3.2 Placement Algorithm 

Placement algorithm decides where to put the fetched page in available free storage. Initially 

if placement algorithm allows fully associative then OS can place the requested page any 

where using any algorithm. After a cache is fulfilled then placement policy is static that 

means a requested page is placed in place of removed victim page. A victim page is always 

replaced by required page which is chosen by replacement policy used in that particular 

system. In case of partially associative memory mapping, placement algorithm is restricted 

only for certain memory location. 

1.1.3.3 Replacement Algorithm 

Replacement algorithm identifies the victim page and replaces it by fetched page because of 

lack of primary storage. After a primary storage is fulfilled one of the block must be replaced 

for execution of the requested page. The replaced block is also called victim block. 

Static page replacement algorithm shares frames equally among all processes such as FIFO, 

LRU, MRU, random, optimal etc. Adaptive page replacement algorithm replaces page 

according as the page reference pattern observed for example SEQ, EELRU, LRFU, LIRS, 

ARC etc. But dynamic page replacement algorithm shares frames according to need rather 

than equality among all processes such as working set page replacement algorithm. Some 

processes need more frames than others and sometimes a process needs more frames than 
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other times so in this case dynamic policy is applied for better performance but it is more 

complex than static one. For such decision calculated page fault frequency and threshold limit 

is compared [5].  

Also page replacement algorithm can maintain global and local policy. Global policy selects 

a replacement from the set of all available frames. Local policy selects a replacement from 

the processes own set of frames. 

1.1.4 Performance  Metrics 

If the requested block is available then hit occurs. If it doesn't then page fault occurs which 

can be taken as occurrence of miss. Performance gain can be achieved due to more hit rather 

than miss. For each miss OS has to pay miss penalty which is time consuming and need more 

resource. Offline performance of the page replacement algorithm is measured in terms of 

page fault count, hit ratio, miss ratio etc.  

1.1.4.1 Page Fault Count 

A successful page replacement algorithm always computes less number of page faults. Page 

fault count can be measured by counting occurrence of number of page faults between some 

intervals of reference, which is also known as page fault frequency (PFF). 

1.1.4.2 Hit Rate & Hit Ratio 

Hit rate can be calculated by using formula 

hr = 100 - mr 

where hr is the hit rate and mr is the miss rate. Hit rate is the percentage calculation of the 

fraction hit ratio. Hit ratio can be calculated by subtracting miss ratio from 1. 

1.1.4.3 Miss Rate & Miss Ratio 

Miss rate (mr) can be calculated by using formula 

mr = 100 × ( ( #pf - #distinct ) / ( #refs - #distinct ) ) 

where #pf is the number of page faults, #distinct is the number of distinct pages referenced 

and #refs is the total number of pages referenced [6]. Miss Ratio is the fraction number of 

page fault and reference ignoring the distinct references. 
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1.1.5 Memory Design 

Invention of faster, cheaper and smaller device is only possible due to research in memory 

design from many years. Every year performance speed of memory chip has been improving.  

Moore's 1965 concluded that "Computer memory increases geometrically not linearly.", for 

increasing such large performance gap there are three major logical policies of memory 

design. 

Firstly improvement can be achieved by making the common case fast. It means most 

accessing memories are copied to fastest memory like cache. So that it is always available 

and directly used without any delay. 

Secondly improvement can be achieved by tracking locality of reference in terms of program 

behavior. The term locality refers to the tendency of referencing particular memory location 

frequently rather than other memory location. Rule of Thumb- "Most of program spends 90% 

of execution time in 10% of source code", which also shows locality of reference [7]. 

Finally improvement can be achieved by taking advantage of parallelism. Number of 

processes can run simultaneously at a time in a processor which is only possible due to 

parallelism. Otherwise user should wait for a completion of one process to run other, as 

historical computer systems. Hence process must be switched to get chance for busy 

processor. 

There are some issues related to cache design like block identification policy, block 

placement policy, block replacement policy and write strategy. Block identification policy 

identifies the required block to fetch. Block placement policy identifies where to place 

fetched block in cache. Block replacement policy identifies a victim block that is to be 

replaced. Before replacing a block it must be write back if it is modified which is handled by 

write strategy.   

1.1.5.1 Sources of Miss 

1.1.5.1.1 Compulsory Miss 

Miss may occur due to several reasons. First time when the block is referenced, it is always 

miss which is due to empty volatile cache. This type of miss is known as compulsory miss. 

Such type of miss can't be reduced but pre-fetching can be done initially. 
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1.1.5.1.2 Capacity Miss 

Some blocks can't be kept in available primary storage due to limited memory space. Hence a 

block in cache must be replaced to access new unavailable block. Next time if the older block 

is accessed miss occurs. Here blocks being discarded are later on retrieved. Occurrence of 

miss due to limited storage capacity is known as capacity miss. There is no any permanent 

solution for this miss because memory capacity is always limited. 

1.1.5.1.3 Conflict Miss 

Too many main memory blocks mapped to the same cache set results conflict miss. This is 

due to direct and set associative mapping. Conflict miss doesn't occur in case of fully 

associative mapping. This type of miss is also known as collision miss or interference miss. 

1.1.5.1.4 Policy Miss 

If required block is unavailable in faster memory then the required block is brought back to 

faster memory replacing some block. This victim block is chosen by page replacement 

policy. This block may be needed later causes policy miss which is consequence of 

replacement policy [8]. 

1.1.5.2 Reduction of Miss Ratio 

There are several ways to reduce miss ratio. Miss ratio can be decreased by reducing number 

of page fault. Right decision of the page replacement policy by choosing worth page 

reference decreases miss ratio. If simple strategy is used that is by default random page 

replacement algorithm then miss ratio may increase or decrease randomly which 

unpredictable. Hence a right policy must be decided for reducing miss ratio which indicates 

performance gain. A victim page should be like that which is not accessed in future. 

Reducing policy miss is the best idea. But if the victim page is accessed in future then page 

fault occurs hence performance decreases due to miss penalty. It seems page fault decreases 

while number of page frame increases. But some algorithm suffers from Belady's Anomaly 

[9], which verified strange situation in which page fault increased while increasing number of 

page frame. Such anomaly will not occur, if any algorithm with allocation of size m has 

pages that are guaranteed to be a subset of the allocation m + 1. Stack based algorithm 

satisfies the mentioned situation. 
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Also increasing associativity, adding victim cache, hardware or software pre-fetching, code 

optimization, increasing the block size etc. are the solutions for reducing miss ratio [7]. 

Increasing the block size decreases page fault which favors locality. Sometimes highly 

increasing the block size increases page fault frequency because all available locations of 

larger block may not be referenced and due to larger size memory locations required are 

unavailable. Sometimes highly decreasing the block size still increases the page fault 

frequency because it violates locality. In both cases time consumption is high because of 

swapping the block back and forth instead of increasing overall performance. Hence 

appropriate block size with right decision policy decreases miss ratio. 

1.1.6 Program Behavior 

There are several factors that influence performance of page replacement algorithm. The 

performance of page replacement algorithm relies on pattern of pages that are referenced. 

Behavior of program depends upon the access pattern it references memory which is further 

depends upon working set and locality of reference. 

1.1.6.1 Locality of Reference 

During the course of execution of program memory references tend to cluster forming certain 

locality. Locality varies on the basis of time and space. Temporal locality is based on time, it 

assumes that memory location referenced just now is likely to be reference again in near 

future. Looping, subroutines, stacks, variable used for counting and totaling etc. supports this 

assumption. Spatial locality is based on space, is assumes that once a memory is referenced 

there is high chance of nearby memory location to be referenced again. Array traversal, 

sequential code execution, related variable declaration nearby in source code supports this 

assumption. Hints of locality are followed in any type memory reference sequence. But some 

follows strongly and some follows weakly [2]. 

1.1.6.2 Memory Reference Pattern 

1.1.6.2.1 Cyclic Pattern 

Memory locations that are referenced repeatedly in a same order can be viewed as cyclic 

pattern. Loop generates cyclic pattern. For example if M1, M2, M3, M4 be the memory 

blocks used then cyclic pattern can be taken as M1, M2, M3, M4, M1, M2, M3, M4, M1, M2, 

M3, M4, M1, M2, M3, M4, M1, M2, M3, M4, M1, M2, M3, M4 when loop executes six 

times.  
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1.1.6.2.2 Correlated Access Pattern  

Access of memory location at particular place then repeated after some duration, such 

memory reference pattern can be viewed as correlated pattern. Sequential Scan also generates 

correlated pattern. For example if M1, M2, M3 be the memory blocks frequently used then 

correlated pattern can be taken as M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, 

M1, M2, M3, M4, M13, M14, M15, M16 when two times correlated access is performed. 

1.1.6.2.3 Temporally Clustered Pattern 

A temporally clustered reference pattern has the property that a block referenced more 

recently will be referenced sooner in the future for some duration. For example temporally 

clustered pattern can be taken as M1, M2, M1, M3, M2, M4, M3, M1, M2, M5, M6, M7, M8. 

1.1.6.2.4 Probabilistic Pattern 

When particular memory block has a stationary reference probability and all other blocks are 

accessed independently without any associated probabilities, such memory reference pattern 

can be viewed as probabilistic pattern [6]. Such pattern also generates temporal clustering. 

For example if M1, M2 be the memory blocks frequently used then probabilistic pattern can 

be taken as M1, M2, M3, M4, M6, M7, M1, M2, M3, M21, M22, M23, M1, M2, M3, M2, 

M14, M15, M16, M1. 

1.1.6.2.5 Mixed Pattern 

Mixed pattern is generated by the occurrence of cyclic pattern, correlated pattern, temporally 

clustered pattern and probabilistic pattern. For example of mixed pattern can be taken as M1, 

M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, M1, M2, M3, M4, M5, M6,M7, M1, 

M8, M2, M20, M21, M1, M22, M23, M10, M1, M2, M3, M4. 

1.1.6.3 Working Set 

Working set is a collection of pages that an active program or a process is actively 

referencing. If a working set is available in cache then page fault will not occur. Number of 

page fault increases extensively during change is locality. This is may be due to switching of 

working set.  The term thrashing means regular occurrence of page fault. Here CPU spends 

more time on page fault handling rather than execution. Working set is the main idea behind 

dynamic page replacement algorithm [2].  
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1.2 Introduction 

Among variety of page replacement algorithm Least Recently Used (LRU) algorithm is 

simple, flexible and has low overhead. LRU replaces page that is not accessed for longest 

time. Recency factor is the virtual time difference between the current time and last time 

when the oldest block is accessed. LRU adapts faster during change in working set with 

workloads having good locality of reference. But LRU makes bold assumption on recency 

factor only, which made LRU miss behave with weak locality workloads.   

There are different modified versions of LRU algorithm. Among them LIRS page 

replacement algorithm identifies and eradicates the misbehaviors of LRU on weak locality of 

references. LRU only uses recency factor whereas LIRS uses additional factor called reuse 

distance for page replacement. Reuse distance or inter reference recency (IRR) of a block is 

equal to number of distinct pages accessed between recent consecutive or correlated access of 

that particular block like IRG. Strong part of LIRS algorithm is the IRR value which 

maintains recency as well as frequency factor. LIRS algorithm [10] uses two sets of pages 

based on IRR. Set of pages with low IRR value is taken as hot block and called low inter-

reference recency set (LIRS). Set of pages with high IRR value is taken as cold block and 

called high inter-reference recency set (HIRS). Blocks that can be most probably used in 

future are taken as hot blocks whereas blocks that may not be used in near future are taken as 

cold blocks. Hence HIR blocks are always replaced and LIR blocks are never replaced. LIR 

page is always available in cache whereas HIR page may or may not be available in cache. 

HIR page that is available in cache is called resident HIR and HIR page that is not available 

in cache is called non-resident HIR. Hence a page which is accessed first time is taken as 

non-resident HIR. Fixed number of LIR block and resident HIR block is used which is equal 

to 99% and 1% of cache size respectively. Partition of cache doesn't obstruct the overall 

performance. These parameters can be tuned but the consideration is found to be valid for 

handling weak locality workloads as shown by sensitivity study. 

Victim block is always predicted from HIRS block which has high recency value that is the 

oldest block. It is very easy to search oldest block by maintaining recency stack. Also IRR 

value is computed which is equals to earlier recency value. Promotion and demotion policy is 

also used for utilizing history information correctly maintaining HIR and LIR partition size. 
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1.2.1 Problem Statement 

LRU shows anomalous behavior with weak locality of reference. The access patterns of weak 

locality workloads can be categorized into three different groups. 

a) Sequential Scan  

Sequential scan pattern consists of many distinct pages where at least one of working set 

repeatedly occurs. In such case LRU may replace pages that occur repeatedly because of 

their low recency factor which increases page fault. 

b) Loop with working set larger than cache size 

In case of loop with working set larger than cache size, LRU always replaces page before 

they are accessed for the next time. Hence LRU makes 100% page fault. 

c) Pages with irregular frequencies (Probabilistic) 

LRU can't discriminate between irregularly occurring pages and other pages because it 

only replaces the page on the basis of recency factor. 

1.2.2 Objectives 

Primary concern of this thesis work is to successfully handle weak locality workloads, rather 

than tuning its parameter, because the parameters are found to be efficient for such 

workloads. It should be noted that page replacement algorithm is just not concerned with 

memory management in OS. But it is used in different computing device consisting cache 

and also databases and web proxies where faster memory is essential. But our work only 

focuses on issues related to general OS. Objectives of this dissertation work are as follows:  

 To study the improvement of LIRS algorithm on weak locality workloads over LRU 

algorithm.  

 To modify and simulate LIRS algorithm without violating its logical premise and to 

compare change in PFF. 

1.3 Motivation 

Memory management is not only the burden of today's computing devices. It has been 

researched for decades. Whatever variety of storage devices found in today's market is the 

great achievement of computer science. But still computer memory is the limited source 

which directly hampers the performance of computing system. Performance gain can be 

achieved by increasing the capacity of primary storage. Expectation of customer is to 
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decrease cost price with sufficient working memory. Hence to fulfill this demand for 

manufacturing such device fewer materials are used and size of memory is being decreased. 

But rather than this technical view, it is not possible to gain performance without managing 

memory logically for its usability. Varieties of techniques had been tried for this 

achievement. Among such techniques paging is the successful one. Page replacement 

algorithm is the main part of paging technique because deciding the victim page is a very 

tough job. Optimal page replacement algorithm is the best one. But it can be only simulated 

since references should be known earlier, which is not possible in most of the real systems. 

Many near-optimal replacement schemes have been found, but their complexity and various 

practical considerations tend to limit the effectiveness of the algorithms implemented in real 

systems. 

Implementing LRU is a successful idea due to its simplicity, flexibility and performance gain. 

But still LRU shows anomalous behavior with weak locality workloads. It is better if an 

algorithm could work as LRU comparatively equivalent to computational complexity as well 

as it could solve the problem on weak locality workloads. Reading related research papers it 

is found that LIRS can fulfill these criteria. It is successfully implemented in different fields 

[11]. It is better if LIRS could store deeper history information. LIRS can be implemented in 

a different approach based on its principle.  

1.4 Thesis Organization 

Background part of this dissertation work focuses on page replacement algorithm and the 

related basic terms which are already mentioned above along with an introduction to LIRS. 

Some more chapters are remaining which clarifies the topics LIRS fulfilling the objectives of 

this dissertation work. Chapter 2 consists of literature review which briefly reviews the 

related topics. Literature review includes details of several page replacement algorithms. This 

chapter also contains the research methodology part which shows the flow of our research. 

Chapter 3 consists of program development steps of our simulation. It includes detail design 

of the program. Also it includes details about the data structures and programming language 

used to build the simulation. Chapter 4 consists of data collection and analysis part which 

includes details about generating traces of memory references that shows trace driven input. 

The output results with several analyzing graphs which are tested for weak locality 

workloads. Chapter 5 consists of conclusion of this whole dissertation work and the 

recommendation which shows guidelines for further research.  
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Chapter 2 

LITERATURE REVIEW & METHODOLOGY 

2.1 Literature Review 

2.1.1 OPT or MIN Page Replacement Algorithm 

Various memory management techniques have been used from the beginning for the 

improvement of performance. Belady [3] in 1966 developed optimal page replacement 

algorithm called OPT or MIN. His algorithm depends upon principle of optimality which 

states "To obtain optimal performance the page to replace is the one that will not be used 

again for the furthest time into the future." His optimal algorithm is not applicable for real 

implementation because OS doesn't know which pages will be used before execution. Hence 

it is used as a benchmark for measuring effectiveness of other page replacement algorithms. 

OPT Replacement algorithm replaces page that will not be used for the longest period of time 

by computing maximum forward distance. 

2.1.2 Random Page Replacement Algorithm  

Random page replacement algorithm can replace any page randomly during page fault. Page 

fault decreases if the replaced page is cold and vice versa. Hence the algorithm shows 

unpredictable results. Here each page frame involved has an equal chance of being chosen, 

without taking into consideration of the program behavior. Due to its randomness the 

behavior of this algorithm is obviously random and unreliable. With most reference streams 

this method produces an unacceptable number of page faults, as well as victim pages being 

thrashed unnecessarily. Hence deploying random page replacement algorithm is not an 

effective technique [1]. 

2.1.3 FIFO Page Replacement Algorithm 

Fist-In-First-Out page replacement algorithm replaces oldest page during page fault. Initially 

queue is filled by inserting page reference from the tail. When the queue is full new reference 

is inserted from tail and old reference is evicted from the head. FIFO is simple but suffers 

from Belady's Anomaly. This strange situation is already discussed in section 1.1.5.2. Like 

random page replacement algorithm, FIFO still does not take advantage of locality trends. 

But it can be modified very easily.  
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2.1.4 FINUFO Page Replacement Algorithm 

 A modification to FIFO that makes its operation much more useful by taking advantage of 

program behavior is First-In Not-Used First-Out (FINUFO). The only modification here is 

that a single bit is used to track whether or not a page is fresh in the FIFO queue.  This   

referenced bit is then used to determine whether the page is victim or not. A fresh reference 

has bit 0 whereas referenced one has bit set to 1. A victim is selected by giving priority to 

reference 0. If every active page has been referenced, victim page is selected by taking 

locality into consideration. The situation can be tackled by resetting all the bits. In a worst 

case scenario this could cause minor and temporary thrashing.  

2.1.5 LRU Page Replacement Algorithm 

As recent past is a good indicator of the near future. The algorithm considers that a page that 

is just now used will probably be used again very soon, and a page that has not been used for 

a long time, will probably remain unused. Recency is evaluated by maintaining LRU stack 

that is a sorted list on the basis of virtual time, which is the only factor for replacement. When 

page fault occurs, the page that has been unused for the longest time is evicted. Thus LRU is 

simple and easy to implement. It can adapt faster according as program behavior. LRU like 

algorithm doesn't suffer from Belady's Anomaly as FIFO.  

LRU shows more page faults in case of weak locality workloads, which can be reduced by 

applying three major techniques. By taking user-level hints, applications are hinted during 

caching and pre-fetching which rely on users understanding of data access patterns. Hence 

such work is only suitable for working manually, which eradicates burden of programmer. 

Detection and adaptation of access regularities is performed case by case in different 

algorithms like SEQ, EELRU, DEAR, AFC, UBM etc. Tracing and utilizing deeper history 

information is performed in different algorithms like LRFU, LRU-K, 2Q, ARC etc. including 

LIRS. For such deeper history information high implementation cost, and runtime overhead is 

required [10]. 

2.1.6 NRU Page Replacement Algorithm 

Pages are categorized into four classes in Not Recently Used (NRU) algorithm. Class 0 

contains pages that are neither referenced nor modified. Class 1 contains pages that are 

modified but not referenced. Class 2 contains pages that are referenced but not modified and 
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Class 3 contains pages that are modified as well as referenced. During page fault NRU evicts 

any page from the lowest class [1]. 

2.1.7 MRU Page Replacement Algorithm 

Most Recently Used (MRU) algorithm works on the basis of recency factor as in LRU. It 

violates LRU principle and works totally in opposite manner. LRU evicts unused page 

following locality of principle but MRU evicts recently used page as victim. MRU is only 

suitable when there weak locality of reference, which is worst case of LRU. MRU can be 

implemented in similar way as LRU by maintaining recency stack. But here front one is 

removed and bottom one is stored for future use. Hence MRU is only suitable in case of 

worst locality of reference where LRU could not deal with this effect. 

2.1.8 LFU Page Replacement Algorithm 

Least Frequently Used (LFU) selects a victim page that has not been used often in the past. 

Instead of using a single recency factor as LRU, LFU defines additional information of 

frequency which is equal to number of times the page referenced. This frequency is 

calculated throughout the reference stream by maintaining counting information. Frequency 

count leads to serious problem after a long duration of reference stream. Because when the 

locality changes, reaction to such certain change will be very slow. Assuming that a program 

either changes its set of active pages or terminates and it may be replaced by a completely 

different program. The frequency count will cause pages in the new locality to be 

immediately replaced since their frequency is much less than the pages associated with the 

previous program. Since the context has changed, the pages swapped out will most likely be 

needed again soon which leads to thrashing. One way to remedy this is to reset frequency 

counter each time a page is loaded, rather than being allowed to increase indefinitely 

throughout the execution of the program. LFU still tends to respond slowly to change in 

locality of reference.  

2.1.9 SEQ Page Replacement Algorithm 

The SEQ algorithm [12] can be considered as an adaptive version of LRU that tries to correct 

the slow performance caused by the presence of sequential memory accesses. When it 

identifies one or more memory reference sets to numerically adjacent addresses, the 

algorithm adopts a pseudo-MRU replacement strategy, otherwise maintaining the original 

LRU criterion by detecting memory reference pattern.  
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2.1.10 EELRU Page Replacement Algorithm 

Some algorithms use recency as history information like LRU and Most Recently Used 

(MRU). LRU is suitable for good locality of reference whereas MRU is somewhat suitable 

for weak locality of workloads. These two algorithms can be tuned to form adaptive 

algorithm called Early Eviction LRU (EELRU) [13]. EELRU is based only on the positions 

on the LRU queue that contains information of most of the memory references. This queue is 

only a representation of the main memory using the LRU stack. EELRU detects sequential 

access patterns analyzing the reuse of pages. One important feature of this algorithm is the 

detection of non-numerically adjacent sequential memory access patterns. Two tunable 

parameters used are early eviction point and late eviction point.  

2.1.11 LRFU Page Replacement Algorithm 

 Least Frequently Used (LFU) algorithm uses frequency factor for page replacement. LRU 

and LFU are tuned to form adaptive algorithm called Least Recently Frequently Used 

(LRFU) [14] that considers both recency and frequency factors. Depending upon the access 

pattern the parameter of LRFU can be adapted. 

2.1.12 LRU-K Page Replacement Algorithm 

LRU - K [15] evicts the page that is the one whose backward K-distance is the maximum of 

all pages in buffer. Backward K-distance bt(p,K) can be defined as the distance backward to 

the Kth  most recent reference to page p where reference string known up to time t (r1, r2, 

…,rt). The value of parameter K can be taken as 1, 2 or 3. If K=1, it works as simple LRU 

algorithm. Highly increasing value of K the overall performance of algorithm reduces. LRU-

K can discriminate better between frequently referenced and infrequently referenced pages.  

2.1.13 2Q Page Replacement Algorithm 

2Q [16] algorithm quickly removes sequentially and cyclically referenced block with after a 

long interval. The algorithm uses special buffer queue A1in of size Kin, ghost buffer queue 

A1out of size Kout and the main buffer Am. Special buffer contains all missed that is first time 

referenced block. Ghost buffer contains replaced blocks from special buffer. Frequently 

accessed block are available in main buffer. Hence victim blocks are always from special 

buffer and main buffer. Some algorithm maintains multiple queues for more deeper history 

information. 
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2.1.14 LIRS Page Replacement Algorithm 

Another important algorithm is LIRS which is already described in section 1.2. Its objective 

is to minimizing the deficiencies presented by LRU using history information called IRR that 

represents the number of different pages accessed between the last two consecutive accesses 

to the same page. Some issues related to LIRS are:  

1. How to effectively utilize multiple sources of access information? 

2. How to dynamically and responsively distinguish blocks by comparing their 

possibilities to be referenced in the near future? 

3. How to minimize implementation overhead? [10].  

2.1.15 CLOCK Based Page Replacement Algorithm 

The clock-based approximations, such as CLOCK [17], CLOCK-Pro [18] and CAR [19] 

usually cannot achieve the high hit ratio compared to their corresponding original algorithms 

like LRU, LIRS, ARC [20] respectively. Clock based approach organize pages into circular 

list and uses a reference bit or a reference counter to record access information for each page. 

When a page is hit in the cache, the clock-based approximations set the reference bit or 

increment the counter, instead of modifying the circular list. As a lock is not required for 

these operations, their caching performance is scalable. However the clock-based 

approximations can record only limited history access information. The information checks 

whether a page has been accessed or how many times it has been accessed but not in what 

order their accesses occur. The lack of richer history information can hurt their hit ratios. 

Many replacement algorithms do not have clock based approximations since the access 

information they need cannot be approximated by the clock structure [21]. 

2.1.16 Various Page Replacement Algorithms 

 Three other algorithms DEAR [22], AFC [23] and UBM [24] analyze the memory accesses 

looking for some specific patterns including sequential accesses. They adopt a different 

replacement strategy for each pattern. For example DEAR applies MRU for sequential 

accesses and LRU or LFU for other patterns. Recent adaptive algorithms use artificial 

intelligence techniques in order to adapt according as reference pattern. For example the FPR 

[25] and FAPR [26] algorithms apply fuzzy inference techniques to manage the replacement 

priorities of the resident pages. These algorithms bring important conceptual benefits to the 

traditional page replacement algorithms, but they present more complex implementations. In 
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many cases additional data structures to hold non-resident pages which increases space 

requirements. Some algorithms require data update in every memory access, making 

impracticable its real implementation. 

2.2 Methodology 

Research is a careful study performed to find out new things in a systematic way. In a 

scientific method of research at first problem is formulated then according as collected input 

data, output information is analyzed and finally the information is generalized [27]. This 

dissertation work is truly scientific and flows in the same way. The topics memory 

management and design has been studied from the early generation of computer. Page 

replacement algorithm is one of the major strategies to manage memory efficiently. The main 

exploration of this dissertation focuses on LIRS algorithm. All data collected are primary in 

form, which are traces of page references. This dissertation work is based on trace driven 

simulation. Output information gathered is analyzed in a quantitative approach. Finally 

conclusion is drawn with the help of analyzed data which is not the generalized form. This 

work is only specialized for weak locality of workloads.   
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Chapter 3 

PROGRAM DEVELOPMENT  

3.1 Development Methodology and Tools 

The simulator is built by using incremental approach. At first LRU algorithm is simulated by 

using LRU stack algorithm. The LRU stack automatically maintains recency factor. 

Information of recently referenced block is available in top of stack and the oldest in bottom 

of stack. Every time when the block is accessed it is kept in top of stack. LIRS algorithms are 

also implemented by using same stack algorithm and additional features are added to keep 

track of IRR. C-language is used for simulating LRU and two approaches of LIRS. 

3.2 LRU 

Implementing LRU is an idea to keep track of recency. Bringing the recent one in front 

means also keeping the older one at bottom of stack in a sorted order on the basis of recency. 

Initially when the stack is empty then a new reference is inserted from top of stack. After then 

references are inserted from top in a sorted order on the basis of virtual time. But if any 

reference is inserted next time again then it is brought to front.  

3.2.1 Data Structure 

Implementing LRU by using stack algorithm is quite easy. LRU queue is only a 

representation of the main memory using the LRU model, ordered by the recency of each 

page. Here queue is used to keep track of recency instead of stack. Because removing rear 

from queue is easier operation than removing bottom of stack. The LRU queue keeps 

information of recently referenced block in front of queue and the oldest in rear of queue. 

Every time when the block is accessed it is inserted in front of queue and if the reference is 

not available in queue rear is removed, otherwise queue is maintained in same order. 

3.2.2 Algorithm 

STEP 1: Begin 

STEP 2: If X is available in Queue then move X to front of Queue. Hit occurs 

STEP 3: If X is not available in Queue, miss occurs then insert X to front of Queue. 

STEP 4: Before inserting X, if Queue is full in STEP 3, then remove rear.  

STEP 5: End  
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3.2.3 Flowchart 
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Fig 3.1 Flowchart of LRU Algorithm 
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3.2.4 Tracing 

Cache Size: 3 

Input References: A D B C B A D A E B 

Number of Distinct References: 5 

Total Number of References: 10 

Accessing A:   page fault 

 

Accessing D:  page fault 

 

Accessing B:  page fault 

 

Accessing C:  page fault 

 

Accessing B:   

 

Accessing A:  page fault 

 

Accessing D:  page fault 

 

Accessing A: 

 

Accessing E:  page fault 

 

Accessing B:  page fault 

 

 

Total Number of page fault: 8  

A 
Front   

D 
front A  

B 
front D 

A 
rear 

C 
front B 

D 
rear 

B 
front C 

D 
rear 

A 
front B 

C 
rear 

D 
front A 

B 
rear 

A 
front D 

B 
rear 

E 
front A 

D 
rear 

B 
front E 

A 
rear 

Fig 3.2.1 LRU Queue at Virtual Time 1 

Fig 3.2.2 LRU Queue at Virtual Time 2 

Fig 3.2.3 LRU Queue at Virtual Time 3 

Fig 3.2.4 LRU Queue at Virtual Time 4 

Fig 3.2.5 LRU Queue at Virtual Time 5 

Fig 3.2.6 LRU Queue at Virtual Time 6 

Fig 3.2.7 LRU Queue at Virtual Time 7 

Fig 3.2.8 LRU Queue at Virtual Time 8 

Fig 3.2.9 LRU Queue at Virtual Time 9 

Fig 3.2.10 LRU Queue at Virtual Time 10 
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3.3 Basic LIRS 
Sum of size of HIRS and size of LIRS is equals to size of cache. HIR block that may be 

resident or non-resident can be promoted to LIR block. At the same time to maintain the 

LIRS and HIRS size, oldest LIR block must be demoted to HIR-resident block. Then one of 

the resident HIR block becomes the victim one. The following section contains the 

clarification of LIRS scheme. The major function stack pruning is illustrated with diagrams in 

the section 3.3.5.and promotion demotion policy is shown in the fig3.3. Figures 3.4 shows the 

specific promotion demotion policy among LIR which is always resident, resident HIR and 

non-resident HIR, so as to maintain partition size. 
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3.3.1 Data Structure 

Stack S contains page reference accessed. Its main purpose is to maintain recency value. As 

we move toward bottom recency factor increases. Bottommost one is always LIR block, 

which is the oldest block having higher recency factor and topmost one is the recent block 

having recency factor equals to zero. Each stack node contains information about reference 

block. Here information of every page reference is not available in stack S due to the major 

event stack pruning. Some information is also available in queue Q and some outdated 

information is left. 

Queue Q contains collection referenced page that are available in cache. But it only tracks 

resident HIR blocks. Hence size of HIR cache partition determines the size of Queue Q. The 

block in the Queue can be removed from anywhere if it is promoted to LIR. In that case the 

bottom most one LIR block of stack is inserted to end of Q then it becomes resident HIR as it 

is now in Queue. Block in the front of Queue is removed, now the removed block demotes to 

non-resident HIR. Comparing IRR and recency value is automatically done by the use of Q 

which increases performance.  

3.3.2 Major Function 

The major function stack pruning is conducted during status change. Bold assumption of the 

algorithm is that LIR block always contains in the bottom. Bottom of stack S is always LIR 

block. While changing status, the page in bottom of stack S is demoted to HIR resident for 

that it is kept in queue Q. At that time next LIR bottom is chosen which is nearer from bottom 

of stack S and all other HIR bottom are removed one by one.  Information of thus removed 

HIRs is available in queue Q, if it is resident. Stack pruning is also conducted if the accessed 

block X is the bottom LIR because recent block is always moved to top of stack S. Stack 

pruning decreases the size of stack hence the stack doesn't keep track of outdated references. 

Also outdated HIR can't be promoted if its history information is unavailable even in Q. 

3.3.3 Algorithm 

STEP 1: Upon accessing LIR block X:  

This access is guaranteed to be a hit in the cache. We move it to the top of stack S. If the LIR 

block is originally located in the bottom of the stack, we conduct a stack pruning.  

STEP 2: Upon accessing HIR resident block X:  
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This is a hit in the cache. We move it to the top of stack S. There are two cases for block X: 

(a) If X is in the stack S, we change its status to LIR. This block is also removed from list Q. 

The LIR block in the bottom of S is moved to the end of list Q with its status changed to HIR. 

Stack pruning is then conducted. 

(b) If X is not in stack S, we leave its status in HIR and move it to the end of list Q. 

STEP 3: Upon accessing an HIR non-resident block X: 

This is a miss. We remove the HIR resident block at the front of list Q (it then becomes a 

non-resident block), and replace it out of the cache. Then we load the requested block X into 

the freed buffer and place it on the top of stack S. There are two cases for block X: 

(a) If X is in stack S, we change its status to LIR and move the LIR block in the bottom of 

stack S to the end of list Q with its status changed to HIR. A stack pruning is then conducted. 

(b) If X is not in stack S, we leave its status in HIR and place it in the end of list Q. 
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3.3.4 Flowchart 
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Stop 

Fig. 3.5 Flowchart of LIRS Simulated Through Data Structure 

Y N 

HIT 



28 
 

3.3.5 Tracing 

Size of LIRS: 2        LIR 

Size of HIRS: 1 

Cache Size: 2+1=3        Resident HIR 

Input References: A D B C B A D A E B 

Number of Distinct References: 5      Non-resident HIR 

Total Number of References: 10 

Upon accessing A: 

(HIR non-resident) 

 

LIRS= {A} 

HIRS= {}    (Queue Q) 

Resident HIRS= {}       Empty  page fault 

Non-resident HIRS= {}          (Stack S) 

 

Upon accessing D: 

(HIR non-resident) 

 

LIRS= {A, D} 

HIRS= {}    (Queue Q) 

Resident HIRS= {}       Empty  page fault 

Non-resident HIRS= {}          (Stack S) 

 

Upon Accessing B: 

(HIR non-resident) 

 

LIRS= {A, D} 

HIRS= {B}    (Queue Q) 

Resident HIRS= {B}    B is inserted  page fault 

Non-resident HIRS= {}          (Stack S) 
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Fig 3.6.1 State at Virtual Time 1 

Fig 3.6.2 State at Virtual Time 2 

Fig 3.6.3 State at Virtual Time 3 
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Upon Accessing C: 

(HIR non-resident) 

 

LIRS= {A, D} 

HIRS= {B, C}    (Queue Q) 

Resident HIRS= {C}     C is inserted  page fault 

Non-resident HIRS= {B}   B is removed         

             (Stack S) 

Upon Accessing B: 

(HIR non-resident) 

 

LIRS= {B, D} 

HIRS= {A, C}    (Queue Q) 

Resident HIRS= {A}     A is inserted  page fault 

Non-resident HIRS= {C}          (Stack S)   C is removed 

         B is promoted 

         A is demoted       

Upon Accessing A: 

(HIR resident) 

 

LIRS= {B, D} 

HIRS= {A, C}    (Queue Q) 

Resident HIRS= {A} 

Non-resident HIRS= {C}           

            (Stack S)       

Upon Accessing D: 

(LIR) 

 

LIRS= {B, D} 

HIRS= {A}    (Queue Q) 

Resident HIRS= {A} 

Non-resident HIRS= {} 

             (Stack S)           C is removed during stack pruning. 
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Fig 3.6.5 State at Virtual Time 5 

Fig 3.6.4 State at Virtual Time 4 

Fig 3.6.7 State at Virtual Time 7 

Fig 3.6.6 State at Virtual Time 6 
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Upon Accessing A: 

(HIR resident) 

LIRS= {A, D} 

HIRS= {B} 

Resident HIRS= {B}    (Queue Q) 

Non-resident HIRS= {}   B is inserted  

      A is removed 

             (Stack S)  

         A is promoted 

          B is demoted 

Upon Accessing E: 

(HIR non-resident) 

 

LIRS= {A, D} 

HIRS= {E}    (Queue Q)  page fault 

Resident HIRS= {E}    E is inserted  

Non-resident HIRS= {}   B is removed 

             (Stack S)  

Upon Accessing B: 

(HIR non-resident) 

 

LIRS= {A, D} 

HIRS= {B, E}    (Queue Q)  page fault 

Resident HIRS= {B}    B is inserted  

Non-resident HIRS= {E}   E is removed 

             (Stack S) 

  

Number of page fault: 7 

3.4 Basic LIRS 

The basic LIRS is similar to LIRS described in section 3.3, but the only difference is the 

major function stack pruning is not conducted. Here IRR value is also calculated by using 

outdated recency value of that particular block. Hence there is no need of Queue to maintain 
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Fig 3.6.10 State at Virtual Time 10 
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HIR resident block. But during status change the comparison operation increases complexity. 

The following section clarifies the basic LIRS scheme and its illustration is also shown in 

section 3.4.4. 

3.4.1 Data Structure 

Stack S contains every page reference which has already been accessed. Its main purpose is 

to maintain recency value. As we move toward bottom recency factor increases. Bottommost 

one is the oldest block having higher recency factor and topmost one is the recent block 

having recency factor equals to zero. Each stack node contains information about reference 

block indicated by integer, current status (integer 2 indicates LIR, 1 indicates resident HIR 

and 0 indicates non-resident HIR.) and IRR value which is initially infinite but during 

correlated access it carries value equal to expired recency. 

3.4.2 Algorithm 

STEP 1: Upon accessing block X, if X is available in the stack S. 

We move it to the top of stack S and earlier recency becomes new IRR value which is 

determined by counting steps to reach top of S. Page fault occurs if status of X is non-resident 

HIR otherwise this access is guaranteed to be a hit. 

STEP 2: Upon accessing block X, if X is not available in the stack S that is non-resident HIR. 

This access is guaranteed to be a miss, so page fault occurs. We insert it to the top of stack S 

and its IRR value is assigned infinite.  

STEP 3: While changing status, if minimum IRR value of HIRS<maximum recency of LIRS. 

Now status changes from LIR to HIR and vice versa. Block having minimum IRR value of 

HIRS is admitted to LIRS and block having maximum recency of LIRS is admitted to HIRS.  

a) If status of block having minimum IRR value of HIRS was resident HIR. 

Status of resident HIR is switched to LIR. At the same time status of LIR is switched to 

resident HIR. 

b) If status of block having minimum IRR value of HIRS was non-resident HIR 

Status of non-resident HIR is switched to LIR. Status of LIR is switched to resident HIR and 

status of resident HIR with high recency value is switched to non-resident HIR. 

STEP 4: While changing status, if status of top of Stack S is non-resident HIR (i.e. block X 

from STEP 2) 

Now status of X is changed to resident HIR. Status of resident HIR having highest recency 

(i.e. bottom most resident HIR of S) is changed to non-resident HIR.  
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3.4.3 Flowchart 

   

 

 

  

Fig 3.7 Flowchart of Basic LIRS Algorithm 
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3.4.4 Tracing 

Size of LIRS: 2        LIR 

Size of HIRS: 1 

Cache Size: 2+1=3        Resident HIR 

Input References: A D B C B A D A E B 

Number of Distinct References: 5      Non- resident HIR 

Total Number of References: 10 

Upon accessing A: 

 (HIR non-resident) 

LIRS= {A}                     page fault 

HIRS= {}    

Resident HIRS= {} 

Non-resident HIRS= {}           

Upon accessing D: 

(HIR non-resident) 

LIRS= {D, A} 

HIRS= {}          page fault  

Resident HIRS= {} 

Non-resident HIRS= {} 

Upon accessing B: 

(HIR non-resident) 

LIRS= {D, A} 

HIRS= {B}   

Resident HIRS= {B}                         page fault 

Non-resident HIRS= {} 

Upon accessing C: 

(HIR non-resident) 

LIRS= {D, A} 

HIRS= {C, B}  

Resident HIRS= {C}   

Non-resident HIRS= {B}            page fault 

 

 

 

 

 

 

 1 2 Recency IRR 
A X  0 ∞ 

 

 

 

 

 

 1 2 3 Recency IRR 
A X   0 ∞ 
D  X  1 ∞ 

 

 

 

 

 

 1 2 3 4 Recency IRR 
A X    2 ∞ 
B   X  0 ∞ 
D  X   1 ∞ 

 1 2 3 4 5 Recency IRR 
A X     3 ∞ 
B   X   1 ∞ 
C    X  0 ∞ 
D  X    2 ∞ 

 

 

 

 

 

Table 3.1.1 IRR Calculation for Virtual Time 2  

 

 

 

Fig 3.8.1 Stack S at Virtual Time 1 
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Table 3.1.2 IRR Calculation for Virtual Time 3 

 

 

Fig 3.8.2 Stack S at Virtual Time 2 

Table 3.1.3 IRR Calculation for Virtual Time 4 

 

Fig 3.8.3 Stack S at Virtual Time 3 

Table 3.1.4 IRR Calculation for Virtual Time 5 

 

Fig 3.8.4 Stack S at Virtual Time 4 
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Upon accessing B: 

(HIR non-resident)  Status Change 

LIRS= {B, D}  

HIRS= {A, C}  

Resident HIRS= {A}     max(recency(LIRS)) > min(irr(HIRS)) 

Non-resident HIRS= {C}      page fault 

Upon accessing A: 

(HIR resident) 

LIRS= {B, D} 

HIRS= {A, C} 

Resident HIRS= {A}   

  

 Non-resident HIRS= {C} 

Upon accessing D: 

(LIR) 

LIRS= {D, B} 

HIRS= {A, C} 

Resident HIRS= {A} 

Non-resident HIRS= {C} 

Upon accessing A: 

(HIR resident)         Status Change 

LIRS= {A, D} 

HIRS= {B, C}  

Resident HIRS= {B} 

Non-resident HIRS= {C}        

       max(recency(LIRS)) > min(irr(HIRS)) 

Upon accessing E: 

(HIR non-resident) 

Status Change 

LIRS= {A, B} 

HIRS= {E, D, C} 

Resident HIRS= {E}   

Non-resident HIRS= {D, C}  max(recency(LIRS)) > min(irr(HIRS))       page fault 

 1 2 3 4 5 6 Recency IRR 
A X      3 ∞ 
B   X  X  0 1 
C    X   1 ∞ 
D  X     2 ∞ 

 

 

 

 

 

 1 2 3 4 5 6 7 Recency IRR 
A X     X  0 3 
B   X  X   1 1 
C    X    2 ∞ 
D  X      3 ∞ 

 

 

 

 

 

 1 2 3 4 5 6 7 8 Recency IRR 
A X     X   1 3 
B   X  X    2 1 
C    X     3 ∞ 
D  X     X  0 3 

 

 

 

 

 

 1 2 3 4 5 6 7 8 9 Recency IRR 
A X     X  X  0 1 
B   X  X     2 1 
C    X      3 ∞ 
D  X     X   1 3 

 

 

 

 

 

 1 2 3 4 5 6 7 8 9 10 Recency IRR 
A X     X  X   1 1 
B   X  X      3 1 
C    X       4 ∞ 
D  X     X    2 3 
E         X  0 ∞ 

 

 

 

 

 

A 

D 

C 

B 

C 

D 

B 

A 

C 

D 

B 

A 

C 

A 

D 

B 

C 

A 

B 

D 

E 

 Table 3.1.5 IRR Calculation for Virtual Time 6 

Fig 3.8.5 Stack  S at Virtual Time 5 

Table 3.1.6 IRR Calculation for Virtual Time 7 

Fig 3.8.6 Stack S at Virtual Time 6 

Table 3.1.7 IRR Calculation for Virtual Time 8 

Fig 3.8.7 Stack S at Virtual Time 7 

         Table 3.1.8 IRR Calculation for Virtual Time 9 
 

Fig 3.8.8 Stack S at Virtual Time 8 

             Table 3.1.9 IRR Calculation for Virtual Time 10 

 

Fig 3.8.9 Stack S at Virtual Time 9 
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Upon accessing B: 

(LIR) 

LIRS= {B, A} 

HIRS= {E, D, C} 

Resident HIRS= {E} 

  

Non-resident HIRS= {D, C} 

 

Number of page fault: 6 

  

 1 2 3 4 5 6 7 8 9 10 11 Recency IRR 
A X     X  X    2 1 
B   X  X     X  0 3 
C    X        4 ∞ 
D  X     X     3 3 
E         X   1 ∞ 

 

 

 

 

 C 

B 

A 

D 

E 

Table 3.1.10 IRR Calculation for Virtual Time 11 

Fig 3.8.10 Stack S at Virtual Time 10 
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Chapter 4 

DATA COLLECTION & ANALYSIS  

4.1  Data Collection 
Data are the sources of information. Hence data should be collected very carefully. All the 

data are collected by means of primary sources. In this dissertation work data are generated 

by using number of C source codes. These source files are used for generating memory 

references that are so called as workloads.  The workload represents weak locality of memory 

reference pattern that are generated during execution of process in real OS. Here Weak 

locality workloads can be categorized into reference of sequential scan as Workload 1, 

reference of loop which is larger than cache size as Workload 2 and reference of probabilistic 

pattern as Workload 3. Each category contains ten thousand memory references and more. 

Sample of Workload 1, Workload 2 and Workload 3 is in appendix A, appendix B and 

appendix C respectively. 

4.2 Testing 

These three workloads are separately tested in our simulator. Each workload is tested in LRU, 

LIRS simulated through data structure and basic LIRS simulator by varying the cache size 

from 4 to 1024. In case of LIRS algorithms HIR, LIR partition is maintained as 1% and 99% 

of cache size. But in case of Workload 2 size of LIR is maintained cache size-1 or HIR is 

maintained 1, because page fault decreases with minimum LIR size. 

4.2.1 Test Result of Workload 1 

No. of References = 10000 
No. of Distinct Reference = 8840 

Cache 
Size 

LRU Basic LIRS  LIRS Simulated 
Through Data Structure 

Page 
Fault 

Miss 
Rate 

Hit 
Rate 

Page 
Fault 

Miss 
Rate 

Hit 
Rate 

Page 
Fault 

Miss 
Rate 

Hit 
Rate 

4 10000 100% 0% 9969 97.33% 2.67% 9985 98.71% 1.29% 
8 10000 100% 0% 9929 93.88% 6.12% 9965 96.98% 3.02% 
16 10000 100% 0% 9849 86.98% 13.02% 9910 92.24% 7.76% 
32 10000 100% 0% 9689 73.19% 26.81% 9814 83.97% 16.03% 
64 10000 100% 0% 9600 65.52% 34.48% 9760 79.31% 20.69% 

128 10000 100% 0% 9600 65.52% 34.48% 9760 79.31% 20.69% 
256 10000 100% 0% 9600 65.52% 34.48% 9760 79.31% 20.69% 
512 9440 51.73% 48.27% 9600 65.52% 34.48% 9720 75.86% 24.14% 

1024 9440 51.73% 48.27% 9600 65.52% 34.48% 9680 72.41% 27.59% 
Table 4.1 Test Result of Workload 1 
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4.2.2 Test Result of Workload 2 

No. of References = 10000 
No. of Distinct Reference = 200 
 

 

 

4.2.3 Test Result of Workload 3 

No. of References = 10500 
No. of Distinct Reference = 2417 

  

Cache 
Size 

LRU Basic LIRS LIRS Simulated  
Through Data Structure 

Page 
Fault 

Miss 
Rate 

Hit 
Rate 

Page 
Fault 

Miss 
Rate 

Hit 
Rate 

Page 
Fault 

Miss 
Rate 

Hit 
Rate 

4 10000 100% 0% 9853 98.50% 1.50% 9973 99.72% 0.28% 
8 10000 100% 0% 9657 96.50% 3.50% 9930 99.29% 0.71% 

16 10000 100% 0% 9265 92.50% 7.50% 9850 98.47% 1.53% 
32 10000 100% 0% 8481 84.50% 15.50% 9659 96.52% 3.48% 
64 10000 100% 0% 6913 68.50% 31.50% 9181 91.64% 8.36% 

128 10000 100% 0% 3777 36.50% 63.50% 6825 67.60% 32.40% 
256 200 0% 100% 200 0% 100% 200 0% 100% 
512 200 0% 100% 200 0% 100% 200 0% 100% 

1024 200 0% 100% 200 0% 100% 200 0% 100% 

Cache 
Size 

LRU Basic LIRS  LIRS Simulated  
Through Data Structure 

Page 
Fault 

Miss 
Rate 

Hit 
Rate 

Page 
Fault 

Miss 
Rate 

Hit 
Rate 

Page 
Fault 

Miss 
Rate 

Hit 
Rate 

4 10456 99.45% 0.55% 10469 99.62% 0.38% 10492 99.90% 0.10% 
8 10429 99.12% 0.98% 10422 99.03% 0.97% 10491 99.89% 0.11% 

16 10392 98.66% 1.34% 10215 96.47% 3.53% 10471 99.64% 0.36% 
32 10317 97.74% 2.26% 9848 91.93% 8.07% 10412 98.91% 1.09% 
64 10295 97.46% 2.54% 9245 84.47% 15.53% 10221 96.55% 3.45% 

128 10253 96.94% 3.06% 8534 75.67% 24.33% 10023 94.01% 5.99% 
256 10149 95.66% 4.34% 7858 67.31% 32.69% 9820 91.59% 8.41% 
512 8370 73.65% 26.35% 6933 55.87% 44.13% 9420 86.64% 13.36% 

1024 6587 51.59% 48.41% 5303 35.70% 64.30% 8314 72.95% 27.05% 

Table 4.2 Test Result of Workload 2 

Table 4.3 Test Result of Workload 3 
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4.3 Analysis 

 
      Fig 4.1 Graph of Workload 1 

Workload 1 is the sequential scan type of trace as the cache size increases the page fault also 

decreases. After increasing the cache size to 300 and above, LRU performances drastically 

changes than other LIRS algorithms. This shows that memory reference pattern is moving 

toward strong locality of reference which is favorable for LRU. 

 
      Fig 4.2 Graph of Workload 2 

0%

10%

20%

30%

40%

50%

60%

0 200 400 600 800 1000 1200

H
it 

R
at

e

Cache Size

Sequential Scan Pattern

LRU Basic LIRS LIRS Simulated Through Data Structure

0%

20%

40%

60%

80%

100%

120%

0 200 400 600 800 1000 1200

H
it 

R
at

e

Cache Size

Looping Pattern

LRU Basic LIRS LIRS Simulated Through Data Structure



39 
 

Workload 2 is the trace of loop larger than cache size as the cache size increases the page 

fault also decreases. After increasing the cache size to 200 and above, all the algorithms 

shows 100% hit rate because the trace consists of loop from memory reference 1 to 200. 

Since all 200 distinct blocks are resident, the trace then doesn't favor our assumption of weak 

locality workload. Also fixing HIR partition to 1 is the best way to get minimum page fault.  

 

 

      Fig 4.3 Graph of Workload 3 
Workload 3 is the trace of probabilistic pattern where each memory reference has their own 

frequency they are accessed. When the cache size is 350 and above LRU shows change 

because of change in locality. Because the trace consists of repetition of frequency blocks 

after every 350 references and besides frequency blocks all other blocks are randomly 

occurring. Hence unlike other cases 100% hit rate can't be achieved. Here basic LIRS is 

working better, since it can store deeper history information than LIRS simulated through 

data structure. 

The graphs of figure 4 show that the basic LIRS algorithm is better than LIRS simulated 

through data structure. Since all the workloads that we have used in this work represent weak 

locality memory references, LRU misbehaves but as the locality changes due to change in 

cache size performance gain can be achieved.  
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Chapter 5 

CONCLUSION AND RECOMMENDATION 
5.1 Conclusion 
Replacement algorithms are valuable components of operating system design and can affect 

system performance significantly. Common LRU failures can be solved by using user level 

hints, tracing and utilizing history information and detection and adaptation of access 

regularities. LIRS can solve problems regarding weak locality of reference by tracing and 

utilizing history information. The failure of LRU is due to the bold assumption on recency. 

Negative effects caused by taking only recency value are removed by considering IRR as 

history information. The algorithm successfully handles weak locality of reference. 

LIRS is a valuable replacement algorithm. It is simple as LRU.  The basic approach is the 

idea behind its success. The policy decides more accurately than LIRS simulated through data 

structure for pages not in memory to make replacement. This is only due to storage of deeper 

history information, which is lost during stack pruning in LIRS. Unlike other traditional page 

replacement algorithm, it can change very faster according to program behavior. Basic LIRS 

is easier to implement because of simple data structure. But LIRS simulated through data 

structure contains additional data structure to hold resident HIR but that doesn't increase 

space requirement as it is 1% of cache size. Basic LIRS algorithm requires data update in 

every memory access which makes it impracticable in real OS. Both of these 

implementations will be important for future research work. 

5.2     Recommendation 
The LIRS page replacement algorithm consists of two parameters, i.e. size of LIR and size of 

HIR which can be self tuned according as workloads. As we know minimum size of HIR that 

is equal to 1 is the best parameter in case of loop with larger cache size. Hence dynamic 

approach can be used to self tune this parameter. The data structure used can be improved so 

as to decrease the computation complexity. Here three different sample traces are used which 

is actually not the real trace recorded during the execution of program. This work can be 

standardized by using real traces. 

In case of basic LIRS we can limit the size of LRU stack so as it is applicable in real time 

implementation. Also the size of stack can be self-tuned according as the workload. 

Considering weak locality of reference and program complexity during simulation is taken as 

the limitations of this work.  
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Appendix A: Sample Trace of Sequential Scan, Workload 1 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 1 2 3 4 5 6 7 8 9 10 11 

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 

595 596 597 598 599 600 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 601 602 603 604 605 606 607 608 609 610 

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652  
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Appendix B: Sample Trace of Looping Pattern, Workload 2 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 1 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 1 2 3 
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 1 2 3 
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 1 2 3 
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 1 2 3 
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65  
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Appendix C: Sample Trace of Probabilistic Pattern, Workload 3 
366 377 8 458 31 448 93 17 330 438 291 354 81 344 246 328 124 307 149 57 366 259 68 

247 455 85 451 26 43 339 73 431 235 284 414 209 486 403 225 388 376 206 369 293 435 

441 73 39 163 59 5 20 69 82 56 88 95 35 50 74 858 532 725 542 878 843 996 586 602 784 

734 719 970 924 980 658 973 941 543 616 661 534 626 873 895 657 756 744 801 989 684 

663 689 548 500 912 606 879 734 540 729 519 799 925 997 592 965 532 760 675 105 120 

169 192 156 178 195 145 150 174 1491 1487 1109 1223 1254 1231 1170 1287 1407 1129 

1151 1496 1487 1386 1067 1274 1328 1309 1119 1043 1387 1308 1203 1414 1300 1311 

1444 1145 1049 1355 1311 1001 1368 1270 1031 1429 1483 1082 1054 1484 1116 1477 

1307 1103 1493 1465 1200 1170 1465 1071 203 220 269 282 256 287 295 235 251 274 1751 

1900 1655 1786 1614 1667 1885 1770 1879 1642 1681 1737 1844 1699 1863 1756 1999 

1507 1797 1630 1883 1599 1815 1941 1842 1636 1903 1539 1703 1540 1746 1964 1783 

1907 1630 1893 1567 1895 1672 1519 1579 1855 1978 1797 1820 1946 1576 1517 1716 

1962 325 320 369 382 336 388 395 335 350 384 2192 2104 2093 2307 2003 2086 2100 2234 

2447 2118 2264 2126 2198 2364 2161 2288 2171 2135 2269 2253 2487 2457 2024 2168 

2133 2192 2361 2137 2337 2485 2287 2090 2444 2256 2421 2374 2391 2163 2375 2394 

2165 2367 2253 2494 2300 2312 2311 2244 2343 2419 405 420 469 482 456 418 495 435 

450 474 48 240 474 350 45 29 26 77 203 52 135 279 194 206 432 108 427 312 258 146 8 81 

429 464 0 335 369 425 434 157 109 211 469 51 357 369 316 319 162 177 176 467 142 180 

233 229 452 66 110 106 5 20 69 82 56 88 95 35 50 74 726 950 540 602 763 673 933 676 951 

527 577 773 666 892 639 957 956 910 876 743 640 987 721 605 696 574 762 723 864 939 

780 949 933 678 738 610 984 669 953 941 662 919 681 597 980 820 675 628 510 812 105 

120 169 192 156 178 195 145 150 174 1444 1156 1359 1127 1371 1406 1159 1427 1029 

1112 1038 1275 1022 1252 1425 1244 1194 1069 1232 1327 1229 1438 1352 1241 1478 

1459 1259 1257 1001 1349 1466 1349 1465 1128 1322 1196 1241 1047 1356 1175 1406 

1376 1243 1049 1202 1305 1181 1220 1018 1170 203 220 269 282 256 287 295 235 251 274 

1766 1762 1974 1856 1969 1784 1530 1992 1568 1524 1717 1588 1863 1545 1669 1822 

1722 1623 1935 1963 1938 1658 1644 1898 1695 1834 1946 1845 1671 1667 1599 1597 

1638 1929 1879 1879 1797 1766 1687 1785 1706 1871 1685 1895 1515 1601 1967 1623 

1907 1612 325 320 369 382 336 388 395 335 350 384 2322 2063 2474 2433 2056 2279 2427 

2163 2163 2298 2355 2039 2327 2475 2379 2130 2272 2166 2431 2381 2054 2005 2311 

2017 2486 2332 2383 2031 2151 2063 2089 2056 2371 2185 2133 2130 2087 2048 2182 
 


