Tribhuvan University

Institute of Science and Technology

A Single Machine Scheduling To Minimize Weighted Number of Tardy Jobs with Release Time Constant

Dissertation

Submitted To

Central Department of Computer Science and Information Technology Kirtipur, Kathmandu, Nepal

In Partial Fulfillment of the Requirements for the degree of Masters of Science in Computer Science and Information Technology

> By Ganesh Prasad Chataut

Dissertation Supervisor Prof. Dr. Shashidhar Ram Joshi Department of Electronics and Computer Engineering, Institute of Engineering, Pulchowk, Nepal December, 2012

Tribhuvan University Institute of Science and Technology Central Department of Computer Science and Information Technology Kirtipur, Kathmandu, Nepal

Date-----

LETTER OF CERTIFICATE

This is to certify that the dissertation work entitled "A Single Machine Scheduling To Minimize Weighted Number of Tardy Jobs with Release Time Constant", submitted by Mr. Ganesh Prasad Chataut has carried out under my supervision and guidance. In my best knowledge this is an original work in computer science and no part of this dissertation has been published or submitted for the award of any degree else where in the past.

Prof. Dr. Shashidhar Ram Joshi Department of Electronics and Computer Engineering, Institute of Engineering, Pulchowk, Nepal (Supervisor)

Tribhuvan University Institute of Science and Technology Central Department of Computer Science and Information Technology Kirtipur, Kathmandu, Nepal

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope and qualify as a dissertation in the partial fulfillment for the requirement of Master of Science in Computer Science and Information Technology (MScCSIT).

Evaluation Committee

Asst. Prof. Nawaraj Poudel

Central Department of Computer Science and Information Technology Tribhuvan University, Nepal (Act. Head)

Prof. Dr. Shashidhar Ram Joshi Department of Electronics and Computer Engineering, Pulchowk, Nepal (Supervisor)

(External Examiner)

(Internal Examiner)

Date:

ACKNOWLEGEMENTS

It is great feeling to thank all, who encouraged me and made contribution to my work. I would like to express my deep and sincere gratitude to my supervisor Prof.Dr. Shashidhar Ram Joshi, Department of Electronics and Computer Engineering, Institute of Engineering, Pulchowk, for his wholehearted cooperation, for detailed and constructive comments, and for his important support throughout this work. Prof. Dr. Joshi, apart from guiding me, also provided plenty of research paper.

I warmly thank to the respected teachers Assoc.Prof.Dr. Tanka Nath Dhamala Head, Central Department of Computer Science and information Technology TU Kathmandu Nepal, Prof.Dr.Subarna Shakya, Prof.Dr.Onkar Sharma (Marist College,USA), Mr.Sudarshan Karanjit, Mr.Min Bahadur Khati, Mr.Samujjwal Bhandari, Mr.Hemant G.C, Mr.Dinesh Bajracharya, Mr.Bishnu Gautam, Mr Nawaraj poudel, Mr. Jagdish Bhatt, Mr. Arjun singh Saud and all other teachers for their unwavering support and the knowledge the persuaded during my two year's study. I would like to thank all who pursued the goal of completing this thesis and also for their encouragement and help at various stages of my masters.

I can't find words to express my loving wife Laxmi Chataut for her personal support and great patience at all times. My parents Mr. Tara Datt Chataut as well as Yashoda Devi Chataut and brother Gajendra Prasad Chataut have given me their unequivocal support, throughout, as always, for which my mere expression of thanks likewise does not suffice.

I would like to thank Mr. Bikash Balami and kamal Prasad Dhakal who gave me untiring help during my difficult moments and also all my class fellows are worthy of my gratefulness for their direct or indirect support in completion of my dissertation.

Ganesh Prasad Chataut

CDCSIT, T.U.

ABSTRACT

Scheduling is a decision making process that has a goal the optimization of one or more objectives. Scheduling concerns the allocation of limited resources to task over a time. Unfortunately, many scheduling problems belongs to the class NP-hard or in simple words, they are not solved exactly by any efficient algorithm on any computer. In this dissertation certain scheduling problems for the case of single machine scheduling is studied. Since $1 \left[U_{ij} U_{j} \right]$ is NP-hard, it is not possible to compute exact solution, even for the instances of moderate size. We shall apply the dynamic programming algorithm, branch and bound algorithm. Where preemption is not allowed and, the objective function is to minimize the weighted number of tardy jobs considering release time constant.

ABBREVIATIONS

AGV	Automated Guided Vehicles
AI	Artificial Intelligence
B&B	Branch and Bound
CPU	Central Processing Unit
DP	Dynamic programming
EDD	Earliest Due Date
FCFS	First Come First Serve
FMS	Flexible Manufacturing Systems
I/O	Input/Output
LPT	Longest Processing Time
OS	Operating System
SJF	Shortest Job First
SPT	Shortest Processing Time
SMS	Single Machine Scheduling
SRTN	Shortest Remaining Time Next

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION1
1.1 Machine Scheduling3
1.2 Three-Field Notation
1.3 Significance of the Problem4
1.4 Notation and Definitions4
1.5 Organization of this Thesis
CHAPTER 2 COMPUTATIONAL COMPLEXITY7
2.1 Complexity Theory7
2.2 Algorithms and complexity8
2.2.1 Algorithm
2.2.2 Computational Resources
2.2.3 Time and Space Complexities of Algorithms
2.3 Decision/Recognition problem
2.4 Optimization problems10
2.5 Abstract problems and encoding10
2.6 Reducibility11
2.7 Complexity Classes11
2.7.1 Classes P11
2.7.2 The Class NP12
$2.7.3 P \subseteq NP$ 12
2.7.4 Big Question: Is P=NP?12
2.7.5 NP-complete problems13
2.7.6 NP-hard problems14
2.7.7 Co-NP class14
2.7.8 Co-NP-complete problems14
2.7.9 Famous Complexity Classes14
CHAPTER 3 SCHEDULING PROBLEMS16

3.1 Representation of Schedule	16
3.2 Classes of Schedules	17
3.3 Types of Schedules	17
3.3.1 Single Machine	18
3.3.2 Parallel Machine	18
3.3.3 General Shop Scheduling Problem	18
3.3.4 Flow Shop Problems	18
3.3.5 Job Shop Problem	19
3.3.6 Open Shop Problem	19
3.3.7 Mixed Shop Problem	19
3.3.8 Super Shop Problem	19
3.3.9 Static and Dynamic	20
3.3.10 Stochastic and Deterministic	20
3.4 Classification (The Three Field Notation)	20
3.4.1 Machine Environment ()	20
3.4.1.1 Machine Types and Arrangements	21
3.4.1.2 Machine Number	21
3.4.2 Job Characteristics ()	22
3.4.3 Optimality Criteria ()	22
3.5 Simple Reduction between Scheduling Problems	24
3.6 Some Application Areas of Scheduling Problem	26
3.6.1 Problems Related To Production	
3.6.2 Scheduling Problem in Operating System	26
3.6.3 Other Problems	
3.7 Just-In-Time and Real-Time System	29
CHAPTER 4 ANALYZING AND SOLVING SCHEDULING PROBLEMS	31
4.1 Efficient optimal methods	32
4.2 Enumerative Optimal Methods	32
4.2.1 Dynamic Programming	
4.2.2 Branch and bound (B&B) Algorithm	
4.3 Heuristic Methods	

4.3.1 Relaxation	
4.3.2 Scheduling rules/priority rules	37
4.3.2.1 Random List	37
4.3.2.2 Longest Processing Time (LPT)	37
4.3.2.3 Shortest Processing Time (SPT)	
4.3.2.4 Earliest Due Date (EDD)	38
4.3.2.5 Simulation Techniques	38
4.3.2.6 Neighborhood Search Techniques	38
4.3.2.7 Meta-Heuristic Search Methods	39
4.3.3 Simulated Annealing	39
4.3.4 Tabu Search	41
4.3.5 Genetic Algorithm	41
4.4 Near-To-Exact Algorithms	42
4.4.1 Approximation Algorithms for Off-line Problems	42
4.4.2 Approximation Algorithms for On-line Problems	43
CHAPTER 5 SINGLE MACHINE SCHEDULING PROBLEM	45
5.1 Definition, importance and overview of SMS Research	45
5.2 Overview of Single Machine Scheduling Problems and Their Comple	xity46
5.3 Some SMS Related Problem Types	48
5.4 Polynomially solvable single machine scheduling problems:	49
5.5 Other Problems	51
5.6 NP-hard Problem Related to SMP	54
CHAPTER 6 MINIMIZING THE WEIGHTED NUMBER OF TARDY JOBS	56
6.1 Problem Presentation	56
6.2 Historical Development and research overview	56
6.3 Similar Problems in the Past	58
CHAPTER 7 PROBLEM STATEMENT AND METHODOLOGY	61
7.1 Statement of the Problem	61
7.2 Assumptions	61
7.3 Objective Function	61
7.4 Complexity of the Problem	61

7.5 Methodology	62
7.5.1 A Branch and bound approach	62
7.5.1.1 Derivation of a knapsack model	62
7.5.1.2 A heuristics for obtaining an initial solution for WI	NT64
7.5.1.3 An exact algorithm for WNT	65
7.5.2 Dynamic programming applied to problem	66
7.6 Experiments and Results	67
7.6 .1 Input Data Set	67
7.6.2 Output	68
CHAPTER 8 CONCLUSION AND RECOMMENDATION	70
8.1 Summary	70
8.2 Conclusions	70
8.3 Recommendation	70
REFERENCES	72
APPENDIX A: Program Source Code of Various Algorithms	76

LIST OF FIGURES

1. Figure: 2.1 Problem reductions
2. Figure: 2.2 Relationship between P, NP and NP-complete problem
3. Figure: 3.1 Gantt chart for schedule of four jobs in single machine
4. Figure: 3.2 Classes of Schedule17
5. Figure: 3.3 Reduction between scheduling problems
6. Figure: 3.4 Relation between objective functions25
7. Figure: 3.5 The basic queuing model
8. Figure: 4.1 Analyzing scheduling problems
9. Figure 4.2 Branching tree-examples
10. Figure: 7.1 Weighted Numbers of tardy jobs versus number of jobs

LIST OF TABLES

1. Table 2.1: Famous Complexity Classes	15
2. Table 5.1: Complexity of elementary SMS problem	17
3. Table 6.1: History of minimizing the weighted number of tardy jobs6	50
4. Table 7.1 Result of Dynamic programming and B&B64	8