
Tribhuvan University
Institute of Science and Technology

Automatic Text Summarization System for
Nepali Language Based on Sentence

Extraction

Dissertation
Submitted to

Central Department of Computer Science & Information Technology
Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements
for the Master’s Degree in Computer Science & Information Technology

By
Rajendra Lamichhane

December, 2013

Tribhuvan University
Institute of Science and Technology

Automatic Text Summarization System for
Nepali Language Based on Sentence

Extraction

Dissertation
Submitted to

Central Department of Computer Science & Information Technology
Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements
for the Master’s Degree in Computer Science & Information Technology

By
Rajendra Lamichhane

December, 2013

Supervisor
Prof. Dr. Shashidhar Ram Joshi

Co-Supervisor
Mr. Bikash Balami

Tribhuvan University
Institute of Science and Technology

Central Department of Computer Science & Information Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the listed
here have been used in this work.

...
Rajendra Lamichhane
Date: 29 December, 2013

Supervisor’s Recommendation

I hereby recommend that this dissertation prepared under my supervision by Mr. Rajendra
Lamichhane entitled “Automatic Text Summarization System for Nepali Language Based
on Sentence Extraction” in partial fulfilment of the requirements for the degree of M.Sc. in
Computer Science and Information Technology be processed for the evaluation.

...
Prof. Dr. Shashidhar Ram Joshi
Department of Electronics & Computer Engineering,
Institute of Engineering,
Pulchowk, Nepal

Date: 29 December, 2013

Tribhuvan University
Institute of Science and Technology

Central Department of Computer Science & Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope
and quality as a dissertation in the partial fulfillment for the requirement of Masters Degree in
Computer Science and Information Technology.

Evaluation Committee

...
Asst. Prof. Nawaraj Paudel Prof. Dr. Shashidhar Ram Joshi

Central Department of Computer Science Department of Electronics & Computer
& Information Technology, Engineering, Institute of Engineering,

Tribhuvan University, Kathmandu, Nepal Pulchowk, Kathmandu, Nepal
(Head) (Supervisor)

...
Asst. Prof. Lalita Sthapit Mr. Arjun Singh Saud

(External Examinar) (Internal Examinar)

Date: 28 January, 2014

ACKNOWLEDGEMENTS

Though only my name appears on the cover of this dissertation, a great many people have
contributed for its completion. I owe my gratitude to all those people who have made this
dissertation possible and because of whom my graduate experience has been one that I will
cherish forever.

My deepest gratitude is to my respected teacher and dissertation advisor Prof. Dr. Shashid-
har Ram Joshi, Department of Electronics and Computer Engineering, Institute of Engineer-
ing, Pulchowk, for providing me invaluable suggestions, encouragement and strong guidelines
throughout this research period. Without his cooperation and suggestion, this dissertation could
not be completed. With this regard, I wish to extend my sincere appreciation to respected Head
of the Central Department of Computer Science and Information Technology (CDCSIT), Asst.
Prof. Nawa Raj Poudel for his kind help, encouragement and constructive suggestions regard-
ing the dissertation.

My co-advisor, Mr. Bikash Balami, has been always there to listen and give advice. I am
deeply grateful to him for the long discussions that helped me to sort out the technical details
of my work. Without his guidance, invaluable co-supervision and continuous encouragement,
this dissertation would never have come in this form.

I am very grateful and thankful to all the respected teachers of CDCSIT, TU, for granting me
broad knowledge and inspirations within the time period of two years.

My special thanks goes to Mr. Ashok Kumar Pant for his kind help in implementation of some
problems as well as in corrections of the document. Also, I am thankful to Mr. Okil Dhakal
and my brother Mr. Rajiv Lamichhane for their help in collecting and annotating the data and
generating the manual summary.

Likewise, I would like to thank to my colleagues and friends Mr. Pravakar Ghimire, Mr. Roshan
Silwal, Mr. Dinesh Kuamar Khadka, Mr. Deepednra Bhatt, Mr. Surya Bam who directly and
indirectly extended their hands in making this thesis work successful and complete.

As we know that, there won’t be 100% accuracy and efficiency in any work done either by
machine or human. So there may occur some errors in my project. But I have done my best
to complete this dissertation. So any suggestion regarding the mistakes of this work will be
always welcomed.

Rajendra Lamichhane

29 December, 2013

i

ABSTRACT

Automated text summarization is a generic problem in the Natural Language Processing (NLP)
community. It has grabbed great attention recently as the amount of information increases
throughout the world, online and offline. As the volume and availability of data increases, it
causes redundancy and scatterness over the world. So, there is the need of effective and pow-
erful tool to summarize text documents automatically. So far, many researches have been done
for English and other European languages with high performance. However, Nepali language
still suffers from the little attentions and researches in this field.

In this dissertation, a method has been proposed, which lets us to summarize Nepali text doc-
uments automatically based on sentence extraction techniques. The various stages involved in
this approach which are: text preprocessing, feature extraction, sentence scoring and ranking,
and summary generation. The proposed system is tested with various datasets collected from
different sources such as books, newspapers, article, reports, etc. Automated evaluation tech-
niques are used to validate the proposed system against the manual summaries. The overall
accuracy of the proposed system is achieved as 79.18% precision, 71.77% recall and 75.02%
F-Score. Cosine similarity measure gives overall similarity of 91.16% between manual sum-
mary and system summary.

Keywords:

Automated text summarization, Natural language processing, Nepali language, Preprocessing,
Feature extraction

ii

TABLE OF CONTENTS

Acknowledgement i

Abstract ii

List of Figures v

List of Tables vi

Abbreviations vii

1 INTRODUCTION 1
1.1 Introduction . 1
1.2 Classification of Text Summarization Task . 2
1.3 Applications of Automatic text Summarizations 4
1.4 Motivation . 5
1.5 Background of Nepali NLP . 5
1.6 Challenges . 6
1.7 Problem Definition . 6
1.8 Objectives . 7
1.9 Contribution of the Thesis . 7
1.10 Outline of the Document . 7

2 LITERATURE REVIEW 8
2.1 Single Document Summarization Approaches 8
2.2 Multiple Document Summarization Approaches 10
2.3 Summarization in Nepali Language . 11

3 RESEARCH METHODOLOGY 12
3.1 System Overview . 12
3.2 Data Acquisition . 13
3.3 Preprocessing . 13

3.3.1 Symbols and Punctuation Marks Removal 14
3.3.2 Stop Words Removal . 14
3.3.3 Stemming . 14

3.4 Feature Extraction . 15
3.4.1 Length of Sentence . 15
3.4.2 Position of Sentence . 15
3.4.3 Named Entity Recognition . 16
3.4.4 Term Frequency . 16

3.5 Sentence Evaluation . 17

iii

3.6 Summary Generation . 17
3.7 System Evaluation Metrics . 17

3.7.1 Precision/Recall/F-Score . 17
3.7.2 Cosine Similarity . 18

4 IMPLEMENTATION 20
4.1 Document Preprocessing Algorithms . 20

4.1.1 Symbols and Punctuation Marks Removal Algorithm 20
4.1.2 Stop Words Removal Algorithm . 20
4.1.3 Stemming Algorithm . 21

4.2 Summary Generation Steps Demonstration . 21
4.2.1 Input Document . 21
4.2.2 Symbosl and Punctuation Marks Removal 22
4.2.3 Stop Word Removal . 23
4.2.4 Stemming . 23
4.2.5 System Summary . 23
4.2.6 Mannual Summary . 24

4.3 Document Feature Vector and Sentence Ranking 24

5 EXPERIMENTATIONS AND RESULTS 26
5.1 Testing Datasets . 26

5.1.1 Dataset 1: Book . 26
5.1.2 Dataset 2: Kantipur News . 26
5.1.3 Dataset 3: Himalkhabar Patrika . 27
5.1.4 Dataset 4: Nagarik News . 27
5.1.5 Dataset 5: Online Khabar Patrika . 27

5.2 Data Dictionaries . 27
5.2.1 Symbols and Punctuation Marks Dictionary 27
5.2.2 Stop Word Dictionary . 27
5.2.3 NE Dictionary . 28

5.3 Experimentation Results . 29
5.3.1 Experiment 1 . 29
5.3.2 Experiment 2 . 31
5.3.3 Experiment 3 . 33
5.3.4 Overall System Performance and Result Analysis 35

6 CONCLUSION 37
6.1 Conclusion . 37
6.2 Limitations and Future Scope . 37

Appendix A Sample Source Codes 42

Appendix B Sample Input and Output 57

iv

LIST OF FIGURES

1.1 Classification of Summarization Tasks. 3

3.1 Top Level System Model. 12
3.2 Detail Architecture of System Model. 13
3.3 Some List of Nepali Stop Words. 14

4.1 Sample of Input Document. 22
4.2 Symbols and Punctuation Marks Removed Output. 22
4.3 Stop Word Removed Output. 23
4.4 Stemming Output. 23
4.5 System Summary Output. 24
4.6 Manual Summary. 24

5.1 Symbol and Punctuation Marks Dictionary. 27
5.2 Stop Word Dictionary. 28
5.3 Precision-Recall-FScore Graph of Experiment 1. 30
5.4 Similarity Graph of Experiment 1. 31
5.5 Precision-Recall-FScore Graph of Experiment 2. 32
5.6 Similarity Graph of Experiment 2. 33
5.7 Precision-Recall-FScore Graph of Experiment 3. 34
5.8 Similarity Graph of Experiment 3. 35
5.9 Graph of Overall Precision-Recall-FScore-Similarity. 36

v

LIST OF TABLES

4.1 Document Features and Sentence Ranking. 25

5.1 NE Dictionary . 29
5.2 Result of Experiment 1. 30
5.3 Result of Experiment 2. 32
5.4 Result of Experiment 3. 34
5.5 Average of System Measures. 35

vi

LIST OF ABBREVIATIONS

ATS Automatic Text Summarization

ATSSNL Automatic Text Summarization System for Nepali Language

IDF Inverse Document Frequency

IR Information Retrieval

JDK Java Development Kit

MS Manual Summary

NDS Number of Document Sentence

NLP Natural Language Processing

NMSS Number of Manual Summary Sentence

NNLP Nepali Natural Language Processing

NSSS Number of System Summary Sentence

P Precision

PDA Personal Digital Application

POS Part of speech

R Recall

SS Summarization System

TF Term Frequency

TF-IDF Term Frequency x Inverse Document Frequency

TF-ISF Term Frequency x Inverse Sentence Frequency

TS Text Summarization

vii

Chapter 1

INTRODUCTION

1.1 Introduction
In this age of electronic and communication, the information in the internet rapidly grows
by huge amount day by day and we cannot retrieve the required document or information
easily and quickly. The concept of text summarization was introduced in English and other
European language in the era of the fifties. Text summarization has become an important and
timely tool for assisting and interpreting text information in todays age. It is very difficult for
human beings to manually summarize large documents of text. There is an copiousness of text
material available on the Internet. However, usually the Internet provides more information
than is needed. Therefore, a twofold problem is encountered: searching for relevant documents
through an overwhelming number of documents available, and absorbing a large quantity of
relevant information. The goal of automatic text summarization is condensing the source text
into a shorter version preserving its information content and overall meaning.

Automatic Text Summarization (ATS) is the process of reducing the given text document into
a summary that retains the most important points of the original document. It is a process
to produce an abstract by selecting a significant portion of the information from one or more
documents by preserving its information contents and overall meaning. In an automatic text
summarization process, a text is given to the computer and the computer returns a shorter less
redundant extract or abstract of the original text.

The summary is the condensed representation of a document’s contents. A summary outlines
important aspects of the document in a precise way. It should be informative and providing
the most important information in the document. A summary should be non repetitive and as
brief as possible. In a text, the same information can be repeated to emphasize its importance,
but a summary should give as much precise information as possible. A summary should be
indicative, it should indicate the document’s relevance to the reader.

Humans write a document to represent an idea, event or an opinion. Text evolves around a
general concept, which is coherently partitioned into sub topics, that supports the main topic.
The summary should capture the general idea and should include important topics.

According to Eduard Hovy, the summary can be defined formally as in [1]:
A summary is a text that is produced from one or more texts, that contains a significant portion

of the information in the original texts, and that is no longer than half of the original text.

1

This simple definition captures following three important aspects that characterize research on
automatic summarization:

1. Summaries may be produced from a single document or multiple documents either in
abstract or extract way,

2. Summaries should preserve important information of the document,

3. Summaries should be short as far as possible.

The Text Summarization (TS) methods can be classified into extractive and abstractive sum-
marization [2]. An extractive summarization method consists of selecting important sentences,
paragraphs etc. from the original document/text and concatenating them into a shorter form to
make a summary. The importance of sentences is decided based on statistical and linguistic
features of sentences. An abstractive summarization attempts to develop an understanding of
the main concepts in a document and then express those concepts in clear natural language. It
uses linguistic methods to examine and interpret the text and then to find the new concepts and
expressions to best describe it by generating a new shorter text that conveys the most important
information from the original text document. That is, the summary containing sequence of
words not present in the original document.

Summarization is a hard problem of Natural Language Processing because, to do it properly,
one has to really understand the point of a text. This requires semantic analysis, discourse
processing, and inferential interpretation. The last step, especially, is complex, because systems
without a great deal of world knowledge simply cannot do it. Therefore, attempts so far of
performing true abstraction, creating abstracts as summaries, have not been very successful.

1.2 Classification of Text Summarization Task

The goal of automatic summarization is the construction of a concise and coherent summary of
one or several documents. The task of automatic summarization can vary depending on several
criteria such as the type of the produced summaries, the number of source documents, the use of
external resources and the task specific constraints. The diagram in Figure 1.1 shows different
kinds of summarization tasks depending on the mentioned criteria. The rest of this subsection
explains each of the shown tasks. As mentioned in the introduction section above, a summary
can either be an abstract or an extract. Depending on whether we want to produce an abstract
or an extract summary, the summarization process will be abstraction based or extraction based
respectively.

Generation of a summary of one document is often referred to as single document summa-
rization while of several documents as multi document summarization. Multi document sum-
marization is obviously a more complex task than the single document summarization. There

2

Figure 1.1: Classification of Summarization Tasks.

are two major reasons for this. First, information overlap between the documents can lead to
redundancy in the summary. Secondly, an extra effort is required to organize the information
from several documents to a coherent summary.

Another criterion for classification of summarization methods is the use of external resources.
Knowledge-poor techniques don’t use any external resources while knowledge-rich techniques
may utilize external corpus such as Wikipedia or lexical resources such as WordNet. Such
resources are often used to unravel semantic relations between words, phrases or sentences.
There are several extensions of a classical summarization task. In query-focused or query ori-
ented summarization a query is provided to a summarizer in addition to the source documents.
The summarizer is supposed to construct a summary that contains information requested by the
query. A document retrieval system together with a query-oriented multi document summariza-
tion system is potentially a very powerful combination, which might be much more effective
than a document retrieval system alone. Another extension is the so called update summariza-
tion. The idea of update summaries comes from the experiments with summarization of news
articles that are chronologically organized. The purpose of the update summary is to identify
new pieces of information in the more recent articles with the assumption that the user has
already read the previous ones.

Very recent extension of the summarization task is the guided summarization presented in [3].
In guided summarization a set of aspects that should be covered in a summary is provided. The
documents are classified into several categories such as accidents, natural disasters, criminal
attacks etc. Aspects vary depending on the category. For example, the summary of docu-
ments related to an accident should cover the following aspects: what happened, data, location,
reason for the accident, casualties, damages and rescue efforts. The motivation for guided sum-
marization is to inspire innovative approaches that rely on deeper linguistic analysis rather than
superficial statistical features such as term frequencies

3

1.3 Applications of Automatic text Summarizations

For any area, automatic text summarization is a very powerful tool to save time and resources,
and optimizing availability. Text summarization can be used for:

• saving time and resource: If we need to generate the summary of a large number of
documents of any types then it cannot be possible by single resource with in less time.

• speeding up the information retrieval and text mining processes.

• displaying text on handheld devices, such as PDAs.

Automatic text summarization can be useful in many fields such as:

• Medical area: A lot of documents are published in medical research in the last two
decades, and in many cases a medical specialist is in a deep need to find relevant in-
formation about patient‘s conditions timely. So, text summarization here saving time
resources and optimizing the availability of medical experts.

• Legal area: Legal resources and documents are sparse and expensive in time and ex-
pertise level, and cost, which yields legal experts perform difficult and responsible work.
Thus automatic text summarization needed for expert to be able to find compressed and
restated content of relevant judicial documents, including laws and their proposals, rele-
vant court decisions or tribunal process summarizations [4].

• News area: Thousands of political, sport, economic and other types of news are pub-
lished every second on the internet. It‘s very hard or impossible to browse all of them
or either the half. By using text summarization user can find which news she/he is con-
cerned with before reading the whole text.

On the internet, one can find a lot of examples of automatic text summarization systems as:

• Google news, Microsoft news, Columbia news blaster which returns an abstracted sum-
mary for news in the world.

• Blog summarization tool and aggregation and opinion survey systems.

• Word Summarizer: this also included in Microsoft. Word.

• Personal Digital Application (PDA) which contains summarizer applications.

4

1.4 Motivation

The information available on internet, organization, university library, office, etc. are abundant.
Usually, the number of relevant queries to search appropriate document from the user is humon-
gous which intermingle with the irrelevant documents. Each retrieved document could be very
lengthy and readers find that it is very tedious and time consuming to condense the main gist of
the documents. Although, a number of tools (i.e. MS AutoSum, Summarist, etc.) is available
to facilitate the text summarization process automatically but these are mainly for English and
other European language but not for Nepali language. With the rapid increase of local lan-
guage contents in electronic form and the gradual improvements of Nepali language resources
for computational models, the possibility of developing some language processing applications
for Neplai has increased. An automatic text summarizer is one such major application which
many people can take benefit from it because it helps people to get the most important and rele-
vant information in a shorter time. The motivation of developing an automatic text summarizer
for Nepali is empowered under these circumstances. Automatic text summarization in Nepali
language is very difficult and challenging and there is no any works have been done for Nepali
till this work was started.

1.5 Background of Nepali NLP

Natural Language Processing (NLP) is a new field for research and development in Nepal.
The first NLP works in Nepal include the Nepali Spell Checker and Thesaurus that got re-
leased in the year 2005. The Spell Checker and the "Dobhase", an English to Nepali machine
translation projct respectively developed in collaboraion by Madan Puraskar Pustakalaya (MPP,
http://www.mpp.org.np) and Kathmandu University (http://ku.edu.np). In the succeeding year,
further works on language engineering like corpus building and annotation for Nepali, Text-
To-Speech System for Nepali, digitized Nepali dictionary also got started under the NelRaLEC
(Nepali Language Resources and Localization for Education and Communication) Project, also
known as the Bhasa Sanchar Project (http://www.bhasasanchar.org) and currently being run at
Madan Puraskar Pustakalaya Nepal [5].

With the above mentioned NLP tools developed, further doors of possibilities would open up for
the research and development of several useful Natural Language Processing applications Ma-
chine Translation systems (currently we just have a unidirectional one from English to Nepali),
Question Answering systems, Grammar Checker for Nepali, Information Retrieval Systems,
Expert Systems and so on and so forth. Given the socio-economic realities and constraints
of Nepali and Nepalese, such a substantial growth in the focus towards the research and de-
velopment of NLP applications is certain to bring about some positive impacts, some of which
include a concrete contribution towards bridging the existing digital divide and the development
of the expertise in the local language computing.

5

Also, some of the research work has been done in Central Department of Computer Science
and Information Technology (CDCSIT, http://www.cdcsit.edu.np) in the subject of Nepali Nat-
ural Language Processing (NNLP). The works such as “A Chunk Level Statistical Machine
Translation (English Language to Nepali Language Translation)”, “Creation of Parallel Corpus
from Comparable Corpus (For English-Nepali Language Pair)”, "Named Entity Recognition",
etc has been done in the field of Nepali NLP.

1.6 Challenges
Text summarization has been a research topic since the 1950s, however, it has been became
more active till now. The aim of text summarization research can be said to obtain a good sum-
mary or summaries, but it has been thought difficult to produce good summary as generated by
human i.e, abstract and evaluate it because we do not have a definite standard measures to evalu-
ate such systems. Many researchers were compared the summary obtained from automatic text
summarization to human reference summary. Since, the two human reference summary may
differ for the same documents so the evaluation system for the automatic text summarization
is very difficult. Few other challenges could be, word sense ambiguity, this is the ambiguity
created sometimes due to abbreviations that can have more than one acronym. Here, depending
on the subject we have to match the acronym for better understanding. Another challenge, is
interpreting long sentences and jargons. Usually, the flow of information in a given document
is not uniform, which means that some parts are more informative than others. The major chal-
lenge in summarization lies in distinguishing the more informative parts of a document from
the less ones. Though there have been instances of research describing the automatic creation
of abstracts, most work done on automatic text summarization relies on verbatim extraction of
sentences to address the problem of single document summarization.

In the case of Nepali language, it is a resource poor language annotated corpora, name dictio-
naries, good morphological analyzers, POS taggers, stemming etc. are not yet available in the
required measure. Although Nepali language have a very old and rich literary history, techno-
logical development are of recent origin. Web sources for name lists are available in English,
but such lists are not available in Nepali forcing the use of transliteration for creating, such
lists.

1.7 Problem Definition
In this era, human beings have so busy life and they don’t have much time to read large docu-
ments/reports but sometimes they have to present about the report in some where at any point of
time. If such people get the summary version of such documents then obviously they have easy
to present about reports. But, to generate a summary of a large document is difficult, tedious
and time consuming task itself for human beings so the automatic summarization of the docu-
ment is needed. Since, there is no system yet that can be used to generate the summary for the

6

Nepali text documents, it is still very time consuming and tiresome work to go through all the
contents line by line and get the summary or theme of the document. For large volume of data,
information generation by manual readers can not be feasible. It required much time and effort
as domain diversity increases. So, machine learning strategies are required for automated text
summarization. There needs a learning model that can automatically generate the summary of
the given Nepali text documents, and can perform analysis on accuracy of machine generated
summary with human generated summary.

1.8 Objectives
The main objective of this research work is to propose a learning model that can perform
automatic Nepali text summarization for single document. The proposed model can be used in
various domains with recognizing novelty and ensuring that the final summary is both coherent
and complete. More clearly, following list describes the research objectives.

1. To propose a automated learning and summary extraction model for Nepali text docu-
ments.

2. To analyze the accuracy of proposed model against human performance.

1.9 Contribution of the Thesis
The main contribution of this thesis is the identification of general steps of an automatic ex-
tractive text summarization method for single document for Nepali language. That is, this
dissertation provides the statistical approach to find the summary of the given documents. This
thesis also explains about how we can validate our system automatically.

1.10 Outline of the Document
The remaining part of the document is organized as follows,

Chapter 2 describes necessary background information and related work of summarization
research on single document as well as in multi document.

Chapter 3 defines in detail the system structure and the proposed approach including the corpus
collection and annotation details, feature selection and extraction and the used classification
approaches (scoring approach).

Chapter 4 describes the implementation details of the system. All the methods described in
the Chapter 3 are implemented for system evaluation.

Chapter 5 includes experimentation results in tabular as well as in graphs. There will be two
graphs for each experiment, and also for the overall average for the sysem is shown.

Chapter 6 concludes the system performance and future directions.

7

Chapter 2

LITERATURE REVIEW

This chapter consists of a brief study of the technical background behind the automatic summa-
rization and the comprehensive study carried out so far to find the current status of the field. The
different approaches that have been taken over the last six decades to automatically summarize
single text document as well as multiple text document will be explained and the applicabil-
ity of such approaches for less resourced languages such as Nepali will be discussed in this
chapter.

2.1 Single Document Summarization Approaches

Father of Information Retrieval, Hans Peter Luhs in 1958 proposed the first approaches of the
automatic text summarization to generate a summary for the document. In his proposed system
he used the frequency of a particular word as a measure of sentence significant in [6]. He
derived a significant factor that reflects the number of significant word’s occurrence within a
sentence of a document, and the linear distance between them due to the intervention of none
significant words. After that, all of these sentences in the document are ranked and the top most
ranked sentences are selected to include in abstract summary.

Many previous works on extractive summarization includes two major steps: first step is rank-
ing the sentences based on their scores which are computed by combining few or all of the
features such as term frequency (TF), positional information and cue phrases in [7] also in [8]
and the second step is selecting a few top ranked sentences to form an extract. The very first
work on automatic text summarization computes the salient sentences based on word frequency
(number of times a word occurs in a document) and phrase frequency. Although subsequent
research has developed sophisticated summarization methods based on various new features,
the work presented in [9] is still followed today as the foundation for extraction based summa-
rization.

A text summarization technique using extracted keywords is proposed in [10]. It describes four
stages of summarization. The first stage is preprocessing stage, which converts the unstructured
text into structured by removing the stop words, parsing the text and assigning the Part of
speech (POS) tag for each word in the text and store the result in a table. The second stage is to
extract the important key-phrases from the text by selecting the candidate words. The system
uses the extracted keywords/key-phrases to select the important sentence. Each sentence ranked

8

depending on many features such as the existence of the keywords/key-phrase in it, the relation
between the sentence and the title by using a similarity measurement and other many features.
The third stage of the proposed system is to extract the sentences with the highest rank. The
fourth stage is the filtering stage, where the relevant sentences are filtered.

Text summarization using sentence extraction for the Bengali language is presented in [11].
The proposed system based on sentence ranking mechanism. Each sentence in the document
are ranked based on their weight after some preprocessing is performed. The preprocessing
stage includes the removal of stop words, stemming and breaking the input document into a
collection of sentences. In the next stage, sentence ranking is performed based on their scores
using thematic term, positional value and sentence length calculation. A summary is generated
by selecting k-top ranked sentences. To increase the readability of the summary, the sentence
in the summary are reordered based on their appearance in the original documents.

Also, an automatic text summarization based on semantic feature extraction for the Arabic lan-
guage is presented in [12]. The proposed model is mainly focused on preprocessing and feature
extraction of sentence and ranking them based on the score they have. It also focused on seman-
tic analysis of the words of the sentence. Various steps are performed in the approach, some of
them are preprocessing of text, extract a set of feature from sentences, classify sentences based
on the scoring method, ranking sentences and finally generate an extract summary.

Work done in [13] describes the state of the art of automated text summarization techniques
for a single document. It compares most of the recent techniques used in text summarization.
Similarly [14] describes the various techniques of automated multiple document summarization
and made comparison among them.

The paper [15] presents a sentence reduction system for automatically removing extraneous
phrases from sentences that are extracted from a document for summarization purpose. The
system uses multiple sources of knowledge to decide which phrases in an extracted sentence
can be removed, including syntactic knowledge, context information, and statistics computed
from a corpus which consists of examples written by human professionals. Reduction can
significantly improve the conciseness of automatic summaries.

A practical approach for extracting the most relevant sentences from the original document
to form a summary is presented in work [4]. A proposed approach takes advantages of both
the local and global properties of sentences. The algorithm that combines these properties for
ranking and extracting sentences is given. The local property can be considered as clusters of
significant words within each sentence, while the global property can be thought of as relations
of all sentences in a document.

The efficient technique for language independent generic extractive summarization for single
document is presented in [16]. The algorithm is based on structural and statistical (rather than
semantic) factors. Through evaluations performed on a single document summarization for
English, Hindi, Gujarati and Urdu documents, the method performs equally well regardless

9

of the language. The algorithm has been applied on DUC data for English documents and
various newspaper articles for other languages with corresponding stop word list and modified
stemmer. The results of summarization have been compared with DUC 2002 data using degree
of representativeness. For other languages, the degree of representativeness we get is highly
encouraging.

2.2 Multiple Document Summarization Approaches

When a user query about a topic, hundreds of documents are returned to him. If we deal with
each document alone and summarized it, then hundred of summaries are generated which are
also a problem. In today‘s community in which time plays an important role, multi docu-
ment summarizer play essential role in such situations. So, recent year most researchers for
automatic text summarization have transferred their efforts from single documents to multiple
documents. So this section, only deal to compare technique for extraction summarization from
multi document. There are many techniques that people use for multi document summariza-
tion from the past to present. Multi document summarization became more interested by the
mid 1990s, Summary of multi document must include the important ideas in each document,
comparing ideas across the document, reducing the size of each document and ordering in a
new sentence. The first started of multi document by Radev and McKeown (1995) presented in
[17] developed SUMMONS to generate summaries of multiple documents on the same or re-
lated events, presenting similarities and differences, contradictions, and generalizations among
sources of information from realized as English sentences. In 1998 [18], they improved their
SUMMONS to combine it into a conceptual representation of the summary which selects in-
formation from underlying knowledge base. The structured conceptual representation of the
summary, where information that appears in only one article is given a lower rating and infor-
mation that is synthesized from multiple articles is rated highly.

The paper [19] discusses a text extraction approach to multi document summarization that
builds on single document summarization methods by using additional, available information
about the document set as a whole and the relationships between the documents. Multi docu-
ment summarization differs from single in that the issues of compression, speed, redundancy
and passage selection are critical in the formation of useful summaries. This approach ad-
dresses these issues by using domain independent techniques based mainly on fast, statistical
processing, a metric for reducing redundancy and maximizing diversity in the selected pas-
sages, and a modular framework to allow easy parameterization for different genres, corpora
characteristics and user requirements.

The paper [20] proposed a summarization system which automatically classified type of the
document set and summarized a document set with its appropriate summarization mechanism.
This system classified a document set into three types, a series of events, a set of the same
events and related events, by using information of higher frequency nouns and named entity.

10

The unnecessary parts are deleted after summarizing each document and generated multi doc-
ument summary. They used single document summarization mechanism for each document of
a document set and removed similar parts between summarized documents for generation of a
target summary. They applied a TF/IDF based sentence extraction for single document summa-
rization and used of single document summarization for multi document summarization. Their
mechanism of document set classification does not work well in the evaluation because their
current implementation has some system bugs in classification mechanism.

In recent trend, some work of multi document summarization extends to multi language envi-
ronment which proposed by Evans et al., in 2005 presented in [21].

2.3 Summarization in Nepali Language

No automated Text Summarizer for single document as well as for multi documents are yet dis-
covered for Nepali text documents. There are a few researches in the field of natural language
processing done so far. Most of such researches rally on lab and includes limited area.

11

Chapter 3

RESEARCH METHODOLOGY

This chapter describes the theoretical concept behind the methods used in this dissertation
work. Model of the proposed text summarization system is given in section 3.1. Research
methodologies describe the stepwise solutions to the problem of various summary generation
steps.

3.1 System Overview

The top level system model diagram of the proposed system is given in Figure 3.1. Various
stages have to be performed to achieve automatic text summarization for the Nepali documents.
Detailed sub-system flow is given in Figure 3.2.

Figure 3.1: Top Level System Model.

12

Figure 3.2: Detail Architecture of System Model.

3.2 Data Acquisition

This step is considered to be the system input. The system input is a user text input. In the user
text input, the user is asked to provide a UTF-8 Unicode Nepali text either from user interface
or should give the text file with (.txt) format. This Nepali text or file is one to be summarized.
There is no limitation on the size of the text or number of sentences included in the document.
Not only that, there is no restriction on the domain of documents. So it may be related to either
sports, politics, medical or other.

3.3 Preprocessing

The preprocessing stage is just for removing the words which do not carry valueable informa-
tion. So, in this stage, we need to remove any extraneous symbols, punctuation marks and stop

13

words from each sentence of the document. Then after, we need to perform stemming of each
word in each sentence available in the document to make a sentence having less features.

3.3.1 Symbols and Punctuation Marks Removal

There will be some symbols included in the document to represent some information. They are
not so informative, like the symbols $, #, , %, etc are used to denote some information in the
document. So, we need to remove such symbols from the document before feature extraction.
As in any language, punctuation marks are used to organize the text and to make meaningful
sentences. The punctuation in the text summary does not have any value, so we remove all
punctuation which are not full stop. The data dictionary used for symbol removal is explained
in section 5.2.

3.3.2 Stop Words Removal

Stop words are high frequency words of a language which rarely contribute to useful informa-
tion in terms of document relevance and appear frequently in the text but provide less meaning
in identifying the important content of the document [12]. Closed class words such as pronoun,
prepositions, conjunctions, etc available in the document are often included in stop words list.
Stop words are pruned at the processing phase to reduce the number of features. The stop
word lists for English and other languages are freely available on the Web and often utilized
in summarization. But, we cannot find easily the stop word list for Nepali language. We have
prepared the list of stop words for Nepali language manually for this dissertation. During the
removal procedure all the words that appear in a list of stop words are removed by matching
from the source documents. Some of the Nepali stop words are given in Figure 3.3. The details
of dictionary used for stop word removal is explained in Section 5.2

Figure 3.3: Some List of Nepali Stop Words.

3.3.3 Stemming

Stemming is an essential process in the field of NLP. Word stemming is the process of reducing
inflected or derived words to their stem, base or root form. Many NLP applications which use
words as basic elements employ stemmers to extract the stems of words. Mainly, it is used
in information retrieval systems to improve performance. Actually, this operation reduces the
number of terms in the information retrieval system, thus decreasing the size of the index files.
Stemming helps to obtain the stem or root of each word, which ultimately helps in semantic
analysis and faster processing. There is a need of specific language dependent stemmer, and
is requires some significant linguistic expertise in the language. A typical simple stemmer

14

algorithm involves removing suffixes/prefixes using a list of frequent suffixes/prefixes, while a
more complex one would use morphological knowledge to derive a stem from the words. The
stemmer which simply prunes the suffixes/prefixes using the list of frequent suffixes/prefixed
is very efficient and lightweight approach compared to morphological parsing. Even though,
there are some advanced stemmers for languages such as English, the algorithms which they
employ do not work well for highly inflected languages such as Nepali

Since Nepali is a highly inflected language so there are many word forms to denote a single
concept. This situation is highly effected for the frequency of a term and therefore words
have to be stemmed out before getting their frequencies. There is light weight stemmer for
Nepali language [22] and we incorporate this stemmer in our system to get the root word of the
inflected words.

3.4 Feature Extraction
After removing the unnecessary words, symbols, prefixes and suffixes of the terms/words from
each sentence of the text document, we need to evaluate the features of each sentence that will
play vital role in the sentence evaluation. In feature extraction, we need to calculate the various
features of each sentence in the document like length feature, position feature, entity feature,
frequency feature, etc. The details of finding the various features of sentence are described in
subsequent sections.

3.4.1 Length of Sentence

This feature is useful to filter out too short or too long sentences such as subtitles, author names
and date lines commonly found in the articles. When such short and long sentences do not carry
the meaningful information, they are not needed to be included in the summary. We calculate
this feature relative to longest sentence available in the document using the following equation
[12]:

Sentence relative length =
Number of words in sentence

Number of words in longest sentence
(3.1)

For example: if we have 45 words in longest sentence of the document and one of the sentence
contains only 10 words after pre-processing stage, then the sentence relative length for that
sentence in the document will be = 10/45 = 1/4.5.

3.4.2 Position of Sentence

Position of sentence in the document plays an important role in finding the sentence that is the
most relevant to the topic of the document. Usually the first sentence is the most significant
in the document which gives an idea about what the rest of the text say, and the last sentence
usually contains a conclusion about the text.

15

To stress the significance of different sentence positions, each sentence in the document is given
a rank ranging from 1 to some max value. More weight is given to sentence at the beginning
than the rest. We compute sentence absolute position feature using the equation [12]:

Sentence absolute position =
Number of sentences − sentence position + 1

Number of Sentences
(3.2)

For example: if we have a document with 11 sentences, then the sentence absolute position for
the first sentence in the document will be = (11− 1 + 1)/11 = 11/11 = 1.

3.4.3 Named Entity Recognition

The motivation for this feature is that the occurrence of proper nouns, referring to people, places
and other categories, are clues that a sentence is relevant to the summary.

For each sentence of a document, we check if there is any entity name occurs in it against the
dictionary of NE, if it occurs, we increase a entity counter variable by 1 and remove this entity
name from a pre-process-sentence. The value of this counter reflects the number of entities in
the sentences. It also plays an import role in the sentence analysis stage to determine which
sentence is to be included in the summary. If the documents contains the more entities then
we can say the documnent is about to these entities and the summary should include sentence
having these entites.

This stage calculates the feature for following four entities:

• Person Name

• Location Name

• Organization Name

• Miscellaneous Named Entities

3.4.4 Term Frequency

Term frequency is a numerical statistic that reflects how important a word is to a document. It
is used as a weighting factor in information retrieval and text mining [23]. The term frequency
value increases proportionally to the number of times a word appears in the document which
helps to recognize the commonness and generality of any word in the document.

In automatic text summarization, we have to select a set of relevant sentences to be included in
the extractive summary out of all sentences in a document. Hence, the notion of a collection
of document in information retrieval can be replaced by the notion of a single document in

16

text summarization. This new measure will be called Term Frequency x Inverse Sentence
Frequency (TF-ISF) [24]. We use the following formula to calculate TF-ISF:

TF X ISF =

∑k
i=1wi(S)

max
∑k

i=1wi(SN)
(3.3)

Where k is the number of words in a sentence (S), w is the term frequency weight for each
word i and N is the total number of sentences in a document.

3.5 Sentence Evaluation

The sentences are evaluated based on the score they have and it is computed using the linear
combination of the normalized values of weighted features collected in Section 3.4. Equation
3.4 shows the score of a particular sentence.

Score(s) = Sentence Relative Length+ Sentence Absolute Position+ Person

Name Counter + Location Name Counter +Organization

Name Counter +Misc Named Entity Counter + TF X ISF (3.4)

From the above equation, we can determine the final weight of each sentence in the test corpus.
Based on these numric values, the sentences are determined whether they are included in the
summary or not.

3.6 Summary Generation

All document sentences are sorted in descending order of their scores assigned in sentence eval-
uation step. A set of highest score sentences are extracted as document summary. Finally the
summary sentences are arranged in the original order to ensure the readability of the generated
summary. The number of sentences to be included in the summary will be depended on the
number of sentences in the document. For all the document, the default summary will include
1
3
rd sentence of the original document, but we can generate summary of user given percentage.

3.7 System Evaluation Metrics

3.7.1 Precision/Recall/F-Score

System evaluation is a hard task because it is very difficult to find an ideal text summary for
a given document or a set of documents. Another problem is that two manual summaries of
the same input do not in general share many identical sentences. To evaluate our system, we

17

used human generated reference summary for each document in the collection. Then for each
reference summary and document, we will calculate the three important measures: precision,
recall and F-measure [12]. This type of evaluation technique is called Evaluation by Sentence
Co-selection.

Precision is a measure of how many of the sentences generated by the system is correct and it
is calculated as:

Precision =
Number of system correct summmary sentences

Number of system summary sentences
(3.5)

Recall is a measure of how many of the sentences in the reference summary that are present in
the system generated summary and it is calculated as:

Recall =
Number of system correct summmary sentences

Number of human summary sentences
(3.6)

Usually Recall and Precision are opposite to one another. A system strives for coverage will
get lower precision and a system strives for precision will get lower recall. F-measure balances
recall and precision using a parameter β. The F-measure is calculated as [12]:

F =
(β2 + 1)PR

β2P +R
(3.7)

When β is one, Precision P and Recall R are given equal weight. When β is greater than one,
Precision is favored, when β is less than one, recall is favored. In the following experiments β
equals one.

3.7.2 Cosine Similarity

We can clear out the above discussed weakness of co-selection measures by content-based
similarity measures. The content˘based similarity measures is obtained from Cosine similarity
[25].

Cosine similarity is a measure of similarity between two document vectors of an inner product
space that measures the cosine of the angle between them. The cosine of 00 is 1, and it is less
than 1 for any other angle. It is thus a judgement of orientation and not magnitude: two vectors
with the same orientation have a Cosine similarity of 1, two vectors at 900 have a similarity of 0,
and two vectors diametrically opposed have a similarity of−1, independent of their magnitude.
Cosine similarity is particularly used in positive space, where the outcome is neatly bounded in
[0, 1].

The cosine of two vectors can be derived by using the Euclidean dot product formula:

a · b = ‖a‖ ‖b‖ cos θ (3.8)

18

Given two vectors of attributes, A and B, the cosine similarity, cos(θ), is represented using a
dot product and magnitude as

similarity = cos(θ) =
A ·B
‖A‖‖B‖

=

n∑
i=1

Ai ×Bi√
n∑

i=1

(Ai)2 ×
√

n∑
i=1

(Bi)2
(3.9)

The resulting similarity ranges from −1 meaning exactly opposite, to 1 meaning exactly the
same, with 0 usually indicating independence, and in between values indicating intermediate
similarity or dissimilarity. For text matching, the attribute vectors A and B are usually the
term frequency vectors of the documents. The cosine similarity can be seen as a method of
normalizing document length during comparison. In the case of information retrieval, the co-
sine similarity of two documents will range from 0 to 1, since the term frequencies (tf − idf
weights) cannot be negative. The angle between two term frequency vectors cannot be greater
than 900.

19

Chapter 4

IMPLEMENTATION

All the modules are implemented by using Java (spring MVC/JSP) JDK 1.7 version. The Java
is installed on a Intel(R) Core(TM)2 Duo CPU T6500 @ 2.10GHz processor. The Computer
has total main memory of 2 Gigabyte and 32-bit Microsoft Windows 7 Professional operating
system installed in it. This chppter describes the algorithm of some major stages used in the
system implementation along with their respective output of some input sample.

4.1 Document Preprocessing Algorithms

4.1.1 Symbols and Punctuation Marks Removal Algorithm

The data dictionary of symbol and puntuation mark used in this work is presented in Section
5.2. Such symbol marks presented in document are removed using following algorithm.

Algorithm 4.1 Symbols and Punctuation marks Removal
1: Read text document.
2: Match the token of document with token in the symbol and punctuation mark dictionary.
3: Remove matched token from document.
4: Repeat until all the symbols and puntuation marks are not removed from the document.
5: Stop.

4.1.2 Stop Words Removal Algorithm

The data dictionary used for stop words is given in Section 5.2 are removed from the input
document using the algorithm below.

Algorithm 4.2 Stop Word Removal
1: Read text document.
2: Match the token of document with token in the stop word dictionary.
3: Remove matched token from document.
4: Repeat until all stop words are not removed from the document.
5: Stop.

20

4.1.3 Stemming Algorithm

To obtain the root word of the inflected words presented in the documents, we use the following
algorithm [22].

Algorithm 4.3 Stemming
1: Read text from input document.
2: Do the following for the string sequence in the input word
3: Strip off appeared at the end of the word, the very last letter of the input word.

4: Strip off appeared at the end of the word from the end of the input word.

5: Strip off from the input word which is appeared at the end of the word from the end.

Add to the end of the resulting word if the last letter of the word formed is a consonant.

6: Exception holds the letter . If the last character of the resulting word is , strip it off and
add .

7: If the initial letter is a vowel, stripe off from the word and insert in front of the

character which is followed by .

8: Stripe off from the end of the word. Look for the resulting word in the free morpheme
list.

9: The remaining part of the input word is root word.
10: Stop.

4.2 Summary Generation Steps Demonstration

The steps of system symmary generation explained in chapter 3 are demonstrated in this sec-
tion. For the demonstration purpose, one document from the corpus is taken as sample which
is shown in figure 4.1. The input sample contains 8 sentences and the system summary for this
input have only 3 senetences. The mannual summary of this input includes 4 sentences.

The output of each stage for the sample inut are provided below.

4.2.1 Input Document

The sample input is;

21

Figure 4.1: Sample of Input Document.

4.2.2 Symbosl and Punctuation Marks Removal

The output after removing the symbols and punctuation marks is obtained as;

Figure 4.2: Symbols and Punctuation Marks Removed Output.

22

4.2.3 Stop Word Removal

After removing the stop words, the output is obtained as;

Figure 4.3: Stop Word Removed Output.

4.2.4 Stemming

The stemming output is;

Figure 4.4: Stemming Output.

4.2.5 System Summary

The system summary for the above input sample is obtained as;

23

Figure 4.5: System Summary Output.

4.2.6 Mannual Summary

The mannual summary for the above input sample is given below. The process of obtaining the
manual summary is described in section 5.1.

Figure 4.6: Manual Summary.

4.3 Document Feature Vector and Sentence Ranking

Table 4.1 shows the sentence features obtained during summary generation for the 8 sentences
of the input sample document given in Figure 4.1. It also contains the sentence score of each
sentence with their rank value.

24

Table 4.1: Document Features and Sentence Ranking.

25

Chapter 5

EXPERIMENTATIONS AND RESULTS

This chapter contains all the datasets and data dictionary used in the experiments and corre-
sponding empirical results. There are five self created datasets used for the evaluation of the
system. The datasets and data dictionary are given in Section 5.1 and 5.2 respectively . Exper-
imentation results and graphical analysis are provided in Section 5.3.

5.1 Testing Datasets
For testing purpose, we collected total 38 documents from various domains. Among them, 10
documents are selected randomly from books and 28 documents are selected randomly from
national news papers of Nepal in the time period of June 2013 through December 2013. The
number of sentence containing in each document are varied. Detail of each dataset is given
below.

We have created the human reference summary for the above collected document with the help
of Nepali expert (Lecturer in Higher Secondary School). The expert was guided with some
pre-assumption during mannual summary generation of those documents. Actually, the pre-
assumption includes following points:

• The number of sentences to be included in the human reference/mannual summary should
be 1/3rd of total number of sentence in the documents as far as possible.

• The reference summary should be extracts not the abstracts. That is, the sentence to be
extracted for the reference summary should be exactly same of the document. Since, we
need the extract summary to validate the system.

5.1.1 Dataset 1: Book

Dataset 1 contains 10 different documents collected from different Nepali books of Secondary
and Higher Secondary Level. Documents belongs to variety of categories like sports, life,
science, nature, etc.

5.1.2 Dataset 2: Kantipur News

Dataset 2 contains 6 different documents of different domains including political news, sports,
etc. which are collected from Kantipur National daily news paper of Nepal.

26

5.1.3 Dataset 3: Himalkhabar Patrika

Dataset 3 contains 4 different documents collected from Himal Khabar Patrika, the monthly
news paper of Nepal.

5.1.4 Dataset 4: Nagarik News

Dataset 4 contains 6 different documents of various domains collected from Nagrik news, the
national daily news paper of Nepal.

5.1.5 Dataset 5: Online Khabar Patrika

Dataset 5 contains 12 different documents of diffent domains collected from Online Khabar
Patriks, the national daily news paper of Nepal.

5.2 Data Dictionaries

5.2.1 Symbols and Punctuation Marks Dictionary

The symbols that doesn’t carry the special meanings are removed in the pre-processing stage.
The symbol and punctuation marks dictionary contains 40 unique symbols and punctuation
marks. This dictionary includes the following symbols and marks.

Figure 5.1: Symbol and Punctuation Marks Dictionary.

5.2.2 Stop Word Dictionary

We have created the stop word dictionary to remove the useless words from the document in
pre-processing stage. The words in the document that matched with the words listed in the stop
word dictionary are excluded. The dictionary of stop word contains 402 unique words. The
stop word dictionary contains following words:

27

Figure 5.2: Stop Word Dictionary.

5.2.3 NE Dictionary

To test ATSSN, we have to prepare the data dictionary for NE (Named Entity). The NE corpus
that is used for testing ATSSN is taken from [26] with some addition of corpus, which was
created manually and contains 21, 105 unique words. The detail description of NE corpus is

28

shown in below table.

Table 5.1: NE Dictionary

Dictionary No. of entries
Person Name 5478
Location Name 5243
Organization Name 4715
Miscellaneous Name 5669
Total 21105

5.3 Experimentation Results

To test the system, we have to compare the system generated summary with human reference
summary. With the help of Precision (P), Recall (R), F-Score (F) and Similarity of system sum-
mary with reference summary, we calculated the accuracy of the system. The experimentation
results obtained from different experiments are explained in this section.

For the experimentation, we categorize the testing document into three different sets. The first
set contains the decuments having the number of sentences less than 15. Similarly, the second
set includes the documents having the number of sentece greater than 15 and less than or equal
to 30. And, the third set contains any number of sentence more than 30.

5.3.1 Experiment 1

This experiment is carried out in 14 different documents from datasets described in Section 5.1.
In this experiment, each document contains number of sentences upto 15 and for the docunents
having same number of sentence, the average value of each measures parameter is calculated
and shown in table 5.2. This experiment shows that the average Precision, Recall and F-Score
are obtained as 75.72% ,64.05% and 68.99% respectively. And, the average cosine similarity
between manual and system summary is obtained as 84.89%. Figure 5.3 shows the graph
between Precision, Recall and F-Score measures with respect to number of sentences in the
documents,manual summary and system summary. And, Figure 5.4 shows the graph of manual
and system summary similarity with respect to number of sentences in the documents,manual
summary and system summary.

29

Table 5.2: Result of Experiment 1.

Figure 5.3: Precision-Recall-FScore Graph of Experiment 1.

30

Figure 5.4: Similarity Graph of Experiment 1.

5.3.2 Experiment 2

This experiment is carried out in 12 different documents from datasets described in Section
5.1. In this experiment, each document contains number of sentences between 15 and 30. For
the docunents having same number of sentence, the average value of each measures param-
eter is calculated and shown in table 5.3. This experiment shows that the average Precision,
Recall and F-Score are obtained as 79.74% ,73.06% and 76.11% respectively. And, the aver-
age cosine similarity between manual and system summary is obtained as 92.54%. Figure 5.5
shows the graph between Precision, Recall and F-Score measures with respect to number of
sentences in the documents,manual summary and system summary. And, Figure 5.6 shows the
graph of manual and system summary similarity with respect to number of sentences in the
documents,manual summary and system summary.

31

Table 5.3: Result of Experiment 2.

Figure 5.5: Precision-Recall-FScore Graph of Experiment 2.

32

Figure 5.6: Similarity Graph of Experiment 2.

5.3.3 Experiment 3

This experiment is carried out in 12 different documents from datasets described in Section 5.1.
Each document contains number of sentences more than 30. For the docunents having same
number of sentence, the average value of each measure parameter is calculated and shown in
table 5.4. This experiment shows that the average Precision, Recall and F-Score are obtained as
82.09% ,78.21% and 79.96% respectively. And, the average cosine similarity between manual
and system summary is obtained as 96.05%. Figure 5.7 shows the graph between Precision,
Recall and F-Score measures with respect to number of sentences in the documents,manual
summary and system summary. And, Figure 5.8 shows the graph of manual and system sum-
mary similarity with respect to number of sentences in the documents,manual summary and
system summary.

33

Table 5.4: Result of Experiment 3.

Figure 5.7: Precision-Recall-FScore Graph of Experiment 3.

34

Figure 5.8: Similarity Graph of Experiment 3.

5.3.4 Overall System Performance and Result Analysis

The overall performance of the system is calculated by taking the average value of all the
above three experiments. The overall Precision, Recall and F-Score of the system are 79.18%,
71.77% and 75.02% respectively. And, the average cosine similarity between manual and sys-
tem summary is obtained as 91.16%. Figure 5.9 shows the graph between the overall Precision,
Recall, F-Score and Similarity measures with respect to the number of sentences in the docu-
ments,manual summary and system summary.

Table 5.5: Average of System Measures.

35

Figure 5.9: Graph of Overall Precision-Recall-FScore-Similarity.

From the above Figure 5.9, it is seen that the system performance improves as we increase the
input document size. Similarity measure shows higher value than other three measures because
some of the manual summaries are abstractive rather than extractive.

For the better accuracy of the system, better data dictionaries of stop words, symbols and NE
are recommended along with some tuning in preprocessing steps. In addition to this, feature
extraction can be made better by adding some domain specific knowledges and sentence ex-
traction mechanism can be made more sophisticated by adding some learning mechanisms.

36

Chapter 6

CONCLUSION

6.1 Conclusion

In this dissertation work, an automatic text summarization for Nepali language based on sen-
tence extraction for single document has been introduced. There are many practical impor-
tances of automatic text summarization in various fields. It can be used for note taking, infor-
mation retrieval, data mining, indexing and many more.

The proposed method is mainly based on sentence scoring method. Each input sentences are
passed through various stages of preprocessing and feature extraction to calculate sentence
weights. Summery is generated by selecting most informative sentences from input document
based on their weights.

The system deals with extracted information which increase the capability by giving weights to
sentences that have words with the same meaning. On the other hand this process will increase
the cohesion between sentences in the extracted summary. Besides this, an entity recognition
module is applied on the documents to identify the relevance of the document.

For the evaluation of the proposed system, number of experiments are conducted on different
datasets. Automated evaluation techniques are used in each experiments to validate the pro-
posed system against the manual summaries. Different system evaluation matrices such pre-
cision, recall, f-score and cosine similarity are used to check the system accuracy. Empirical
results shows that the overall accuracy of the system is achieved as 79.18% precision, 71.77%

recall and 75.02% F-Score. Also, Cosine similarity measure gives overall similarity of 91.16%

between manual summary and system summary.

Finally, our system is optimized, easy to use, general to any domain area and able to produce
summaries comparable to human generated summaries. We expect the system to be used for a
wide range of applications.

6.2 Limitations and Future Scope

In this work, the system can summarize a single Nepali text document which is solely based
on sentence extraction model. So, sometimes there may be some semantic meaning loss in the
summary version. If we include the semantic model in this work then the system will produce

37

more accurate summary as generated by human being, i.e abstract summary. This work can
also be extended to summarize the multiple documents.

The performance of the proposed system may further be improved by improving stemming pro-
cess along with other document pre-processing techniques. Exploring more number of features
and applying learning algorithm for effective feature combination can also improve summary
generation.

One problem with extracted sentences, they may contain anaphora links to the rest of the text.
This has been investigated by [27]. Several heuristics have been proposed to solve this problem
such as including the sentence just before the extracted one. Anaphora solving seems to be
interesting point of research in future.

Traditionally, more than one reference summaries are used for evaluating each system gen-
erated summary, but in our work, we have used only one reference summary for summary
evaluation. In future, one could consider more than one reference summaries for summary
evaluation.

Our proposed system is tested with limited datasets as well as data dictionaries. For the better
generalization of the system, larger datasets and sophisticated data dictionaries can be used for
the evaluation of the system.

38

References

[1] E. Hovy, “Text summarization,” in The Oxford Handbook of Computational Linguistics

(R. Mitkov, ed.), Oxford Handbooks in Linguistics, ch. 32, pp. 583–598, Oxford: Oxford
University Press, 2003.

[2] G. S. L. Vishal Gupta, “A survey of text summarization extractive techniques,” vol. 2,
no. 3, 2010.

[3] K. Owczarzak and H. T. Dang, “TAC 2010 Guided Summarization Task Guidelines,”
2010.

[4] C. Kruengkrai and C. Jaruskulchai, “Generic text summarization using local and global
properties of sentences,” in Web Intelligence, pp. 201–206, IEEE Computer Society, 2003.

[5] B. K. Bal, “Towards building advanced natural language applications: An overview of the
existing primary resources and applications in nepali,” in Proceedings of the 7th Workshop

on Asian Language Resources, ALR7, (Stroudsburg, PA, USA), pp. 165–170, Association
for Computational Linguistics, 2009.

[6] H. P. Luhn, “Automatic creation of literature abstracts,” IBM Journal of Research and

Development, vol. 2, pp. 159–165, 1958.

[7] P. B. Baxendale, “Man-Made Index for Technical Literature - an Experiment,” IBM Jour-

nal of Research and Development, vol. 2, no. 4, pp. 354–361, 1958.

[8] C.-Y. Lin and E. H. Hovy, “Identifying topics by position,” in ANLP, pp. 283–290, 1997.

[9] Edmundson, “New methods in automatic extracting,” JACM: Journal of the ACM, vol. 16,
1969.

[10] R. Al-Hashemi, “Text summarization extraction system (TSES) using extracted key-
words,” Int. Arab J. e-Technol, vol. 1, no. 4, pp. 164–168, 2010.

[11] K. Sarkar, “Bengali text summarization by sentence extraction,” CoRR,
vol. abs/1201.2240, 2012.

[12] N. M. Hewahi and K. A. Kwaik, “Automatic arabic text summarization system (AATSS)
based on semantic features extraction,” IJTD, vol. 3, no. 2, pp. 12–27, 2012.

[13] Z. B. Md. Majharul Haque, Suraiya Pervin, “Literature review of automatic single docu-
ment text summarization using nlp,” vol. 3, pp. 857–865, July 2013.

39

[14] Z. B. Md. Majharul Haque, Suraiya Pervin, “Literature review of automatic multiple doc-
uments text summarization,” vol. 3, pp. 121–129, May 2013.

[15] H. Jing, “Sentence reduction for automatic text summarization,” in Proceedings of the

Sixth Conference on Applied Natural Language Processing, ANLC ’00, (Stroudsburg,
PA, USA), pp. 310–315, Association for Computational Linguistics, 2000.

[16] A. Patel, T. Siddiqui, and U. S. Tiwary, “A language independent approach to multilingual
text summarization,” in Large Scale Semantic Access to Content (Text, Image, Video, and

Sound), RIAO ’07, (Paris, France, France), pp. 123–132, LE CENTRE DE HAUTES
ETUDES INTERNATIONALES D’INFORMATIQUE DOCUMENTAIRE, 2007.

[17] McKeown, Kathleen, Radev, and D. R., “Generating summaries of multiple news arti-
cles,” in Proceedings of the Eighteenth Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, Text Summarization, pp. 74–82,
1995.

[18] D. R. Radev and K. R. McKeown, “Generating natural language summaries from multiple
on-line sources,” Comput. Linguist., vol. 24, pp. 470–500, Sept. 1998.

[19] J. Goldstein, V. Mittal, J. Carbonell, and M. Kantrowitz, “Multi-document summarization
by sentence extraction,” in Proceedings of the 2000 NAACL-ANLPWorkshop on Auto-

matic Summarization - Volume 4, NAACL-ANLP-AutoSum ’00, (Stroudsburg, PA, USA),
pp. 40–48, Association for Computational Linguistics, 2000.

[20] J. Fukumoto and T. Sugimura, “Multi-document summarization using document set type
classification.”

[21] D. K. Evans, “Similarity-based multilingual multi-document summarization.”

[22] B. K. Bal and P. Shrestha, “A morphological analyzer and a stemmer for nepali,” PAN

Localization, Working Papers, 2006.

[23] G. Salton and C. Buckley, “Term-weighting approaches in automatic text retrieval,” In-

formation Processing and Management, vol. 24, no. 5, pp. 513–523, 1988.

[24] J. L. Neto, A. Santos, C. Kaestner, and A. Freitas, “Document clustering and text sum-
marization,” in Proc. 4th International Conference Practical Applications of Knowledge

Discovery and Data Mining (PADD-2000) (N. Mackin, ed.), (London), pp. 41–55, The
Practical Application Company, 2000.

[25] J. Steinberger and K. Ježek, “Using latent semantic analysis in text summarization and
summary evaluation,” in In Proc. ISIM ’04, pp. 93–100, 2004.

40

[26] S. Bam, “Named Entity Recognition for Nepali Text using Support Vector Machine,”
Master’s thesis, Central Dept. of Computer Science and information Technology, T.U.,
Kitipur, Nepal, 2012.

[27] C. D. Paice, “Constructing literature abstracts by computer: Techniques and prospects,”
Inf. Process. Manage, vol. 26, no. 1, pp. 171–186, 1990.

41

Appendix A

Sample Source Codes

Symbols removal module
%public List <String > symbolRemoval(List <String > symbolDict ,List <String >

inputArray) {

List <String > output = remove(symbolDict , inputArray);

return output;

}

Stopword removal module
%public List <String > stopwordRomoval(List <String > stopwordDict ,

List <String > input) {

List <String > output = remove(stopwordDict , input);

return output;

}

remove Module
%public List <String > symbolRemoval(List <String > symbolDict ,List <String >

inputArray) {

List <String > output = remove(symbolDict , inputArray);

return output;

}

Stemming Module
%public class StemmerStart {

static String tag_input , r1, p;

static int bk, cm, rep = 0, i = 0, k = 0, repc = 0;

public static List <String > stemmer(String input) {

List <String > s_output = new ArrayList <String >();

int index = 0;

Date d = new Date();

42

d.getTime ();

String unrecog = "\n";

Morph m = new Morph();

try {

tag_input = input;

} catch (Exception e) {

System.out.println(e.toString ());

}

Tokenizer w = new Tokenizer ();

w.tokenize(tag_input);

String out = w.getTokenizedOutput ();

ReadWriteXML r = new ReadWriteXML(out);

cm = r.getNodeListLength ();

for (int c = 0; c < cm; c++) {

String n = r.getTextCont(c);

if (!n.equals("nocontent")) {

m.setPMorph_number (0);

m.setSMorph_number (0);

m.setRootPos(null);

rep = 0;

m.setSecParse(rep);

p = "yes";

r1 = n;

i = 0;

k = 0;

while (!r1.isEmpty ()) {

if (m.isRoot(r1) && p.equals("yes")

|| (m.isAltRoot(r1) && i > 0)) {

if (m.getSuffixExist(r1).equals("N") && i > 0) {

p = "no";

} else {

if (m.isAltRoot(r1) && i > 0)

m.setRoot(m.getAltRoot(r1));

else

m.setRoot(r1);

break;

}

}

else if (m.isRoot(r1 + "\u094d")) {

i++;

m.setSMorph_number(i);

m.isASuffix(r1);

r1 = m.getRoot ();

43

}

else if (r1.endsWith("\u094d") && m.isRoot(r1.substring(0,

r1.length () - 1))) {

r1 = r1.substring(0, r1.length () - 1);

m.setRoot(r1);

} else if (m.suffixPresent(r1, i)) {

i++;

m.setSMorph_number(i);

m.stripSuffix(r1);

r1 = m.getRoot ();

} else if (m.prefixPresent(r1)) {

k++;

m.setPMorph_number(k);

m.stripPrefix(r1);

r1 = m.getRoot ();

} else

if (k > 0 && i > 0) {

String tm, tmp;

String [] a = m.getPMorph ();

for (int k1 = k; k1 > 0; k1 --) {

tmp = r1;

for (int l = i; l > 0; l--) {

tm = m.generateWord(tmp , l);

if (m.isRoot(tm) || (m.isAltRoot(tm) && i > 0)) {

bk = 1;

m.setSMorph_number(l - 1);

m.setPMorph_number(k);

if ((m.isAltRoot(tm) && i >))

m.setRoot(m.getAltRoot(tm));

else

m.setRoot(tm);

r1 = m.getRoot ();

break;

} else {

bk = 0;

tmp = tm;

}

}

if (bk == 1) {

break;

}

44

if (k1 > 1)

r1 = a[k1] + r1;

}

if (bk != 1) {

r1 = "unrecognized";

k = 0;

}

} else {

m.setRoot("unrecognized");

}

if (m.getRoot ().equals("unrecognized")) {

rep++;

int repeat = 0;

if (rep == 1) {

for (int l = i; l > 0; l--) {

if (m.isRepeat(Integer.toString(m.getSMorph_rulenum(l)))) {

repeat = 1;

break;// for any suffix that has a repeat

} else

repeat = 0;

}

}

if (repeat == 1) {

r1 = n;

m.setPMorph_number (0);

m.setSMorph_number (0);

i = 0;

k = 0;

p = "yes";

m.setSecParse(rep);

} else

break;

}

}

if (m.getRoot ().equals("unrecognized")) {

m.handleDublicateWord(n);

45

}

if (m.getRoot ().equals("unrecognized")) {

m.handleCompoundWord(n);

}

if (m.getRoot ().equals("unrecognized")) {

unrecog = unrecog + n + "\n";

}

StringBuffer a = new StringBuffer("");

StringBuffer mspos = new StringBuffer("");

StringBuffer mppos = new StringBuffer("");

StringBuffer b = new StringBuffer("");

String [] pmorpheme = m.getPMorph ();

String [] pdt = m.getPDes ();

String [] smorpheme = m.getSMorph ();

String [] sdt = m.getSDes ();

int p = m.getPMorph_number ();

int s = m.getSMorph_number ();

for (int j = 0; j < p; j++) {

b.append(pmorpheme[j + 1] + "(" + pdt[j + 1] + ")" + "+");

mppos.append(pdt[j + 1] + "_");

}

for (int j = s; j > 0; j--) {

a.append("+" + smorpheme[j] + "(" + sdt[j] + ")");

mspos.append("_" + sdt[j]);

}

r.setMorphContent(c, b + m.getRoot () + "(" + m.getRootPos ()

+ ")" + a);

if (!m.getRoot ().equals("unrecognized")) {

r.setPosContent(c, mppos + m.getRootPos () + mspos);

}

if (m.getRoot ().matches("unrecognized"))

s_output.add(n);

else

s_output.add(m.getRoot ());

index = index + 1;

}

}

Date d1 = new Date();

d1.getTime ();

46

return s_output;

}

}

Position feature module
%public double sentencePosition(List <String > input ,int sPos , String

sentence) {

double noOfSentences = input.size();

if (noOfSentences == 0) {

return 0.0;

}

double absSPos = ((noOfSentences - sPos + 1) / noOfSentences);

return absSPos;

}

Length feature module
%public double lengthOfSentence(int noOfWordsInLongestSentence ,

String sentence) {

int noOfWordsInSentence = noOfWords(sentence);

double output = (double) noOfWordsInSentence

/ noOfWordsInLongestSentence;

return output;

}

Named Entity Recognition Module
%public int neClass(List <List <String >> neDict , String word) {

if (neDict.get(0).contains(word)) {

return 1;

} else if (neDict.get(1).contains(word)) {

return 2;

} else if (neDict.get(2).contains(word)) {

return 3;

} else if (neDict.get(3).contains(word)) {

return 4;

} else {

return 5;

}

}

47

Term frequency (TF X ISF) module
%

public int tf(List <String > tokens , String word) {

int tf = Collections.frequency(tokens , word);

return tf;

}

public int isf(List <String > sentences , String word) {

int n = 0;

for (Object o : sentences) {

if (o.toString ().contains(word)) {

n = n + 1;

}

}

return n;

}

public double wordWeight(List <String > input , String word) {

List <String > sentences = listSentencise(input); // sentence list

List <String > tokens = listTokanize(input); // token list

int ns = sentences.size(); // number of sentences

int tf = tf(tokens , word);

int isf = isf(sentences , word);

double tf_isf = (double) tf * Math.log((double) ns / (double) isf);

return tf_isf;

}

Sentence analysis module
%

public List <Double > sentenceWeight(List <String > input) {

List <Double > weights = new ArrayList <Double >();

List <Double > tw = new ArrayList <Double >();

List <String > sentences = listSentencise(input); // sentence list

List <String > tokens = listTokanize(input); // token list

int ns = sentences.size(); // number of sentences

for (Object o : sentences) {

double wi = sentenceWeight2(sentences , tokens ,

o.toString ());

tw.add(wi);

}

double maxw = Collections.max(tw);

for (Object o : tw) {

weights.add((Double) o / maxw);

}

48

return weights;

}

public double sentenceWeight1(List <String > sentenceArray , String

sentence) {

List <String > tokenArray = listTokanize(sentenceArray);

double wi = 0.0;

List <String > sentenceTokenArray = sentenceTokanize(sentence);

int nTokens = sentenceTokenArray.size();

for (int i = 0; i < nTokens; i++) {

double twi = 0.0;

String token = sentenceTokenArray.get(i).toString ();

twi = wordWeight1(sentenceArray , tokenArray , token);

wi = wi + twi;

}

return wi;

}

public double sentenceWeight2(List <String > sentences , List <String > tokens ,

String sentence) {

double wi = 0.0;

String [] tt = sentence.toString ().split("[,\t]");

for (int i = 0; i < tt.length; i++) {

double twi = 0.0;

if (!tt[i].trim().isEmpty ()) {

twi = wordWeight1(sentences , tokens , tt[i]);

wi = wi + twi;

}

}

return wi;

}

public List <String > listTokanize(List <String > input) {

List <String > temp = new ArrayList <String >();

for (Object o : input) {

String [] tt = o.toString ().split("[,?|\t\n]");

for (int i = 0; i < tt.length; i++) {

if (!tt[i].trim().isEmpty ()) {

temp.add(tt[i]);

}

}

}

return temp;

}

public List <String > sentenceTokanize(String sentence) {

List <String > temp = new ArrayList <String >();

49

String [] tt = sentence.split("[,?|\t\n]");

for (int i = 0; i < tt.length; i++) {

if (!tt[i].trim().isEmpty ()) {

temp.add(tt[i]);

}

}

return temp;

}

public List <String > listSentencise(List <String > input) {

List <String > temp = new ArrayList <String >();

for (String s : input) {

if(s==null||s.length ()==1||s.isEmpty ()||s.trim().equals("")

||s.equals("")){continue;

}

String [] tt = s.trim().split("(? <=[?|]+)");

for (int i = 0; i < tt.length; i++) {

if (tt[i]. length () !=0||! tt[i].trim().equals("")||!tt[i].trim().isEmpty ()) {

temp.add(tt[i].trim());

}

}

}

return temp;

}

Sumamry generation module
%public List <String > summaryGeneration(List <String > input , List <String >

ppOutput ,

List <List <String >> neDict , float nSummary) {

List <String > summary=new ArrayList <String >();

double [][] scoreArray = sentenceScoring(ppOutput , neDict);

double [][] rankArray = sentenceRanking(scoreArray);

int nRows = rankArray.length;

int nSummarySentences = (int)Math.round(nRows * nSummary);

int[] ssIndexArry=new int[nSummarySentences];

for (int i = 0; i < nSummarySentences; i++) {

ssIndexArry[i]=(int) (rankArray[i][0]);

}

Arrays.sort(ssIndexArry);

for (int i = 0; i < nSummarySentences; i++) {

summary.add(input.get(ssIndexArry[i]));

}

return summary;

}

50

public double [][] sentenceRanking(double [][] scoreArray) {

Arrays.sort(scoreArray , new Comparator <double []>() {

@Override

public int compare(double [] int1 , double [] int2) {

Double numOfKeys1 = int1 [1];

Double numOfKeys2 = int2 [1];

return -numOfKeys1.compareTo(numOfKeys2); // to return

result in

}

});

return scoreArray;

}

public double [][] sentenceScoring(List <String > input ,

List <List <String >> neDict) {

double [][] featureArray = sentenceFeatures(input , neDict);

int nSentences = input.size();

double [][] scoreArray = new double[nSentences][2];

for (int i = 0; i < nSentences; i++) {

scoreArray[i][0] = i;

scoreArray[i][1] = featureArray[i][1]

+ featureArray[i][2] + featureArray[i][3]

+ featureArray[i][4] + featureArray[i][5]

+ featureArray[i][6] + featureArray[i][7]

+ featureArray[i][8];

}

System.out.println("--");

System.out.println("Features of Sentences");

System.out.println("--");

for (int i=0;i<nSentences;i++) {

for (int j=0;j<9;j++){

System.out.print(featureArray[i][j] +" ");

}

System.out.println ();

}

System.out.println("--");

System.out.println("Score of Sentences");

System.out.println("--");

for (int i=0;i<nSentences;i++) {

for (int j=0;j<2;j++){

System.out.print(scoreArray[i][j] +" ");

}

System.out.println ();

}

return scoreArray;

}

51

public double [][] sentenceFeatures(List <String > input , List <List <String >>

neDict) {

int nWordsInLongestSentence =

feDao.noOfWordsInLongestSentence(input);

int nSentences = input.size();

double [][] featureArray = new double[nSentences][nFeatures];

String sentence;

List <String > tokenArray = new ArrayList <String >();

for (int i = 0; i < nSentences; i++) {

if (input.get(i).isEmpty () || input.get(i).trim().isEmpty ()

|| input.get(i) == null) {

featureArray[i][0] = i;

featureArray[i][1] = 0;

featureArray[i][2] = 0;

featureArray[i][3] = 0;

featureArray[i][4] = 0;

featureArray[i][5] = 0;

featureArray[i][6] = 0;

featureArray[i][7] = 0;

featureArray[i][8] = 0;

} else {

sentence = input.get(i).toString ().trim();

featureArray[i][0] = i;

featureArray[i][1] = feDao.lengthOfSentence(

nWordsInLongestSentence , sentence);

featureArray[i][2] = feDao.sentencePosition(input ,i+1,

sentence);

tokenArray = feDao.sentenceTokanize(sentence);

int nTokens = tokenArray.size();

int neResult;

String word;

int nPersons = 0, nLocations = 0, nOrganizations = 0,

nMisc = 0, nNotNE = 0;

for (int j = 0; j < nTokens; j++) {

word = tokenArray.get(j);

neResult = feDao.neClass(neDict , word);

switch (neResult) {

case 1:

nPersons = nPersons + 1;

break;

case 2:

nLocations = nLocations + 1;

break;

case 3:

nOrganizations = nOrganizations + 1;

52

break;

case 4:

nMisc = nMisc + 1;

break;

case 5:

nNotNE = nNotNE + 1;

break;

default:

break;

}

featureArray[i][3] = nPersons;

featureArray[i][4] = nLocations;

featureArray[i][5] = nOrganizations;

featureArray[i][6] = nMisc;

featureArray[i][7] = 0.0; // featureArray[i][7] =

nNotNE;

}

featureArray[i][8] = feDao.sentenceWeight1(input ,

sentence);

}

}

return featureArray;

}

System evaluation module
%

public void systemEvaluation(List <String > manualSummary ,List <String >

systemSummary) {

double precision=precision(manualSummary , systemSummary);

double recall=recall(manualSummary , systemSummary);

double beta =1;

double fscore=fscore(precision , recall , beta);

System.out.println("--");

System.out.println("Results");

System.out.println("\tPrecision:

"+roundTwoDecimals(precision *100)+"%");

System.out.println("\tRecall: "+roundTwoDecimals(recall *100)+"%");

System.out.println("\tF-Score: "+roundTwoDecimals(fscore *100)+"%");

}

public String [] systemEvaluation1(List <String > manualSummary ,List <String >

systemSummary) {

double precision=precision(manualSummary , systemSummary);

53

double recall=recall(manualSummary , systemSummary);

double beta =1;

double fscore=fscore(precision , recall , beta);

String [] result=new String [3];

result [0]= roundTwoDecimals(precision *100)+"%".toString ();

result [1]= roundTwoDecimals(recall *100)+"%".toString ();

result [2]= roundTwoDecimals(fscore *100)+"%".toString ();

return result;

}

double roundTwoDecimals(double d) {

DecimalFormat twoDForm = new DecimalFormat("#.##");

return Double.valueOf(twoDForm.format(d));

}

public double precision(List <String > manualSummary ,List <String >

systemSummary) {

int nSystemSumarySentences=systemSummary.size();

Set <String > intersect = new HashSet <String >(manualSummary);

intersect.retainAll(systemSummary);

int nSystemCorrectSummarySentences=intersect.size();

return

(double)nSystemCorrectSummarySentences/nSystemSumarySentences;

}

public double recall(List <String > manualSummary ,List <String >

systemSummary) {

int nManualSumarySentences=manualSummary.size();

Set <String > intersect = new HashSet <String >(manualSummary);

intersect.retainAll(systemSummary);

int nSystemCorrectSummarySentences=intersect.size();

return

(double)nSystemCorrectSummarySentences/nManualSumarySentences;

}

public double fscore(double precision , double recall , double beta) {

double f=0.0;

if(precision !=0.0 && recall !=0.0){

f = ((beta * beta + 1) * precision * recall)

/ ((beta * beta) * precision + recall);

}

return f;

}

public class values

{

int val1;

54

int val2;

values(int v1, int v2)

{

this.val1=v1;

this.val2=v2;

}

public void Update_VAl(int v1, int v2)

{

this.val1=v1;

this.val2=v2;

}

}//end of class values

public double cosineSimilarityScore(String Text1 , String Text2){

double sim_score =0.0000000;

String [] word_seq_text1 = Text1.split(" ");

String [] word_seq_text2 = Text2.split(" ");

Hashtable <String , values > word_freq_vector = new Hashtable <String ,

EvaluationDaoImpl.values >();

LinkedList <String > Distinct_words_text_1_2 = new

LinkedList <String >();

for(int i=0;i<word_seq_text1.length;i++)

{

String tmp_wd = word_seq_text1[i].trim();

if(tmp_wd.length () >0)

{

if(word_freq_vector.containsKey(tmp_wd))

{

values vals1 = word_freq_vector.get(tmp_wd);

int freq1 = vals1.val1 +1;

int freq2 = vals1.val2;

vals1.Update_VAl(freq1 , freq2);

word_freq_vector.put(tmp_wd , vals1);

}

else

{

values vals1 = new values(1, 0);

word_freq_vector.put(tmp_wd , vals1);

Distinct_words_text_1_2.add(tmp_wd);

}

}

}

for(int i=0;i<word_seq_text2.length;i++)

{

String tmp_wd = word_seq_text2[i].trim();

if(tmp_wd.length () >0)

55

{

if(word_freq_vector.containsKey(tmp_wd))

{

values vals1 = word_freq_vector.get(tmp_wd);

int freq1 = vals1.val1;

int freq2 = vals1.val2 +1;

vals1.Update_VAl(freq1 , freq2);

word_freq_vector.put(tmp_wd , vals1);

}

else

{

values vals1 = new values(0, 1);

word_freq_vector.put(tmp_wd , vals1);

Distinct_words_text_1_2.add(tmp_wd);

}

}

}

double VectAB = 0.0000000;

double VectA_Sq = 0.0000000;

double VectB_Sq = 0.0000000;

for(int i=0;i<Distinct_words_text_1_2.size();i++)

{

values vals12 =

word_freq_vector.get(Distinct_words_text_1_2.get(i));

double freq1 = (double)vals12.val1;

double freq2 = (double)vals12.val2;

VectAB=VectAB +(freq1*freq2);

VectA_Sq = VectA_Sq + freq1*freq1;

VectB_Sq = VectB_Sq + freq2*freq2;

}

sim_score = ((VectAB)/(Math.sqrt(VectA_Sq)*Math.sqrt(VectB_Sq)));

return(roundTwoDecimals(sim_score *100));

}

}

56

Appendix B

Sample Input and Output

57

