

An Evaluation of Page Replacement Algorithm

Based on Low Inter-Reference Recency Set (LIRS) Scheme

on Weak Locality Workloads

A Dissertation

 Submitted To

Central Department of Computer Science & Information

Technology

Tribhuvan University

Kirtipur, Nepal

In Partial Fulfillment of the Requirements for the Master's

Degree of Science

in

Computer Science & Information Technology

Submitted By

Bijeta Subedi

CDCSIT, TU

(20th March, 2012)

An Evaluation of Page Replacement Algorithm

Based on Low Inter-Reference Recency Set (LIRS) Scheme

on Weak Locality Workloads

A Dissertation

 Submitted To
Central Department of Computer Science & Information

Technology

Tribhuvan University

 Kirtipur, Nepal

In Partial Fulfillment of the Requirements for the Master's

Degree of Science

in

Computer Science & Information Technology

Submitted By

Bijeta Subedi
CDCSIT, TU

Supervisor: Co-Supervisor:

Prof. Dr. Shashidhar Ram Joshi Mr. Arjun Singh Saud

An Evaluation of Page Replacement Algorithm

Based on Low Inter-Reference Recency Set (LIRS) Scheme

on Weak Locality Workloads

Student’s Declaration

I hereby declare that I am the only author of this dissertation work and that no sources other

than the listed have been used in this work.

iss Bijeta Subedi

Supervisor's Recommendation

I hereby recommend that the dissertation prepared under my supervision by Miss. Bijeta

Subedi entitled “An Evaluation of Page Replacement Algorithm Based on Low Inter-

Reference Recency Set (LIRS) Scheme on Weak Locality Workloads” be accepted as in

fulfilling partial requirement for the completion of Master's Degree of Science in Computer

Science & Information Technology.

Prof. Dr. Shashidhar Ram Joshi

Head of Department

Department of Electronics and Computer Engineering, Institute of Engineering, Pulchowk,

Lalitpur , Nepal.

(Supervisor)

Acknowledgement

I am very happy to complete this thesis "An Evaluation of Page Replacement Algorithm

Based on Low Inter-Reference Recency Set (LIRS) Scheme on Weak Locality

Workloads”, which has been performed under Central Department of Computer Science and

Information Technology (Tribhuwan University), Kirtipur. I am very grateful to my

department for assigning me such a laborious work.

First of all I would like to express my gratitude to my supervisor Prof. Dr. Shashidhar Ram

Joshi, head of the Department of Electronics and Computer Engineering, Institute of

Engineering, Pulchowk. This research would not have been possible without his advices and

patience.

I deeply extend my heartily acknowledgement to my co-supervisor Mr. Arjun Singh Saud

who gave me an enthusiastic support from the beginning to the end of the preparation of this

dissertation. He is the one who listened to all my problems I faced during this thesis and

showed me the way to overcome them.

I would like to express heartfelt thanks to Prof. Dr. Onkar Sharma, Marist College, USA

for his inspiration and support for addressing the problems at the beginning.

I would like to thank to our respected Head of Department of Central Department of

Computer Science and Information Technology, Assoc. Prof. Dr. Tanka Nath Dhamala,

respected teachers Prof. Sudarsan Karanjit, Prof. Dr. Subarna Sakya, Mr. Min Bahadur Khati,

Mr. Bishnu Gautam, Mr. Dinesh Bajracharya, Mr. Navaraj Poudel, Mr. Jagdish Bhatta, Mr.

Yog Raj Joshi, Mr Bikash Balami & Mr. Ashim Ghising of CDCSIT, TU, for providing me

such a broad knowledge and inspirations within the period of my study.

Special thanks to my family and members of different educational organizations that I have

been working for their endless motivation, constant mental support and love which have been

influential in whatever I have achieved so far. I wish to thank to all my colleagues and friends

especially Mr. Nabin Ghimire, Mr. Sandeep Aryal, Mr. Bishal Gnyawali, Mr. Tej Bahadur

Shahi and Mr. Ganga Ram Rimal for supporting me directly and indirectly in this research

work. I have done my best to complete this research work. I welcome any type of

suggestions, which will improve this research work.

Abstract

The performance of page replacement algorithms used by cache management of OS is very

much important. This situation further more complicates due to limitations of faster memory

and I/O system. Among various page replacement algorithms LRU is simple and flexible. But

the low overhead LRU misbehaves with weak locality of reference. Mainly weak locality

workloads can be categorized into sequential pattern, loop with larger than cache size and

probabilistic pattern. This weakness of LRU is only due to the bold assumption on recency

factor. Recency factor is only not sufficient because frequency factor also plays important

role according as the program behavior. Many modifications on LRU have done such as

LRU-K, EELRU, LRFU etc. But unlike others LIRS improved the weaknesses of LRU by

considering IRR factor, which is logically a combination of recency and frequency factor.

IRR factor is also known as reuse distance and can be achieved by using recency value which

is equal to number of distinct references between recent correlated access of a particular

block. LIRS can be implemented by different approaches based on its principle. One by

focusing on its principle called basic LIRS and another LIRS simulated through data structure

which focuses on computational complexity. Both of them are evaluated by using variety of

weak locality workloads which represents the memory reference pattern during the execution

of program.

Table of Contents
Details Pages

CHAPTER 1

Background & Introduction
1.1 Background 1-11

1.1.1 Memory Hierarchy 1-3

1.1.1.1 Primary Memory 2

1.1.1.1.1 Cache 2

1.1.1.1.2 Register 2

1.1.1.2 Secondary Memory 2

1.1.1.3 Virtual Memory 3

1.1.2 Memory Management 3-6

1.1.2.1 Overlays 3

1.1.2.2 Swapping 3

1.1.2.3 Paging 4

1.1.2.4 Segmentation 5

1.1.3 Paging Algorithm 6-7

1.1.3.1 Fetch Algorithm 6

1.1.3.2 Placement Algorithm 6

1.1.3.3 Replacement Algorithm 6

1.1.4 Performance Metrics 7

1.1.4.1 Page Fault Count 7

1.1.4.2 Hit Rate & Hit Ratio 7

1.1.4.3 Miss Rate & Miss Ratio 7

1.1.5 Memory Design 8-10

1.1.5.1 Sources of Miss 8-9

1.1.5.1.1 Compulsory Miss 8

1.1.5.1.2 Capacity Miss 9

1.1.5.1.3 Conflict Miss 9

1.1.5.1.4 Policy Miss 9

1.1.5.2 Reduction of Miss Ratio 9

1.1.6 Program Behavior 10-11

1.1.6.1 Locality of Reference 10

1.1.6.2 Memory Reference Pattern 10-11

1.1.6.2.1 Cyclic Pattern 10

1.1.6.2.2 Correlated Access Pattern 11

1.1.6.2.3 Temporally Clustered Pattern 11

1.1.6.2.4 Probabilistic Access Pattern 11

1.1.6.2.5 Mixed Pattern 11

1.1.6.3 Working Set 11

1.2 Introduction 12 - 14

1.2.1 Problem Statement 13

1.2.2 Objectives 13

1.3 Motivation 13

1.4 Thesis Organization 14

CHAPTER 2

Literature Review & Methodology
2.1 Literature Review 15-20

2.1.1 OPT or MIN Page Replacement Algorithm 15

2.1.2 Random Page Replacement Algorithm 15

2.1.3 FIFO Page Replacement Algorithm 15

2.1.4 FINUFO Page Replacement Algorithm 16

2.1.5 LRU Page Replacement Algorithm 16

2.1.6 NRU Page Replacement Algorithm 16

2.1.7 MRU Page Replacement Algorithm 17

2.1.8 LFU Page Replacement Algorithm 17

2.1.9 SEQ Page Replacement Algorithm 17

2.1.10 EELRU Page Replacement Algorithm 18

2.1.11 LRFU Page Replacement Algorithm 18

2.1.12 LRU-K Page Replacement Algorithm 18

2.1.13 2Q Page Replacement Algorithm 18

2.1.14 LIRS Page Replacement Algorithm 19

2.1.15 Clock Based Page Replacement Algorithms 19

2.1.16 Various Page Replacement Algorithms 19

2.2 Research Methodology 20

CHAPTER 3

Program Development
3.1 Development Methodology & Tools 21-35

3.2 LRU 21-23

3.2.1 Data Structure 21

3.2.2 Algorithm 21

3.2.3 Flowchart 22

3.2.4 Tracing 23

3.3 LIRS Simulated Through Data Structure 24-30

3.3.1 Data Structure 25

3.3.2 Major Function 25

3.3.3 Algorithm 25

3.3.4 Flowchart 27

3.3.5 Tracing 28

3.4 Basic LIRS 30-35

3.4.1 Data Structure 31

3.4.2 Algorithm 31

3.4.3 Flowchart 32

3.4.4 Tracing 33

CHAPTER 4

Data Collection & Analysis
4.1 Data Collection 36-39

4.2 Testing 36-37

4.2.1 Test Result of Workload 1 36

4.2.2 Test Result of Workload 2 37

4.2.3 Test Result of Workload 3 37

4.3 Analysis 38

CHAPTER 5

Conclusion & Recommendation
5.1 Conclusion 40

5.2 Recommendation 40

References 41-42

Appendices 43-45

List of Figures

Fig. No. Caption Pages

Fig 1 - Computer Memory Hierarchy 1

Fig 3.1 - Flowchart of LRU Algorithm 22

Fig 3.2 - LRU Queue at Virtual Time 1-10 23

Fig 3.3 - General LIR vs. HIR Transition Diagram 24

Fig 3.4.1 - LIR vs. Resident HIR Transition Diagram 24

Fig 3.4.2 - LIR vs. Non-Resident HIR Transition Diagram 24

Fig3.5 - Flowchart of LIRS Simulated Through Data Structure 27

Fig3.6 - State at Virtual Time 1-10 28-30

Fig3.7 - Flowchart of Basic LIRS Algorithm 32

Fig3.8 - Stack S at Virtual Time 1-10 33-35

Fig4.1 - Graph for Workload1 38

Fig4.2 - Graph for Workload2 38

Fig4.3 - Graph for Workload3 39

List of Tables

Table No. Caption Pages

Table 3.1 - IRR Calculation for Virtual Time 2-11 33-35

Table 4.1 - Test Result of Workload 1 36

Table 4.2 - Test Result of Workload 2 37

Table 4.3 - Test Result of Workload 3 37

List of Abbreviations
2Q - Two Queue

ARC - Adaptive Replacement Cache

AFC - Application/File-level Characterization

AFPR - Adaptive Fuzzy Page Replacement

CAR - Clock with Adaptive Replacement

CLOCK Pro - Clock with improvement

CPU - Central Processing Unit

DEAR - DEtection based Adaptive Replacement

EELRU - Early Eviction Least Recently Used

FINUFO - First In Not Used First Out

FIFO - First In First Out

FPR - Fuzzy Page Replacement

HIR - High Inter-reference Recency

HIRS - High Inter-reference Recency Set

I/O - Input Output

IRG - Inter- Reference Gap

IRR - Inter- Reference Recency

LFU - Least Frequently Used

LIR - Low Inter-reference Recency

LIRS - Low Inter-reference Recency Set

LRFU - Least Recently Frequently Used

LRU - Least Recently Used

MMU - Main Memory Unit

MRU - Most Recently Used

NRU - Not Recently Used

OPT or MIN - OPTimum or MINimum

OS - Operating System

PFF - Page Fault Frequency

RAM - Random Access Memory

ROM - Read Only Memory

SEQ - SEQunetial
TLB - Translation Look-aside Buffer

1

Chapter 1

BACKGROUND & INTRODUCTION

1.1 Background

1.1.1 Memory Hierarchy

Even though varieties of memory devices which vary on response time, cost, reliability,

memory capacity etc. are available in today's market, the computer system has limited

memory. Memory Hierarchy is the ranking of memory devices so as to achieve higher

performance with in the limited storage capacity. Memory Hierarchy consists of different

levels of memory that are faster one over other but faster memory is costlier and has low

storage capacity compared to slower memory.

Figure1.1Computer Memory Hierarchy shows the hierarchy of memories used in a computer

system with their speed and memory capacity. The arrangement of memory devices in a

computer system is such that faster memory is at top level and slower memory is at the

bottom. Overall performance of computer system depends upon management and

organization of such memories. All the memory management policies are automatically

handled by OS and devices are arranged according as the principles followed by it. Different

types of memories available up to now can be categorized into two major groups. They are

primary memory and secondary memory which can be taken as real memory. Besides real

memory OS uses virtual memory to speed up the overall performance of the computer

system.

Fig 1.1 Computer Memory Hierarchy

Register

Cache

RAM ROM

Magnetic Disk

Optical Disk

Speed

In
cr

ea
si

ng
 Increasing

Capacity

2

1.1.1.1 Primary Memory

Primary memory is only the memory which can be referenced directly. It is also known as

internal or main memory. It is made up of semiconductor material and can be accessed

randomly. For example register, RAM, ROM, cache etc. It is faster and expensive memory

that lies at the top most level of memory hierarchy. Since primary memory is volatile in

nature computer system backups the data into secondary storage.

1.1.1.1.1 Cache

The cache is a smaller, faster memory which stores copies of the data from the most

frequently used main memory locations. Cache acts as bridge between processor and RAM

since speed of processor is still faster compared to speed of RAM. Generally computer

system consists of different levels of cache that are L1 cache and L2 cache. L1 cache is

internal cache nearby register and L2 cache is external cache nearby RAM. L1 cache is faster

than L2 cache. If L3 cache is available then it acts as earlier L2 cache. Hence L2 works as

intermediate cache between L1 cache and L3 cache. Increasing the level of cache doesn't

always increase the overall performance. Up to limited cache level the performance gain can

be achieved. If there are more levels of cache, access time will increase due to swapping the

blocks back and forth. Hence after crossing certain limitation of cache level overall

performance slows down instead of increasing.

1.1.1.1.2 Register

Register is the fastest memory in which processing is actually performed. It is inbuilt inside

CPU. In general, registers are temporary storage in the CPU that holds the data the processor

is currently working on, while cache holds the program instructions and the data the program

requires. Finally, there are generally only a few numbers of registers available on a processer.

For example Intel chips have 6 general purpose registers and several specialized registers

including a base register, stack register, flags register, program counter, and some addressing

registers.

1.1.1.2 Secondary Memory

Secondary memory is taken as the backup memory. It consists of massive volume of data.

Comparatively it is cheaper, slower and less reliable. Secondary memory is external memory

such as hard disk, optical disk, pen drive, flash cards etc.

3

1.1.1.3 Virtual Memory

Fotheringham 1961[2], devised a concept of virtual memory which is associated with ability

to address a memory space much larger that the available real memory. Virtual memory is a

service provided by an OS that allows execution of programs larger than available physical

memory. Virtual memory plays vital role to overcome limited primary memory. Handling

virtual memory is one of the important issues of today's computer system.

1.1.2 Memory Management

Memory management and organization has been one of the most important factors that

influence performance of OS. It has been studied for many years. Memory management

systems are of two classes one which move processes back and forth between main memory

and disk during execution and other which does not.

Actually memory management is done by memory manager or memory management unit,

which is handled by OS to manage memory hierarchy. The main job of memory management

unit is to keep track of processes currently being executed. It keeps track which part of

memory is currently in use and which does not. It also allocates memory for a process when

required and dellocate memory when work is temporarily finished. It manages memory for a

process to load and also manages extra memory that is virtual memory if it is too small to

hold for the required process.

1.1.2.1 Overlays

Early age, too big programs that couldn't fit into available memory are usually split into

pieces called overlays, which should be done manually. These overlays are swapped in for

execution of programs and swapped out after execution. This makes the programmer to

perform tedious job which was time consuming and boring. Similar concept is used now also

but besides partitioning manually, OS keeps track of part of program currently in use in main

memory and rest on backing storage.

1.1.2.2 Swapping

A process must be in memory to be executed however it can be swapped out temporarily to a

backing store and then brought back into memory for continued execution. Swapping is a

technique in which memory blocks are partitioned into variable size. Here blocks are

swapped back and forth which is done by OS. The memory block should fit in available free

4

space or hole for execution. There are several strategies to fit the hole like first fit, best fit,

worst fit etc.

Using variable partition method or swapping leads to fragmentation. Fragments are the small

holes which is not suitable for any process to fit. Even though there is free memory space

available, it is wasted. Internal fragmentation occurs due to creation of hole while allocating

memory to a process slightly larger than required memory. Swapping leads to number of

small holes after a long duration of execution of programs and available spaces are non-

contiguous due to which external fragmentation occurs. Even the sum of free spaces are

sufficient than required memory to fit OS could not execute the process. Temporary solution

to external fragmentation is compaction which is a process of moving occupied used memory

toward one end so as to sum up holes into contiguous memory. But compaction is costlier

hence due to many pitfalls variable partition technique is not so used.

1.1.2.3 Paging

Paging is a better solution than swapping because it eradicates the problem of fragmentation

which is only due to partition of fixed size memory blocks. Paging is one of the techniques

that organize virtual storage. The address referenced by running process is called virtual or

logical address whereas the range of address it can reference is called virtual or logical

address space. The address available in primary storage is called real or physical address

whereas the available range of address is called real or physical address space. Even though a

process references only virtual address, the process must run on available real storage. So for

every reference Main Memory Unit (MMU) maps logical address into corresponding

available physical address for that page table is maintained. A page is fixed sized unit of

virtual address space whereas a frame is fixed sized unit of real address space. Generally, size

of frame is equals to size of page. If a requested page is unavailable in primary storage page

fault occurs [2]. A page table contains record of each page with page frame number. Also

each page entry consists of bits like reference bit, caching disabled bit, protection bit,

modified bit and additional information like protection bits. Protection bit is a 3 bits

information containing rwx where r is for read, w is for write and x is for execute. During

page fault MMU notices that the page is unmapped and causes the CPU to trap. Trap is

generated by OS to stop CPU until required page is not available. Then OS picks little used

page frame as chosen by page replacement policy. If it has dirty bit then the contents are

written otherwise if it has clean bit then nothing is written back to secondary storage. Thus

5

the required page is placed into freed frame. Then after successful mapping, trap was

restarted and the process is continued. Still there are several issues while implementing

paging technique. Page table can be extremely large and page mapping must be any how fast

for faster performance. Execution speed depends upon rate at which CPU can fetch data and

instruction out of memory. Additional memory reference is required to access the page table

and for mapping. Translation Look-aside Buffer (TLB) is a solution for this problem which

can be part of MMU. Similar to page table entry each TLB entry contains valid bit, modified

bit, protection bit, virtual page number, page frame number and additional information. TLB

fault may occur if the requested page is unavailable this can be detected by checking TLB

entry. Then trap is generated if it is unavailable in page table entry as earlier it is brought

back to primary storage replacing one of the pages [3].

1.1.2.4 Segmentation

Segmentation is a technique in which virtual address space is divided into several chunks of

segments. Paging doesn't cover the programmer's point of view during execution of a

program. Each segment of a program can individually grow and shrink unpredictably.

Similarly each segment of a virtual address space segmented using segmentation can grow

and shrink individually without affecting other. Hence having two or more virtual address

spaces may be much better than having one for managing such segments of code during

execution. Segmentation involves the relocation of variable sized segments into the physical

address space. Generally these segments are contiguous units and are referred to in programs

by their segment number and an offset to the requested data. Although a segmentation

approach can be more powerful to a programmer in terms of control over the memory, it can

also become a burden, as suggested by [4]. Efficient segmentation relies on programs that are

very thoughtfully written for their target system. Even assuming best case scenarios,

segmentation can lead to many problems. External fragmentation is the term that is use to

denote pieces of memory between segments which may collectively provide a useful amount

of memory. But they are useless because of their non-contiguous nature. Since segmentation

relies on memory that is located in single large blocks, it is possible that enough free space is

available to load a new module, but cannot be utilized. Segmentation may also suffer from

internal fragmentation if segments are not variable-sized. Contrarily, paging provides

somewhat easier interface for programs rather than segmentation. Because paging operations

are more easier and transparent than segmentation.

6

1.1.3 Paging Algorithm

1.1.3.1 Fetch Algorithm

Fetch algorithm initially identifies the requested page block. Paging algorithm can be

categorized into two major groups. They are demand paging and anticipatory paging.

Demand paging algorithm waits for a page requested by a running process. But anticipatory

or pre-paging algorithm guesses which pages are needed before they are requested. Generally

paging mechanism will not have prior knowledge of the page reference stream or the known

order of pages requested in. This causes many systems to employ a demand fetch approach,

where a page fault notification is the first indication that a page must be moved into the

physical memory. Hence demand paging algorithm is much more effective in real systems

than pre-paging algorithm [2]. Demand fetching algorithm always fetches a page that has

been requested during a page fault. But pre-fetching is done by using some heuristic before

the occurrence of page fault.

1.1.3.2 Placement Algorithm

Placement algorithm decides where to put the fetched page in available free storage. Initially

if placement algorithm allows fully associative then OS can place the requested page any

where using any algorithm. After a cache is fulfilled then placement policy is static that

means a requested page is placed in place of removed victim page. A victim page is always

replaced by required page which is chosen by replacement policy used in that particular

system. In case of partially associative memory mapping, placement algorithm is restricted

only for certain memory location.

1.1.3.3 Replacement Algorithm

Replacement algorithm identifies the victim page and replaces it by fetched page because of

lack of primary storage. After a primary storage is fulfilled one of the block must be replaced

for execution of the requested page. The replaced block is also called victim block.

Static page replacement algorithm shares frames equally among all processes such as FIFO,

LRU, MRU, random, optimal etc. Adaptive page replacement algorithm replaces page

according as the page reference pattern observed for example SEQ, EELRU, LRFU, LIRS,

ARC etc. But dynamic page replacement algorithm shares frames according to need rather

than equality among all processes such as working set page replacement algorithm. Some

processes need more frames than others and sometimes a process needs more frames than

7

other times so in this case dynamic policy is applied for better performance but it is more

complex than static one. For such decision calculated page fault frequency and threshold limit

is compared [5].

Also page replacement algorithm can maintain global and local policy. Global policy selects

a replacement from the set of all available frames. Local policy selects a replacement from

the processes own set of frames.

1.1.4 Performance Metrics

If the requested block is available then hit occurs. If it doesn't then page fault occurs which

can be taken as occurrence of miss. Performance gain can be achieved due to more hit rather

than miss. For each miss OS has to pay miss penalty which is time consuming and need more

resource. Offline performance of the page replacement algorithm is measured in terms of

page fault count, hit ratio, miss ratio etc.

1.1.4.1 Page Fault Count

A successful page replacement algorithm always computes less number of page faults. Page

fault count can be measured by counting occurrence of number of page faults between some

intervals of reference, which is also known as page fault frequency (PFF).

1.1.4.2 Hit Rate & Hit Ratio

Hit rate can be calculated by using formula

hr = 100 - mr

where hr is the hit rate and mr is the miss rate. Hit rate is the percentage calculation of the

fraction hit ratio. Hit ratio can be calculated by subtracting miss ratio from 1.

1.1.4.3 Miss Rate & Miss Ratio

Miss rate (mr) can be calculated by using formula

mr = 100 × ((#pf - #distinct) / (#refs - #distinct))

where #pf is the number of page faults, #distinct is the number of distinct pages referenced

and #refs is the total number of pages referenced [6]. Miss Ratio is the fraction number of

page fault and reference ignoring the distinct references.

8

1.1.5 Memory Design

Invention of faster, cheaper and smaller device is only possible due to research in memory

design from many years. Every year performance speed of memory chip has been improving.

Moore's 1965 concluded that "Computer memory increases geometrically not linearly.", for

increasing such large performance gap there are three major logical policies of memory

design.

Firstly improvement can be achieved by making the common case fast. It means most

accessing memories are copied to fastest memory like cache. So that it is always available

and directly used without any delay.

Secondly improvement can be achieved by tracking locality of reference in terms of program

behavior. The term locality refers to the tendency of referencing particular memory location

frequently rather than other memory location. Rule of Thumb- "Most of program spends 90%

of execution time in 10% of source code", which also shows locality of reference [7].

Finally improvement can be achieved by taking advantage of parallelism. Number of

processes can run simultaneously at a time in a processor which is only possible due to

parallelism. Otherwise user should wait for a completion of one process to run other, as

historical computer systems. Hence process must be switched to get chance for busy

processor.

There are some issues related to cache design like block identification policy, block

placement policy, block replacement policy and write strategy. Block identification policy

identifies the required block to fetch. Block placement policy identifies where to place

fetched block in cache. Block replacement policy identifies a victim block that is to be

replaced. Before replacing a block it must be write back if it is modified which is handled by

write strategy.

1.1.5.1 Sources of Miss

1.1.5.1.1 Compulsory Miss

Miss may occur due to several reasons. First time when the block is referenced, it is always

miss which is due to empty volatile cache. This type of miss is known as compulsory miss.

Such type of miss can't be reduced but pre-fetching can be done initially.

9

1.1.5.1.2 Capacity Miss

Some blocks can't be kept in available primary storage due to limited memory space. Hence a

block in cache must be replaced to access new unavailable block. Next time if the older block

is accessed miss occurs. Here blocks being discarded are later on retrieved. Occurrence of

miss due to limited storage capacity is known as capacity miss. There is no any permanent

solution for this miss because memory capacity is always limited.

1.1.5.1.3 Conflict Miss

Too many main memory blocks mapped to the same cache set results conflict miss. This is

due to direct and set associative mapping. Conflict miss doesn't occur in case of fully

associative mapping. This type of miss is also known as collision miss or interference miss.

1.1.5.1.4 Policy Miss

If required block is unavailable in faster memory then the required block is brought back to

faster memory replacing some block. This victim block is chosen by page replacement

policy. This block may be needed later causes policy miss which is consequence of

replacement policy [8].

1.1.5.2 Reduction of Miss Ratio

There are several ways to reduce miss ratio. Miss ratio can be decreased by reducing number

of page fault. Right decision of the page replacement policy by choosing worth page

reference decreases miss ratio. If simple strategy is used that is by default random page

replacement algorithm then miss ratio may increase or decrease randomly which

unpredictable. Hence a right policy must be decided for reducing miss ratio which indicates

performance gain. A victim page should be like that which is not accessed in future.

Reducing policy miss is the best idea. But if the victim page is accessed in future then page

fault occurs hence performance decreases due to miss penalty. It seems page fault decreases

while number of page frame increases. But some algorithm suffers from Belady's Anomaly

[9], which verified strange situation in which page fault increased while increasing number of

page frame. Such anomaly will not occur, if any algorithm with allocation of size m has

pages that are guaranteed to be a subset of the allocation m + 1. Stack based algorithm

satisfies the mentioned situation.

10

Also increasing associativity, adding victim cache, hardware or software pre-fetching, code

optimization, increasing the block size etc. are the solutions for reducing miss ratio [7].

Increasing the block size decreases page fault which favors locality. Sometimes highly

increasing the block size increases page fault frequency because all available locations of

larger block may not be referenced and due to larger size memory locations required are

unavailable. Sometimes highly decreasing the block size still increases the page fault

frequency because it violates locality. In both cases time consumption is high because of

swapping the block back and forth instead of increasing overall performance. Hence

appropriate block size with right decision policy decreases miss ratio.

1.1.6 Program Behavior

There are several factors that influence performance of page replacement algorithm. The

performance of page replacement algorithm relies on pattern of pages that are referenced.

Behavior of program depends upon the access pattern it references memory which is further

depends upon working set and locality of reference.

1.1.6.1 Locality of Reference

During the course of execution of program memory references tend to cluster forming certain

locality. Locality varies on the basis of time and space. Temporal locality is based on time, it

assumes that memory location referenced just now is likely to be reference again in near

future. Looping, subroutines, stacks, variable used for counting and totaling etc. supports this

assumption. Spatial locality is based on space, is assumes that once a memory is referenced

there is high chance of nearby memory location to be referenced again. Array traversal,

sequential code execution, related variable declaration nearby in source code supports this

assumption. Hints of locality are followed in any type memory reference sequence. But some

follows strongly and some follows weakly [2].

1.1.6.2 Memory Reference Pattern

1.1.6.2.1 Cyclic Pattern

Memory locations that are referenced repeatedly in a same order can be viewed as cyclic

pattern. Loop generates cyclic pattern. For example if M1, M2, M3, M4 be the memory

blocks used then cyclic pattern can be taken as M1, M2, M3, M4, M1, M2, M3, M4, M1, M2,

M3, M4, M1, M2, M3, M4, M1, M2, M3, M4, M1, M2, M3, M4 when loop executes six

times.

11

1.1.6.2.2 Correlated Access Pattern

Access of memory location at particular place then repeated after some duration, such

memory reference pattern can be viewed as correlated pattern. Sequential Scan also generates

correlated pattern. For example if M1, M2, M3 be the memory blocks frequently used then

correlated pattern can be taken as M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12,

M1, M2, M3, M4, M13, M14, M15, M16 when two times correlated access is performed.

1.1.6.2.3 Temporally Clustered Pattern

A temporally clustered reference pattern has the property that a block referenced more

recently will be referenced sooner in the future for some duration. For example temporally

clustered pattern can be taken as M1, M2, M1, M3, M2, M4, M3, M1, M2, M5, M6, M7, M8.

1.1.6.2.4 Probabilistic Pattern

When particular memory block has a stationary reference probability and all other blocks are

accessed independently without any associated probabilities, such memory reference pattern

can be viewed as probabilistic pattern [6]. Such pattern also generates temporal clustering.

For example if M1, M2 be the memory blocks frequently used then probabilistic pattern can

be taken as M1, M2, M3, M4, M6, M7, M1, M2, M3, M21, M22, M23, M1, M2, M3, M2,

M14, M15, M16, M1.

1.1.6.2.5 Mixed Pattern

Mixed pattern is generated by the occurrence of cyclic pattern, correlated pattern, temporally

clustered pattern and probabilistic pattern. For example of mixed pattern can be taken as M1,

M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, M1, M2, M3, M4, M5, M6,M7, M1,

M8, M2, M20, M21, M1, M22, M23, M10, M1, M2, M3, M4.

1.1.6.3 Working Set

Working set is a collection of pages that an active program or a process is actively

referencing. If a working set is available in cache then page fault will not occur. Number of

page fault increases extensively during change is locality. This is may be due to switching of

working set. The term thrashing means regular occurrence of page fault. Here CPU spends

more time on page fault handling rather than execution. Working set is the main idea behind

dynamic page replacement algorithm [2].

12

1.2 Introduction

Among variety of page replacement algorithm Least Recently Used (LRU) algorithm is

simple, flexible and has low overhead. LRU replaces page that is not accessed for longest

time. Recency factor is the virtual time difference between the current time and last time

when the oldest block is accessed. LRU adapts faster during change in working set with

workloads having good locality of reference. But LRU makes bold assumption on recency

factor only, which made LRU miss behave with weak locality workloads.

There are different modified versions of LRU algorithm. Among them LIRS page

replacement algorithm identifies and eradicates the misbehaviors of LRU on weak locality of

references. LRU only uses recency factor whereas LIRS uses additional factor called reuse

distance for page replacement. Reuse distance or inter reference recency (IRR) of a block is

equal to number of distinct pages accessed between recent consecutive or correlated access of

that particular block like IRG. Strong part of LIRS algorithm is the IRR value which

maintains recency as well as frequency factor. LIRS algorithm [10] uses two sets of pages

based on IRR. Set of pages with low IRR value is taken as hot block and called low inter-

reference recency set (LIRS). Set of pages with high IRR value is taken as cold block and

called high inter-reference recency set (HIRS). Blocks that can be most probably used in

future are taken as hot blocks whereas blocks that may not be used in near future are taken as

cold blocks. Hence HIR blocks are always replaced and LIR blocks are never replaced. LIR

page is always available in cache whereas HIR page may or may not be available in cache.

HIR page that is available in cache is called resident HIR and HIR page that is not available

in cache is called non-resident HIR. Hence a page which is accessed first time is taken as

non-resident HIR. Fixed number of LIR block and resident HIR block is used which is equal

to 99% and 1% of cache size respectively. Partition of cache doesn't obstruct the overall

performance. These parameters can be tuned but the consideration is found to be valid for

handling weak locality workloads as shown by sensitivity study.

Victim block is always predicted from HIRS block which has high recency value that is the

oldest block. It is very easy to search oldest block by maintaining recency stack. Also IRR

value is computed which is equals to earlier recency value. Promotion and demotion policy is

also used for utilizing history information correctly maintaining HIR and LIR partition size.

13

1.2.1 Problem Statement

LRU shows anomalous behavior with weak locality of reference. The access patterns of weak

locality workloads can be categorized into three different groups.

a) Sequential Scan

Sequential scan pattern consists of many distinct pages where at least one of working set

repeatedly occurs. In such case LRU may replace pages that occur repeatedly because of

their low recency factor which increases page fault.

b) Loop with working set larger than cache size

In case of loop with working set larger than cache size, LRU always replaces page before

they are accessed for the next time. Hence LRU makes 100% page fault.

c) Pages with irregular frequencies (Probabilistic)

LRU can't discriminate between irregularly occurring pages and other pages because it

only replaces the page on the basis of recency factor.

1.2.2 Objectives

Primary concern of this thesis work is to successfully handle weak locality workloads, rather

than tuning its parameter, because the parameters are found to be efficient for such

workloads. It should be noted that page replacement algorithm is just not concerned with

memory management in OS. But it is used in different computing device consisting cache

and also databases and web proxies where faster memory is essential. But our work only

focuses on issues related to general OS. Objectives of this dissertation work are as follows:

 To study the improvement of LIRS algorithm on weak locality workloads over LRU

algorithm.

 To modify and simulate LIRS algorithm without violating its logical premise and to

compare change in PFF.

1.3 Motivation

Memory management is not only the burden of today's computing devices. It has been

researched for decades. Whatever variety of storage devices found in today's market is the

great achievement of computer science. But still computer memory is the limited source

which directly hampers the performance of computing system. Performance gain can be

achieved by increasing the capacity of primary storage. Expectation of customer is to

14

decrease cost price with sufficient working memory. Hence to fulfill this demand for

manufacturing such device fewer materials are used and size of memory is being decreased.

But rather than this technical view, it is not possible to gain performance without managing

memory logically for its usability. Varieties of techniques had been tried for this

achievement. Among such techniques paging is the successful one. Page replacement

algorithm is the main part of paging technique because deciding the victim page is a very

tough job. Optimal page replacement algorithm is the best one. But it can be only simulated

since references should be known earlier, which is not possible in most of the real systems.

Many near-optimal replacement schemes have been found, but their complexity and various

practical considerations tend to limit the effectiveness of the algorithms implemented in real

systems.

Implementing LRU is a successful idea due to its simplicity, flexibility and performance gain.

But still LRU shows anomalous behavior with weak locality workloads. It is better if an

algorithm could work as LRU comparatively equivalent to computational complexity as well

as it could solve the problem on weak locality workloads. Reading related research papers it

is found that LIRS can fulfill these criteria. It is successfully implemented in different fields

[11]. It is better if LIRS could store deeper history information. LIRS can be implemented in

a different approach based on its principle.

1.4 Thesis Organization

Background part of this dissertation work focuses on page replacement algorithm and the

related basic terms which are already mentioned above along with an introduction to LIRS.

Some more chapters are remaining which clarifies the topics LIRS fulfilling the objectives of

this dissertation work. Chapter 2 consists of literature review which briefly reviews the

related topics. Literature review includes details of several page replacement algorithms. This

chapter also contains the research methodology part which shows the flow of our research.

Chapter 3 consists of program development steps of our simulation. It includes detail design

of the program. Also it includes details about the data structures and programming language

used to build the simulation. Chapter 4 consists of data collection and analysis part which

includes details about generating traces of memory references that shows trace driven input.

The output results with several analyzing graphs which are tested for weak locality

workloads. Chapter 5 consists of conclusion of this whole dissertation work and the

recommendation which shows guidelines for further research.

15

Chapter 2

LITERATURE REVIEW & METHODOLOGY

2.1 Literature Review

2.1.1 OPT or MIN Page Replacement Algorithm

Various memory management techniques have been used from the beginning for the

improvement of performance. Belady [3] in 1966 developed optimal page replacement

algorithm called OPT or MIN. His algorithm depends upon principle of optimality which

states "To obtain optimal performance the page to replace is the one that will not be used

again for the furthest time into the future." His optimal algorithm is not applicable for real

implementation because OS doesn't know which pages will be used before execution. Hence

it is used as a benchmark for measuring effectiveness of other page replacement algorithms.

OPT Replacement algorithm replaces page that will not be used for the longest period of time

by computing maximum forward distance.

2.1.2 Random Page Replacement Algorithm

Random page replacement algorithm can replace any page randomly during page fault. Page

fault decreases if the replaced page is cold and vice versa. Hence the algorithm shows

unpredictable results. Here each page frame involved has an equal chance of being chosen,

without taking into consideration of the program behavior. Due to its randomness the

behavior of this algorithm is obviously random and unreliable. With most reference streams

this method produces an unacceptable number of page faults, as well as victim pages being

thrashed unnecessarily. Hence deploying random page replacement algorithm is not an

effective technique [1].

2.1.3 FIFO Page Replacement Algorithm

Fist-In-First-Out page replacement algorithm replaces oldest page during page fault. Initially

queue is filled by inserting page reference from the tail. When the queue is full new reference

is inserted from tail and old reference is evicted from the head. FIFO is simple but suffers

from Belady's Anomaly. This strange situation is already discussed in section 1.1.5.2. Like

random page replacement algorithm, FIFO still does not take advantage of locality trends.

But it can be modified very easily.

16

2.1.4 FINUFO Page Replacement Algorithm

 A modification to FIFO that makes its operation much more useful by taking advantage of

program behavior is First-In Not-Used First-Out (FINUFO). The only modification here is

that a single bit is used to track whether or not a page is fresh in the FIFO queue. This

referenced bit is then used to determine whether the page is victim or not. A fresh reference

has bit 0 whereas referenced one has bit set to 1. A victim is selected by giving priority to

reference 0. If every active page has been referenced, victim page is selected by taking

locality into consideration. The situation can be tackled by resetting all the bits. In a worst

case scenario this could cause minor and temporary thrashing.

2.1.5 LRU Page Replacement Algorithm

As recent past is a good indicator of the near future. The algorithm considers that a page that

is just now used will probably be used again very soon, and a page that has not been used for

a long time, will probably remain unused. Recency is evaluated by maintaining LRU stack

that is a sorted list on the basis of virtual time, which is the only factor for replacement. When

page fault occurs, the page that has been unused for the longest time is evicted. Thus LRU is

simple and easy to implement. It can adapt faster according as program behavior. LRU like

algorithm doesn't suffer from Belady's Anomaly as FIFO.

LRU shows more page faults in case of weak locality workloads, which can be reduced by

applying three major techniques. By taking user-level hints, applications are hinted during

caching and pre-fetching which rely on users understanding of data access patterns. Hence

such work is only suitable for working manually, which eradicates burden of programmer.

Detection and adaptation of access regularities is performed case by case in different

algorithms like SEQ, EELRU, DEAR, AFC, UBM etc. Tracing and utilizing deeper history

information is performed in different algorithms like LRFU, LRU-K, 2Q, ARC etc. including

LIRS. For such deeper history information high implementation cost, and runtime overhead is

required [10].

2.1.6 NRU Page Replacement Algorithm

Pages are categorized into four classes in Not Recently Used (NRU) algorithm. Class 0

contains pages that are neither referenced nor modified. Class 1 contains pages that are

modified but not referenced. Class 2 contains pages that are referenced but not modified and

17

Class 3 contains pages that are modified as well as referenced. During page fault NRU evicts

any page from the lowest class [1].

2.1.7 MRU Page Replacement Algorithm

Most Recently Used (MRU) algorithm works on the basis of recency factor as in LRU. It

violates LRU principle and works totally in opposite manner. LRU evicts unused page

following locality of principle but MRU evicts recently used page as victim. MRU is only

suitable when there weak locality of reference, which is worst case of LRU. MRU can be

implemented in similar way as LRU by maintaining recency stack. But here front one is

removed and bottom one is stored for future use. Hence MRU is only suitable in case of

worst locality of reference where LRU could not deal with this effect.

2.1.8 LFU Page Replacement Algorithm

Least Frequently Used (LFU) selects a victim page that has not been used often in the past.

Instead of using a single recency factor as LRU, LFU defines additional information of

frequency which is equal to number of times the page referenced. This frequency is

calculated throughout the reference stream by maintaining counting information. Frequency

count leads to serious problem after a long duration of reference stream. Because when the

locality changes, reaction to such certain change will be very slow. Assuming that a program

either changes its set of active pages or terminates and it may be replaced by a completely

different program. The frequency count will cause pages in the new locality to be

immediately replaced since their frequency is much less than the pages associated with the

previous program. Since the context has changed, the pages swapped out will most likely be

needed again soon which leads to thrashing. One way to remedy this is to reset frequency

counter each time a page is loaded, rather than being allowed to increase indefinitely

throughout the execution of the program. LFU still tends to respond slowly to change in

locality of reference.

2.1.9 SEQ Page Replacement Algorithm

The SEQ algorithm [12] can be considered as an adaptive version of LRU that tries to correct

the slow performance caused by the presence of sequential memory accesses. When it

identifies one or more memory reference sets to numerically adjacent addresses, the

algorithm adopts a pseudo-MRU replacement strategy, otherwise maintaining the original

LRU criterion by detecting memory reference pattern.

18

2.1.10 EELRU Page Replacement Algorithm

Some algorithms use recency as history information like LRU and Most Recently Used

(MRU). LRU is suitable for good locality of reference whereas MRU is somewhat suitable

for weak locality of workloads. These two algorithms can be tuned to form adaptive

algorithm called Early Eviction LRU (EELRU) [13]. EELRU is based only on the positions

on the LRU queue that contains information of most of the memory references. This queue is

only a representation of the main memory using the LRU stack. EELRU detects sequential

access patterns analyzing the reuse of pages. One important feature of this algorithm is the

detection of non-numerically adjacent sequential memory access patterns. Two tunable

parameters used are early eviction point and late eviction point.

2.1.11 LRFU Page Replacement Algorithm

 Least Frequently Used (LFU) algorithm uses frequency factor for page replacement. LRU

and LFU are tuned to form adaptive algorithm called Least Recently Frequently Used

(LRFU) [14] that considers both recency and frequency factors. Depending upon the access

pattern the parameter of LRFU can be adapted.

2.1.12 LRU-K Page Replacement Algorithm

LRU - K [15] evicts the page that is the one whose backward K-distance is the maximum of

all pages in buffer. Backward K-distance bt(p,K) can be defined as the distance backward to

the Kth most recent reference to page p where reference string known up to time t (r1, r2,

…,rt). The value of parameter K can be taken as 1, 2 or 3. If K=1, it works as simple LRU

algorithm. Highly increasing value of K the overall performance of algorithm reduces. LRU-

K can discriminate better between frequently referenced and infrequently referenced pages.

2.1.13 2Q Page Replacement Algorithm

2Q [16] algorithm quickly removes sequentially and cyclically referenced block with after a

long interval. The algorithm uses special buffer queue A1in of size Kin, ghost buffer queue

A1out of size Kout and the main buffer Am. Special buffer contains all missed that is first time

referenced block. Ghost buffer contains replaced blocks from special buffer. Frequently

accessed block are available in main buffer. Hence victim blocks are always from special

buffer and main buffer. Some algorithm maintains multiple queues for more deeper history

information.

19

2.1.14 LIRS Page Replacement Algorithm

Another important algorithm is LIRS which is already described in section 1.2. Its objective

is to minimizing the deficiencies presented by LRU using history information called IRR that

represents the number of different pages accessed between the last two consecutive accesses

to the same page. Some issues related to LIRS are:

1. How to effectively utilize multiple sources of access information?

2. How to dynamically and responsively distinguish blocks by comparing their

possibilities to be referenced in the near future?

3. How to minimize implementation overhead? [10].

2.1.15 CLOCK Based Page Replacement Algorithm

The clock-based approximations, such as CLOCK [17], CLOCK-Pro [18] and CAR [19]

usually cannot achieve the high hit ratio compared to their corresponding original algorithms

like LRU, LIRS, ARC [20] respectively. Clock based approach organize pages into circular

list and uses a reference bit or a reference counter to record access information for each page.

When a page is hit in the cache, the clock-based approximations set the reference bit or

increment the counter, instead of modifying the circular list. As a lock is not required for

these operations, their caching performance is scalable. However the clock-based

approximations can record only limited history access information. The information checks

whether a page has been accessed or how many times it has been accessed but not in what

order their accesses occur. The lack of richer history information can hurt their hit ratios.

Many replacement algorithms do not have clock based approximations since the access

information they need cannot be approximated by the clock structure [21].

2.1.16 Various Page Replacement Algorithms

 Three other algorithms DEAR [22], AFC [23] and UBM [24] analyze the memory accesses

looking for some specific patterns including sequential accesses. They adopt a different

replacement strategy for each pattern. For example DEAR applies MRU for sequential

accesses and LRU or LFU for other patterns. Recent adaptive algorithms use artificial

intelligence techniques in order to adapt according as reference pattern. For example the FPR

[25] and FAPR [26] algorithms apply fuzzy inference techniques to manage the replacement

priorities of the resident pages. These algorithms bring important conceptual benefits to the

traditional page replacement algorithms, but they present more complex implementations. In

20

many cases additional data structures to hold non-resident pages which increases space

requirements. Some algorithms require data update in every memory access, making

impracticable its real implementation.

2.2 Methodology

Research is a careful study performed to find out new things in a systematic way. In a

scientific method of research at first problem is formulated then according as collected input

data, output information is analyzed and finally the information is generalized [27]. This

dissertation work is truly scientific and flows in the same way. The topics memory

management and design has been studied from the early generation of computer. Page

replacement algorithm is one of the major strategies to manage memory efficiently. The main

exploration of this dissertation focuses on LIRS algorithm. All data collected are primary in

form, which are traces of page references. This dissertation work is based on trace driven

simulation. Output information gathered is analyzed in a quantitative approach. Finally

conclusion is drawn with the help of analyzed data which is not the generalized form. This

work is only specialized for weak locality of workloads.

21

Chapter 3

PROGRAM DEVELOPMENT

3.1 Development Methodology and Tools

The simulator is built by using incremental approach. At first LRU algorithm is simulated by

using LRU stack algorithm. The LRU stack automatically maintains recency factor.

Information of recently referenced block is available in top of stack and the oldest in bottom

of stack. Every time when the block is accessed it is kept in top of stack. LIRS algorithms are

also implemented by using same stack algorithm and additional features are added to keep

track of IRR. C-language is used for simulating LRU and two approaches of LIRS.

3.2 LRU

Implementing LRU is an idea to keep track of recency. Bringing the recent one in front

means also keeping the older one at bottom of stack in a sorted order on the basis of recency.

Initially when the stack is empty then a new reference is inserted from top of stack. After then

references are inserted from top in a sorted order on the basis of virtual time. But if any

reference is inserted next time again then it is brought to front.

3.2.1 Data Structure

Implementing LRU by using stack algorithm is quite easy. LRU queue is only a

representation of the main memory using the LRU model, ordered by the recency of each

page. Here queue is used to keep track of recency instead of stack. Because removing rear

from queue is easier operation than removing bottom of stack. The LRU queue keeps

information of recently referenced block in front of queue and the oldest in rear of queue.

Every time when the block is accessed it is inserted in front of queue and if the reference is

not available in queue rear is removed, otherwise queue is maintained in same order.

3.2.2 Algorithm

STEP 1: Begin

STEP 2: If X is available in Queue then move X to front of Queue. Hit occurs

STEP 3: If X is not available in Queue, miss occurs then insert X to front of Queue.

STEP 4: Before inserting X, if Queue is full in STEP 3, then remove rear.

STEP 5: End

22

3.2.3 Flowchart

Begin

Is X
available

in Queue?

Move X to
front

(Hit Occurs)

Insert X to
front

(Miss Occurs)

Is Queue
full

earlier?

Evict rear

End

No Yes

No Yes

Fig 3.1 Flowchart of LRU Algorithm

23

3.2.4 Tracing

Cache Size: 3

Input References: A D B C B A D A E B

Number of Distinct References: 5

Total Number of References: 10

Accessing A: page fault

Accessing D: page fault

Accessing B: page fault

Accessing C: page fault

Accessing B:

Accessing A: page fault

Accessing D: page fault

Accessing A:

Accessing E: page fault

Accessing B: page fault

Total Number of page fault: 8

A
Front

D
front A

B
front D

A
rear

C
front B

D
rear

B
front C

D
rear

A
front B

C
rear

D
front A

B
rear

A
front D

B
rear

E
front A

D
rear

B
front E

A
rear

Fig 3.2.1 LRU Queue at Virtual Time 1

Fig 3.2.2 LRU Queue at Virtual Time 2

Fig 3.2.3 LRU Queue at Virtual Time 3

Fig 3.2.4 LRU Queue at Virtual Time 4

Fig 3.2.5 LRU Queue at Virtual Time 5

Fig 3.2.6 LRU Queue at Virtual Time 6

Fig 3.2.7 LRU Queue at Virtual Time 7

Fig 3.2.8 LRU Queue at Virtual Time 8

Fig 3.2.9 LRU Queue at Virtual Time 9

Fig 3.2.10 LRU Queue at Virtual Time 10

24

3.3 Basic LIRS
Sum of size of HIRS and size of LIRS is equals to size of cache. HIR block that may be

resident or non-resident can be promoted to LIR block. At the same time to maintain the

LIRS and HIRS size, oldest LIR block must be demoted to HIR-resident block. Then one of

the resident HIR block becomes the victim one. The following section contains the

clarification of LIRS scheme. The major function stack pruning is illustrated with diagrams in

the section 3.3.5.and promotion demotion policy is shown in the fig3.3. Figures 3.4 shows the

specific promotion demotion policy among LIR which is always resident, resident HIR and

non-resident HIR, so as to maintain partition size.

LIR HIR

promotion

demotion

LIR

Resident
HIR

demotion

Resident
HIR

LIR

promotion

LIR

Resident HIR

Non-resident HIR

demotion

demotion

Fig 3.3 General LIR vs. HIR Transition
Diagram

Fig 3.4.1 LIR vs. Resident HIR Transition Diagram

Fig 3.4.2 LIR vs. Non-resident HIR Transition Diagram

Non-resident HIR

LIR

promotion

25

3.3.1 Data Structure

Stack S contains page reference accessed. Its main purpose is to maintain recency value. As

we move toward bottom recency factor increases. Bottommost one is always LIR block,

which is the oldest block having higher recency factor and topmost one is the recent block

having recency factor equals to zero. Each stack node contains information about reference

block. Here information of every page reference is not available in stack S due to the major

event stack pruning. Some information is also available in queue Q and some outdated

information is left.

Queue Q contains collection referenced page that are available in cache. But it only tracks

resident HIR blocks. Hence size of HIR cache partition determines the size of Queue Q. The

block in the Queue can be removed from anywhere if it is promoted to LIR. In that case the

bottom most one LIR block of stack is inserted to end of Q then it becomes resident HIR as it

is now in Queue. Block in the front of Queue is removed, now the removed block demotes to

non-resident HIR. Comparing IRR and recency value is automatically done by the use of Q

which increases performance.

3.3.2 Major Function

The major function stack pruning is conducted during status change. Bold assumption of the

algorithm is that LIR block always contains in the bottom. Bottom of stack S is always LIR

block. While changing status, the page in bottom of stack S is demoted to HIR resident for

that it is kept in queue Q. At that time next LIR bottom is chosen which is nearer from bottom

of stack S and all other HIR bottom are removed one by one. Information of thus removed

HIRs is available in queue Q, if it is resident. Stack pruning is also conducted if the accessed

block X is the bottom LIR because recent block is always moved to top of stack S. Stack

pruning decreases the size of stack hence the stack doesn't keep track of outdated references.

Also outdated HIR can't be promoted if its history information is unavailable even in Q.

3.3.3 Algorithm

STEP 1: Upon accessing LIR block X:

This access is guaranteed to be a hit in the cache. We move it to the top of stack S. If the LIR

block is originally located in the bottom of the stack, we conduct a stack pruning.

STEP 2: Upon accessing HIR resident block X:

26

This is a hit in the cache. We move it to the top of stack S. There are two cases for block X:

(a) If X is in the stack S, we change its status to LIR. This block is also removed from list Q.

The LIR block in the bottom of S is moved to the end of list Q with its status changed to HIR.

Stack pruning is then conducted.

(b) If X is not in stack S, we leave its status in HIR and move it to the end of list Q.

STEP 3: Upon accessing an HIR non-resident block X:

This is a miss. We remove the HIR resident block at the front of list Q (it then becomes a

non-resident block), and replace it out of the cache. Then we load the requested block X into

the freed buffer and place it on the top of stack S. There are two cases for block X:

(a) If X is in stack S, we change its status to LIR and move the LIR block in the bottom of

stack S to the end of list Q with its status changed to HIR. A stack pruning is then conducted.

(b) If X is not in stack S, we leave its status in HIR and place it in the end of list Q.

27

3.3.4 Flowchart

Start

Status of X?

Move X to top of S

HIR LIR

If X in cache?

X in bottom S?
MISS HIT

Move X to top of S

If X in Stack?

Stack pruning

Resident

N Y

Y N

Load & Make X LIR
Remove X from Q Evict it

Move bottom LIR Y of S to front Q
 Conduct Stack Pruning

Move X to front of Q

Remove Y at rear of Q & evict it.
Make Y HIR non-resident, if at S

Load & insert X in top of S

X is in S?

Y N

Non-resident

Change HIR X to LIR

Move bottom LIR Y of S to front of Q
 Conduct Stack Pruning

Insert X to front of Q

Stop

Fig. 3.5 Flowchart of LIRS Simulated Through Data Structure

Y N

HIT

28

3.3.5 Tracing

Size of LIRS: 2 LIR

Size of HIRS: 1

Cache Size: 2+1=3 Resident HIR

Input References: A D B C B A D A E B

Number of Distinct References: 5 Non-resident HIR

Total Number of References: 10

Upon accessing A:

(HIR non-resident)

LIRS= {A}

HIRS= {} (Queue Q)

Resident HIRS= {} Empty page fault

Non-resident HIRS= {} (Stack S)

Upon accessing D:

(HIR non-resident)

LIRS= {A, D}

HIRS= {} (Queue Q)

Resident HIRS= {} Empty page fault

Non-resident HIRS= {} (Stack S)

Upon Accessing B:

(HIR non-resident)

LIRS= {A, D}

HIRS= {B} (Queue Q)

Resident HIRS= {B} B is inserted page fault

Non-resident HIRS= {} (Stack S)

front & rear

front & rear

B
front & rear

A

A

D

A

D

B

Fig 3.6.1 State at Virtual Time 1

Fig 3.6.2 State at Virtual Time 2

Fig 3.6.3 State at Virtual Time 3

29

Upon Accessing C:

(HIR non-resident)

LIRS= {A, D}

HIRS= {B, C} (Queue Q)

Resident HIRS= {C} C is inserted page fault

Non-resident HIRS= {B} B is removed

 (Stack S)

Upon Accessing B:

(HIR non-resident)

LIRS= {B, D}

HIRS= {A, C} (Queue Q)

Resident HIRS= {A} A is inserted page fault

Non-resident HIRS= {C} (Stack S) C is removed

 B is promoted

 A is demoted

Upon Accessing A:

(HIR resident)

LIRS= {B, D}

HIRS= {A, C} (Queue Q)

Resident HIRS= {A}

Non-resident HIRS= {C}

 (Stack S)

Upon Accessing D:

(LIR)

LIRS= {B, D}

HIRS= {A} (Queue Q)

Resident HIRS= {A}

Non-resident HIRS= {}

 (Stack S) C is removed during stack pruning.

C
front & rear

A
front & rear

A
front & rear

A
front & rear

A

D

B

D

C

C

B

B

D

C

A

B

D

A

Fig 3.6.5 State at Virtual Time 5

Fig 3.6.4 State at Virtual Time 4

Fig 3.6.7 State at Virtual Time 7

Fig 3.6.6 State at Virtual Time 6

30

Upon Accessing A:

(HIR resident)

LIRS= {A, D}

HIRS= {B}

Resident HIRS= {B} (Queue Q)

Non-resident HIRS= {} B is inserted

 A is removed

 (Stack S)

 A is promoted

 B is demoted

Upon Accessing E:

(HIR non-resident)

LIRS= {A, D}

HIRS= {E} (Queue Q) page fault

Resident HIRS= {E} E is inserted

Non-resident HIRS= {} B is removed

 (Stack S)

Upon Accessing B:

(HIR non-resident)

LIRS= {A, D}

HIRS= {B, E} (Queue Q) page fault

Resident HIRS= {B} B is inserted

Non-resident HIRS= {E} E is removed

 (Stack S)

Number of page fault: 7

3.4 Basic LIRS

The basic LIRS is similar to LIRS described in section 3.3, but the only difference is the

major function stack pruning is not conducted. Here IRR value is also calculated by using

outdated recency value of that particular block. Hence there is no need of Queue to maintain

B
front & rear

E
front & rear

B
front & rear

D

A

D

A

E

D

A

E

B

Fig 3.6.8 State at Virtual Time 8

Fig 3.6.9 State at Virtual Time 9

Fig 3.6.10 State at Virtual Time 10

31

HIR resident block. But during status change the comparison operation increases complexity.

The following section clarifies the basic LIRS scheme and its illustration is also shown in

section 3.4.4.

3.4.1 Data Structure

Stack S contains every page reference which has already been accessed. Its main purpose is

to maintain recency value. As we move toward bottom recency factor increases. Bottommost

one is the oldest block having higher recency factor and topmost one is the recent block

having recency factor equals to zero. Each stack node contains information about reference

block indicated by integer, current status (integer 2 indicates LIR, 1 indicates resident HIR

and 0 indicates non-resident HIR.) and IRR value which is initially infinite but during

correlated access it carries value equal to expired recency.

3.4.2 Algorithm

STEP 1: Upon accessing block X, if X is available in the stack S.

We move it to the top of stack S and earlier recency becomes new IRR value which is

determined by counting steps to reach top of S. Page fault occurs if status of X is non-resident

HIR otherwise this access is guaranteed to be a hit.

STEP 2: Upon accessing block X, if X is not available in the stack S that is non-resident HIR.

This access is guaranteed to be a miss, so page fault occurs. We insert it to the top of stack S

and its IRR value is assigned infinite.

STEP 3: While changing status, if minimum IRR value of HIRS<maximum recency of LIRS.

Now status changes from LIR to HIR and vice versa. Block having minimum IRR value of

HIRS is admitted to LIRS and block having maximum recency of LIRS is admitted to HIRS.

a) If status of block having minimum IRR value of HIRS was resident HIR.

Status of resident HIR is switched to LIR. At the same time status of LIR is switched to

resident HIR.

b) If status of block having minimum IRR value of HIRS was non-resident HIR

Status of non-resident HIR is switched to LIR. Status of LIR is switched to resident HIR and

status of resident HIR with high recency value is switched to non-resident HIR.

STEP 4: While changing status, if status of top of Stack S is non-resident HIR (i.e. block X

from STEP 2)

Now status of X is changed to resident HIR. Status of resident HIR having highest recency

(i.e. bottom most resident HIR of S) is changed to non-resident HIR.

32

3.4.3 Flowchart

Fig 3.7 Flowchart of Basic LIRS Algorithm

Start

X available
in Stack?

N Y

HIT or MISS MISS

Move X to top of Stack
Update IRR = older recency

Insert X to top of Stack
Initialize IRR=∞

Status=non-resident HIR

Check status
Is LIR?

Y N

HIT HIT or MISS

min(irr(HIRS)) <
max(recency(LIRS)))

N

HIR Status?

Y

Status Change
Swap status of LIR HIR block

Non-resident HIR becomes LIR
Bottom LIR becomes resident

resident non-resident

Stop

 Is Status of X
non-resident?

Y

N

Make X resident

Status of bottommost resident HIR
becomes non-resident HIR

HIT MISS

33

3.4.4 Tracing

Size of LIRS: 2 LIR

Size of HIRS: 1

Cache Size: 2+1=3 Resident HIR

Input References: A D B C B A D A E B

Number of Distinct References: 5 Non- resident HIR

Total Number of References: 10

Upon accessing A:

 (HIR non-resident)

LIRS= {A} page fault

HIRS= {}

Resident HIRS= {}

Non-resident HIRS= {}

Upon accessing D:

(HIR non-resident)

LIRS= {D, A}

HIRS= {} page fault

Resident HIRS= {}

Non-resident HIRS= {}

Upon accessing B:

(HIR non-resident)

LIRS= {D, A}

HIRS= {B}

Resident HIRS= {B} page fault

Non-resident HIRS= {}

Upon accessing C:

(HIR non-resident)

LIRS= {D, A}

HIRS= {C, B}

Resident HIRS= {C}

Non-resident HIRS= {B} page fault

 1 2 Recency IRR
A X 0 ∞

 1 2 3 Recency IRR
A X 0 ∞
D X 1 ∞

 1 2 3 4 Recency IRR
A X 2 ∞
B X 0 ∞
D X 1 ∞

 1 2 3 4 5 Recency IRR
A X 3 ∞
B X 1 ∞
C X 0 ∞
D X 2 ∞

Table 3.1.1 IRR Calculation for Virtual Time 2

Fig 3.8.1 Stack S at Virtual Time 1

A

A

D

A

D

B

A

D

B

C

Table 3.1.2 IRR Calculation for Virtual Time 3

Fig 3.8.2 Stack S at Virtual Time 2

Table 3.1.3 IRR Calculation for Virtual Time 4

Fig 3.8.3 Stack S at Virtual Time 3

Table 3.1.4 IRR Calculation for Virtual Time 5

Fig 3.8.4 Stack S at Virtual Time 4

34

Upon accessing B:

(HIR non-resident) Status Change

LIRS= {B, D}

HIRS= {A, C}

Resident HIRS= {A} max(recency(LIRS)) > min(irr(HIRS))

Non-resident HIRS= {C} page fault

Upon accessing A:

(HIR resident)

LIRS= {B, D}

HIRS= {A, C}

Resident HIRS= {A}

 Non-resident HIRS= {C}

Upon accessing D:

(LIR)

LIRS= {D, B}

HIRS= {A, C}

Resident HIRS= {A}

Non-resident HIRS= {C}

Upon accessing A:

(HIR resident) Status Change

LIRS= {A, D}

HIRS= {B, C}

Resident HIRS= {B}

Non-resident HIRS= {C}

 max(recency(LIRS)) > min(irr(HIRS))

Upon accessing E:

(HIR non-resident)

Status Change

LIRS= {A, B}

HIRS= {E, D, C}

Resident HIRS= {E}

Non-resident HIRS= {D, C} max(recency(LIRS)) > min(irr(HIRS)) page fault

 1 2 3 4 5 6 Recency IRR
A X 3 ∞
B X X 0 1
C X 1 ∞
D X 2 ∞

 1 2 3 4 5 6 7 Recency IRR
A X X 0 3
B X X 1 1
C X 2 ∞
D X 3 ∞

 1 2 3 4 5 6 7 8 Recency IRR
A X X 1 3
B X X 2 1
C X 3 ∞
D X X 0 3

 1 2 3 4 5 6 7 8 9 Recency IRR
A X X X 0 1
B X X 2 1
C X 3 ∞
D X X 1 3

 1 2 3 4 5 6 7 8 9 10 Recency IRR
A X X X 1 1
B X X 3 1
C X 4 ∞
D X X 2 3
E X 0 ∞

A

D

C

B

C

D

B

A

C

D

B

A

C

A

D

B

C

A

B

D

E

 Table 3.1.5 IRR Calculation for Virtual Time 6

Fig 3.8.5 Stack S at Virtual Time 5

Table 3.1.6 IRR Calculation for Virtual Time 7

Fig 3.8.6 Stack S at Virtual Time 6

Table 3.1.7 IRR Calculation for Virtual Time 8

Fig 3.8.7 Stack S at Virtual Time 7

 Table 3.1.8 IRR Calculation for Virtual Time 9

Fig 3.8.8 Stack S at Virtual Time 8

 Table 3.1.9 IRR Calculation for Virtual Time 10

Fig 3.8.9 Stack S at Virtual Time 9

35

Upon accessing B:

(LIR)

LIRS= {B, A}

HIRS= {E, D, C}

Resident HIRS= {E}

Non-resident HIRS= {D, C}

Number of page fault: 6

 1 2 3 4 5 6 7 8 9 10 11 Recency IRR
A X X X 2 1
B X X X 0 3
C X 4 ∞
D X X 3 3
E X 1 ∞

 C

B

A

D

E

Table 3.1.10 IRR Calculation for Virtual Time 11

Fig 3.8.10 Stack S at Virtual Time 10

36

Chapter 4

DATA COLLECTION & ANALYSIS

4.1 Data Collection
Data are the sources of information. Hence data should be collected very carefully. All the

data are collected by means of primary sources. In this dissertation work data are generated

by using number of C source codes. These source files are used for generating memory

references that are so called as workloads. The workload represents weak locality of memory

reference pattern that are generated during execution of process in real OS. Here Weak

locality workloads can be categorized into reference of sequential scan as Workload 1,

reference of loop which is larger than cache size as Workload 2 and reference of probabilistic

pattern as Workload 3. Each category contains ten thousand memory references and more.

Sample of Workload 1, Workload 2 and Workload 3 is in appendix A, appendix B and

appendix C respectively.

4.2 Testing

These three workloads are separately tested in our simulator. Each workload is tested in LRU,

LIRS simulated through data structure and basic LIRS simulator by varying the cache size

from 4 to 1024. In case of LIRS algorithms HIR, LIR partition is maintained as 1% and 99%

of cache size. But in case of Workload 2 size of LIR is maintained cache size-1 or HIR is

maintained 1, because page fault decreases with minimum LIR size.

4.2.1 Test Result of Workload 1

No. of References = 10000
No. of Distinct Reference = 8840

Cache
Size

LRU Basic LIRS LIRS Simulated
Through Data Structure

Page
Fault

Miss
Rate

Hit
Rate

Page
Fault

Miss
Rate

Hit
Rate

Page
Fault

Miss
Rate

Hit
Rate

4 10000 100% 0% 9969 97.33% 2.67% 9985 98.71% 1.29%
8 10000 100% 0% 9929 93.88% 6.12% 9965 96.98% 3.02%
16 10000 100% 0% 9849 86.98% 13.02% 9910 92.24% 7.76%
32 10000 100% 0% 9689 73.19% 26.81% 9814 83.97% 16.03%
64 10000 100% 0% 9600 65.52% 34.48% 9760 79.31% 20.69%

128 10000 100% 0% 9600 65.52% 34.48% 9760 79.31% 20.69%
256 10000 100% 0% 9600 65.52% 34.48% 9760 79.31% 20.69%
512 9440 51.73% 48.27% 9600 65.52% 34.48% 9720 75.86% 24.14%

1024 9440 51.73% 48.27% 9600 65.52% 34.48% 9680 72.41% 27.59%
Table 4.1 Test Result of Workload 1

37

4.2.2 Test Result of Workload 2

No. of References = 10000
No. of Distinct Reference = 200

4.2.3 Test Result of Workload 3

No. of References = 10500
No. of Distinct Reference = 2417

Cache
Size

LRU Basic LIRS LIRS Simulated
Through Data Structure

Page
Fault

Miss
Rate

Hit
Rate

Page
Fault

Miss
Rate

Hit
Rate

Page
Fault

Miss
Rate

Hit
Rate

4 10000 100% 0% 9853 98.50% 1.50% 9973 99.72% 0.28%
8 10000 100% 0% 9657 96.50% 3.50% 9930 99.29% 0.71%

16 10000 100% 0% 9265 92.50% 7.50% 9850 98.47% 1.53%
32 10000 100% 0% 8481 84.50% 15.50% 9659 96.52% 3.48%
64 10000 100% 0% 6913 68.50% 31.50% 9181 91.64% 8.36%

128 10000 100% 0% 3777 36.50% 63.50% 6825 67.60% 32.40%
256 200 0% 100% 200 0% 100% 200 0% 100%
512 200 0% 100% 200 0% 100% 200 0% 100%

1024 200 0% 100% 200 0% 100% 200 0% 100%

Cache
Size

LRU Basic LIRS LIRS Simulated
Through Data Structure

Page
Fault

Miss
Rate

Hit
Rate

Page
Fault

Miss
Rate

Hit
Rate

Page
Fault

Miss
Rate

Hit
Rate

4 10456 99.45% 0.55% 10469 99.62% 0.38% 10492 99.90% 0.10%
8 10429 99.12% 0.98% 10422 99.03% 0.97% 10491 99.89% 0.11%

16 10392 98.66% 1.34% 10215 96.47% 3.53% 10471 99.64% 0.36%
32 10317 97.74% 2.26% 9848 91.93% 8.07% 10412 98.91% 1.09%
64 10295 97.46% 2.54% 9245 84.47% 15.53% 10221 96.55% 3.45%

128 10253 96.94% 3.06% 8534 75.67% 24.33% 10023 94.01% 5.99%
256 10149 95.66% 4.34% 7858 67.31% 32.69% 9820 91.59% 8.41%
512 8370 73.65% 26.35% 6933 55.87% 44.13% 9420 86.64% 13.36%

1024 6587 51.59% 48.41% 5303 35.70% 64.30% 8314 72.95% 27.05%

Table 4.2 Test Result of Workload 2

Table 4.3 Test Result of Workload 3

38

4.3 Analysis

 Fig 4.1 Graph of Workload 1

Workload 1 is the sequential scan type of trace as the cache size increases the page fault also

decreases. After increasing the cache size to 300 and above, LRU performances drastically

changes than other LIRS algorithms. This shows that memory reference pattern is moving

toward strong locality of reference which is favorable for LRU.

 Fig 4.2 Graph of Workload 2

0%

10%

20%

30%

40%

50%

60%

0 200 400 600 800 1000 1200

H
it

R
at

e

Cache Size

Sequential Scan Pattern

LRU Basic LIRS LIRS Simulated Through Data Structure

0%

20%

40%

60%

80%

100%

120%

0 200 400 600 800 1000 1200

H
it

R
at

e

Cache Size

Looping Pattern

LRU Basic LIRS LIRS Simulated Through Data Structure

39

Workload 2 is the trace of loop larger than cache size as the cache size increases the page

fault also decreases. After increasing the cache size to 200 and above, all the algorithms

shows 100% hit rate because the trace consists of loop from memory reference 1 to 200.

Since all 200 distinct blocks are resident, the trace then doesn't favor our assumption of weak

locality workload. Also fixing HIR partition to 1 is the best way to get minimum page fault.

 Fig 4.3 Graph of Workload 3
Workload 3 is the trace of probabilistic pattern where each memory reference has their own

frequency they are accessed. When the cache size is 350 and above LRU shows change

because of change in locality. Because the trace consists of repetition of frequency blocks

after every 350 references and besides frequency blocks all other blocks are randomly

occurring. Hence unlike other cases 100% hit rate can't be achieved. Here basic LIRS is

working better, since it can store deeper history information than LIRS simulated through

data structure.

The graphs of figure 4 show that the basic LIRS algorithm is better than LIRS simulated

through data structure. Since all the workloads that we have used in this work represent weak

locality memory references, LRU misbehaves but as the locality changes due to change in

cache size performance gain can be achieved.

0%

10%

20%

30%

40%

50%

60%

70%

0 200 400 600 800 1000 1200

H
it

Ra
te

Cache Size

Probabilistic Pattern

LRU Basic LIRS LIRS Simulated Through Data Structure

40

Chapter 5

CONCLUSION AND RECOMMENDATION
5.1 Conclusion
Replacement algorithms are valuable components of operating system design and can affect

system performance significantly. Common LRU failures can be solved by using user level

hints, tracing and utilizing history information and detection and adaptation of access

regularities. LIRS can solve problems regarding weak locality of reference by tracing and

utilizing history information. The failure of LRU is due to the bold assumption on recency.

Negative effects caused by taking only recency value are removed by considering IRR as

history information. The algorithm successfully handles weak locality of reference.

LIRS is a valuable replacement algorithm. It is simple as LRU. The basic approach is the

idea behind its success. The policy decides more accurately than LIRS simulated through data

structure for pages not in memory to make replacement. This is only due to storage of deeper

history information, which is lost during stack pruning in LIRS. Unlike other traditional page

replacement algorithm, it can change very faster according to program behavior. Basic LIRS

is easier to implement because of simple data structure. But LIRS simulated through data

structure contains additional data structure to hold resident HIR but that doesn't increase

space requirement as it is 1% of cache size. Basic LIRS algorithm requires data update in

every memory access which makes it impracticable in real OS. Both of these

implementations will be important for future research work.

5.2 Recommendation
The LIRS page replacement algorithm consists of two parameters, i.e. size of LIR and size of

HIR which can be self tuned according as workloads. As we know minimum size of HIR that

is equal to 1 is the best parameter in case of loop with larger cache size. Hence dynamic

approach can be used to self tune this parameter. The data structure used can be improved so

as to decrease the computation complexity. Here three different sample traces are used which

is actually not the real trace recorded during the execution of program. This work can be

standardized by using real traces.

In case of basic LIRS we can limit the size of LRU stack so as it is applicable in real time

implementation. Also the size of stack can be self-tuned according as the workload.

Considering weak locality of reference and program complexity during simulation is taken as

the limitations of this work.

41

References
[1] A.S. Tanenbaum, Modern Operating Systems (Prentice Hall, 2nd Edition).

[2] H.M. Deitel, Operating Systems, Chap.9 Virtual Storage Management (Pearson

Education, 2nd Edition).

[3] A. Silberschatz, P. B. Galvin, & G. Gagne, Operating System Concepts (Wiley, 7th

Edition).

[4] G. Nutt, Operating Systems A Modern Perspective (Addison Wesley Longman, 2nd

Edition).

[5] www.docstoc.com/docs/21106969/Role-of-OS-in-virtual-memory-management

[6] H. Paajanen, Page Replacement in Operating System Memory Management, Master’s

Thesis in Information Technology, University of Jyväskylä, Department of Mathematical

Information Technology, October 23, 2007.

[7] W. Stallings, Computer Organization and Architecture: Designing for Performance,

(Prentice-Hall, 6th Edition).

[8] J. Kubiatowicz, Operating System and System Programming, Lec.15 Page Allocation and

replacement , 2009, http://inst.eec.berkeley.edu/~CS162

[9] K. McMaster, S. Sambasivam, N. Anderson, How Anomalous Is Belady's Anomaly?,

Issues in Informing Science and Information Technology, Vol. 6, 2009, pp 827-836.

[10] S. Jiang and X. Zhang, Making LRU Friendly to Weak Locality Workloads: A Novel

Replacement Algorithm to Improve Buffer Cache Performance, IEEE Transactions on

Computers, Vol. 54, No. 8, 2005, pp 939-952.

[11] http://www.cse.ohio-state.edu/~zhang/influential-papers.html

[12] G. Glass, P. Cao, Adaptive Page Replacement Based on Memory Reference Behavior,

In Proceedings of the ACM International Conference on Measurement and Modeling of

Computer Systems, 1997, pp 115-126.

[13] Y. Smaragdakis, S. Kaplan, P. Wilson, EELRU: Simple and Effective Adaptive Page

Replacement, In Proceedings of the ACM International Conference on Measurement and

Modeling of Computer Systems, 1999, pp 122-133.

[14] G. P. Joshi, Calculation Of Control Parameter That Results Into Optimal Performance

In Terms Of Page Fault Rate In The Algorithm Least Recently Frequently Used(LRFU)

For Page Replacement, Master's Thesis in Computer Science and Information

Technology, Tribhuvan University, Central Department of Computer Science and

Information Technology.

42

[15] J. Elizabeth, O’Neil, Patrick E. O’Neil, and G. Weikum, The LRU-K Page Replacement

Algorithm for Database Disk Buffering, ACM SIGMOD, 1993, pp 297-306.

[16] T. Johnson, D. Shasha, 2Q: A Low Overhead High Performance Buffer Management

Replacement Algorithm, Proceedings of the 20th International Conference on VLDB,

1994, pp 439-450.

[17] F. J. Corbató, A paging experiment with the Multics system. In Honor of P. M. Morse,

MIT Press, 1969, pp 217–228.

[18] S. Jiang, F. Chen, X. Zhang, CLOCK-Pro: An effective improvement of the CLOCK

replacement. In Proceedings of the 10th Annual USENIX Technical, 2005, pp 323-336.

[19] S. Bansal, D.S. Modha, CAR: Clock with Adaptive Replacement, In Proceedings of the

USENIX Conference on File and Storage Technologies, 2004, pp 187-200.

[20] N. Megiddo, D. S. Modha, ARC: A Self-Tuning, Low Overhead Replacement Cache, In

Proceedings of the USENIX Conference on File and Storage Technologies, 2003, pp

115-130.

[21] X. Ding, S. Jiang, X. Zhang, BP-Wrapper: A System Framework Making Any

Replacement Algorithms (Almost) Lock Contention Free, IEEE International

Conference on Data Engineering, 2009, pp 369-380.

[22] J. Choi et al., An Implementation Study of a Detection-Based Adaptive Block

Replacement Scheme, USENIX Annual Technical Conference, 1999, pp 239-252.

[23] J. Choi et al., Towards Application/File-Level Characterization of Block References: A

Case for Fine-Grained Buffer Management, In Proceeding to the 25th International

Conference on Measurement and Modeling of Computer Systems, 2000, pp 286-295.

[24] M. Sabeghil, M. H. Yaghmaee, Using Fuzzy Logic to Improve Cache Replacement

Decisions, IJCSNS International Journal of Computer Science and Network Security,

Vol. 6, No. 3A, 2006, pp 182-188.

[25] J. M. Kim et al., A low-overhead high-performance unified buffer management scheme

that exploit sequential and looping references, In Symposium on Operating System

Design and Implementation USENIX, 2000, pp 119-134.

[26] S. Bagchi, M. Nygaard, A Fuzzy Adaptive Algorithm for Fine Grained Cache Paging.

8th International Workshop, 2004, pp 200-213.

[27] M. L. Singh, Understanding Research Methodology, Chap.1Scientific Method and

Research, pp 4.

43

Appendix A: Sample Trace of Sequential Scan, Workload 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

595 596 597 598 599 600 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 601 602 603 604 605 606 607 608 609 610

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

44

Appendix B: Sample Trace of Looping Pattern, Workload 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 1 2 3
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 1 2 3
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 1 2 3
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 1 2 3
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

45

Appendix C: Sample Trace of Probabilistic Pattern, Workload 3
366 377 8 458 31 448 93 17 330 438 291 354 81 344 246 328 124 307 149 57 366 259 68

247 455 85 451 26 43 339 73 431 235 284 414 209 486 403 225 388 376 206 369 293 435

441 73 39 163 59 5 20 69 82 56 88 95 35 50 74 858 532 725 542 878 843 996 586 602 784

734 719 970 924 980 658 973 941 543 616 661 534 626 873 895 657 756 744 801 989 684

663 689 548 500 912 606 879 734 540 729 519 799 925 997 592 965 532 760 675 105 120

169 192 156 178 195 145 150 174 1491 1487 1109 1223 1254 1231 1170 1287 1407 1129

1151 1496 1487 1386 1067 1274 1328 1309 1119 1043 1387 1308 1203 1414 1300 1311

1444 1145 1049 1355 1311 1001 1368 1270 1031 1429 1483 1082 1054 1484 1116 1477

1307 1103 1493 1465 1200 1170 1465 1071 203 220 269 282 256 287 295 235 251 274 1751

1900 1655 1786 1614 1667 1885 1770 1879 1642 1681 1737 1844 1699 1863 1756 1999

1507 1797 1630 1883 1599 1815 1941 1842 1636 1903 1539 1703 1540 1746 1964 1783

1907 1630 1893 1567 1895 1672 1519 1579 1855 1978 1797 1820 1946 1576 1517 1716

1962 325 320 369 382 336 388 395 335 350 384 2192 2104 2093 2307 2003 2086 2100 2234

2447 2118 2264 2126 2198 2364 2161 2288 2171 2135 2269 2253 2487 2457 2024 2168

2133 2192 2361 2137 2337 2485 2287 2090 2444 2256 2421 2374 2391 2163 2375 2394

2165 2367 2253 2494 2300 2312 2311 2244 2343 2419 405 420 469 482 456 418 495 435

450 474 48 240 474 350 45 29 26 77 203 52 135 279 194 206 432 108 427 312 258 146 8 81

429 464 0 335 369 425 434 157 109 211 469 51 357 369 316 319 162 177 176 467 142 180

233 229 452 66 110 106 5 20 69 82 56 88 95 35 50 74 726 950 540 602 763 673 933 676 951

527 577 773 666 892 639 957 956 910 876 743 640 987 721 605 696 574 762 723 864 939

780 949 933 678 738 610 984 669 953 941 662 919 681 597 980 820 675 628 510 812 105

120 169 192 156 178 195 145 150 174 1444 1156 1359 1127 1371 1406 1159 1427 1029

1112 1038 1275 1022 1252 1425 1244 1194 1069 1232 1327 1229 1438 1352 1241 1478

1459 1259 1257 1001 1349 1466 1349 1465 1128 1322 1196 1241 1047 1356 1175 1406

1376 1243 1049 1202 1305 1181 1220 1018 1170 203 220 269 282 256 287 295 235 251 274

1766 1762 1974 1856 1969 1784 1530 1992 1568 1524 1717 1588 1863 1545 1669 1822

1722 1623 1935 1963 1938 1658 1644 1898 1695 1834 1946 1845 1671 1667 1599 1597

1638 1929 1879 1879 1797 1766 1687 1785 1706 1871 1685 1895 1515 1601 1967 1623

1907 1612 325 320 369 382 336 388 395 335 350 384 2322 2063 2474 2433 2056 2279 2427

2163 2163 2298 2355 2039 2327 2475 2379 2130 2272 2166 2431 2381 2054 2005 2311

2017 2486 2332 2383 2031 2151 2063 2089 2056 2371 2185 2133 2130 2087 2048 2182

